Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sony Mobile CN (Vitec) Certificate No: D750V3-1055_Jul15 # **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1055 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|--|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01- A pr-15 (No . 217-021 3 1) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN. 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601 Aug14) | Aug-15 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | Mam e | function | Signature | | Costorated by: | Michael Weber | Laboratory Technician | 11/1655 | | Ā ρ μο νe rl by | Katja Pokovic | Technical Manager | A. C. M. C. | | 4 | | | | . issu**ec**: July 23, 2015 This calibration certificate shall not be reproduced except to full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio syizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | AST System comigation, as at as not great expage a | | | |--|------------------------|--| | DASY Version | DASY5 | V52.8.8 | | Extrapolation | Advanced Extrapolation | hiddelland of the second th | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | The following parameters and salounations were appro- | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|---------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0. 89 m ho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.5 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.11 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.33 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|---------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0. 96 mh o/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.1 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|---|------------------------------------|--------------------------| | | SAR measured | 250 mW input pow e r | 2.16 W/kg | | 1 | SAR for nominal Body TSL parameters | norm a liz e d to 1W | 8.49 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 1.42
W/kg | | SAR for nominal Body TSL parameters | norm alize d to 1W | 5.60 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | | Impedance, transformed to feed point | 54.2 (2 - 2.0 <u>)</u> £2 | |---|--------------------------------------|---------------------------| | 1 | | | | | Return Loss | - 26.9 dB | | | | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.6 Ω - 2.8 jΩ | |--------------------------------------|-------------------------------| | Return Loss | - 31.1 dB | # **General Antenna Parameters and Design** | | Electrical Delay (one direction) | 1.033 ns | |-----|----------------------------------|----------| | - 1 | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 08, 2011 | # **DASY5 Validation Report for Head TSL** Date: 14.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1055 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\epsilon_r = 42.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Scrial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.20 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.03 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.34 W/kg Maximum value of SAR (measured) = 2.38 W/kg 0 dB = 2.38 W/kg = 3.77 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1055 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.98 \text{ S/m}$; $\varepsilon_t = 55.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.48 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.52 W/kg 0 dB = 2.52 W/kg = 4.01 dBW/kg # Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura C, Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sony Mobile CN (Vitec) Citent Certificate No: D835V2-4d060_Jul15 # CALIBRATION CERTIFICATE D835V2 - SN: 4d060 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 23, 2015 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (Si). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | |------------------------------|--------------------|-----------------------------------|---| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES30V3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | S N. 601 | 18-Aug-14 (No. DAE4-601, Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In hous e c heck : Oct-15 | | | Nam e | Fuscijos | Signatur e | | Calibrat ec by: | Michael Weber | Laboratory Technicias | 1.1625 | | A ppew e d by: | Katja Pokovic | Technical Manager | Jak Chilips | | | | | issued: Jay 23, 2615 | This calibration certificate shall not be reproduced except in bill without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kalibrierdlenst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | Mot system configuration, as far as the | 37 VIII 37 1 37 1 37 1 37 1 37 1 37 1 37 1 3 | | |---|--|-------------| | DASY Version | DASY5 | V52.8.8 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | The following parameters and editional more appro- | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|---------------------| | Nominal
Head TSL parameters | 22.0 °C | 41.5 | 0. 90 m ho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 444 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | nor malize d to 1W | 9.09 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 1. 49 W/kg | | SAR for nominal Head TSL parameters | no rmalize d to 1W | 5.90 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|---------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0. 97 mh o/m | | Measured Body TSL parameters | (22.0 ± 0.2) "C | 54.9 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | Ad 40 1A 100 | 1 A 11 A | # SAR result with Body TSL Certificate No: D835V2-4d060_Jul 15 | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 2.36 W/kg | | SAR for nominal Body TSL parameters | norm alize d to 1W | 9.22 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|-----------------------------|--------------------------| | SAR measured | 250 mW input pow e r | 1. 54 W/kg | | SAR for nominal Body TSL parameters | norm a lized to 1W | 6.04 W/kg ± 16.5 % (k≈2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7 Ω - 3. 6 <u>j</u> Ω | |--------------------------------------|--| | Return Loss | - 28.9 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.4 Ω - 5.5 <u>j</u> Ω | |--------------------------------------|-------------------------| | Return Loss | - 23.3 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.392 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 27, 2006 | ## **DASY5 Validation Report for Head TSL** Date: 22.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d060 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.04 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.44 W/kg SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.49 W/kg Maximum value of SAR (measured) = 2.70 W/kg 0 dB = 2.70 W/kg = 4.31 dBW/kg # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 23.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d060 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1 \text{ S/m}$; $\varepsilon_r = 54.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.37 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.77 W/kg 0 dB = 2.77 W/kg = 4.42 dBW/kg # Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Sony Mobile CN (Vitec) Client Certificate No: D900V2-1d065_Jul15 # CALIBRATION CERTIFICATE D900V2 - SN: 1d065 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 23, 2015 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cat Date (Certificate No.) | Scheduled Calibration | |-----------------------------|-----------------------------------|-----------------------------------|---------------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | S N: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | U S 37390585 S 4206 | 18-Oct-01 (in house check Oct-14) | In hou se check: Oct-15 | | | Name | Function | Signature | | Catibr atec i by: | Michael Weber | Laboratory Technician | M. MeSer | | Approved by: | Katja Pokovic | Technical Manager | | | | | | issu e rh July 23 (2015) | This calibration pertificate shall not be reproduced except in full without written approval of the laboratory # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is
mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASYS | V52.8.8 | |------------------------------|------------------------|----------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Sp ace r | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | tre tollowing parameters and calculations were appli | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.95 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | L 2 7 4 | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 2.61 W/kg | | SAR for nominal Head TSL parameters | no rmalize d to 1W | 10.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.86 W/kg ± 16.5 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | The following parameters and selections were appro- | Temperature | Permittivity | Conductivity | |---|-----------------|---------------|--------------------| | Nominal Body TSL parameters | 22.0 °C | 55.0 | 1.05 mho/ m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.8 ± 6 % | 1.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 50 der 64 10. | ·· · | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 10.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------------|--------------------------| | SAR measured | 250 mW input power | 1.71 W/kg | | SAR for nominal Body TSL parameters | norm alized to 1W | 6.91 W/kg ± 16.5 % (k=2) | Certificate No: D900V2-1d065 Jul15 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω - 1.2 <u>j</u> Ω | |--------------------------------------|-------------------------| | Return Loss | - 35.1 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.4 Ω - 2.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.0 dB | ## **General Antenna Parameters and Design** | The state of s | | |--|----------| | Electrical Delay (one direction) | 1.410 ns | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 08, 2007 | #### **DASY5 Validation Report for Head TSL** Date: 14.07.2015 Test Laboratory: SPEAG, Zurich. Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d065 Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ S/m}$; $\varepsilon_i = 42.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.76 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.91 W/kg SAR(1 g) = 2.61 W/kg; SAR(10 g) = 1.69 W/kg Maximum value of SAR (measured) = 3.07 W/kg 0 dB = 3.07 W/kg = 4.87 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 23.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d065 Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 1.03 \text{ S/m}$; $\varepsilon_r = 54.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.95, 5.95, 5.95); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.66 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.88 W/kg SAR(1 g) = 2.63 W/kg; SAR(10 g) = 1.71 W/kg Maximum value of SAR (measured) = 3.08 W/kg 0 dB = 3.08 W/kg = 4.89 dBW/kg # Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral
Agreement for the recognition of calibration certificates Ctient Sony Mobile CN (Vitec) Certificate No: D1800V2-2d159_Jul15 # CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d159 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 16, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|------------------------------------|---| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 21 7-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601, Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In hou se ch eck : Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Calibrated by: Israe Elnaouq Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued Tuly 16, 2015. This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura C Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52. 8.8 | |------------------------------|------------------------|----------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Sp ace r | | Zoom Scan Resolution | dx, dy , $dz = 5$ mm | | | Frequency | 1800 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | The second secon | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.6 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 38.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.0 ± 6 % | 1,52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 11 To 10 | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|---------------------------|--------------------------| | SAR measured | 250 mW input power | 9.39 W/kg | | SAR for nominal Body TSL parameters | norm alize d to 1W | 37.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|-----------------------------|--------------------------| | SAR measured | 250 mW input pow e r | 4.97 W/k g | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8 Ω - 2.8 JΩ | |--------------------------------------|-----------------| | Return Loss | - 30.3 dB | | I . | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.6 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.213 ns
| |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 30, 2007 | #### **DASY5 Validation Report for Head TSL** Date: 16.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d159 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.42 \text{ S/m}$; $\varepsilon_r = 38.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.71 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 9.84 W/kg; SAR(10 g) = 5.19 W/kg Maximum value of SAR (measured) = 12.5 W/kg 0 dB = 12.5 W/kg = 10.97 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 16.07.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d159 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.52 \text{ S/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) # DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.77, 4.77, 4.77); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.23 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 9.39 W/kg; SAR(10 g) = 4.97 W/kg Maximum value of SAR (measured) = 11.9 W/kg 0 dB = 11.9 W/kg = 10.76 dBW/kg # Impedance Measurement Plot for Body TSL