

SAR EVALUATION REPORT

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

The model FCC ID: PY7-TM0061 shares the same enclosure and circuit board as model FCC ID: PY7-TM0063. The WLAN/Bluetooth circuitry and layout, including antenna, are identical between the two units. The WLAN/Bluetooth antenna and surrounding circuitry are the same between these two units, and tune up power targets are identical for WLAN and Bluetooth operations. For this reason the SAR data for the WLAN and Bluetooth operations for FCC ID: PY7-TM0061 is considered representative for FCC ID: PY7-TM0063.

For GSM/WCDMA/LTE + BLUETOOTH, DTS/UNII a/b/g/n/ac & ANT+

FCC ID: PY7-TM0063

Report Number: 15J20368-S1B Issue Date: 5/18/2015

Prepared for

SONY MOBILE COMMUNICATIONS INC. NYA VATTENTORNET MOBILVAGEN 10 LUND 22188 SWEDEN

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Date	Revisions	Revised By
	5/8/2015	/2015 Initial Issue	
Α	5/12/2015	Updated section 9.1. notes	Devin Chang
В	5/18/2015	Updated WLAN Data	Coltyce Sanders

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	7
4.1.		
4.2.	. SAR Scan Procedures	8
4.3.	. Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1.	. DUT Description	11
6.2.	. Wireless Technologies	11
6.3.	. Nominal and Maximum Output Power	12
6.4.	. General LTE SAR Test and Reporting Considerations	13
6.5.	. Power Reduction by Proximity Sensing	14
6	5.5.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)	15
6	5.5.2. Proximity Sensor Coverage (KDB 616217 §6.3)	16
6	5.5.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)	17
6	5.5.4. Resulting test positions for SAR measurements	17
7.	RF Exposure Conditions (Test Configurations)	18
7.1.	. Standalone SAR Test Exclusion Considerations	18
7.2.	. Required Test Configurations	19
8.	Dielectric Property Measurements & System Check	20
8.1.	. Dielectric Property Measurements	20
8.2.	. System Check	22
9.	Conducted Output Power Measurements	24
9.1.	. GSM	24
9.2.	. W-CDMA	27
9.3.	. LTE	30
9.4.	. WLAN and BT	31
10.	Measured and Reported (Scaled) SAR Results	32
10.	1. GSM850	33
10.2	2. GSM1900	33
10.3	3. W-CDMA Band V	34
	Page 3 of 45	

	10.4.	LTE Band 17 (10MHz Bandwidth)	34
	10.5.	WLAN and Bluetooth	34
11	. SAI	R Measurement Variability	35
12	. Sim	nultaneous Transmission SAR Analysis	36
	12.1.	Sum of the SAR for GSM850 & Wi-Fi & BT	37
	12.2.	Sum of the SAR for GSM1900 & Wi-Fi & BT	37
	12.3.	Sum of the SAR for WCDMA Band V & Wi-Fi & BT	38
	12.4.	Sum of the SAR for LTE Band 17 & Wi-Fi & BT	38
Αŗ	pendix	es	45
	A_15J2	0368v0 SAR Photos & Ant. Locations	45
	B_15J2	0368v0 SAR System Check Plots	45
	C_15J2	0368v0 SAR Highest Test Plots	45
	D_15J2	0368v0 SAR Tissue Ingredients	45
	E_15J2	0368v0 SAR Probe Cal. Certificates	45
	F 15.12	0368v0 SAR Dinole Cal. Certificates	45

1. Attestation of Test Results

Applicant Name	SONY MOBILE COMMUNICATIONS, INC.	
FCC ID	PY7-TM0063	
Applicable Standards	FCC 47 CFR § 2.1093	
	Published RF exposure KDB procedures	
	IEEE Std 1528-2013	
SAR Limits (W/Kg)		
Exposure Category	Peak spatial-average(1g of tissue)	
General population / Uncontrolled exposure	1.6	
General population /		

The Highest Reported SAR (W/kg)

DE Expecure Conditions	Equipment Class			
RF Exposure Conditions	Licensed	DTS*	U-NII*	DSS (BT)
Standalone	1.025	0.789	0.820	0.354
Simultaneous TX	1.547	1.500	1.547	1.065
Date Tested	d 4/15/2015 to 4/27/2015			
Test Results	Pass			

*Note: The Wi-Fi (DTS/U-NII) and Bluetooth SAR measurement results from the original filling can be found in SAR test report 15U20030-S1E, FCC ID: PY7-TM0061. The Wi-Fi and Bluetooth results from the original filling were used for Simultaneous Transmission Analysis purposes. Both models contain identical Wi-Fi/BT modules and antennas. Spot checks for 802.11b/n/ac were performed to ensure that the SAR measurements for both devices are the same.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:	
Jan Cary	Nather Sons.	
Devin Chang	Nathan Sousa	
Senior Engineer	Laboratory Engineer	
UL Verification Services Inc.	UL Verification Services Inc.	

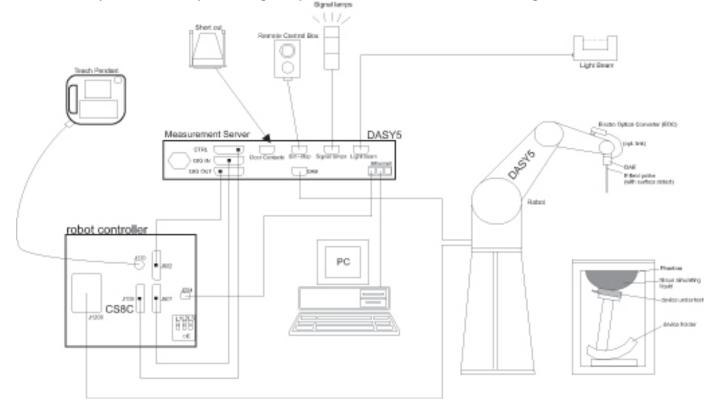
2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02
- o 447498 D01 General RF Exposure Guidance v05r02
- 616217 D04 SAR for laptop and tablets v01r01
- 690783 D01 SAR Listings on Grants v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03
- o 865664 D02 RF Exposure Reporting v01r01
- 941225 D01 3G SAR Procedures v03
- 941225 D05 SAR for LTE Devices v02r03
- 941225 D06 Hotspot Mode v02

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	
SAR Lab G	
SAR Lab H	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- · Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid 1^{st} two point to phantom $\Delta z_{Zoom}(n>1)$	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz:} \le 3 \text{ mm}$ $4 - 5 \text{ GHz:} \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$
		Δz _{Zoom} (n>1): between subsequent points	≤1.5·Δz	Zoom(n-1)
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3-4 \text{ GHz:} \ge 28 \text{ mm}$ $4-5 \text{ GHz:} \ge 25 \text{ mm}$ $5-6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Network Analyzer	Agilent	8753ES	MY40001647	7/17/2015
Dielectronic Probe kit	SPEAG	DAK-3.5	1087	11/11/2015
Dielectronic Probe kit	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	Traceable Calibration Control Co.	4242	122529162	10/8/2015

System Check

- Cyclom Chicon				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
HP Signal Generator	HP	8665B	3546A00784	6/23/2015
Power Meter	HP	437B	3125U09516	10/6/2015
Power Meter	Agilent	N1911A	MY53060016	8/7/2015
Power Sensor	Agilent	E9323A	MY53070003	5/1/2015
Power Sensor	Agilent	8481A	3318A95392	10/6/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1622052	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2711	N/A
DC Power Supply	Sorensen Ametek	XT20-3	1318A00530	N/A
Synthesized Signal Generator	Agilent	8665B	3438A00633	7/10/2015
Power Meter	HP	437B	3125U11347	8/27/2015
Power Meter	HP	437B	3125U16345	6/16/2015
Power Sensor	HP	8481A	2702A60780	6/16/2015
Power Sensor	HP	8481A	1926A16917	10/10/2015
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1808938	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2710	N/A
DC Power Supply	HP	6296A	2841A-05955	N/A
E-Field Probe (SAR Lab 1)	SPEAG	EX3DV4	3902	5/19/2015
E-Field Probe (SAR Lab 5)	SPEAG	EX3DV4	3991	5/16/2015
Data Acquisition Electronics (SAR Lab 1)	SPEAG	DAE4	1352	11/7/2015
Data Acquisition Electronics (SAR Lab 5)	SPEAG	DAE4	1439	5/14/2015
System Validation Dipole	SPEAG	D750V3	1024	5/16/2015
System Validation Dipole	SPEAG	D835V2	4d142	9/92015
System Validation Dipole	SPEAG	D1900V2	5d163	9/11/2015
Thermometer (SAR Lab 1)	EXTECH	445703	CCS-205	3/20/2016
Thermometer (SAR Lab 5)	EXTECH	445703	CCS-239	6/3/2015

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	132910	10/16/2015

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

Back Cover	☐ The rechargeable battery is not user accessible.
Battery Options	☐ The rechargeable battery is not user accessible.
Wireless Router (Hotspot)	Wi-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices.
	☑ Mobile Hotspot (Wi-Fi 2.4 GHz)
	☑ Mobile Hotspot (Wi-Fi 5 GHz UNII 1 and UNII 3 only)
Wi-Fi Direct	Wi-Fi Direct enabled devices transfer data directly between each other
	☑ Wi-Fi Direct (Wi-Fi 2.4 GHz)
	☑ Wi-Fi Direct (Wi-Fi 5 GHz UNII 1 and UNII 3 only)
Accessory/ies	FCC ID: PY7-RD0101

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Operating mode		Duty Cycle used for SAR testing
GSM	850	Voice (GMSK)	GPRS Multi-Slot Class:	GSM Voice: 12.5%
OSIVI	1900	GPRS (GMSK)	☐ Class 8 - 1 Up, 4 Down	(E)GPRS: 1 Slot: 12.5%
	1900	EGPRS (8PSK)	☐ Class 10 - 2 Up, 4 Down	2 Slots: 25%
		LGFR3 (0F3R)	☐ Class 10 - 2 Op, 4 Down	3 Slots: 37.5%
			☐ Class 12 - 4 Op, 4 Down	4 Slots: 50%
		rancoucly	□ ⊠ Class 33 - 4 Op, 3 DOWII	4 31015. 30 //
		•	GSM call, automatically resumed	at and of call
		SM / GPRS mode switching a	•	at end of call.
		9		
\\\\ \cdot\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		t DTM (Dual Transfer Mode		1
W-CDMA (UMTS)	Band V	UMTS Rel. 99 (Voice & Da	ata)	100%
		HSDPA (Rel. 5)		
		HSUPA (Rel. 6)		
LTE	FDD Band 17	QPSK		100% (FDD)
		16QAM		
		• •	rt Carrier Aggregation (CA)	
		□ Rel. 10 Carrier Aggregation	ation (Downlink Only)	
		(Non-US operations suppo	orted for CA)	
		☐ Rel. 11 Carrier Aggrega	tion (2 Uplink and 2 Downlinks)	
	Does this device suppor	t SV-LTE (1xRTT-LTE)?	Yes ⊠ No	
Wi-Fi	2.4 GHz	802.11b		100%
		802.11g		
		802.11n (HT20)		
	5 GHz	802.11a		100%
		802.11n (HT20)		
		802.11n (HT40)		
		802.11ac (VHT20)		
		802.11ac (VHT40)		
		802.11ac (VHT80)		
	Does this device suppor	t bands 5.60 ~ 5.65 GHz?	☑ Yes □ No	•
		t Band gap channel? ⊠ Yes		
Bluetooth	2.4 GHz	Version 4.1 LE		77.5% (DH5)

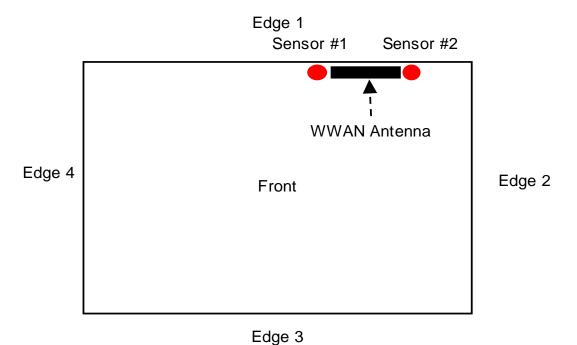
6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1.(3) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

Part						Max. RF	Max. RF Output Pow er (dBm)					n) Reduce RF Output Pow er (dBm)							
Part	RF Air interfa	ice Mo	ode	T		Talana		Max. tune	-up tol	lerance li	mit	Toward			Max	. tune-u	p tolera	nce l	limit
				lar	get	Tolera	ince -	Burst		Frame		Target	10	erance	E	Burst		rame	
CFRS 2 1 1 1 2 2 2 2 2 2		Voice	(1 slot)	33	3.0	-1.0 ~	0.7					26.0	-2.0) ~ 1.7					
GSM850				33	3.0	-1.0 ~	0.7	33.7		24.7		26.0	-2.0) ~ 1.7	1 :	27.7		18.7	
Common		GPRS	2 slots										_		+				
Part															1				
GFRS	GSM850	3 slots		- -			• • •				 	22.5	-25	. ~ 17	1 .	24.2		19 9	
BCFRS slot 27.0 1.5 - 1.0 22.0 1.9.0 27.0 1.5 - 1.0 28.0 1.0 1.5 - 1.0 28.0 1.0 1.5 - 1.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0		GPRS		28	3.5	-13 ~	0.7	29.2		26.2			_		_				
Figure				_									_		_				
ECHRS 3 slots 23.0 1.5 1.0 24.0 19.7 23.0 1.5 -1.0 24.0 19.7 23.5 1.5 -1.0 24.0 19.7 23.5 1.5 -1.0 24.0 19.7 19.5 21.5 -1.5 -1.0 22.5 19.5 19.5 19.5 21.5 -1.5 -1.0 22.5 19.5 19.5 21.5 -1.5 -1.0 22.5 19.5 19.5 21.5 -1.0 22.5 19.5 19.5 21.5 -1.0 22.5 19.5 19.5 21.5 -1.0 22.5 19.5 19.5 21.5 -1.0 22.5 19.5 21.5 19.5 21.5 -1.0 22.5 19.5 21.						_							_		+				
Mode Septe Sept		-				+							_		+				
Property Property													-						
CFR S S S S S S S S S						_							_						
GSM190			, ,										_		+				
Part							_						_		_				
GPRS slot 26,0 1,5 1,3 0,7 26,2 23,2 1,2 0 2,3 1,7 13,7 10,7 1				_															
FGPRS 1 slot 26.0 -1.5 -1.0 27.0 18.0 -1.6 -1.0 27.0 -1.5 -1.0 27.0	00144000			_									_		_				
Figure F	GSIVI1900																		
Fight Fight Fight Fight Fight Fight Fight Figh				_									_		_				
Fight Figh Fight Fight Figh												_		_					
Martine Mode Mod				22	2.0	-1.5 ~	1.0	23.0		18.7		13.7	-2.5	~ 2.0				11.4	
Part		EGPRS	4 slots	21						19.0		11.7				_		10.7	
Part						. RF Outpu	t Power (e RF Outp	ut Pow er				
Math	RF Air interface	Mode		LS I		tune-un		Po	Max	Max. tune-up		T CS		une-un				x tune	e-un
CFRS slot 33.0 -1.0 - 0.7 33.7 24.7 27.7 2			Target	Tolerance			Target	Tolerance			Target	Tolerance			Target	Tolerand			
Control Cont		00004							Burst	Frame							Bur	st F	rame
Part							31.5	-13 - 07	32.2	26.2					24.5	-23 - 1	7 26	2 .	20.2
Shade Shad		Low	31.3	-1.5 ~ 0.7	32.2	20.2	31.3	-1.5 ~ 0.7	32.2	20.2									
Fight Fig		GPRS Mid	29.5	-1.3 ~ 0.7	30.2	25.9	29.5	-1.3 ~ 0.7	30.2	25.9	22.5	-2.3 ~ 1.7	24.2	19.9	22.5	-2.3 ~ 1	.7 24.	2 /	19.9
EGRS 2 slots 31.5 -1.3 -0.7 32.2 26.2 25.0 -1.5 -1.0 26.0 20.0 24.5 -2.3 -1.7 26.2 20.2 25.0 -1.5 -1.0 26.0 20.0		High													22.5	-2.5 1	.7 24 .	2 '	19.9
EGRS 3 slots	GSIVI850						25.0	-15 - 10	26.0	20.0					25.0	-15 - 1	0 26	0 4	20.0
Section Sect		LOI 110 2 31013	31.3	-1.5 ~ 0.7	32.2	20.2													
CFRS 1 slot 30.0 -1.0 -0.7 30.7 21.7 22.9 28.5 -1.3 -0.7 29.2 23.2 15.0 23.3 -1.7 16.5 10.7 16.0 10.7 15.0 -2.3 -1.7 16.7 10.7		EGPRS 3 slots	29.5	-1.3 ~ 0.7	30.2	25.9	23.0	-1.5 ~ 1.0	24.0	19.7	22.5	-2.3 ~ 1.7	24.2	19.9	23.0	-1.5 ~ 1	.0 24.	0 1	19.7
Figure Composition Comp							23.0	-1.5 ~ 1.0	24.0	19.7					23.0	-1.5 ~ 1	.0 24 .	0 ′	19.7
DTM GSM1900 GFRS 3 slots 26.5 -1.3 - 0.7 27.2 22.9 26.5 -1.3 - 0.7 27.2 22.9 14.0 -2.3 - 1.7 15.7 11.4 14.0							00.5	40 07	20.0	00.0					45.0	0.0	7 40		10.7
EGPRS 1 stot 30.0 -1.0 - 0.7 30.7 21.7	DTM																		
Facinite Facinite							20.0	1.0 0.7		ZZ.O					1 1.0	2.0			
Mode Target Tolerance Mode Target Tolerance Max. tune-up tolerance limit Target Tolerance Max. tune-up tolerance limit																		_	
RF Air interface Mode Target Tolerance Max. tune-up tolerance limit		EGPRS 3 slots	26.5		_			-1.5 ~ 1.0	23.0	18.7	14.0	-2.3 ~ 1.7	15.7					7 /	11.4
Reg	RF Air interface	Mode						x tune-un	RF A	ir interface		Mode						tune-u	ID.
R99	Tu 7tm mioridos	do		Target	T	olerance			" "				Ta	arget	Tole	erance			
No. No.		R99		23.8	-1.	.0 ~ 1.0						R99	2	20.0	-1.0	~ 1.0			
Mode Mode Mode Mode Max. tune-up tolerance limit Mode Mode				22.9	-2	.0 ~ 1.5		24.4					1	8.7			2	0.7	
W-CDMA Sub 4 22.3 -2.0 ~ 1.5 23.8 W-CDMA Sub 4 18.2 -2.0 ~ 2.0 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.6 20.2 20.6 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.2 20.6 20.2 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.6 20.2 20.2 20.6 20.2 20.0 20.6 20.2 20.0 20		HSDPA ———									HSDP/	\						_	
Read V Sub 1 22.9 -2.0 ~ 1.5 24.4 Sub 2 21.3 -2.0 ~ 1.5 22.8 HSUPA Sub 3 21.5 -2.0 ~ 1.5 22.8 Sub 4 21.3 -2.0 ~ 1.5 22.8 Sub 5 22.9 -2.0 ~ 1.5 24.4 RF Air interface Mode Target Tolerance Max. RF Output Power (dBm) RF Air interface Target Tolerance Max. tune-up tolerance limit Sub 1 18.6 -2.0 ~ 2.0 20.6 Sub 2 17.7 -2.0 ~ 2.0 19.7 Sub 3 17.0 -2.0 ~ 2.0 19.7 Sub 4 17.7 -2.0 ~ 2.0 19.7 Sub 4 17.7 -2.0 ~ 2.0 19.7 Sub 5 18.6 -2.0 ~ 2.0 19.7 Sub 6 17.7 -2.0 ~ 2.0 19.7 Sub 7 Sub 8 17.0 -2.0 ~ 2.0 19.7 Sub 9 17.7 -2.0 ~ 2.0 Sub 9 17.7 -2.0 ~ 2.0	W 65	Sub										Sub 3							
Sub 2 21.3 -2.0 ~ 1.5 22.8 HSUPA Sub 3 21.5 -2.0 ~ 1.5 23.0 Sub 4 21.3 -2.0 ~ 1.5 22.8 HSUPA Sub 5 22.9 -2.0 ~ 1.5 24.4 Sub 5 22.9 -2.0 ~ 1.5 24.4 Sub 6 Sub 7 Sub 8 Sub 9 Sub											-								
HSUPA Sub 3 21.5 -2.0 ~ 1.5 23.0	Dana v								┨ "	Janu V					_				
Sub 4 21.3 -2.0 ~ 1.5 22.8 Sub 4 17.7 -2.0 ~ 2.0 19.7									1		HSUP/				_				
Sub 5 22.9 -2.0 ~ 1.5 24.4 Sub 5 18.6 -2.0 ~ 2.0 20.6															_				
RF Air interface Mode Target Tolerance Max. tune-up tolerance limit RF Air interface Mode Target Tolerance Max. tune-up tolerance limit		Sub	5								<u></u>	Sub 5			_				
Target Tolerance Indicated by tolerance limit Target Tolerance Indicated by tolerance limit				Ma	ax. RF Ou	utput Pow e													
tolerance limit tolerance limit	RF Air interface	Mode		Target	T	olerance			RF A	ir interface		Mode			Tolerance				
	LTE Band 17	QPSK		23.0	-2	.0 ~ 1.1	tole		LTE	Band 17	(QPSK							

RF Air	Mode	Channel	Main Ant	Sub Ant			
interface	IVIOGE	Charmer	Max. Tune-up Limit (dBm)				
		Low	8.0	N/A			
	BDR	Mid	10.0	N/A			
		High	7.8	N/A			
		Low	5.6	N/A			
Bluetooth	EDR	Mid	7.3	N/A			
		High	4.8	N/A			
		Low	3.5	N/A			
	BLE	Mid	5.9	N/A			
		High	4.5	N/A			

WLAN Maximum Output Power

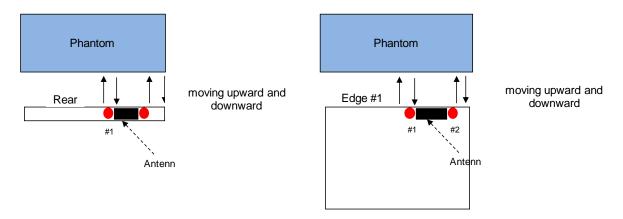

The model FCC ID: PY7-TM0061 shares the same tune up power targets as model FCC ID: PY7-TM0063 for WLAN operations. For this reason the SAR data for the WLAN operations for FCC ID: PY7-TM0061 is considered representative for FCC ID: PY7-TM0063. The Wi-Fi (DTS/U-NII) Maximum Output Power from the original filling can be found in SAR test report 15U20030-S1E, FCC ID: PY7-TM0061.

6.4. General LTE SAR Test and Reporting Considerations

Item	Description									
Frequency range, Channel Bandwidth,				Frequ	ency rang	e: 704 - 71	6 MHz			
Numbers and Frequencies	Band 17				Channel	Bandwidth				
		20 MHz	15 MH:	z ′	10 MHz	5 MHz	3	MHz	1.4 MHz	
	Low					23755/				
						706.5				
	Mid				23790/	23790/				
					710	710				
	High					23825/				
	LTE has one (1) TX/RX antennas and one (1) RX antennas									
LTE transmitter and antenna	LIE has one	(1) TX/RX ar	itennas an	d one (1) RX ante	nnas				
implementation	Refer to Appendix A.									
Maximum power reduction (MPR)	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3									
	Modulation	n Cha	nnel bandw	ridth / Tra	ansmission	bandwidth (RB)	MPR (d	B)	
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
	QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1		
	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1		
	16 QAM	>5	> 4	>8	> 12	> 16	> 18	≤ 2		
	MPR Built-in	by design								
	A-MPR (addi	tional MPR) v	vas disable	ed during	g SAR test	ting				
Power reduction	Yes									
Spectrum plots for RB configurations	A properly co	nfigured base	e station si	mulator	was used	for the SAF	R and pov	wer meas	urements;	
	therefore, spe	ectrum plots f	or each RE	3 allocat	tion and of	fset configu	ration ar	e not incl	uded in the	
	SAR report.	•				ŭ				

6.5. Power Reduction by Proximity Sensing

The DUT has two proximity sensors to reduce the output power. The position of the sensors and antenna are as shown in the graphic.


6.5.1. Proximity Sensor Triggering Distance (KDB 616217 §6.2)

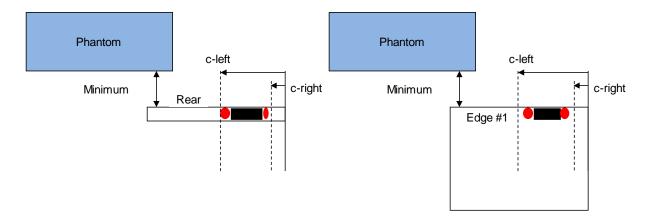
Edge 1 of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 §6.2 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

The measurement was then repeated for the Rear surface.

The DUT featured a visual indicator on its display that showed the status of the proximity sensor (Triggered or not triggered). This was used to determine the status of the sensor during the proximity sensor assessment as monitoring the output power directly was not practical without affecting the measurement.

It was confirmed separately that the output power was altered according to the proximity sensor status indication. This was achieved by observing the proximity sensor status at the same time as monitoring the conducted power. Section 9 contains both the full and reduced conducted power measurements.

Summary of Trigger Distances

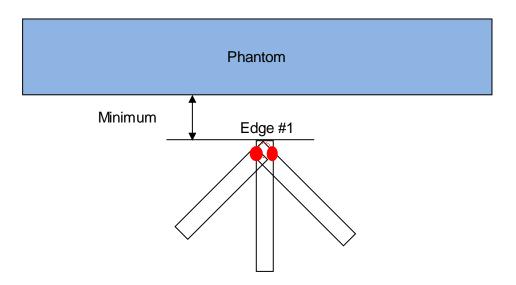

			Re	ar		Edge 1						
Band		#	:1	#	¹ 2	#	<u>1</u> 1	#2				
		upward	downward	upward	downward	upward	downward	upward	downward			
LTE	17	23	23	25	25	24	23	26	27			
UMTS	V	23	24	24	24	24	24	26	26			
GSM	1900	23	23	24	26	23	24	26	26			
GSIVI	850	24	24	25	25	24	24	26	27			

6.5.2. Proximity Sensor Coverage (KDB 616217 §6.3)

The rear surface or edge of the tablet is positioned at a test separation distance less than or equal to the distance required for rear surface or edge triggering, with both the antenna and sensor pad located at least 20 mm laterally outside the edge (boundary) of the phantom, along the direction of maximum antenna and sensor offset.

For the rear surface, if the direction of maximum offset is not aligned with the tablet coordinates (physical edges) the tablet test position would not be aligned with the phantom coordinates (orientations).

Each applicable tablet edge should be positioned perpendicularly to the phantom to determine sensor coverage. For antennas and/or sensors located near the corner of a tablet, both adjacent edges must be considered.


Summary of Tablet Sensor coverage to Proximity Sensor Triggering

		Rear	(mm)	Minir	mum	Edge '	1 (mm)	Minimum		
Ва	nd	#1	#2	Distanc	e (mm)	#1	#2	Distanc	e (mm)	
		c-left	c-right	#1 #2		c-left	c-right	#1	#2	
LTE	17	154	29	24 23		155	28	23	26	
UMTS	V	154	31	23	24	156	25	24	26	
GSM	1900	156	30	23	24	158	31	23	26	
GSIVI	850		30	23	24	155	31	23	20	

6.5.3. Proximity Sensor Tilt Angle Assessment (KDB 616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Edge 1 and Edge 4 parallel to the base of the flat phantom for each band.

The EUT was rotated about Edge 1 and Edge 4 for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°.

Proximity sensor tilt angle assessment (Edge 1) KDB 616217 §6.4

Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering

Ra	ınd		Minii Distand	mum e (mm)							
Do	ıı ıu	Edge 1									
		#1	#1 #2 #1								
LTE	17	25	28	26	29						
UMTS	V	26	28	24	28						
CCM	1900	28	29	26	28						
GSM 850		27	28	25	29						

6.5.4. Resulting test positions for SAR measurements

Position	§6.2 Triggering Distance	§6.3 Coverage	§6.4 Tilt Angle	Worst case distance for SAR
Rear	23	23	23	22
Edge 1	23	23	23	22

7. RF Exposure Conditions (Test Configurations)

Refer to "SAR Photos and Ant locations" Appendix for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

7.1. Standalone SAR Test Exclusion Considerations

Since the *Dedicated Host Approach* is applied, the standalone SAR test exclusion procedure in KDB 447498 § 4.3.1 is applied in conjunction with KDB 616217 § 4.3 to determine the minimum test separation distance:

- When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.
- When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.

SAR Test Exclusion Calculations for WWAN

Antennas < 50mm to adjacent edges

Antenna	Tx	Frequenc	Output	Power		Sep	aration Dis	stances (r	nm)			Ca	Iculated Th	reshold Val	ue	
Antenna	Interface	y (MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
	Full Power, Proximity Sensor Off															
Cellular	GPRS 4 Slots	848.8	29.20	416	5	5.2	26.75	154.6	160.85		76.7 -MEASURE-	76.7 -MEASURE-	14.2 -MEASURE-	> 50 mm	> 50 mm	
Cellular	GPRS 4 Slots	1909.8	26.20	208	5	5.2	26.75	154.6	160.85		57.5 -MEASURE-	57.5 -MEASURE-	10.6 -MEASURE-	> 50 mm	> 50 mm	
Cellular	W-CDMA 5	846.6	24.50	282	5	5.2	26.75	154.6	160.85		51.9 -MEASURE-	51.9 -MEASURE-	9.6 -MEASURE-	> 50 mm	> 50 mm	
Cellular	LTE Band 17	710	23.70	234	5	5.2	26.75	154.6	160.85		39.4 -MEASURE-	39.4 -MEASURE-	7.3 -MEASURE-	> 50 mm	> 50 mm	
						Po	wer Back-	off, Proxir	nity Senso	or On						
Cellular	GPRS 4 Slots	848.8	23.20	104	5	5.2	26.75	154.6	160.85		19.2 -MEASURE-	19.2 -MEASURE-	3.5 -MEASURE-	> 50 mm	> 50 mm	
Cellular	GPRS 3 Slots	1909.8	15.70	14	5	5.2	26.75	154.6	160.85		3.9 -MEASURE-	3.9 -MEASURE-	1 -EXEMPT-	> 50 mm	> 50 mm	
Cellular	W-CDMA 5	846.6	21.00	126	5	5.2	26.75	154.6	160.85		23.2 -MEASURE-	23.2 -MEASURE-	4.3 -MEASURE-	> 50 mm	> 50 mm	
Cellular	LTE Band 17	710	20.00	100	5	5.2	26.75	154.6	160.85		16.9 -MEASURE-	16.9 -MEASURE-	3.1 -MEASURE-	> 50 mm	> 50 mm	

Note(s):

1. According to KDB 447498, if the calculated threshold value is >3 then SAR testing is required.

Antennas > 50mm to adjacent edges

	_			_							Calculated Threshold Value					
Antenna	Tx	Frequenc	Output	Power		Sep	aration Dis	stances (n	nm)			Cal	culated Th	reshold Val	ue	
	Interface	y (MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
	Full Power, Proximity Sensor Off															
Cellular	GPRS 4 Slots	848.8	29.20	416	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	754.7 mW -EXEMPT-	790.1mW -EXEMPT-	
Cellular	GPRS 4 Slots	1909.8	26.20	208	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	1154.5 mW -EXEMPT-	1217 mW -EXEMPT-	
Cellular	W-CDMA 5	846.6	24.50	282	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	753.4 mW -EXEMPT-	788.7 mW -EXEMPT-	
Cellular	LTE Band 17	710	23.70	234	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	673.1mW -EXEMPT-	702.7 mW -EXEMPT-	
						Po	wer Back-	off, Proxin	nity Senso	or On						
Cellular	GPRS 4 Slots	848.8	23.20	104	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	754.7 mW -EXEMPT-	790.1mW -EXEMPT-	
Cellular	GPRS 3 Slots	1909.8	15.70	14	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	1154.5 mW -EXEMPT-	1217 mW -EXEMPT-	
Cellular	W-CDMA 5	846.6	21.00	126	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	753.4 mW -EXEMPT-	788.7 mW -EXEMPT-	
Cellular	LTE Band 17	710	20.00	100	5	5.2	26.75	154.6	160.85		< 50 mm	< 50 mm	< 50 mm	673.1mW -EXEMPT-	702.7 mW -EXEMPT-	

Note(s):

1. According to KDB 447498, if the calculated Power threshold is less than the output power then SAR testing is required.

SAR Test Exclusion Calculations for WLAN

The model FCC ID: PY7-TM0061 shares the same tune up power targets as model FCC ID: PY7-TM0063 for WLAN and Bluetooth operations. For this reason the SAR data for the WLAN and Bluetooth operations for FCC ID: PY7-TM0061 is considered representative for FCC ID: PY7-TM0063. The Wi-Fi (DTS/U-NII) and Bluetooth Maximum Output Power from the original filling can be found in SAR test report 15U20030-S1E, FCC ID: PY7-TM0061.

7.2. Required Test Configurations

The table below identifies the standalone test configurations required for this device according to the findings in Section 7.1:

Test Configurations	Rear	Edge 1	Edge 2	Edge 3	Edge 4
rest configurations	Real	(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)
GSM850 Full Pow er	Yes	Yes	Yes	No	No
GSM850 w / Pow er Reduction	Yes	Yes	Yes	No	No
GSM1900 Full Pow er	Yes	Yes	Yes	No	No
GSM1900 w / Pow er Reduction	Yes	Yes	No	No	No
W-CDMA Band 5 Full Pow er	Yes	Yes	Yes	No	No
W-CDMA Band 5 w / Pow er Reduction	Yes	Yes	Yes	No	No
LTE Band 17 Full Pow er	Yes	Yes	Yes	No	No
LTE Band 17 w / Pow er Reduction	Yes	Yes	Yes	No	No

Note(s):

- 1. Yes = Testing is required.
- 2. No = Testing is not required.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	F	lead	Body			
ranger Frequency (IVII 12)	ε _r	σ (S/m)	$\varepsilon_{\rm r}$	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR Lab 1

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 750	e'	55.9200	Relative Permittivity (ε_r):	55.92	55.55	0.67	5
	Body 750	e"	23.3200	Conductivity (σ):	0.97	0.96	0.98	5
4/15/2015	4/15/2015 Body 700	e'	56.4900	Relative Permittivity (ε_r):	56.49	55.74	1.35	5
4/15/2015	B00y 700	e"	23.7900	Conductivity (σ):	0.93	0.96	-3.47	5
	Body 710	e'	56.3800	Relative Permittivity (ε_r):	56.38	55.70	1.22	5
	Body 710	e"	23.7000	Conductivity (σ):	0.94	0.96	-2.54	5
	Body 1900	e'	50.9100	Relative Permittivity (ε_r):	50.91	53.30	-4.48	5
	Body 1900	e"	14.9900	Conductivity (σ):	1.58	1.52	4.19	5
4/23/2015	Body 1850	e'	51.0300	Relative Permittivity (ε_r):	51.03	53.30	-4.26	5
4/23/2015 Body 1850		e"	14.8900	Conductivity (σ):	1.53	1.52	0.77	5
	Body 1910	e'	50.9100	Relative Permittivity (ε_r):	50.91	53.30	-4.48	5
	Body 1910		15.0200	Conductivity (σ):	1.60	1.52	4.94	5

SAR Lab 5

Date	Freq. (MHz)		Liq	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Dody 025	e'	e' 53.0900 Relative Permittivity (ε_r):		53.09	55.20	-3.82	5
	Body 835		20.9000	Conductivity (σ):	0.97	0.97	0.04	5
4/17/2015	1/47/0045 Parks 000	e'	53.2600	Relative Permittivity (ε_r):	53.26	55.28	-3.65	5
4/17/2015	4/17/2015 Body 820		20.9900	Conductivity (σ):	0.96	0.97	-1.18	5
Body 850		e'	52.8800	Relative Permittivity (ε_r):	52.88	55.16	-4.13	5
	Body 650	e"	20.8100	Conductivity (σ):	0.98	0.99	-0.37	5

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipole	Serial No.	Cal. Date	Freq. (MHz)	Target SAR Values (W/kg)			
System Dipole	Serial No.	Cai. Date	rreq. (IVII IZ)	1g/10g	Head	Body	
D750V3	1024	5/16/2014	750	1g	8.12	8.77	
D/30V3	D/30V3 1024		730	10g	5.26	5.79	
D835V2	4d142	9/9/2014	835	1g	8.91	9.22	
D033 V 2	40142	9/9/2014	633	10g	5.77	6.05	
D1000\/2		9/11/2014	1900	1g	40.8	40.6	
D1900V2	5d163	9/11/2014	1900	10g	21.2	21.4	

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab 1

	System	Dipole	т.с.		Measured	d Results	Tanast	Delte	
Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
4/15/2015	D750V3	1024	Body	1g	0.90	9.0	8.77	2.74	1,2
4/15/2015	D/30V3	1024	Войу	10g	0.60	6.0	5.79	3.63	1,2
4/23/2015	D1900V2	5d163	Body	1g	3.85	38.5	40.6	-5.17	3,4
4/23/2013	D1900V2	50103	Бойу	10g	2.00	20.0	21.4	-6.54	3,4

SAR Lab 5

Ī		System	System Dipole		T.C		d Results	Tanant	Dalta	
	Date Tested	Туре	Serial #	T.S. Liquid		Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
ĺ	4/17/2015	D835V2	4d142	Body	1g	0.954	9.5	9.22	3.47	5,6
	4/17/2013	D033V2	40142	Body	10g	0.631	6.3	6.05	4.30	3,0

9. Conducted Output Power Measurements

9.1. **GSM**

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

GSM850 Measured Results

		Coding	Time		Freq.	Max	. Pwr	Reduc	ed Pwr
Band	Mode	Scheme	Slots	Ch No.	(MHz)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)
	0014			128	824.2	33.4	24.4	27.6	18.6
	GSM (Voice)	CS1	1	190	836.6	33.4	24.4	27.6	18.6
	(VOICE)			251	848.8	33.1	24.1	27.7	18.7
				128	824.2	33.4	24.4	27.6	18.6
			1	190	836.6	33.4	24.4	27.6	18.6
		CS1		251	848.8	33.1	24.1	27.7	18.7
				128	824.2	31.5	25.5	26.2	20.2
			2	190	836.6	31.6	25.6	26.1	20.1
	GPRS (CMSK)			251	848.8	31.7	25.7	26.2	20.2
(GMSK)	CSI		128	824.2	29.4	25.1	24.0	19.7	
			3	190	836.6	29.4	25.1	23.9	19.6
				251	848.8	29.5	25.2	24.0	19.7
				128	824.2	29.1	26.1	22.5	19.5
850			4	190	836.6	29.1	26.1	22.5	19.5
				251	848.8	29.2	26.2	22.6	19.6
				128	824.2	27.0	18.0	25.7	16.7
			1	190	836.6	27.0	18.0	25.7	16.7
				251	848.8	26.9	17.9	25.8	16.8
				128	824.2	25.5	19.5	23.9	17.9
			2	190	836.6	25.5	19.5	23.9	17.9
	EGPRS	MCS5		251	848.8	25.5	19.5	24.1	18.1
	(8PSK)	IVICSS		128	824.2	23.4	19.1	21.8	17.5
			3	190	836.6	23.5	19.2	21.8	17.5
				251	848.8	23.4	19.1	21.9	17.6
			4	128	824.2	22.0	19.0	20.3	17.3
				190	836.6	22.0	19.0	20.3	17.3
1				251	848.8	22.0	19.0	20.4	17.4

EGPRS(8PSK) is Rx only

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- Standalone: GMSK (GPRS) mode with 4 time slots for Max power and 4 time slots for Reduced power, based on the output power measurements above.
- SAR is not required for EGPRS (8PSK) mode because its output power is less than that of GPRS Mode

GSM1900 Measured Results

		Coding	Time		Freq.	Max	. Pwr	Reduced Pwr			
Band	Mode	Scheme	Slots	Ch No.	(MHz)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)		
	GSM			512	1850.2	29.9	20.9	17.3	8.3		
	(Voice)	CS1	1	661	1880.0	29.5	20.5	17.5	8.5		
	(10.00)			810	1909.8	29.7	20.7	17.7	8.7		
				512	1850.2	29.9	20.9	17.3	8.3		
			1	661	1880.0	29.5	20.5	17.5	8.5		
				810	1909.8	29.7	20.7	17.7	8.7		
				512	1850.2	28.6	22.6	15.3	9.3		
			2	661	1880.0	28.7	22.7	15.5	9.5		
	GPRS (GMSK) CS1		810	1909.8	28.8	22.8	15.6	9.6			
		031		512	1850.2	26.8	22.5	14.8	10.5		
		3	661	1880.0	27.0	22.7	15.1	10.8			
				810	1909.8	27.1	22.8	14.4	10.1		
				512	1850.2	25.4	22.4	12.5	9.5		
1900			4	661	1880.0	25.6	22.6	12.8	9.8		
				810	1909.8	25.8	22.8	12.9	9.9		
						512	1850.2	25.7	16.7	16.4	7.4
			1	661	1880.0	25.6	16.6	16.6	7.6		
				810	1909.8	25.6	16.6	16.6	7.6		
				512	1850.2	24.5	18.5	15.0	9.0		
			2	661	1880.0	24.5	18.5	15.1	9.1		
	EGPRS	MCS5		810	1909.8	24.5	18.5	15.2	9.2		
	(8PSK)	IVICSS		512	1850.2	22.6	18.3	14.0	9.7		
	(o. c.ty		3	661	1880.0	22.6	18.3	14.2	9.9		
				810	1909.8	22.6	18.3	14.2	9.9		
			4	512	1850.2	21.5	18.5	12.1	9.1		
				661	1880.0	21.4	18.4	12.3	9.3		
				810	1909.8	21.4	18.4	12.4	9.4		

EGPRS(8PSK) is Rx only

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- Standalone: GMSK (GPRS) mode with 4 time slots for Max power and 3 time slots for Reduced power, based on the output power measurements above.
- SAR is not required for EGPRS (8PSK) mode because its output power is less than that of GPRS Mode

GSM850 DTM Measured Results

							Max. Pwr			Reduced Pwr			
Band	Mode	Coding	Time	Ch No.	Freq.	C	:S	Р	S	C	:S	Р	S
Dang	Wode	Scheme	Slots		(MHz)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)
				128	824.2	33.4	24.4			27.6	18.6		
ļ ļ		1	190	836.6	33.4	24.4			27.6	18.6			
				251	848.8	33.1	24.1			27.7	18.7		
	GSM(Voice)			128	824.2	30.9	24.9	30.9	24.9	25.7	19.7	25.8	19.8
	+	CS1	2	190	836.6	30.9	24.9	30.9	24.9	25.7	19.7	25.8	19.8
	GPRS(GMSK)			251	848.8	30.9	24.9	30.9	24.9	25.7	19.7	25.7	19.7
				128	824.2	28.8	24.5	28.8	24.5	23.6	19.3	23.6	19.3
			3	190	836.6	28.9	24.6	28.9	24.6	23.5	19.2	23.6	19.3
850				251	848.8	28.8	24.5	28.8	24.5	23.5	19.2	23.5	19.2
000				128	824.2	33.4	24.4			27.6	18.6		
			1	190	836.6	33.4	24.4			27.6	18.6		
				251	848.8	33.1	24.1			27.7	18.7		
	GSM(Voice)			128	824.2	31.0	25.0	24.8	18.8	25.8	19.8	23.5	17.5
	+	MCS5	2	190	836.6	31.0	25.0	24.7	18.7	25.7	19.7	23.5	17.5
	EGPRS(8PSK)			251	848.8	31.0	25.0	24.7	18.7	25.7	19.7	23.5	17.5
				128	824.2	28.9	24.6	22.6	18.3	23.7	19.4	21.5	17.2
		3	190	836.6	28.9	24.6	22.7	18.4	23.6	19.3	21.5	17.2	
				251	848.8	29.0	24.7	22.6	18.3	23.6	19.3	21.5	17.2

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GSM(Voice) + GMSK (GPRS) mode with 2 time slot for both Max and Reduced power, based on the output power measurements above.
- SAR is not required for GSM(Voice) + EGPRS (8PSK) mode because its output power is less than that of GSM(Voice) + GMSK (GPRS) mode.

GSM1900 DTM Measured Results

							Max	. Pwr		Reduced Pwr				
Band	Mode	Coding	Time	Ch No.	Freq.	C	CS		PS		CS		PS	
Dana	Wode	Scheme	Slots	G iritoi	(MHz)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)	Burst (dBm)	Frame (dBm)	
				512	1850.2	29.9	20.9			17.3	8.3			
			1	661	1880.0	29.5	20.5			17.5	8.5			
				810	1909.8	29.7	20.7			17.7	8.7			
	GSM(Voice)			512	1850.2	27.9	21.9	27.9	21.9	14.6	8.6	14.6	8.6	
	+	CS1	2	661	1880.0	28.0	22.0	28.0	22.0	14.8	8.8	14.8	8.8	
	GPRS(GMSK)			810	1909.8	28.2	22.2	28.2	22.2	15.0	9.0	15.0	9.0	
			3	512	1850.2	26.2	21.9	26.2	21.9	14.1	9.8	14.1	9.8	
				661	1880.0	26.3	22.1	26.4	22.1	14.4	10.1	14.4	10.1	
1900				810	1909.8	26.6	22.3	26.6	22.3	13.7	9.4	13.7	9.4	
1900				512	1850.2	29.9	20.9			17.3	8.3			
			1	661	1880.0	29.5	20.5			17.5	8.5			
				810	1909.8	29.7	20.7			17.7	8.7			
	GSM(Voice)			512	1850.2	27.9	21.9	23.8	17.8	14.7	8.7	14.4	8.4	
	+	MCS5	2	661	1880.0	28.1	22.1	23.9	17.9	14.9	8.9	14.6	8.6	
	EGPRS(8PSK)			810	1909.8	28.2	22.2	23.9	17.9	15.1	9.1	14.6	8.6	
				512	1850.2	26.2	21.9	21.8	17.5	14.1	9.8	13.4	9.1	
			3	661	1880.0	26.4	22.1	21.8	17.5	14.4	10.1	13.7	9.4	
				810	1909.8	26.6	22.3	21.8	17.5	13.8	9.5	13.6	9.3	

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GSM(Voice) + GMSK (GPRS) mode with 2 time slots and 3 time slots for Max and Reduced power respectively, based on the output power measurements above.
- SAR is not required for GSM(Voice) + EGPRS (8PSK) mode because its output power is less than that of GSM(Voice)
 + GMSK (GPRS) mode.

9.2. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

		, i		
Mode	Subtest	Rel99		
	Loopback Mode	Test Mode 2		
MCDMA Conoral Sottings	Rel99 RMC	12.2kbps RMC		
WCDMA General Settings	Power Control Algorithm	Algorithm2		
	βc/βd	8/15		

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set 1							
W-CDMA	Power Control Algorithm	Algorithm 2							
General	βc	2/15	11/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
Settings	Bd (SF)	64							
	βc/βd	2/15	12/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	MPR (dB)	0	0	0.5	0.5				
	D _{ACK}	8							
	D _{NAK}	8							
HSDPA	DCQI	8							
Specific	Ack-Nack repetition factor	3							
Settings	CQI Feedback (Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table 5.2B.4)	2							
	Ahs=βhs/βc	30/15							

HSPA (HSDPA & HSUPA) Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA				
	Subtest	1	2	3	4	5
	Loopback Mode	Test Mode 1				
	Rel99 RMC	12.2 kbps RM	/C			
	HSDPA FRC	H-Set 1				
	HSUPA Test	HSPA				
	Power Control Algorithm	Algorithm 2				Algorithm 1
WCDMA	βc	11/15	6/15	15/15	2/15	15/15
General	βd	15/15	15/15	9/15	15/15	0
Settings	βес	209/225	12/15	30/15	2/15	5/15
	βc/βd	11/15	6/15	15/9	2/15	15/1
	βhs	22/15	12/15	30/15	4/15	5/15
	βed	1309/225	94/75	47/15	56/75	47/15
	CM (dB)	1	3	2	3	1
	MPR (dB)	0	2	1	2	0
	DACK	8				0
	DNAK	8				0
HSDPA	DCQI	8				0
Specific	Ack-Nack repetition factor	3				
Settings	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
	Ahs = βhs/βc	30/15				
	E-DPDCCH	6	8	8	5	7
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	21
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9
	Reference E-TFCIs	5	5	2	5	1
	Reference E-TFCI	11	11	11	11	67
HSUPA	Reference E-TFCI PO	4	4	4	4	18
Specific	Reference E-TFCI	67	67	92	67	67
Settings	Reference E-TFCI PO	18	18	18	18	18
	Reference E-TFCI	71	71	71	71	71
	Reference E-TFCI PO	23	23	23	23	23
	Reference E-TFCI	75	75	75	75	75
	Reference E-TFCI PO	26	26	26	26	26
	Reference E-TFCI	81	81	81	81	81
	Reference E-TFCI PO	27	27	27	27	27
	Maximum Channelization Codes	2xSF2	•		•	SF4

Page 28 of 45

W-CDMA Band II Measured Results

W-CDMA B	and II Meas	ured Results					
Band		Mode	UL Ch No.	Freq. (MHz)	MPR (dB)	Max. Pwr (dBm)	Reduced Pwr (dBm)
			4132	826.4	N/A	24.2	20.1
	Rel 99	RMC, 12.2 kbps	4183	836.6	N/A	24.3	20.1
			4233	846.6	N/A	24.2	20.2
			4132	826.4	0	22.9	18.5
		Subtest 1	4183	836.6	0	22.8	18.6
			4233	846.6	0	22.9	18.7
			4132	826.4	0	22.9	18.5
		Subtest 2	4183	836.6	0	22.8	18.6
	HSDPA		4233	846.6	0	22.9	18.7
	HODPA		4132	826.4	0.5	22.3	17.9
		Subtest 3	4183	836.6	0.5	22.2	18.1
			4233	846.6	0.5	22.3	18.2
			4132	826.4	0.5	22.3	17.9
		Subtest 4	4183	836.6	0.5	22.2	18.1
W-CDMA			4233	846.6	0.5	22.3	18.2
Band V			4132	826.4	0	22.9	17.8
		Subtest 1	4183	836.6	0	22.9	18.0
			4233	846.6	0	22.9	18.0
			4132	826.4	2	21.3	17.5
I		Subtest 2	4183	836.6	2	21.2	17.6
			4233	846.6	2	21.2	17.7
			4132	826.4	1	21.5	16.8
	HSUPA	Subtest 3	4183	836.6	1	21.5	16.9
			4233	846.6	1	21.5	17.0
			4132	826.4	2	21.3	16.8
		Subtest 4	4183	836.6	2	21.2	16.9
			4233	846.6	2	21.2	17.0
1			4132	826.4	0	22.9	18.0
1		Subtest 5	4183	836.6	0	22.9	18.6
ı			4233	846.6	0	22.9	18.0

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	nnel bandv	vidth / Tr	ansmission	bandwidth	(RB)	MPR (dB)						
,	1.4 MHz												
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1						
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1						
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤ 2						

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
			5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
110_04	0.0.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS 07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2
143_07	6.6.3.3.2	13	10	1able 0.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3
NS 09	6.6.3.3.4	21	10, 15	> 40	≤1
	0.0.0.0.4			> 55	≤ 2
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	231	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32	-	-	-	-	-
Note 1: A	pplies to the lower l	block of Band 23, i.e	a carrier place	d in the 2000-20	10 MHz region.

LTE Band 17 Measured Results

Dand Dand	BW	Mada	RB	RB	Target	Max. Avg Pwr (dBm)	Target	Reduced Avg Pwr (dBm)
Band	(MHz)	Mode	Allocation	offset	MPR	710 MHz	MPR	710 MHz
			1	0	0	22.8	0	18.9
			1	25	0	23.0	0	18.8
			1	49	0	22.6	0	18.8
		QPSK	25	0	1	21.7	0	18.7
			25	12	1	21.6	0	18.7
			25	25	1	21.6	0	18.7
LTE	10		50	0	1	21.6	0	18.7
Band 17	10		1	0	1	22.1	0	18.9
			1	25	1	22.1	0	19.5
			1	49	1	21.9	0	19.0
		16QAM	25	0	2	20.6	0	18.9
			25	12	2	20.6	0	18.8
			25	25	2	20.6	0	18.9
			50	0	2	20.6	0	18.8
Band	BW	Mode	RB	RB	Target	Max. Avg Pwr (dBm)	Target	Reduced Avg Pwr (dBm)
Danu	(MHz)	Wode	Allocation	offset	MPR	710 MHz	MPR	710 MHz
			1	0	0	22.7	0	18.9
					Ŭ	22.1	U	
			1	12	0	22.7	0	18.9
			1				-	
		QPSK		12	0	22.7	0	18.9
		QPSK	1	12 24	0	22.7 22.6	0	18.9 18.9
		QPSK	1 12	12 24 0	0 0 1	22.7 22.6 22.6	0 0 0	18.9 18.9 18.6
LTE	5	QPSK	1 12 12	12 24 0 6	0 0 1	22.7 22.6 22.6 22.6	0 0 0 0	18.9 18.9 18.6 18.6
LTE Band 17	5	QPSK	1 12 12 12	12 24 0 6 11	0 0 1 1	22.7 22.6 22.6 22.6 22.7	0 0 0 0	18.9 18.9 18.6 18.6 18.6
	5	QPSK	1 12 12 12 12 25	12 24 0 6 11	0 0 1 1 1	22.7 22.6 22.6 22.6 22.7 21.6	0 0 0 0 0	18.9 18.9 18.6 18.6 18.6 18.6
	5	QPSK	1 12 12 12 12 25 1	12 24 0 6 11 0	0 0 1 1 1 1	22.7 22.6 22.6 22.6 22.7 21.6 21.9	0 0 0 0 0 0	18.9 18.9 18.6 18.6 18.6 18.6
	5	QPSK 16QAM	1 12 12 12 12 25 1	12 24 0 6 11 0 0	0 0 1 1 1 1 1	22.7 22.6 22.6 22.6 22.7 21.6 21.9 22.1	0 0 0 0 0 0 0	18.9 18.9 18.6 18.6 18.6 18.6 18.8
	5		1 12 12 12 12 25 1 1	12 24 0 6 11 0 0 12 24	0 0 1 1 1 1 1 1	22.7 22.6 22.6 22.6 22.7 21.6 21.9 22.1	0 0 0 0 0 0 0 0	18.9 18.9 18.6 18.6 18.6 18.6 18.8 18.8
	5		1 12 12 12 25 1 1 1 1	12 24 0 6 11 0 0 12 24	0 0 1 1 1 1 1 1 1 2	22.7 22.6 22.6 22.6 22.7 21.6 21.9 22.1 22.1 21.7	0 0 0 0 0 0 0 0 0	18.9 18.9 18.6 18.6 18.6 18.8 18.8 19.0 18.8

Note(s):

10/5 MHz Bandwidths does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

9.4. WLAN and BT

WLAN and Bluetooth Conducted Output Power Measurements

The model FCC ID: PY7-TM0061 shares the same tune up power targets as model FCC ID: PY7-TM0063 for WLAN and Bluetooth operations. For this reason the SAR conducted output power measurements for the WLAN and Bluetooth operations for FCC ID: PY7-TM0061 is considered representative for FCC ID: PY7-TM0063. The Wi-Fi (DTS/U-NII) and Bluetooth conducted output power measurements from the original filling can be found in SAR test report 15U20030-S1E, FCC ID: PY7-TM0061.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB
 offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge,
 middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is <
 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

10.1. GSM850

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
CDDC			Rear	190	836.6	23.2	22.5	0.605	0.711	0.333	0.391	1
GPRS 4 Slots	ON	0	Edge 1	190	836.6	23.2	22.5	0.175	0.206	0.087	0.103	
4 01013			Edge 2	190	836.6	23.2	22.5	0.046	0.054	0.028	0.033	
CDDC			Rear	190	836.6	29.2	29.1	0.196	0.201	0.135	0.138	
GPRS 4 Slots	OFF	22	Edge 1	190	836.6	29.2	29.1	0.058	0.060	0.043	0.044	
7 01013			Edge 2	190	836.6	29.2	29.1	0.074	0.075	0.054	0.055	

Additional Tests for GSM850 DTM

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
DTM GPRS 2 Slots	ON	0	Rear	190	836.6	26.2	25.8	0.638	0.700	0.352	0.386	

Additional Tests with Keyboard Accessory

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
GPRS	ON	0	Rear	190	836.6	23.2	22.5	0.297	0.349	0.177	0.208	
4 Slots	ON	U	Edge 1	190	836.6	23.2	22.5	0.033	0.039	0.017	0.020	

10.2. GSM1900

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	(W/kg) 10-g SAR (W/kg)		Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
CDDC			Rear	661	1880.0	15.7	15.1	0.430	0.494	0.189	0.217	2
GPRS 3 Slots	ON	0	Edge 1	661	1880.0	15.7	15.1	0.293	0.336	0.130	0.149	
0 01013			Edge 2	661	1880.0	15.7	15.1	0.010	0.011	0.003	0.003	
OPPO			Rear	661	1880.0	26.2	25.6	0.312	0.358	0.185	0.212	
GPRS 4 Slots	OFF	22	Edge 1	661	1880.0	26.2	25.6	0.393	0.451	0.237	0.272	
. 51015			Edge 2	661	1880.0	26.2	25.6	0.000	0.000	0.000	0.000	

Additional Tests for GSM1900 DTM

	Pwr	Pwr Dist			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
DTM (CS+GPRS 3 Slots)	ON	0	Rear	190	836.6	15.7	14.4	0.302	0.407	0.136	0.183	

Additional Tests with Keyboard Accessory

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
GPRS	ON	0	Rear	190	836.6	15.7	15.1	0.006	0.007	0.003	0.003	
3 Slots	ON	0	Edge 1	190	836.6	15.7	15.1	0.016	0.018	0.007	0.008	

10.3. W-CDMA Band V

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SAR (W/kg)		Plot
Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
			Rear	4183	836.6	21.0	20.1	0.411	0.506	0.222	0.273	3
Rel 99 RMC	ON	0	Edge 1	4183	836.6	21.0	20.1	0.105	0.129	0.051	0.063	
			Edge 2	4183	836.6	21.0	20.1	0.048	0.059	0.029	0.036	
			Rear	4183	836.6	24.5	24.3	0.141	0.148	0.101	0.106	
Rel 99 RMC	OFF	22	Edge 1	4183	836.6	24.5	24.3	0.044	0.046	0.033	0.035	
			Edge 2	4183	836.6	24.5	24.3	0.037	0.039	0.027	0.028	

Additional Tests with Keyboard Accessory

	Pwr	Dist.			Freq.	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode B	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
Rel 99 RMC	ON	0	Rear	4183	836.6	21.0	20.1	0.224	0.276	0.132	0.162	
	ON	"	Edge 1	4183	836.6	21.0	20.1	0.021	0.026	0.011	0.014	

10.4. LTE Band 17 (10MHz Bandwidth)

	Pwr	Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
Mode	Back-off	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
						1	0	20.0	18.9	0.792	1.025	0.438	0.567	4
			Rear	23790	710.0	25	0	20.0	18.7	0.711	0.959	0.400	0.540	
						50	0	20.0	18.7	0.699	0.945	0.393	0.531	
QPSK	ON	0	Edge 1	23790	710.0	1	0	20.0	18.9	0.197	0.255	0.086	0.111	
			Luge 1	23790	710.0	25	0	20.0	18.7	0.207	0.279	0.090	0.121	
			Edge 2	23790	710.0	1	0	20.0	18.9	0.018	0.023	0.009	0.012	
			Luge 2	23790	710.0	25	0	20.0	18.7	0.017	0.023	0.009	0.012	
			Rear	23790	710.0	1	24	24.1	23.0	0.098	0.127	0.069	0.090	
			Real	23790	710.0	25	0	23.1	21.7	0.076	0.106	0.052	0.072	
QPSK	OFF	0	Edge 1	23790	710.0	1	24	24.1	23.0	0.038	0.049	0.028	0.036	
QI OK		J	Luge I	23790	7 10.0	25	0	23.1	21.7	0.031	0.043	0.023	0.032	
			Edge 2	23790	710.0	1	24	24.1	23.0	0.019	0.025	0.014	0.018	
			Luge 2	23790	7 10.0	25	0	23.1	21.7	0.017	0.024	0.012	0.017	

Additional Tests with Keyboard Accessory

ı	Mode	Pwr	Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)	Plot
l	Mode	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offest	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	No.
ĺ	QPSK ON	ON	0	Rear	23790	710.0	1	0	20.0	18.9	0.277	0.358	0.169	0.219	
		ON	U	Edge 1	23790	710.0	25	0	20.0	18.7	0.022	0.030	0.013	0.018	

10.5. WLAN and Bluetooth

The model FCC ID: PY7-TM0061 shares the same enclosure and circuit board as model FCC ID: PY7-TM0063. The WLAN/Bluetooth circuitry and layout, including antenna, are identical between the two units. The WLAN/Bluetooth antenna and surrounding circuitry are the same between these two units, and tune up power targets are identical for WLAN and Bluetooth operations. For this reason the SAR data for the WLAN and Bluetooth operations for FCC ID: PY7-TM0061 is considered representative for FCC ID: PY7-TM0063. The Wi-Fi (DTS/U-NII) and Bluetooth SAR measurement results from the original filling can be found in SAR test report 15U20030-S1E, FCC ID: PY7-TM0061. The Wi-Fi and Bluetooth results (measured or estimated) from the original filling are used for Simultaneous Transmission Analysis purposes.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Ratio
700	LTE Band 17	Standalone	Rear	No	0.792	N/A	N/A
850	GSM 850	Standalone	Rear	No	0.647	N/A	N/A
650	WCDMA Band V	Standalone	Rear	No	0.411	N/A	N/A
1900	GSM 1900	Standalone	Rear	No	0.430	N/A	N/A

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

12. Simultaneous Transmission SAR Analysis

Simultaneous Transmission Condition

RF Exposure Condition	Item		Capabl	e Transmit Config	urations	
Standalone	1	GSM(GPRS/EDGE)	+	DTS		
	2	GSM(GPRS/EDGE)	+	U-NII		
	3	GSM(GPRS/EDGE)	+	BT		
	4	GSM(GPRS/EDGE)	+	U-NII	+	BT
	5	W-CDMA	+	DTS		
	6	W-CDMA	+	U-NII		
	7	W-CDMA	+	BT		
	8	W-CDMA	+	U-NII	+	BT
	9	LTE	+	DTS		
	10	LTE	+	U-NII		
	11	LTE	+	BT		
	12	LTE	+	U-NII	+	BT
	13		•	U-NII	+	ВТ

Notes:

- 1. DTS, UNII 1, and UNII 3 support Hotspot.
- 2. GPRS/EDGE, W-CDMA, and LTE support Hotspot.
- 3. VoIP is supported in GPRS/EDGE, W-CDMA, and LTE.
- 4. DTS Radio cannot transmit simultaneously with Bluetooth Radio.
- 5. U-NII Radio can transmit simultaneously with Bluetooth Radio.

Estimated SAR for Simultaneous Transmission SAR Analysis

Considerations for SAR estimation

- 1. When standalone SAR test exclusion applies, standalone SAR must also be estimated to determine simultaneous transmission SAR test exclusion.
- 2. Dedicated Host Approach criteria for SAR test exclusion is likewise applied to SAR estimation, with certain distinctions between test exclusion and SAR estimation:
 - When the separation distance from the antenna to an adjacent edge is ≤ 5 mm, a distance of 5 mm is applied for SAR estimation; this is the same between test exclusion and SAR estimation calculations.
 - When the separation distance from the antenna to an adjacent edge is > 5 mm but ≤ 50 mm, the actual antenna-to-edge separation distance is applied for SAR estimation.
 - When the minimum test separation distance is > 50 mm, the estimated SAR value is 0.4 W/kg
- Please refer to <u>Estimated SAR Tables</u> to see which test positions are inherently compliant as they consist
 of only estimated SAR values for all applicable transmitters and consequently will always have sum of SAR
 values < 1.2 W/kg. Simultaneous transmission SAR analysis was therefore not performed for these test
 positions.

Estimated SAR for WWAN

Antenna	Tx	Frequency	Output	Power		S	paration Dis	stances (mr	n)			Esti	mated 1-g S	AR Value (W	/kg)	
Antenna	Interface	(MHz)	dBm	mW	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front	Rear	Edge 1	Edge 2	Edge 3	Edge 4	Front
							Full Power	, Proximity	Sensor Off							
Cellular	GPRS 4 Slots	848.8	29.20	416	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
Cellular	GPRS 4 Slots	1909.8	26.20	208	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
Cellular	W-CDMA 5	846.6	24.50	282	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
Cellular	LTE Band 17	710	23.70	234	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
						F	ower Back-	off, Proximi	ty Sensor O	n						
Cellular	GPRS 4 Slots	848.8	23.20	104	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
Cellular	GPRS 3 Slots	1909.8	15.70	14	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	0.096	0.400	0.400	
Cellular	W-CDMA 5	846.6	21.00	126	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	
Cellular	LTE Band 17	710	20.00	100	5	5.2	26.75	154.6	160.85		-MEASURE-	-MEASURE-	-MEASURE-	0.400	0.400	

Estimated SAR for WLAN

All Wi-Fi and Bluetooth SAR values (measured or estimated) used in this report were taken from SAR test report 15U20030-S1E, submitted under FCC ID: PY7-TM0061.

12.1. Sum of the SAR for GSM850 & Wi-Fi & BT

Test	1)	② DTS	③ U-NII	④ BT	_	+② I+DTS	_	+③ + U-NII	① · WWAI	+4) N +BT		
Position	WWAN	(Main Ant)	(Main Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)		
Rear	0.711	0.789	0.522	0.354	1.500	No	1.233	No	1.065	No		
Edge 1	0.206	0.115	0.635	0.053	0.321	No	0.841	No	0.259	No		
Test	1	② DTS	③ U-NII	④ BT	① · WWA N	+② I+DTS		+③ + U-NII			① + ③ WWA N +	3) + 4) U-NII + B T
Position	WWAN	(Aux Ant)	(Aux Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)			Σ1-g SAR (mW/g)	SPLSR (Yes/No)
Rear	0.711	0.360	0.820	0.354	1.071	No	1.531	No			1.885	Yes
Edge 1	0.206	0.155	0.381	0.053	0.361	No	0.587	No			0.640	No

SAR to Peak Location Separation Ratio (SPLSR)

Test Position	① WWAN	② DTS (Aux Ant)	③ U-NII (Aux Ant)	(M ain Ant)	∑1-gS (mW/		Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
	0.711		0.820	0.354	1+3+4	1.885				
Rear -	0.711		0.820		1 +3	1.531	97.0	0.020	No	1
Neai	0.711			0.354	1 +4	1.065	155.0	0.007	No	'
			0.820	0.354	3 +4	1.174	58.1	0.022	No	

12.2. Sum of the SAR for GSM1900 & Wi-Fi & BT

Test	1	② DTS	③ U-NII	④ BT		+② I+DTS	① - WWA N	_	① NAWW	+4 N +BT		
Position	WWAN	(Main Ant)	(Main Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)		
Rear	0.494	0.789	0.522	0.354	1.283	No	1.016	No	0.848	No		
Edge 1	0.451	0.115	0.635	0.053	0.566	No	1.086	No	0.504	No		
Test	2 3		④ BT		+2 I+DTS	① - WWA N	_			① +(3 WWA N +		
Position	WWAN	(Aux Ant)	(Aux Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)			∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Rear	0.494	0.360	0.820	0.354	0.854	No	1.314	No			1.668	Yes
Edge 1	0.451	0.155	0.381	0.053	0.606	No	0.832	No			0.885	No

SAR to Peak Location Separation Ratio (SPLSR)

Test Position	① WWAN	② DTS (Aux Ant)	③ U-NII (Aux Ant)	(M ain Ant)	∑1gS (mW/		Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
Rear	0.494		0.820	0.354	1+3+4	1.668				
	0.494		0.820		1 + 3	1.314	99.6	0.015	No	2
	0.494			0.354	1 +4	0.848	157.7	0.005	No	2
			0.820	0.354	3 +4	1.174	58.1	0.022	No	

12.3. Sum of the SAR for WCDMA Band V & Wi-Fi & BT

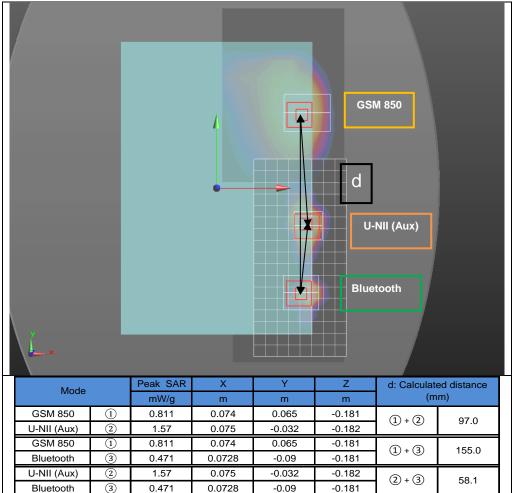
Test	1	② DTS	③ U-NII	④ BT		+② I+DTS	_	+③ + U-NII	① WWAI	+ <u>4</u> N +BT		
Position	WWAN	(Main Ant)	(Main Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)		
Rear	0.506	0.789	0.522	0.354	1.295	No	1.028	No	0.860	No	•	
Edge 1	0.129	0.115	0.635	0.053	0.244	No	0.764	No	0.182	No	•	
Test	1	② DTS	③ U-NII	④ BT	_	+② I+DTS	_	+③ + U-NII			① + ③ WWA N + I	
Position	WWAN	(Aux Ant)	(Aux Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)			∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Rear	0.506	0.360	0.820	0.354	0.866	No	1.326	No			1.680	Yes
Edge 1	0.129	0.155	0.381	0.053	0.284	No	0.510	No			0.563	No

SAR to Peak Location Separation Ratio (SPLSR)

Test Position	① WWAN	② DTS (Aux Ant)	③ U-NII (Aux Ant)	(Main Ant)	∑1gS (mW/		Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
	0.506		0.820	0.354	1+3+4	1.680				
Rear	0.506		0.820		1 + 3	1.326	93.6	0.016	No	3
	0.506			0.354	1 +4	0.860	151.5	0.005	No	3
			0.820	0.354	3 +4	1.174	58.1	0.022	No	

12.4. Sum of the SAR for LTE Band 17 & Wi-Fi & BT

Test	① WWAN	② DTS (Main Ant)	③ U-NII (M ain Ant)	(M ain Ant)	①+② WWAN+DTS		① + ③ WWAN + U-NII		① +④ WWAN +BT			
Position					∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/ No)		
Rear	1.025	0.789	0.522	0.354	1.814	Yes	1.547	No	1.379	No	F	
Edge 1	0.279	0.115	0.635	0.053	0.394	No	0.914	No	0.332	No		
Test	Test ①		③ U-NII	④ BT	① +② WWAN +DTS		① + ③ WWAN + U-NII				① + ③ WWAN + U	
Position	WWAN	DTS (Aux Ant)	(Aux Ant)	(Main Ant)	∑1-g SAR (mW/g)	SPLSR (Yes/No)	∑1-g SAR (mW/g)	SPLSR (Yes/No)			∑1-g SAR (mW/g)	SPLSR (Yes/ No)
Rear	1.025	0.360	0.820	0.354	1.385	No	1.845	Yes			2.199	Yes
Edge 1	0.279	0.155	0.381	0.053	0.434	No	0.660	No			0.713	No

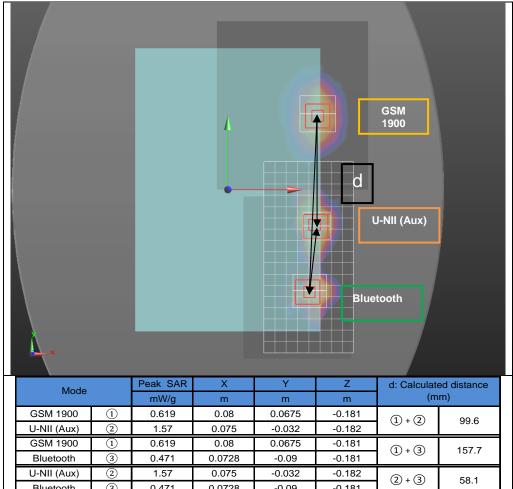

SAR to Peak Location Separation Ratio (SPLSR)

Test Position	① WWAN	② DTS (Main Ant)	③ U-NII (Main Ant)	(M ain Ant)	Σ1-g SAR (mW/g)		Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
Rear	1.025	0.789			1.814		154.5	0.016	No	4
Test Position	① WWAN	DTS (Aux Ant)	③ U-NII (Aux Ant)	(M ain Ant)	Σ1-g SAR (mW/g)		Calculated distance (mm)	SPLSR (≤ 0.04)	Volume Scan (Yes/ No)	Figure
Rear	1.025		0.820		1.845		96.6	0.026	No	5
Rear	1.025		0.820	0.354	1+3+4	2.199				
	1.025		0.820		1 +3	1.845	96.6	0.026	No	6
	1.025			0.354	1 +4	1.379	154.5	0.010	No	0
			0.820	0.354	3 +4	1.174	58.1	0.022	No	

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

Figure (1)

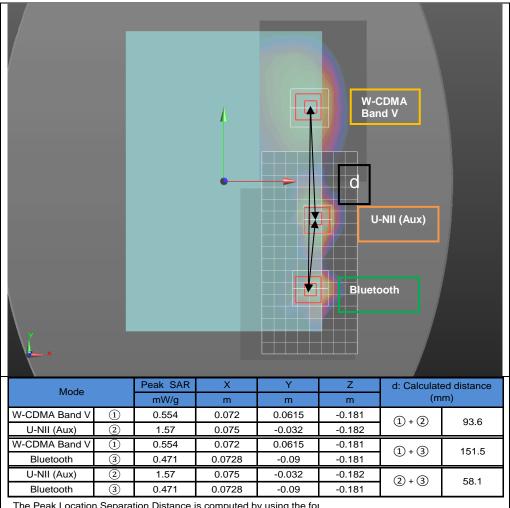


The Peak Location Separation Distance is computed by using the

SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

Issue Date: 5/18/2015 Report No.: 15J20368-S1B

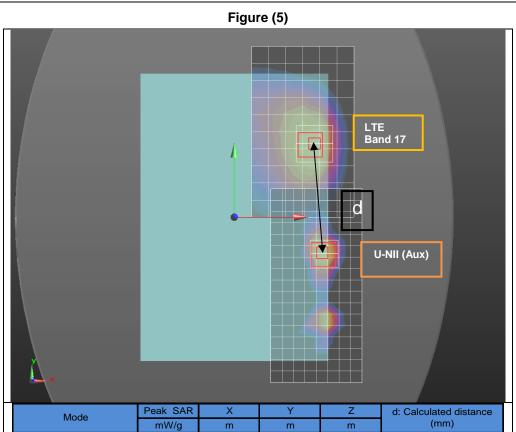
Figure (2)



Bluetooth (3) 0.471 0.0728 -0.09 -0.181

The Peak Location Separation Distance is computed by using the

SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)



The Peak Location Separation Distance is computed by using the for $SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)$

Figure (4)

×					DTS N	TE and 17	
Mode LTE Band 17 ①		de Peak SAR X		Y	Z	d: Calculate	ed distance
		mW/g 1.07	m 0.0705	m 0.0645	m -0.183		m)
LIE Dallu I/	1	1.07	0.0703	0.0043	-0.103	1 + 2	154.5

DTS Main Ant ② 1.1 0.0716 -0.09 -0.181 The Peak Location Separation Distance is computed by using the fc SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

1.57 The Peak Location Separation Distance is computed by using the fc SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

1.07

0.0705

0.075

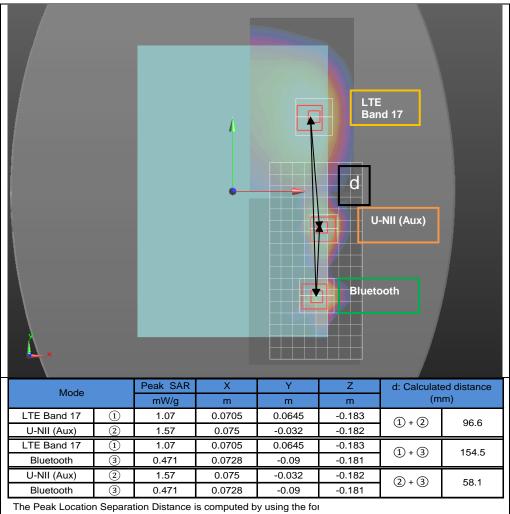
0.0645

-0.032

-0.183

-0.182

1+2


96.6

1

LTE Band 17

U-NII (Aux)

The Peak Location Separation Distance is computed by using the fo SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2)

Appendixes

Refer to separated files for the following appendixes.

- A 15J20368v0 SAR Photos & Ant. Locations
- **B_15J20368v0 SAR System Check Plots**
- C_15J20368v0 SAR Highest Test Plots
- D_15J20368v0 SAR Tissue Ingredients
- E_15J20368v0 SAR Probe Cal. Certificates
- F_15J20368v0 SAR Dipole Cal. Certificates

END OF REPORT