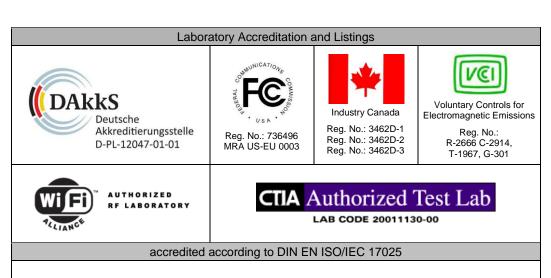


TEST REPORT No.: 2-20819544a-13

According to: FCC Regulations Part 15.107 Part 15.209, Part15.247


> IC-Regulations RSS-Gen, Issue 3 RSS-210, Issue 8

> > for

Sony Mobile Communications AB

RD-0060 Bluetooth® Headset

FCC-ID: PY7-RD0060 IC: 4170B-RD0060

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. Tests overview FCC and Canada IC Standards (RSS)	3
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory 2.2. Test location 2.3. Organizational items 2.4. Applicant's details 2.5. Manufacturer's details	5 5
3. EQUIPMENT UNDER TEST (EUT)	6
3.1. Technical data of main EUT declared by applicant 3.2. EUT: Type, S/N etc. and short descriptions used in this test report 3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions 3.4. EUT set-ups 3.5. EUT operating modes 3.6. Configuration of cables used for testing	6 6 7
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	8
 4.1. Test system set-up for AC power-line conducted emission measurements 4.2. Test system set-up for radiated magnetic field measurements below 30 MHz 4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz 4.4. Test system set-up for radiated electric field measurement above 1 GHz 4.5. Test system set-up for conducted RF-measurements at antenna port 	9 10 11
5. MEASUREMENTS	13
5.1. General Limit - Conducted emissions on AC-Power lines 5.2. General Limit - Radiated field strength emissions below 30 MHz	
6. ABBREVIATIONS USED IN THIS REPORT	
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	
8. INSTRUMENTS AND ANCILLARY	
	pages
Annex 1: External photos	8
Annex 2: Internal photos	5
Annex 3: Test set-up photos	5
Annex 4: Measurement diagrams	85

The listed attachments are parts of this report.

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

The presented $\underline{\underline{U}}$ number $\underline{\underline{U}$ number \underline{U} num

Following test cases have been performed to show compliance with applicable FCC Part 2 and Part 15 rules of the FCC CFR 47 Rules, Edition 1st October 2012 and IC RSS-210 Issue 8/RSS-Gen Issue 3 standards.

1.1. Tests overview FCC and IC Standards (RSS)

		References and Limits				EUT	
Test cases	Port	FCC Standard	RSS Section	Test limit	EUT set-up	op. mode	Result
20 dB bandwidth	Antenna terminal	§15.247	RSS-210, Issue 8:	At least 25 kHz or 2/3	3	1	passed
Channel carrier frequency separation	(conducted)	(a)(1)	A8.1 (a) (b)	of 20 dB bandwidth	3	1	passed
99% occupied bandwidth	Antenna terminal (conducted)		RSS-210, Issue 8: Chapter 4.6.1	99% Power bandwidth	3	1	passed
Channel use, average channel use, input band- width and synchronization between signals		§15.247 (a)(1)	RSS-210, Issue 8: A8.1	See regulatory specification & Bluetooth® Core standard	3	1	not performed Remark 1
Channel average Occupancy time and number of channels	Antenna terminal (conducted)	\$15.247 (a)(1) (iii)	RSS-210, Issue 8: A8.1 (d)	0.4 seconds	3	1	passed
Transmitter Peak output power	Antenna terminal (conducted)	§15.247 (b)(1)	RSS-210, Issue 8: A8.4 (2)	< 125 mW	3	1	passed
Transmitter frequency stability	Antenna terminal (conducted)		RSS-Gen, Chapter 4.7	Operation within designated operational band		1	Not tested
Transmitter Peak output power radiated	Cabinet (radiated)	§15.247 (b)(4)	RSS-210, Issue 8: A8.4 (4)	< 125 mW (EIRP) for antenna with directional gain less 6 dBi	2	1	passed
Out-Of-Band RF- emissions Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	RSS-210, Issue 8: A8.5	20 dBc	3	1	passed
General field strength emissions + restricted bands	Cabinet + Interconnecting cables (radiated)	§15.247 (d) §15.205 §15.209	RSS-210, Issue 3, Chapter 2.5 RSS-Gen: Issue 3: §7.2.5 Table 5+6	Emissions in restricted bands must meet the general field-strength radiated limits	1	1+3	passed

Dipl.-Ing. C. Lorenz

Responsible for test report

AC-Power Lines Conducted Emissions	AC-Power lines	§15.207	RSS-Gen, Issue 3: Chapter 7.2.4, Table 4	FCC §15.107 class B limits §15.207 limits IC: Table 4, Chapter 7.2.4	1+4	1+3	passed
			RX Mode				
AC-Power Lines	AC-Power	§15.107	RSS-Gen, Issue 3: Chapter 7.2.4,	FCC §15.107 class B limits	1	3+4	passed
Conducted Emissions	lines		Table 4	IC: Table 4, Chapter 7.2.4			pussou

Remark: 1.) not tested within this test report – necessary parameter for Bluetooth® Core standard Vers. 3.0

Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

D. Franke

Responsible for test section

C. L.

Ombit Im Tesibrack 1 (n 45210 Essen Tel.: +49 (0) 20 54766 19 - 0

Fax: +49 (0) 20 64 / 95 19 - 937

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH

Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Niels Jeß

Deputy: Dipl.-Ing. Rachid Acharkaoui

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report and

project leader: Dipl.-Ing. C. Lorenz

Receipt of EUT: 2013-07-02

Date(s) of test: 2013-07-02 - 2013-07-15

Date of report: 2013-07-15

Version of template: 12.11 Lorenz

2.4. Applicant's details

Applicant's name: Sony Mobile Communications AB

Address: Nya Vattentornet

22188 Lund Sweden

Contact person: Mr. Anders Nordlöf

2.5. Manufacturer's details

Manufacturer's name: please see Applicant's details

Address: please see Applicant's details

3. Equipment under test (EUT)

3.1. Technical data of main EUT declared by applicant

Main function	Bluetooth® Head	lset				
Type	RD-0060					
Frequency range and channels	2402 MHz to 24	80 MHz	≥ Ch. (to Ch. 78	☐ Ch. 0 to Ch. 40	
(US/Canada -bands)						
Type of modulation (packet types)	■ BT 1.0 / BT 1					
	■ BT 2.0 / BT 2					
	■ BT 3.0: DH1			DQPSK, 8DF	PSK	
	☐ BT 4.0: DH1.	/DH3/DH5	- GFSK			
Number of channels	■ 0 to 78					
(USA/Canada -bands)	□ 0 to 40					
Antenna Type	■ Integrated on					
	☐ External, no I					
	☐ External, sepa	arate RF-co	nnector			
Declared Antenna Gain	2402MHz: -2.2	dBi				
	2441MHz: -2.1	dBi				
	2480MHz: -2.3	dBi				
FCC-ID	PY7-RD0060					
IC-ID	4170B-RD0060					
Installed options	■ battery chargi					
	■ NFC antenna	(only reade	er)			
Power supply	■ Internal batter	ry Li-Io, rai	nge 3.3V	to 4.2 V		
Special EMI components						
EUT sample type	☐ Production	➤ Pre-Pro	duction	☐ Engineerii	ng	
Firmware	☐ for normal	▼ Special	version f	or test executi	ion	
	use					
FCC label attached	□ yes	🗷 no				

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	RD-0060	Bluetooth® Headset	#1	SP1	2.0.A.2.4
EUT B	RD-0060	Bluetooth® Headset	#2	SP1	2.0.A.2.4

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	PHF MH755	AG-0503	13191C16DOF 5A34	13W19	-
AE 2	AC-Adapter EP850	CAA-0004008-BV	#22223	AP1.4	-

AE 3	USB Cable	AI-0401	#22682	SP1	
AE 4	Nicola Charger EP 800	CCA-0002016-BV	#19318	SP1	
AE 5	USB Cable	EC300	12510D7F0377 478	12W51	

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
Set. 1	EUT A + AE 1 + AE 2 + AE 3	Used for radiated tests and conducted EMI-tests on AC-mains
Set. 2	EUT A + AE 1	Used for radiated tests
Set. 3	Set. 3 EUT B Used for conducted RF-Tests. So with RF-SMA antenna connector supply.	
Set. 4	EUT A + AE 1 + AE 4 + AE 5	Used for conducted EMI tests on AC-mains

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	TX-Mode	With help of special test firmware, a continuous traffic mode could be established with help of a Bluetooth base simulator. (R&S CBT32)
op. 2	TX-Mode hopping on	Hopping mode was activated with help of a Bluetooth base simulator. (R&S CBT32)
op. 3	Battery charging	A empty battery was charged during the tests.
op. 4	RX-Mode	With help of special test firmware

^{*)} EUT operating mode no. is used to simplify the test report.

3.6. Configuration of cables used for testing

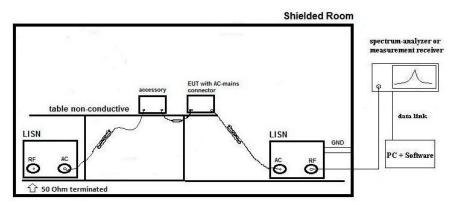
Cable number	Item	Туре	S/N serial number	HW hardware status	Cable length
Cable 1	USB cable 1				1m
Cable 2	USB cable 2				Short 30cm

Remarks:--

4. Description of test system set-up's

4.1. Test system set-up for AC power-line conducted emission measurements

Specification: ANSI C63.4-2009 chapter 7, ANSI C63.10-2009 chapter 6.2


General Description:

The radio frequency voltage conducted back into the AC power line in the frequency range 150 kHz to 30 MHz has to be investigated. Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50 μH line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment. The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on a 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane. Measurements have been performed on each phase line and neutral line of the devices AC-power lines. The EUT was power supplied with 110 V/60 Hz. The EUT was tested in the defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

Schematic:

Only schematic view, we refer to figure 6, 7 and 8 of ANSI C63.4-2009 for more details.

Testing method:

Exploratory, preliminary measurements as a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

Final testing for power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

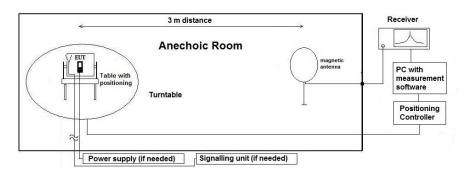
Formula:

 $V_C = V_R + C_L$ (1) $M = L_T - V_C$ (2) V_C = measured Voltage –corrected value

 V_R = Receiver reading

 C_L = Cable loss M = Margin L_T = Limit

Values are in dB, positive margin means value is below limit.


4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.4-2009 chapter 8.2.1, ANSI C63.10-2009 chapter 6.4

General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

AF = Antenna factor

 $C_L = Cable loss$

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A= Gain of pre-amplifier (if used)

 $L_T = Limit$

M = Margin

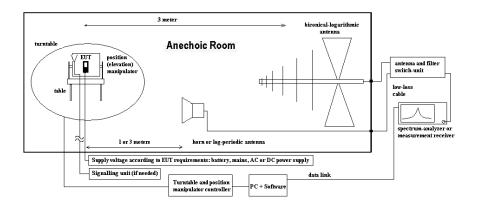
All units are dB-units, positive margin means value is below limit.

Distance correction:

Reference for applied correction (extrapolating) factors: IEEC Transaction EMC, Vol. 47, No. 3, Aug. 2005, Journal Paper

"Extrapolating Near-field emissions of low frequency loop transmitters".

4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz


Specification: ANSI C63.4-2009 chapter 8, ANSI C63.10-2009 chapter 6.5

General Description: Evaluating the field emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the

regulatory commissions.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

 $M = L_T - E_C \tag{2}$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 C_L = Cable loss

 D_F = Distance correction factor (if used)

 E_C = Electrical field – corrected value

 E_R = Receiver reading

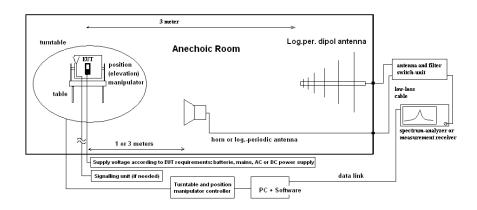
 $G_A = Gain of pre-amplifier (if used)$

$$\begin{split} L_T &= Limit \\ M &= Margin \end{split}$$

All units are dB-units, positive margin means value is below limit.

TR2-20819544a-13

Formula:


4.4. Test system set-up for radiated electric field measurement above 1 GHz

Specification: ANSI C63.4-2009 chapter 8, ANSI C63.10-2009 chapter 6.6

General Description:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-4 compliant fully anechoic room (FAR) recognized by the regulatory commissions. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 1 meter above 18 GHz. Logarithmic periodic antenna is used for frequency range 1 GHz to 18 GHz, above 18 GHz a horn antenna is used. The antennas are set to fixed antenna height of 1.55 m in respect thereof requirement fulfilled according site validation and FCC listed instead of the height of receiving antenna not applicable for fully anechoic room and the EUT aligned within 3 dB cone of radiation pattern.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 45°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height is fixed to 1.55 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 E_C = Electrical field – corrected value

 E_R = Receiver reading

M = Margin

 $L_T = Limit$

AF = Antenna factor

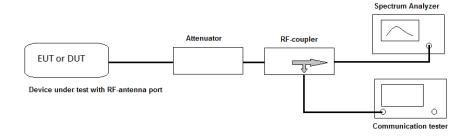
 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$

All units are dB-units, positive margin means value is below limit.

4.5. Test system set-up for conducted RF-measurements at antenna port


Specification: ANSI C63.10-2009

General Description: The EUT's RF-signal is first attenuated before it is connected to the input of the

RF-coupler. The direct output branch is connected to the spectrum – analyzer, the coupled branch to the communication tester. The specific attenuation is determined prior to the measurement within a set-up calibration. The value is taken into account by correcting the measurement readings on the spectrum-analyzer either by a transducer factor (TDF) or an relative offset to reference

level.

Schematic:

Testing method: According to ANSI 63.10-2009 for each individual test, see more details in each

chapter.

5. Measurements

5.1. General Limit - Conducted emissions on AC-Power lines

5.1.1. Test location and equipment

test location	☑ CETECOM Essen (Chapter 2.2.1)		☐ Please see Chapter 2.2.2		☐ Please see Chapter 2.2.3	
test site	☐ 333 EMI field	■ 348 EMI cond.				
receiver	□ 001 ESS	■ 377 ESCS 30	□ 489 ESU 40	□ 620 ESU 26		
LISN	■ 005 ESH2-Z5	□ 007 ESH3-Z6	□ 300 ESH3-Z5 &	50Ω used for AE	□ no LISN for AE	
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU	□ 594 CMW		
line voltage	□ 230 V 50 Hz via j	oublic mains	≥ 060 120 V 60 F	Iz via PAS 5000		

5.1.2. Requirements RX-Mode

FC	CC	Part 15, Subpart B, §15.107					
IC		RSS-Gen., § 7.2.4					
AN	NSI	C63.4-2009, § 5.2, 6, 7					
	Frequency			☐ Conducted limit Class A			
	[MHz]	QUASI-Peak [dBµV]	AVERAGE [dBμV]	QUASI-Peak [dBµV]	AVERAGE [dBμV]		
Limit	0.15 - 0.5	66 to 56*	56 to 46*	79	66		
	0.5 - 5	56	46	73	60		
	5 – 30	60	50	73	60		
Remark: * d	Remark: * decreases with the logarithm of the frequency						

5.1.3. Requirements TX-Mode

cincins i	2X-1/10GC						
	Part 15, Subpart C, §15.207						
	RSS-Gen., § 7.2.4						
	C63.10-2009						
Frequency MHz]	QUASI-Peak [dBμV]	AVERAGE [dBμV]					
0.15 - 0.5	66 to 56*	56 to 46*					
0.5 - 5	56	46					
5 – 30	60	50					
eases with t	he logarithm of the frequency						
	Frequency MHz] 0.15 - 0.5 0.5 - 5 5 - 30	RSS-Gen., § 7.2.4 [

5.1.4. Test condition and test set-up

Signal link to test sy	stem (if used):	■ air link □ cable co	onnection				
EUT-grounding □ none □ with power supply □ addition			□ additional connection				
Equipment set up			☐ floor standing				
		(40 cm distance to refe	rence	EUT stands isolated on reference ground plane (floor)			
		ground plane (wall)					
Climatic conditions		Temperature: (22±3°C))	Rel. humidity: (40±20)%			
		$\square 9 - 150 \text{ kHz}, RBW = 200 \text{ Hz}, Step = 61 \text{ Hz}$					
	Scan data	\blacksquare 150 kHz – 30 MHz RBW = 9 kHz, Step = 4 kHz					
EMI-Receiver or		☐ other:					
Analyzer settings	Scan-Mode	6 dB EMI-Receiver Mode					
	Pre-measurement	Peak detector, Repetitive-Scan, max-hold, sweep-time 50 μs per frequency point					
	Final measurement		Average & Quasi-peak detector at critical frequencies				
General measurement	nt procedures	Please see chapter "Test system set-up for AC power line conducted emissions measurements"					

5.1.5. Results

Two representative set-ups were chosen to show compliance with EMI-AC mains emissions.

Measurement results on set-up 1

The results are presented below in summary form only. For more information please see the diagrams

EUT	set-up no.:		set-up 2			
Diagram No.	EUT operating mode no. or commend	Used Detector	Power line	Additional (scan-) information or remarks	Result	
1.01	EUT operating mode 1+3	☑ Peak (pre-scan) ☑ CAV (final) ☑ QP (final)	L1/ N	Pre/Final	Pass	
1.02	EUT operating mode 3+4		L1/ N	Pre/Final	Pass	

Remarks:--

Measurement results on set-up 4

The results are presented below in summary form only. For more information please see the diagrams

EUT	EUT set-up no.:			set-up 4		
Diagram No.	EUT operating mode no. or commend	Used Detector	Power line	Additional (scan-) information or remarks	Result	
1.03	EUT operating mode 1+3	☑ Peak (pre-scan) ☑ CAV (final) ☑ QP (final)	L1/ N	Pre/Final	Pass	
1.04	EUT operating mode 1+3	☑ Peak (pre-scan) ☑ CAV (final) ☑ QP (final)	L1/ N	Pre/Final	Pass	

Remarks:

5.2. General Limit - Radiated field strength emissions below 30 MHz

5.2.1. Test location and equipment

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapto	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	■ 441 EMISAR	□ 487 SAR NSA	☐ 347 Radio.lab.			
receiver	☐ 377 ESCS30	■ 001 ESS				
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK			
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU	□ 594 CMW		
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense	
DC power	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
line voltage	□ 230 V 50 Hz via p	oublic mains	≥ 060 120 V 60 Hz	via PAS 5000		

5.2.2. Requirements

FCC	Part 15, Subpart 0	C, §15.205 & §15.209		
IC	RSS-Gen., Issue	3		
ANSI	C63.10-2009			
Frequency [MHz]	Field [µV/m]	strength limit [dBµV/m]	Distance [m]	Remarks
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m
0.490 - 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m

5.2.3. Test condition and test set-up

Signal link to test s	vstem (if used):	■ air link	cable connection	none		
EUT-grounding		■ none □ with power supply □ additional connection				
Equipment set up		■ table top		☐ floor standing		
Climatic conditions		Temperature: (22	±3°C)	Rel. humidity: (40±20)%		
		9 - 150 kHz150 kHz - 30 I□ other:	RBW/VBW = MHz RBW/VBW =	r		
EMI-Receiver or	Scan-Mode	■ 6 dB EMI-Rec	eiver Mode 🗆 3dB Sp	ectrum analyser Mode		
Analyzer Settings	Detector	Peak (pre-measur	rement) and Quasi-PK/	Average (final if applicable)		
	Mode:	Repetitive-Scan, max-hold				
	Sweep-Time	Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual				
		transmission duty	-cycle			
General measurement	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"				

5.2.4. Measurement Results

The results are presented below in summary form only. For more information please see the diagrams.

Table of measurement results:

Diagram No.	Carı Char		Frequency range	Set- up no.	OP- mode no.	Remark	Use	ed dete	ector	Result
	Range	No.		110.	110.		PK	AV	QP	
2.01	Low	0	9 kHz-30 MHz	1	1	DH5 packet type	×			pass
2.02	Middle	39	9 kHz-30 MHz	1	1	2DH5 packet type	×			passed
2.03	High	78	9 kHz-30 MHz	1	1	3DH5 packet type	×			passed

Remarks: no critical peaks above noise level found

5.2.5. Correction factors due to reduced meas. distance (f< $30\ MHz$)

The used correction factors when the measurement distance is reduced, are taken from IEEC Transaction EMC, Vol 47, No.3, Aug. 2005, Journal Paper "EXTRAPOLATING NEAR-FIELD EMISSIONS OF LOW-FREQUENCY LOOP TRANSMITTERS".

Prequency Antenna factor Corection factor Corection factor Som to 3m Som to 3						
Note		1 2	3	•	4 5	
MHz	roguency	Antonna factor	Corection	factor	Cable loss	
kHz dB μV/m dB dB dB μV/m 9,0 20,0 -116,7 0,0 -96,7 12,6 20,0 -116,7 0,0 -96,7 12,6 20,0 -116,7 0,0 -96,7 14,8 20,0 -116,6 0,0 -96,6 20,7 20,0 -116,6 0,0 -96,6 20,7 20,0 -116,6 0,0 -96,6 28,9 20,0 -116,6 0,0 -96,6 28,9 20,0 -116,5 0,0 -96,6 34,1 20,0 -116,4 0,0 -96,8 40,3 20,0 -116,3 0,0 -96,4 47,6 20,0 -116,2 0,0 -96,3 56,2 20,0 -116,0 0,0 -96,2 66,4 20,0 -115,0 0,0 -96,2 66,4 20,0 -115,4 0,0 -95,0 192,3 20,0 -114,5	requericy	Antenna lactor			Cable 1055	Transducer factor
9,0 20,0 -116,7 0,0 96,7 10,6 20,0 -116,7 0,0 96,7 12,6 20,0 -116,7 0,0 96,7 12,6 20,0 -116,7 0,0 96,7 14.8 20,0 -116,6 0,0 96,7 17,5 20,0 -116,6 0,0 96,6 20,7 20,0 -116,6 0,0 96,6 20,7 20,0 -116,6 0,0 96,6 22,4 20,0 -116,6 0,0 96,6 28,9 20,0 -116,6 0,0 96,5 28,9 20,0 -116,5 0,0 96,5 40,3 20,0 -116,5 0,0 96,5 40,3 20,0 -116,4 0,0 96,4 47,6 20,0 -116,2 0,0 96,3 41,2 0,0 96,3 41,2 0,0 -116,2 0,0 96,3 47,6 20,0 -116,2 0,0 96,2 66,4 20,0 -116,2 0,0 96,2 66,4 20,0 -116,2 0,0 96,2 66,4 20,0 -116,5 0,0 96,2 66,4 20,0 -115,8 0,0 95,8 92,7 20,0 -115,4 0,0 95,8 92,7 20,0 -115,4 0,0 95,4 109,4 20,0 -115,4 0,0 95,4 109,4 20,0 -115,8 0,0 95,4 109,4 20,0 -115,0 0,0 95,4 109,4 20,0 -115,0 0,0 95,4 129,3 20,0 -114,5 0,0 93,1 120,1 121,1 120,0 -112,2 0,0 93,1 120,1 121,1 120,0 -112,2 0,0 93,1 120,1 121,1 120,0 -112,2 0,0 93,1 120,1 121,1 120,0 -112,2 0,0 99,1 351,2 20,0 15,5 4,0 9,1 109,4 20,0 -10,5 3,1 0,0 93,1 120,1 120,1 120,1 120,1 120,0 93,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,1 120,0 93,1 1	kHz	dB uV/m			dB	dB uV/m
10.6				uв		
12.6 20.0 -116.7 0.0 -96.7 14.8 20.0 -116.7 0.0 -96.7 17.5 20.0 -116.6 0.0 -96.6 20.7 20.0 -116.6 0.0 -96.6 24.4 20.0 -116.6 0.0 -96.6 34.1 20.0 -116.5 0.0 -96.5 40.3 20.0 -116.3 0.0 -96.5 40.3 20.0 -116.3 0.0 -96.3 56.2 20.0 -116.3 0.0 -96.3 56.2 20.0 -116.0 0.0 -96.3 66.4 20.0 -115.8 0.0 -96.2 66.4 20.0 -115.8 0.0 -95.8 92.7 20.0 -115.8 0.0 -95.8 92.7 20.0 -115.0 0.0 -95.8 109.4 20.0 -115.0 0.0 -94.5 152.7 20.0 -113.9						
14,8 20,0 -116,7 0,0 -96,6 17,5 20,0 -116,6 0,0 -96,6 20,7 20,0 -116,6 0,0 -96,6 24,4 20,0 -116,6 0,0 -96,6 28,9 20,0 -116,5 0,0 -96,5 40,3 20,0 -116,4 0,0 -96,4 47,6 20,0 -116,2 0,0 -96,3 56,2 20,0 -116,0 0,0 -96,2 66,4 20,0 -115,8 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -93,1 121,3 20,0 -113,1 0,0 -93,1 131,1 20,0 -113,1 0,0 -93,1 213,1 20,0 -110,3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
17.5						
20,7 20,0 -116,6 0,0 -96,6 24,4 20,0 -116,6 0,0 -96,6 34,1 20,0 -116,5 0,0 -96,5 40,3 20,0 -116,4 0,0 -96,5 40,3 20,0 -116,4 0,0 -96,3 56,2 20,0 -116,2 0,0 -96,2 66,4 20,0 -115,0 0,0 -96,2 66,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,8 92,7 20,0 -115,0 0,0 -95,8 92,7 20,0 -114,5 0,0 -95,4 109,4 20,0 -114,5 0,0 0,0 -95,4 129,3 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -92,2 2251,7 20,0 -113,1 0,						
24,4 20,0 -116,6 0,0 -96,6 28,9 20,0 -116,6 0,0 -96,6 34,1 20,0 -116,5 0,0 -96,4 40,3 20,0 -116,4 0,0 -96,4 47,6 20,0 -116,3 0,0 -96,2 56,2 20,0 -116,0 0,0 -96,2 66,4 20,0 -116,0 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,0 193,3 20,0 -115,0 0,0 -95,0 129,3 20,0 -113,9 0,0 -95,0 129,3 20,0 -113,9 0,0 -94,5 152,7 20,0 -113,1 0,0 -93,1 213,1 20,0 -113,3 0,0 -93,1 213,1 20,0 -10,3 0,0 -92,2 251,7 20,0 -113,3 </td <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td>			,			
28,9 20,0 -116,6 0,0 -96,5 34,1 20,0 -116,5 0,0 -96,5 40,3 20,0 -116,4 0,0 -96,4 47,6 20,0 -116,3 0,0 -96,3 56,2 20,0 -116,2 0,0 -96,3 66,4 20,0 -116,0 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,0 109,4 20,0 -115,0 0,0 -96,0 152,7 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -108,3 0,0 -93,3 297,3 20,0 -108,2 0,0 -92,2 251,7 20,0 -102,1						
34,1 20,0 -116,5 0,0 -96,5 40,3 20,0 -116,4 0,0 -96,4 47,6 20,0 -116,3 0,0 -96,2 56,2 20,0 -116,2 0,0 -96,2 66,4 20,0 -116,0 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,4 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -98,3 351,2 20,0 -105,	28,9					
40,3 20,0 -116,4 0,0 -96,4 47,6 20,0 -116,3 0,0 -96,3 56,2 20,0 -116,2 0,0 -96,2 66,4 20,0 -116,0 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,0 0,0 -95,0 109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -111,3 0,0 -93,9 180,4 20,0 -111,3 0,0 -93,1 213,1 20,0 -108,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -91,3 297,3 20,0 -108,2 0,0 -82,1 490,0 20,0 -99,1 0,0 -82,1 490,0 20,0 -56,4						
56,2 20,0 -116,2 0,0 -96,2 66,4 20,0 -116,0 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,4 92,7 20,0 -115,4 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,1 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -111,3 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -82,2 414,8 20,0 -102,1 0,0 -92,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,2 0,1 -36,3 82,0 20,0 -55,7			-116,4			
66,4 20,0 -116,0 0,0 -96,0 78,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,9 180,4 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -93,1 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -102,1 0,0 -85,2 414,8 20,0 -102,1 0,0 -85,2 414,8 20,0 -102,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56	47,6	20,0	-116,3		0,0	-96,3
78,4 20,0 -115,8 0,0 -95,8 92,7 20,0 -115,4 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,6 129,3 20,0 -113,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -93,1 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -85,2 414,8 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,	56,2	20,0	-116,2		0,0	-96,2
92,7 20,0 -115,4 0,0 -95,4 109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,1 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -111,3 0,0 -92,2 251,7 20,0 -111,3 0,0 -92,2 251,7 20,0 -118,3 0,0 -88,3 351,2 20,0 -108,3 0,0 -88,3 351,2 20,0 -108,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55	66,4	20,0	-116,0		0,0	-96,0
109,4 20,0 -115,0 0,0 -95,0 129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -118,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,2 0,1 -36,3 820,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,	78,4	20,0	-115,8		0,0	-95,8
129,3 20,0 -114,5 0,0 -94,5 152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4<	92,7	20,0	-115,4		0,0	-95,4
152,7 20,0 -113,9 0,0 -93,9 180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,		20,0				
180,4 20,0 -113,1 0,0 -93,1 213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,3 582,0 20,0 -56,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,4 0,2 -35,2 973,0 20,0 -54,4 0,2 -35,2 1.155,0 20,0 -54,4			,			
213,1 20,0 -112,2 0,0 -92,2 251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,3 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 973,0 20,0 -54,4 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,						
251,7 20,0 -111,3 0,0 -91,3 297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 873,0 20,0 -55,4 0,2 -35,8 973,0 20,0 -55,4 0,2 -35,8 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,4 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,6 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -						
297,3 20,0 -108,3 0,0 -88,3 351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -52,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
351,2 20,0 -105,2 0,0 -85,2 414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -31,6 2.721,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 <						
414,8 20,0 -102,1 0,0 -82,1 490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,4 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -52,9 0,4 -32,5 2.721,0 20,0 -52,9 0,4 -32,5 2.721,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -40,4 0,6 -19,5 5.402,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0			,			
490,0 20,0 -99,1 0,0 -79,1 490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0						
490,0 20,0 -56,4 0,1 -36,3 582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0						
582,0 20,0 -56,2 0,1 -36,1 690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,5 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0			-99,1			
690,0 20,0 -56,0 0,2 -35,8 820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,4 0,2 -35,2 1.371,0 20,0 -54,4 0,3 -34,6 1.371,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0						
820,0 20,0 -55,7 0,2 -35,5 973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -36,8 0,7 -16,1 5.402,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
973,0 20,0 -55,4 0,2 -35,2 1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -54,4 0,3 -34,1 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -30,3 0,8 -9,5 9,035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -22,0 -22,0 -20,0 -22,0 -20,						
1.155,0 20,0 -54,9 0,3 -34,6 1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -19,3 1,0 1,7 17.937,0 20,0<						
1.371,0 20,0 -54,4 0,3 -34,1 1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -18,4 1,0 2,6 21.292,0 20,0<						
1.627,0 20,0 -53,7 0,3 -33,4 1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1.931,0 20,0 -52,9 0,4 -32,5 2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2.292,0 20,0 -52,0 0,4 -31,6 2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
2.721,0 20,0 -49,8 0,5 -29,3 3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
3.230,0 20,0 -46,6 0,5 -26,1 3.834,0 20,0 -43,3 0,6 -22,7 4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
3.834,0 20.0 -43,3 0.6 -22,7 4.551,0 20.0 -40,1 0.6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
4.551,0 20,0 -40,1 0,6 -19,5 5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
5.402,0 20,0 -36,8 0,7 -16,1 6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
6.412,0 20,0 -33,5 0,7 -12,8 7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
7.612,0 20,0 -30,3 0,8 -9,5 9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
9.035,0 20,0 -27,0 0,8 -6,2 10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
10.725,0 20,0 -23,9 0,9 -3,0 12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
12.730,0 20,0 -21,2 0,9 -0,3 15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
15.111,0 20,0 -19,3 1,0 1,7 17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
17.937,0 20,0 -18,4 1,0 2,6 21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8						
21.292,0 20,0 -18,2 1,1 2,9 25.274,0 20,0 -18,3 1,1 2,8				-18,4		
	21.292,0	20,0				
30,000,0 20,0 -18,4 1.2 2.8						
30.000,0 20,0 -10,4 1,2 2,0	30.000,0	20,0		-18,4	1,2	2,8

5.3. General Limit - Radiated field strength emissions, 30 MHz - 1 GHz

5.3.1. Test location and equipment

test location	■ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	ter. 2.2.3
test site	■ 441 EMI SAR	■ 487 SAR NSA				
receiver	□ 377 ESCS30	■ 001 ESS	□ 489 ESU 40	□ 620 ESU 26		
spectr. analys.	□ 584 FSU	☐ 120 FSEM	□ 264 FSEK			
antenna	区 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU	□ 594 CMW		
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	■ 482 Filter Matrix		
DC power	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE
line voltage	□ 230 V 50 Hz via p	oublic mains	№ 060 120 V 60 Hz	via PAS 5000		

5.3.2. Requirements/Limits

2.2.2. Itcq	un ements/ Limits					
	FCC	☐ Part 15 Subpart B, \$15.109, class B ☑ Part 15 Subpart C, \$15.209 @ frequencies defined in \$15.205				
	IC	RSS-Gen., Issue 3				
	ANSI	□ C63.4-2009 ☑ C63.10-2009				
	Fraguency [MHz]	Radiated emissions limits, 3 meters				
	Frequency [MHz]	QUASI Peak [μV/m]	QUASI-Peak [dBµV/m]			
Limit	30 - 88	100	40.0			
Lillit	88 - 216	150	43.5			
	216 - 960	200	46.0			
	above 960	500	49.0			

5.3.3. Restricted bands of operation, §15.205

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5
6.215-6.218	73-74.6	1660-1710	10.6-12.7
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5
8.291-8.294	123-138	2310-2390	15.35-16.2
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5
12.57675-12.57725	240-285	3600-4400	
13.36-13.41	322-335.4		
Remark: only spurious emiss	ions are allowed within these freque	ency bands not exceeding the limits	per §15.209

5.3.4. Test condition and measurement test set-up

Signal link to test sy	ystem (if used):	air link	☐ cable connection	□ none		
EUT-grounding		≥ none	☐ with power supply	☐ additional connection		
Equipment set up		■ table top 0.8	8m height	☐ floor standing		
Climatic conditions	3	Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
EMI-Receiver	Scan frequency range:	≥ 30 − 1000 M	IHz □ other:			
(Analyzer) Settings	Scan-Mode	■ 6 dB EMI-Receiver Mode □ 3 dB spectrum analyser mode				
	Detector	Peak / Quasi-peak				
	RBW/VBW	100 kHz/300 k	Hz			
	Mode:	Repetitive-Sca	n, max-hold			
	Scan step	80 kHz				
	Sweep-Time	Coupled - cali	brated display if continue	ous tx-signal otherwise adapted to EUT's individual		
duty-cycle						
General measurement procedures		Please see chapter "Test system set-up for electric field measurement in the range 30 MHz				
		to 1 GHz"				

5.3.5. MEASUREMENT RESULTS

The results are presented below in summary form only. For more information please see diagrams.

Table of measurement results:

Dia- gram	Carrier (Channel	Frequency range	Set- up	OP- mode Remark		Use	d detec	ctor	Result
no.	Range	No.		no.	no.		PK	AV	QP	
3.01	Low	0	30 MHz –	1	1	DH5 packet type	×			passed
3.02	Middle	39	1 GHz	1	1	2DH5 packet type	×			passed
3.03	High	78		1	1	3DH5 packet type	×			passed

Remarks: no critical peaks found

5.4. General Limit - Radiated emissions, above 1 GHz

5.4.1. Test location and equipment FAR

		<u> </u>				
test site	□441 EMISAR	□ 348 EMI cond.	¥ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
spectr. analys.	□584 FSU	☐ 120 FSEM	□ 264 FSEK	¥ 489 ESU 40		
antenna meas	□574 BTA-L	□ 289 CBL 6141	図 608 HL 562	■ 549 HL025	□ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112					
signaling	□392 MT8820A	□ 436 CMU	□ 547 CMU	□ 594 CMW		
DCpower	□086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	
line voltage	□ 230 V 50 Hz via	public mains	≥ 060 120 V 60 Hz	via PAS 5000		

5.4.2. Requirements/Limits

FCC		□ Part 15 Subpart B, \$15.109 class B ☑ Part 15 subpart C, \$15.209 @ frequencies defined in \$15.205			
IC	RSS-Gen., Issue 3				
ANSI	☐ C63.4-2009 ☑ C63.10-2009				
Fraguanay		Limits,	3 meters		
Frequency [MHz]	AV [μV/m]	AV [dBμV/m]	Peak [μV/m]	Peak [dBµV/m]	
above 1 GHz	500	54.0	5000	74.0	

5.4.3. Test condition and measurement test set-up

5.4.5. Tes	a condition and measure	ment test se	eւ-up			
Signal ink t	to test system (if used):	□ air link	□ cable connection			
EUT-groun	ding	□ none	☐ with power supply	□ additional connection		
Equipment	set up	table top 1.5	5m height	☐ floor standing		
Climatic co	onditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
Spectrum-	Scan frequency range:	≥ 1 – 18 GHz	□ 18 – 25 GHz □ 18 –	- 40 GHz □ other:		
Analyzer	Scan-Mode	ĭ 6 dB EMI-F	Receiver Mode 3 dB S	pectrum analyser Mode		
settings	Detector	Peak and Aver	age			
	RBW/VBW	1 MHz / 3 MH	Iz			
	Mode:	Repetitive-Sca	ın, max-hold			
	Scan step	400 kHz				
Sweep-Time		Coupled – calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle				
General mea	asurement procedures	Please see cha	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"			

5.4.4. Measurement Results

The results are presented below in summary form only. For more information please see diagrams.

Dia- gram	Carrier (Channel	Frequency range	Set- up	OP- mode	Remark	Use	d detec	etor	Result
no.	Range	No.		no.	no.		PK	AV	QP	
4.01	Low	9				DH1 packet type modulation	×	×		pass
4.02	Middle	39	1 – 18GHz	1	1	tested as worst-case (worst-case harmonics)	×	×		pass
4.03	High	78				(morse case narmomes)	×	×		pass

Remark: frequency range above 18GHz not tested due uncritical results (see conducted results)

5.5. Radiated Band-Edge compliance, field strength measurements accord. §15.205

5.5.1. Test location and equipment FAR

		1				
test site	□441 EMISAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
spectr. analys.	□584 FSU	☐ 120 FSEM	□ 264 FSEK	■ 489 ESU 40		
antenna meas	□574 BTA-L	□ 289 CBL 6141	≥ 608 HL 562	■ 549 HL025	□ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112					
signaling	■371 CBT32	□ 298 CMU 200				
DCpower	□086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	
line voltage	□ 230 V 50 Hz via	public mains	≥ 060 120 V 60 Hz	via PAS 5000		

5.5.2. Requirements/Limits

FCC		□ Part 15 Subpart B, §15.109 class B ☑ Part 15 subpart C, §15.209 @ frequencies defined in §15.205			
IC	RSS-Gen., Issue 3				
ANSI	☐ C63.4-2009 ☑ C63.10-2009				
Eroguanav		Right Band-Edge Limits begin	ning on 2483.5MHz@3 met	ers	
Frequency [MHz]	AV [μV/m]	AV [dBμV/m]	Peak [μV/m]	Peak [dBµV/m]	
above 1 GHz	500	54.0	5000	74.0	

5.5.3. MEASUREMENT METHOD FOR RIGHT BAND-EDGE:

<u>For uncritical results</u> where a measurement bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed only.

<u>For critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands according §15.205. The method is according ANSI 63.10:2009 "Marker-Delta method", §6.9.3. The method consists of three independent steps:

- 1. <u>Step</u>: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. <u>Step</u>: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. <u>Step</u>: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in §15.205 with the general limits of §15.209.

5.5.4. RESULTS – LEFT BAND-EDGE

Set-up: 1				
Op. Mode: 1				
$T_{NOM} = 21^{\circ}C$,	Field strength value	Limit for field strength-	Measured	Verdict
$V_{NOM} = 5V$	at Band-Edge	at the band-edge	Values	
	[dBµV/m]			
C1 1.0	52.0 (PK)	20 ID	45.24 dBc – DH1 packet type	,
Channel 0	50.8 (PK)	> 20dBc	43.14 dBc – 3DH3 packet type	Pass

Remarks: see plots 4.04 – 4.07 enclosed in Annex A4

5.5.5. RESULTS – RIGHT BAND-EDGE

Set-up: 1 Op. Mode: 1				
$T_{NOM} = 21^{\circ}C$	Field strength value at	Limit for field	Remark	Verdict
$V_{NOM} = 5V$	Band-Edge	strength-at the		
	[dBµV/m]	band-edge		
	57.23 (Peak)	74 dBµV/m (Peak)	DH1 – packet type	Pass
Channel 78	45.06 (AV)	$54 \text{ dB}\mu\text{V/m} (AV)$	DIII – packet type	1 488
Chainlei 78	57.2 (Peak)	74 dBµV/m (Peak)	2DU2 pagkat tupa	Pass
	45.5 (AV)	$54 \text{ dB}\mu\text{V/m} (AV)$	3DH3 – packet type	rass

Remarks: see plots in Annex A4

5.5.6. VERDICT: PASS

5.6. RF-Parameter - 20 dB Bandwidth

5.6.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

	☐ 377 ESCS30 ☐ 381 380 FSBS					
	□ 456 EA 3013A		☐ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☑ 498 NGPE 40
1		☑ 613 20dB Att.			☑ Directional Coup	

5.6.2. Requirements:

FCC	⊠ §15.247 (a) (1)
IC	⊠ RSS-210 A 8.1 (b)
Remark	(1) <u>Frequency hopping systems</u> shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.6.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.6.4. Measurement method

The measurement was performed with the RBW set to 10kHz. The span was set to cover the complete carrier. Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A DELTA Marker method was set to measure the bandwidth compared to the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). The hopping-mode is switched off.

Also the **99% emission bandwidth** was measured for maximum of the 20dB bandwidth. Two markers are placed on frequency points such that left to lower f-marker and right to higher f-marker only 1% of the TX-power is contained. Between the markers, 99% of the power is laying.

5.6.5. Spectrum-Analyzer Settings

Span	Set as to fully display the emissions and approximate 20dB below the PEAK level
Resolution Bandwidth (RBW)	Set to approximate 1%3% of the emission width
Video Bandwidth (VBW)	3 times the resolution bandwidth
Sweep time	Coupled and low enough to have no gaps within power envelope
Detector	Sample (if bin width: Span/no. of frequency points SA < 0.5*RBW SA otherwise Peak detector)
Sweep mode	Repetitive Mode, Max hold

5.6.6. Measurement Results 20 dB Bandwidth

DH5 – packet type (modulation)

pachet type (moduli	acion)		
Set-up no.: 3		20 dB Bandwidth	
Op. mode: 1		[kHz]	
$T_{Nom} = 21^{\circ}C$	Low channel = 0	Middle channel =39	High channel = 78
$V_{Nom} = 3.7 \text{ V}$	(2402 MHz)	(2441 MHz)	(2480 MHz)
Maximum Value	927.88	937.49	937.49

Remark: see diagrams in separate document A4

2DH5 – packet type (modulation)

Set-up no.: 3	20 dB Bandwidth				
Op. mode: 1	[kHz]				
$T_{\text{Nom}} = 21^{\circ}\text{C}$	Low channel = 0	Middle channel =39	High channel = 78		
$V_{Nom} = 3.7 \text{ V}$	(2402 MHz)	(2441 MHz)	(2480 MHz)		
Maximum Value	1317.30	1322.11	1322.11		

Remark: see diagrams in separate document A4

3DH3 – packet type (modulation)

Set-up no.: 3		20 dB Bandwidth	
Op. mode: 1		[kHz]	
$T_{\text{Nom}} = 21^{\circ}\text{C}$	Low channel = 0	Middle channel =39	High channel = 78
$V_{Nom} = 3.7 \text{ V}$	(2402 MHz)	(2441 MHz)	(2480 MHz)
Maximum Value	1293.26	1298.07	1293.26

Remark: see diagrams in separate document A4

5.6.7. VERDICT: pass

5.6.8. 99% Bandwidth

The maximum results of 20dBc channels have been re-measured also for 99% bandwidth.

DH5 – packet type (modulation)

Set-up no.:	3	99 % Bandwidth			
Op. mode:	1		[kHz]		
$T_{Nom} =$	21° C	Low channel = 0	Middle channel =39	High channel = 78	
$V_{Nom} =$	3.7 V	(2402 MHz)	(2441 MHz)	(2480 MHz)	
Maximum Value		1.)	1.)	908.65	

Remark: see diagrams in separate document A4

2DH5 packet type (modulation)

-	-Dire paenet	type (modula	·····				
ſ	Set-up no.:	3	99% Bandwidth				
	Op. mode:	1		[kHz]			
	T _{Nom} =	21° C	Low channel = 0	Middle channel =39	High channel = 78		
	$V_{Nom} =$	3.7 V	(2402 MHz)	(2441 MHz)	(2480 MHz)		
	Maximu	ım Value	1.)	1.)	1211.53		

Remark: see diagrams in separate document A4

3DH3 packet type (modulation)

	7 JPC (2220 02 02 22 0					
Set-up no.:	3	99% Bandwidth				
Op. mode:	1		[kHz]			
$T_{Nom} =$	21° C	Low channel = 0	Middle channel =39	High channel = 78		
$V_{Nom} =$	3.7 V	(2402 MHz)	(2441 MHz)	(2480 MHz)		
Maximu	ım Value	1.)	1221.15	1.)		

Remark: 1.) not maximum bandwidth at 20dBc

2.) see diagrams in separate document A4

5.6.9. VERDICT: pass

5.7. RF-Parameter - Channel carrier frequency separation for FHSS-systems

5.7.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esses	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	☐ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	■ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	■ 498 NGPE 40
otherwise	□ 530 10dB Att.	№ 613 20dB Att.		□ cable K4	■ Directional Coup	ler 1539R-10

5.7.2. Requirements:

FCC	⊠ §15.247 (a) (1)
IC	☑ RSS-210 A 8.1 (b)
Remark	(1) FHHS Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.7.3. EUT settings

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.7.4. Measurement method

The measurement to prove this requirement was performed with a low RBW of 100kHz, peak detector and trace Hold-Max function in order to resolve each frequency carrier separately.

The span of the frequency analyzer was set to cover the carrier investigated as well as its neighbour channels. A frequency DELTA Marker method was set to measure the frequency separation between the channels.

5.7.5. Limits

Either: 1. 25 kHz or 20dB BW

or

2. 25kHz and 2/3of BW if Power<125mW

5.7.6. Measurement Results

Set-up no.: Op. mode:	3 2	Channel separation
$T_{NOM} = V_{NOM} =$	21°C 3.7 V	Measured around middle channel (2441 MHz)
Measured Re DH1, 2DH3		>1 MHz
Applicants de	eclared value	1 MHz according BT-core spec.

Remark: see diagrams enclosed in annex A4 for different modulations

5.7.7. Verdict: pass

5.8. RF-Parameter - Requirements on channel use, average channel use, input bandwidth and synchronization between signals for FHSS systems

5.8.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☐ CETECOM Esser	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	☐ 347 Radio.lab.		
receiver	☐ 377 ESCS30	□ 001 ESS	□ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
otherwise	☐ 613 20dB Attenuator			□ cable K4		

For this part of the tests are no instruments required.

5.8.2. Requirements:

FCC	■ §15.247(g)(h)
IC	☑ RSS-210, Issue 8

The various requirements are not checked within this test report. according applicant's declaration, the device is a Bluetooth Vers.3.0 so many of these parameters are checked against Bluetooth Core standard Ed. 3.0. Therefore it is assured the device fulfils the regulatory standard too.

5.9. RF-Parameter - Specification for hopping channel numbers for FHSS systems

5.9.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

						· · /
test location	☑ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	□ 441 EMISAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	≥ 489 ESU			
spectr. analys.	□ 489 ESU	□ 120 FSEM	□ 264 FSEK	□ 489 ESU		
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	■ 498 NGPE 40
otherwise	≥ 613 20dB Attenua	tor		■ Directional Couple	er 1539R-10	

5.9.2. Requirements:

FCC	☑ §15.247 (a) (1) iii
IC	☑ RSS-210 A 8.1 (d)
Remark	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.9.3. Method for measurement of the channel numbers:

The measurement was performed with spectrum analyzer's RBW set to 300kHz. The device was set to work within the defined specification with frequency hopping mode set to on. The spectrum-analyzer was set to MAX-Hold positive peak detector mode. After a trace stabilization period the trace is recorded and the number of channels counted.

5.9.4. Results

Set-up no. 1 Op. Mode 2	Number of channels	
$T_{\text{NOM}} = 21^{\circ}\text{C}$ $V_{\text{NOM}} = 3.7 \text{ V}$	79	

Remark: see diagrams enclosed in the separate annex A4, for better accuracy reading the sweep was splitted in two separated sweeps.

5.9.5. Verdict: pass

5.10. RF-Parameter - Time of occupancy for FHSS systems

5.10.1.Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	■ CETECOM Esse	n (Chapter. 2.2.1)	☐ Please see Chapte	er. 2.2.2	☐ Please see Chap	oter. 2.2.3
test site	☐ 441 EMISAR	☐ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	¥ 489 ESU			
spectr. analys.	□ 381 380 FSBS	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	■ 498 NGPE 40
otherwise	□ 530 10dB Att.	№ 613 20dB Att.		☐ cable K4	☑ Directional Cou	pler 1539R-10

5.10.2. Requirements:

FCC	⊠ §15.247 (a) (1) iii
IC	☑ RSS-210 A 8.1 (d)
Remark	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

5.10.3. Method for measuring the occupancy time:

The measurement was performed with a spectrum analyzer set to ZERO span. The device was set to work within the defined specification with frequency hopping mode to on. The spectrum-analyzer was set the MAX-Hold positive peak detector mode. The sweep time set as long as necessary to capture the full signal burst per hopping channel. The burst on-period is captured by setting appropriate markers in the rising and falling edges.

5.10.4. Calculations:

г	1	C	1 . 1		41	1 11	4 *	/ · · · · · 1 ·	. 1		1	1 . 1 1 .	s assumed):	
н.	ormilia	TOr	าดเกมเ	วบากก	tne (1137/211	TIMA	Incellar	า_ท∩ททาท	a seamence	OVERSI	Lenanneig	acciimea i	۰

Average Dwell-Time:
$$Timeslot\ length \cdot \frac{Hop\ rate}{number\ of\ hopping\ channels} \cdot time\ period$$

For Bluetooth® following is valid:

The maximum dwell-time of 0.4 seconds within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type. For longer packet types the hopping data rate is reduced according the packet type length in order to comply with this requirement.

Calculated according mentioned-above formula:							
Packet types	Hop rate[1/s]	Channels	Hop rate/channels	Time period	Transmissions		
DH1/2DH1/3DH1	1600		20.25		640		
DH3/2DH3/3DH3	533,33	79	6.75	31.6	214		
DH5/2DH5/3DH5	320		4.05		128		

Measured pulse width for different packet types/modulations (see annex A4 for diagrams):							
Packet types Dwell time per Hop Transmissions Average Dwell time [ms] Verdict							
DH1/2DH1/3DH1	388.62 μs	640	248.7168	Pass			
DH3/2DH3/3DH3	1.6474 ms	214	352.5436	Pass			
DH5/2DH5/3DH5	2.8966 ms	128	370.7648	Pass			

5.10.5. Verdict: pass

5.11. RF-Parameter – RF Power conducted

5.11.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Esse	n (Chapter 2.2.1)	¥ 443 System CTC-F	AD EMI	☐ Please see Chapt	or 222
test location	E CETECOM Esse	ii (Ciiaptei. 2.2.1)	₩ 443 System CTC-17	AK-LIVII-	i Flease see Chapt	E1. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	489 ESU			
spectr. analys.	□ 489 ESU	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	■ 613 20dB Attenu	ator		■ Directional Couple	er 1539R-10	

5.11.2. Requirements:

FCC	☑ §15.247 (b) (1) for FHSS □ §15.247 (b) (3) for DSSS
IC	■ RSS-210 A 8.4
ANSI	☑ C63.10-2009 (chapt 6.101) (☐ C63.10-2009 (chapt 6.102) (

5.11.3. Reference: EUT antenna characteristics:

☑ Directional Gain < 6 dBi (measured: difference between measured conducted and radiated eirp. power)

☐ Directional Gain > 6 dBi (measured / applicant's declaration) -> conducted power level reduction necessary

5.11.4. EUT settings:

For FHHS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.11.5. Measurement method:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel. The power was also checked for different data rates, modulation scheme or packet types if applicable.

Set of RBW

RBW > 20 dB bandwith of the emission (for FHSS)

5.11.6. Settings on Spectrum-Analyzer:

Center Frequency	Nominal channel frequency
Span	7.5 MHz
Resolution Bandwidth (RBW)	3 MHz > 20dB-Bandwidth of the signal
Video Bandwidth (VBW)	3 times the resolution bandwidth = 10MHz
Sweep time	coupled
Detector	Peak, Max hold mode
Sweep Mode	Repetitive mode

5.11.7. Conducted measurement: Max. Peak Power

Maximum declared antenna gain [isotropical]: -2.1 dBi

MAX PEAK POWER (conducted)						
Set-up no.: 3 Op-Mode: 1	Low channel = 0 (2402 MHz)	Middle channel = 39 (2441 MHz)	High channel = 78 (2480 MHz)			
Measured Peak power [dBm]	7.74 (DH1) 8.07 (DH1) (6.42 mW)		7.84 (DH1)			
Limit	0.125 Watt (21dBm)					

Remark: here only the maximum power value is reported, see separate separate annex 4 for full results

5.11.8. Verdict: pass

5.12. RF-Parameter - 20 dBc power specification

5.12.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esser	(Chapter. 2.2.1)	¥ 443 System CTC-FA	AR-EMI-	□ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	■ 489 ESU			
spectr. analys.	□ 489 ESU	□ 120 FSEM	□ 264 FSEK			
power supply	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	☑ 613 20 dB Attenuator			■ Directional Couple	er 1539R-10	·

5.12.2. Reference: §15.247, §15.205, RSS-210: A8.5

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

5.12.3. EUT settings:

For FHHS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

5.12.4. Measurement method:

The frequency spectrum was investigated for **conducted** spurious emissions values lower than 20dB related to the RF-carrier power value. Three carrier frequencies (low/middle/high channel) were used for showing the compliance with this requirement. The frequency scan was up to 10 times the highest channel frequency within the operational mode. The spectrum-analyzer was set to MAX-PEAK Detector, MAX-Hold Mode.

For FHSS-systems hopping mode was switched-off so fixed three different channels could be measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions.

5.12.5. Results:

5.12.5.1. DH1-packet type

5.12.5.1. DH1-pack	12.5.1. DH1-packet type						
Set-up no.: 3		PF-Cor	nducted test: 20 dBc spurious emissions				
Op-Mode: 1		KI-Cui	ducted test. 20 dDc spurious emissions				
	Low chann		Middle cha	nnel = 39	High char	nnel = 78	
	(2402 M	Hz)	(2441)	MHz)	(2480)	MHz)	
Fraguanay	Level Refe	erence	Level Re	eference	Level Re	eference	
Frequency Range	(In-Band)=7	.41 dBm	(In-Band) =	7.74 dBm	(In-Band)=	7.53 dBm	
Kange	Limit= -12.59 dBm		Limit= -12.26 dBm		Limit= -12.47 dBm		
	Frequency	Value	Frequency	Value	Frequency	Value	
	[MHz]	[dBc]	[MHz]	[dBc]	[MHz]	[dBc]	
30 to 1000 MHz		> 60.0		> 60.0		> 60.0	
1.0 to 2.8 GHz		> 63.08		> 63.08		> 62.66	
2.8 to 18 GHz	7211.53	> 52.84	7318.2	> 52.15	7425.0	> 52.13	
18 to 25 GHz		> 32.64		> 32.13		> 32.13	
Band-Edge		52.55				52.47	
(no hopping)	(no hopping) 52.55		-		32.47		
Band-Edge		47.11				57.66	
(Hopping mode)		4/.11	- -	-		57.66	

Remark: see diagrams in separate Annex 4

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.12.5.2. 2DH5-Packet type

Set-up no.: 3 Op-Mode: 1		RF-Conducted test: 20 dBc spurious emissions				
	Low chann		Middle cha		High char	
	(2402 M	Hz)	(2441 N	MHz)	(2480	MHz)
Frequency	Level Refe	erence	Level Re	ference	Level Re	eference
	(In-Band)=3	.63 dBm	(In-Band) =	4.01 dBm	(In-Band)=	3.44 dBm
Range	Limit= -16.37 dBm		Limit= -15.99 dBm		Limit= -16.56 dBm	
	Frequency	Value	Frequency	Value	Frequency	Value
	[MHz]	[dBc]	[MHz]	[dBc]	[MHz]	[dBc]
30 to 1000 MHz		> 50.0		> 50.0		> 50.0
1 to 2.8 GHz	==	> 50.0		> 50.0		> 50.0
2.8 to.18 GHz	7211.5384	> 50.0	7318.26	> 50.0	7425.0	> 50.0
18 to 25GHz		> 30.0		> 50.0		> 30.0
Band-Edge		51.25				52.48
(no hopping)		31.23				32.46
Band-Edge		47.14				54.11
(Hopping mode)		.,,1				J 4 .11

Remark: see diagrams in separate Annex 4

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.12.5.3. 3DH3-packet type

Set-up no.: 3 Op-Mode: 1		RF-Conducted test: 20 dBc spurious emissions					
	Low channel =0 (2402 MHz)		Middle channel = 39 (2441 MHz)		High channel = 78 (2480 MHz)		
F	Level Ref		Level Re		Level Re	· · · · · · · · · · · · · · · · · · ·	
Frequency Range	(In-Band) = 3.69 dBm Limit= -16.31 dBm		(In-Band) = 3.99 dBm Limit = -16.01 dBm		(In-Band) = 3.42 dBm Limit= -16.58 dBm		
	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]	Frequency [MHz]	Value [dBc]	
30 to 1000 MHz		> 50.0		> 50.0		> 50.0	
1 to 2.8 GHz		> 50.0		> 50.0		> 50.0	
2.8 to 18 GHz	7211.53	> 50.0	24857.6	> 50.0	5183.6	> 50.0	
18 to 25 GHz		> 30.0		> 30.0		> 50.0	
Band-Edge (no hopping)		50.81				52.75	
Band-Edge (Hopping mode)		47.04		-		52.10	

Remark: see diagrams in separate annex 4

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.12.6. Verdict: pass

5.13. RF-Parameter - Radiated measurement max. E.I.R.P. power

5.13.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

		1 \		1		
test site	☐ 441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
Spectr. analys.	■ 489 ESU	□ 120 FSEM	■ 264 FSEK	□ 620 ESU 26		
antenna meas	■ 549 HL025	□ 289 CBL 6141	□ 439 HL 562	☐ 133 EMCO3115	□ 302 BBHA9170	□ 477 GPS
DC power	□ 086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	

5.13.2. Requirements and Limit

FCC	■ §15.247(b)(4)
IC	☑ RSS-210, Issue 8
ANSI	☑ C63.10-2009 (6.3.1)
Limit	1 Watt (30 dBm) Peak

5.13.3. EUT Settings:

For DSSS-systems were three different channels measured. The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.13.4. Measurement method:

The method is according ANSI/TIA/EIA-603-C-2004 and consist of two steps.

First step: The maximum power was recorded by turning the EUT continuously 360 degree steps, the EUT in horizontal (laying) and vertical (standing) position. Measurements have been performed with the measurement antenna set to horizontal and vertical polarisation. The spectrum-analyzer was set to MAX-PEAK Detector, MAX-Hold Mode. The RBW used was bigger or equal than e.g. 6, 20 or 26 -dB bandwidth of the EUT and set to 3 MHz. VBW set to 10 MHz with coupled sweep time. The maximum trace peak value was recorded.

Second step: A horn antenna was set instead of the EUT and connected to the signal generator. The level was adjusted such as the same level as in step 1 could be reached. The conducted power delivered to the antenna was measured and the value corrected with the known antenna eirp gain.

5.13.5. Measurement and calculation of the maximum field strength at a distance of 3m

Sat un no : 1		Low channel	Middle channel	High channel
Set-up no.: 1 Op. Mode: 1		= 0	= 39	= 78
Op. Wode. 1		2402 MHz	2441 MHz	2480 MHz
Actual declared gain of antenna by applicant]	[dBi]	Max2.1 dBi		
Maximum e.i.r.p.	[dBm]	5.75	8.43	4.29
Max. conducted power	[dBm]	7.74	8.07	7.84
Resulting gain	[dBi]	-1.99	0.36	-3.55

Remark: determined on DH1 packet type

5.13.6. Verdict:

Maximum power value	8.43 dBm	Pass
Max. Antenna gain	< 6 dBi	Pass

5.14. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Frequency range	Calculated uncertainty based on a confidence level of 95%	Remarks:
Power Output conducted 9 kHz 20 GHz		1.0 dB	
Power Output radiated	30 MHz 4 GHz	3.17 dB	Substitution method
Conducted emissions on antenna ports	9 kHz 20 GHz	1.0 dB	
	150 kHz 30 MHz	5.0 dB	Magnetic field
Radiated emissions enclosure	30 MHz 1 GHz	4.2 dB	E-Field
	1 GHz 20 GHz	3.17 dB	Substitution method
Occupied bandwidth	9 kHz 4 GHz	0.1272 ppm (Delta Marker)	Frequency error
Occupied bandwidth		1.0 dB	Power
Emission bandwidth	9 kHz 4 GHz	0.1272 ppm (Delta Marker)	Frequency error
Emission bandwidth		1.0 dB	Power
Frequency stability	9 kHz 20 GHz	0.0636 ppm	
Conducted emissions	9 kHz 150 kHz	4.0 dB	
on AC-mains port (U _{CISPR})	150 kHz 30 MHz	3.6 dB	

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	S
ANSI	American National Standards Institute
AV , AVG, CAV	Average detector
EIRP	Equivalent isotropically radiated power, determined within a separate measurement
EGPRS	Enhanced General Packet Radio Service
EUT	Equipment Under Test
FCC	Federal Communications Commission, USA
IC	Industry Canada
n.a.	not applicable
Op-Mode	Operating mode of the equipment
PK	Peak
RBW	resolution bandwidth
RF	Radio frequency
RSS	Radio Standards Specification, Dokuments from Industry Canada
Rx	Receiver
TCH	Traffic channel
Tx	Transmitter
QP	Quasi peak detector
VBW	Video bandwidth
ERP	Effective radiated power

7. Accreditation details of CETECOM's laboratories and test sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH, Essen	DAkkS, Deutsche Akkreditierungsstelle GmbH
337 487 558 348 348	736496	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA (MRA US-EU 0003)
337 487 550 558	3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	IC, Industry Canada Certification and Engineering Bureau
487 550 348 348	R-2666 G-301 C-2914 T-1967	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem. est Site, SAR = Semi Anechoic Room, FAR = Fully Anechoic Room	VCCI, Voluntary Control Council for Interference by Information Technology Equipment, Japan

8. Instruments and Ancillary

8.1. Used equipment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.1.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001		ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	Č ,	SMY 01	839069/027	Firm.= V 2.02
	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053		UPA3	860612/022	Firm. V 4.3
119	, ,	B10	G60547	Firm.= V 3.1DHG
140		SMHU	831314/006	Firm.= 3.21
261		NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262		NRV-S	825770/0010	Firm.= 2.6
263	č	SMP 04	826190/0007	Firm.=3.21
264	Spectrum Analyzer	FSEK 30	826939/005	Bios=2.1, Analyzer= 3.20
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298		CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	ŭ	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
331		HC 4055	43146	TSI 1.53
335		System EMS Conducted	- 0.40500.005	EMC 32 V 8.52
340	č	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355		URV 5	891310/027	Firm.= 1.31
365		URV5-Z2	100880	Eprom Data = 31.03.08
366	1	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371		CBT32	100153	CBT V5,30+ SW-Option K55, K57
377		ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378		RadiSense III	03D00013SNO-08	Firm.= V.03D13
383	č	SME 03	842 828 /034	Firm.= 4.61
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 8.53
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 8.40
460	Univ. Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526		EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
50.4	G . A 1	FSU 8	100248	2.82_SP3
584			_	
594	Wideband Radio Communication Tester	CMW 500	101757	Firmware Base=2.0.20.9, LTE=2.0.20.8. CDMA= 2.0.10
			101757	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
594	Wideband Radio Communication Tester	CMW 500		R&S Test Firmware Base=5.01, GSM=5.02 WCDMA=
594 597	Wideband Radio Communication Tester Univ. Radio Communication Tester	CMW 500 CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
594 597 598	Wideband Radio Communication Tester Univ. Radio Communication Tester Spectrum Analyzer	CMW 500 CMU 200 FSEM 30 (Reserve)	100347 831259/013	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850 Firmware Bios 3.40 , Analyzer 3.40 Sp 2

8.1.2. Single instruments and test systems

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	31.03.2014
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	24/12 M	-	31.03.2014
007	Single-Line V-Network (50 Ohm/5μH)	ESH3-Z6	892563/002	Rohde & Schwarz	24/12 M	-	31.03.2014
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	31.03.2015
016	Line Impedance Simulating Network Horn Antenna 18 GHz (Subst 1)	Op. 24-D 3115	B6366 9107-3699	Spitzenberger+Spies EMCO	36 M 36/12 M	-	31.03.2016 31.03.2014
020	Loop Antenna (H-Field)	6502	9206-2770	EMCO	36 M	-	31.03.2014
030	Loop Antenna (H-field)	HFH-Z2	879604/026	Rohde & Schwarz	36 M	-	31.03.2015
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	31.03.2015
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre-m	1a	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
066	notch filter (WCDMA; FDD1)	WRCT 1900/2200-5/40- 10EEK	5	Wainwright GmbH	12 M	1g	30.06.2014
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre-m	2	
090	Helmholtz coil: 2x10 coils in series	-	-	RWTÜV	-	4	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	31.03.2015
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	31.03.2015
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	-	31.03.2016
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	pre-m	-	
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	36 M	-	31.03.2015
140	Signal Generator	SMHU	831314/006	Rohde & Schwarz	24 M	-	31.03.2014
248	attenuator	SMA 6dB 2W	-	Radiall	pre-m	2	
249	attenuator	SMA 10dB 10W	-	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid	4031C	04491	Narda	pre-m	2	
260	hybrid coupler	4032C	11342	Narda	pre-m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	31.03.2014
262	Power Meter	NRV-S	825770/0010	Rohde & Schwarz	24 M	-	31.03.2014
263	Signal Generator	SMP 04	826190/0007	Rohde & Schwarz	36 M	-	31.03.2016
264	Spectrum Analyzer	FSEK 30	826939/005	Rohde & Schwarz	12 M	-	31.03.2014
265	peak power sensor peak power sensor	NRV-Z33, Model 04 NRV-Z31, Model 04	840414/009 843383/016	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	31.03.2014 31.03.2014
267	notch filter GSM 850	WRCA 800/960-6EEK	9	Wainwright GmbH	pre-m	2	31.03.2014
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273	attenuator (20 dB) 30 W	Model 48	BF9229	Weinschel	•	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m	2	
-		· ·			pre-m	2	
275	DC-Block DC-Block	Model 7003 (N) Model 7006 (SMA)	C5129 C7061	Weinschel Weinschel	pre-m	2	
276		, , ,			pre-m		
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	20.05.2014
287	pre-amplifier 25MHz - 4GHz high pass filter GSM 850/900	AMF-2D-100M4G-35-10P WHJ 2200-4EE	379418 14	Miteq Wainwright GmbH	12 M 12 M	1c	30.06.2014 30.06.2014
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre-m	3	50.00.2014
300	AC LISN (50 Ohm/50µH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	24/12 M	-	31.03.2014
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-m	2	51.05.2017
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	31.03.2014
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	31.03.2014
331	Climatic Test Chamber -40/+80 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.11.2014
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	31.03.2014
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	31.03.2015
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	440	D-1-1- 0 C-1	-		
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre-m	2	21.02.201.1
355	Power Meter	URV 5	891310/027	Rohde & Schwarz	24 M	-	31.03.2014
356 357	power sensor power sensor	NRV-Z1 NRV-Z1	882322/014 861761/002	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	31.03.2015 31.03.2015
371	Bluetooth Tester	CBT32	100153	R&S	24 M	_	31.03.2013
373	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	100535	Rohde & Schwarz	24/12 M	_	31.03.2014
376	Horn Antenna 6 GHz	BBHA9120 E	BBHA 9120 E 179	Schwarzbeck	12 M	-	31.03.2014
377	EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	31.03.2014
389	Digital Multimeter	Keithley 2000	0583926	Keithley	24 M	-	31.03.2015
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	31.03.2014
431	Model 7405	Near-Field Probe Set	9305-2457	EMCO	-	4	
436	Univ. Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	31.03.2014
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR) Cable	-	CETECOM	12 M	5	31.10.2013
			1	l .			<u> </u>

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	ETS-Lindgren / CETECOM	12 M	5	15.07.2014
448	notch filter WCDMA_FDD II	WRCT 1850.0/2170.0- 5/40-	5	Wainwright Instruments GmbH	12 M	1c	30.06.2013
449	notch filter WCDMA FDD V	WRCT 824.0/894.0-5/40- 8SSK	1	Wainwright	12 M	1c	30.06.2014
454	Oscilloscope	HM 205-3	9210 P 29661	Hameg	-	4	
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	pre-m	2	
459	DC -Power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre-m	2	
460	Univ. Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	31.03.2014
463	Universal source	HP3245A	2831A03472	Agilent	-	4	L
466	Digital Multimeter	Fluke 112	89210157	Fluke USA	24 M	-	31.03.2014
467 468	Digital Multimeter Digital Multimeter	Fluke 112 Fluke 112	89680306 90090455	Fluke USA Fluke USA	24 M 24 M	-	31.03.2014 31.03.2014
477	ReRadiating GPS-System	AS-47	90090433	Automotive Cons. Fink	24 IVI	3	31.03.2014
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	31.03.2015
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	24 IVI	1d	31.03.2013
		AMF-5D-02501800-25-	_	, ,	_	Tu	
484	pre-amplifier 2,5 - 18 GHz	10P System EMI field (SAR)	1244554	Miteq ETS Lindgren /	12 M	-	30.06.2013
487	System CTC NSA-Verification SAR-EMI	NSA	-	CETECOM	24 M	-	30.06.2015
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	31.03.2014
502	band reject filter	WRCG 1709/1786-	SN 9	Wainwright	pre-m	2	
		1699/1796-			_		1
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	1
512	notch filter GSM 850	WRCA 800/960-02/40- 6EEK	SN 24	Wainwrght	12 M	1c	30.06.2014
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	31.03.2015
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	31.03.2014
547	Univ. Radio Communication Tester	CMU 200	835390/014	Rohde & Schwarz	12 M	1	31.03.2014
548	Digital-Barometer	GBP 2300	without	Greisinger GmbH	36 M	-	30.06.2015
549	Log.Per-Antenna	HL025	1000060	Rohde & Schwarz	36/12 M	-	31.03.2015
552	high pass filter 2,8-18GHz	WHKX 2.8/18G-10SS	4	Wainwright	12 M	1c	30.06.2013
558	System CTC FAR S-VSWR	System CTC FAR S- VSWR	-	CTC	24 M	-	31.07.2013
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2016
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	24 M	-	31.03.2014
594	Wideband Radio Communication Tester	CMW 500	101757	Rohde & Schwarz	24 M	1	31.03.2014
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	12 M	-	31.03.2014
598	Spectrum Analyzer	FSEM 30 (Reserve)	831259/013	Rohde & Schwarz	24 M	-	13.01.2015
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	31.03.2015
601	medium-sensitivity diode sensor peak power sensor	NRV-Z5 (Reserve) NRV-Z32 (Reserve)	8435323/003 835080	Rohde & Schwarz Rohde & Schwarz	24 M 24 M	-	31.03.2015 31.03.2015
	UltraLog-Antenna	HL 562	830547/009	Rohde & Schwarz	36/12 M	-	31.03.2014
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	51.05.201
612	DC power supply	E3632A	MY 40001321	Agilent	pre-m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre-m	2	
616	Digitalmultimeter	Fluke 177	88900339	Fluke	24 M	-	31.03.2014
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA	-	2	
619	Power Splitter/Combiner	50PD-634	600995	JFW Industries, USA	-	3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	_	01.03.2014
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.4	G. Lufft GmbH	24 M	-	30.05.2014
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
636	Thermal Imaging camera	Ti32	Ti32-12060213	Fluke Corporation	24 M		31.07.2014
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet	-	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	<u> </u>
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	24 M	-	31.03.2014
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	12 M		31.03.2014
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre-m	2	
					j .		,

8.1.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
36 M 36 month		36 month
24/12 M Calibration every 24 months, between this every 12 months internal validation		Calibration every 24 months, between this every 12 months internal validation
	36/12 M Calibration every 36 months, between this every 12 months internal validation	
	Pre-m	Check before starting the measurement
- Without calibration		Without calibration