

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA/LTE + BLUETOOTH, DTS/UNII a/b/g/n/ac, ANT+ and NFC

FCC ID: PY7-TM0062

REPORT NUMBER: 15J20366-E3, Revision A

ISSUE DATE: MAY 12, 2015

Prepared for

SONY MOBILE COMMUNICATIONS, INC. 1-8-15 KONAN, MINATO-KU TOKYO, 108-0075 JAPAN

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
	04/20/15	Initial Issue	CHOON OOI
A	05/12/15	Revised Section 5.4	CHOON OOI

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TE	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	LIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	7
5. EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	8
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.4.	LIST OF TEST REDUCTION AND MODES	9
5.5.	WORST-CASE CONFIGURATION AND MODE	10
5.6.	DESCRIPTION OF TEST SETUP	11
6. TE	ST AND MEASUREMENT EQUIPMENT	13
7. ME	ASUREMENT METHODS	14
8. ON	I TIME, DUTY CYCLE AND MEASUREMENT METHODS	15
9. SU	MMARY TABLE	16
10. <i>A</i>	ANTENNA PORT TEST RESULTS	17
10.1.	6 dB BANDWIDTH	17
10.2.	99% BANDWIDTH	18
10.3.	OUTPUT POWER	19
10.4.	POWER SPECTRAL DENSITY	21
10.5.	CONDUCTED SPURIOUS AND OUT-OF-BAND EMISSIONS	22
11. F	RADIATED TEST RESULTS	23
11.1.	LIMITS AND PROCEDURE	23
11.2.	TRANSMITTER ABOVE 1 GHz	24
11.3.	WORST-CASE BELOW 1 GHz	24

12.	AC POWER LINE CONDUCTED EMISSIONS	.25
13.	SETUP PHOTOS	.26

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SONY MOBILE COMMUNICATIONS, INC.

EUT DESCRIPTION: GSM/WCDMA/LTE + BLUETOOTH, DTS/UNII a/b/g/n/ac, ANT+ and NFC

SERIAL NUMBER: CB5A23Q9M5 (Conducted), CB5A23Q1WM (Radiated)

DATE TESTED: FEBRUARY 19-MARCH 09, 2015

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

Tested By:

UL Verification Services Inc. By:

CHOON OOI

CONSUMER TECHNOLOGY DIVISION

WISE PROJECT LEAD

UL VERIFICATION SERVICES INC

CHARLES VERGONIO

CONSUMER TECHNOLOGY DIVISION

WISE LAB ENGINEER

UL VERIFICATION SERVICES INC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC KDB 662911.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	
Chamber A(IC: 2324B-1)	Chamber D(IC: 2324B-4)	
Chamber B(IC: 2324B-2)	Chamber E(IC: 2324B-5)	
Chamber C(IC: 2324B-3)	Chamber F(IC: 2324B-6)	
	Chamber G(IC: 2324B-7)	
	Chamber H(IC: 2324B-8)	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

Page 6 of 27

FCC ID: PY7-TM0062

4.3. **MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE + BLUETOOTH, DTS/UNII a/b/g/n/ac, ANT+ and NFC.

The model FCC ID: PY7-TM0062 shares the same enclosure and circuit board as mode FCC ID: PY7-TM0061. The unlicensed radios (WLAN/BT/NFC/ANT+) including antenna, are identical between the two units.

After confirming through preliminary radiated emissions that the performance of the FCC ID: PY7-TM0061 data remains representative of this model (FCC ID: PY7-TM0062), FCC ID: PY7-TM0062 leveraged test data from FCC ID: PY7-TM0061.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum total conducted output power as follows:

Frequency Range	Mode	Total Output	Total Output	
		Power	Power	
(MHz)		(dBm)	(mW)	
2412 - 2467	802.11b	11	12.59	
2472	802.11b	10.89	12.27	
2412 - 2467	802.11g	13.6	22.80	
2472	802.11g	10.1	10.28	
2412 - 2467	802.11n HT20	12.9	19.68	
2472	802.11n HT20	9.4	8.79	

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an FPCB antenna for the 802.11b/g, 802.11n HT20 modes with maximum peak gains as described below:

Frequency (MHz)	Antenna Gain (dBi)	
	Core0	Core1
2.4	-1.7	-5.4
2.44	-1.4	-3.8
2.48	-2.2	-4.1

5.4. LIST OF TEST REDUCTION AND MODES

2400 - 2483.5 MHz Authorized Frequency Band (Antenna Port & Radiated Testing)						
Frequency Range (MHz)	Mode	Covered by				
• ,						
2412 - 2472	802.11b Legacy 1TX	802.11b Legacy 1TX				
2412 - 2472	802.11g Legacy 1TX	802.11g CDD 2TX				
2412 - 2472	802.11n 1TX	802.11n HT20 CDD 2TX				
2412 - 2472	802.11n STBC 2TX	802.11n HT20 CDD 2TX				

FCC ID: PY7-TM0062

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X, Y, Z it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

Based on the baseline scan, the worst-case data rates were:

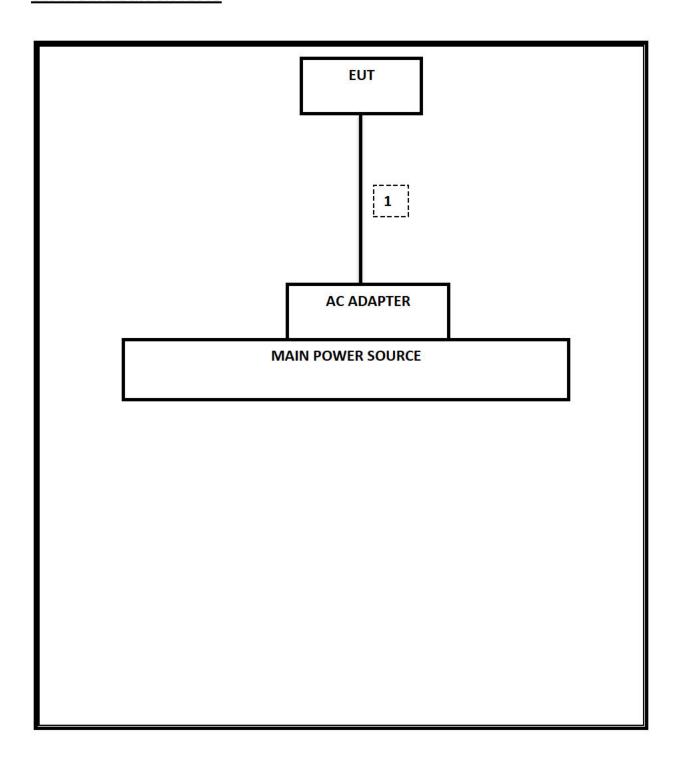
802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20mode: MCS0

FCC ID: PY7-TM0062

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
AC Adapter	SONY	EP880	3514W 01 S08328	N/A		


I/O CABLES

Cable	Port	# of identical	Connector	Cable Type	Cable	Remarks
No		ports	Туре		Length (m)	
1	DC Power	1	Mini USB	Shielded	1.2m	N/A

TEST SETUP

The EUT is a stand-alone unit during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	12/20/15		
Spectrum Analyzer,9KHz-40GHz	HP	8564E	C00986	04/01/15		
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI 7	100773	08/15/15		
Peak Power Meter	Agilent / HP	E4416A	C00963	12/13/15		
Peak / Average Power Sensor	Agilent / HP	E9327A	C00964	12/13/15		
Antenna, Horn, 1-18 GHz	ETS	3117	C01022	02/21/15		
Antenna, Horn,18- 26 GHz	ARA	MWH-1826/B	C00946	11/12/15		
Antenna, Horn, 26-40 GHz	ARA	MWH-2640	C00891	06/28/15		
Antenna, Bilog, 30MHz-1 GHz	Sunol Sciences	JB1	T243	03/06/15		
RF Preamplifier, 100KHz -> 1300MHz	HP	TBD	C00825	06/01/15		
RF Preamplifier, 1GHz - 18GHz	Miteq	NSP4000-SP2	924343	03/23/15		
RF Preamplifier, 1GHz - 26.5GHz	HP	8449B	F00351	06/27/15		
AC Power Supply, 2,500VA 45-500Hz	Elgar-Ametek	CW2501M	F00013	CNR		
RF Preamplifier, 1GHz - 18GHz	Miteq	AFS42-00101800-25-S-42	1818466	05/09/15		
Attenuator / Switch driver	HP	11713A	F00204	CNR		
Low Pass Filter 3GHz	Micro-Tronics	LPS17541	F00219	05/23/15		
High Pass Filter 5GHz	Micro-Tronics	HPS17542	F00222	05/22/15		
High Pass Filter 6GHz	Micro-Tronics	HPM17543	F00224	05/22/15		

Test Software List						
Description	Manufacturer	Model	Version			
Radiated Software	UL	UL EMC	Version 9.5, 07/22/14			
Conducted Software	UL	UL EMC	Version 9.5, 05/17/14			
CLT Software	UL	UL RF	Version 1.0, 02/02/15			
Antenna Port Software	UL	UL RF	Version 2.1.1.1, 1/20/15			

7. MEASUREMENT METHODS

KDB 558074 D01 DTS Meas Guidance v03r02:Measurement Procedure AVGPM-G is used for power and AVGPSD-3 is used for power spectral density.

Unwanted emissions within Restricted Bands are measured using traditional radiated procedures.

Band edge emissions within Restricted Bands are measured using RMS with duty cycle factor offset method.

FCC ID: PY7-TM0062

8. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

Result

FCC ID: PY7-TM0062

9. SUMMARY TABLE

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
15.247 (a)(2)	RSS-210 A8.2(a)	Occupied Band width (6dB)	>500KHz	Conducted	Pass	7.58 MHz
2.1051, 15.247 (d)	RSS-210 A8.5	Band Edge / Conducted Spurious Emission	-20dBc		Pass	-38.28 dBm
15.247	RSS-210 A8.4	TX conducted output power	<30dBm		Pass	11.3 dBm
15.247	RSS-210 A8.2	PSD	<8dBm		Pass	-18.49 dBm
15.207 (a)	RSS-GEN 7.2.2	AC Power Line conducted emissions	Section 10	Radiated	Pass	47.63 dBuV (AV)
15.205, 15.209	RSS-210 Clause 2.6, RSS-210 Clause 6	Radiated Spurious Emission	< 54dBuV/m		Pass	53.38 dBuV/m

10. ANTENNA PORT TEST RESULTS

10.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

Reference to KDB 558074 D01 DTS Meas Guidance v03r02: The transmitter output is connected to a spectrum analyzer with the RBW set to 100 KHz, the VBW >= 3 x RBW, peak detector and max hold.

RESULTS

10.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

10.3. OUTPUT POWER

LIMITS

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.2 dB (including 10 dB pad and 0.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DIRECTIONAL ANTENNA GAIN

Please refer to DTS test report of FCC ID: PY7-TM0061.

RESULTS

10.4. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

FCC ID: PY7-TM0062

10.5. CONDUCTED SPURIOUS AND OUT-OF-BAND EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the in-band reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.

RESULTS

FCC ID: PY7-TM0062

11. RADIATED TEST RESULTS

LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

IC RSS-GEN Clause 7 (Receiver)

Frequency Range	Field Strength Limit	Field Strength Limit
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and add duty cycle factor for average measurements. Duty cycle factor= $10\log (1/x)$ For this sample B mode = 0dB (duty cycle >98%); G mode = 0 dB; N mode = 0dB.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

11.2. TRANSMITTER ABOVE 1 GHz

Please refer to DTS test report of FCC ID: PY7-TM0061.

11.3. WORST-CASE BELOW 1 GHz

FCC ID: PY7-TM0062

12. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
Frequency of Emission (WHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4 2009.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS