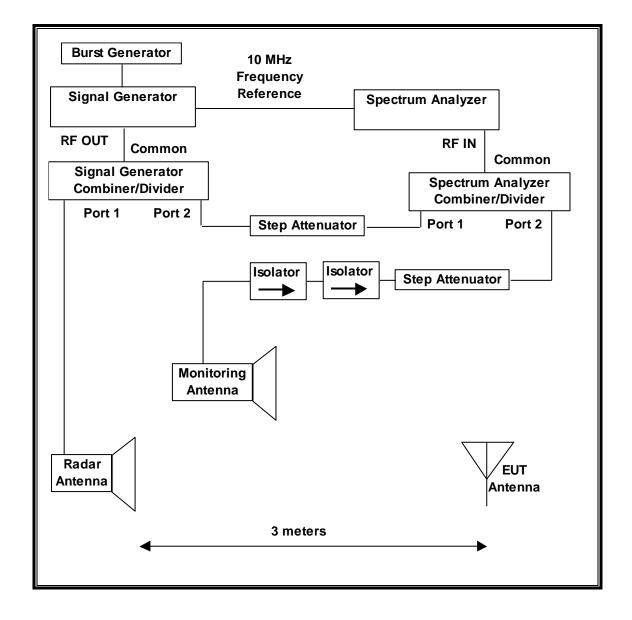
Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum
Туре	Width	(usec)		Percentage	Trials
	(usec)			of Successful	
				Detection	
0	1	1428	18	See Note 1	See Note
	4	T (A 45)		000/	1
1	1	Test A: 15 unique		60%	30
		PRI values randomly			
		selected from the list	Roundup:		
		of 23 PRI values in	{(1/360) x (19 x 10 ⁶ PRI _{usec})}		
		table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		usec. With a			
		minimum increment			
		of 1 usec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T		80%	120
			ld be used for the Detection Bai	ndwidth test, Ch	annel
Move 7	ime, and	Channel Closing Time to	ests.		

Table 6 – Long Pulse Radar Test Signal

Radar Waveform Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	Detection 80%	30


Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length	Minimum Percentage of Successful	Minimum Trials
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

Page 264 of 297

14.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 265 of 297

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

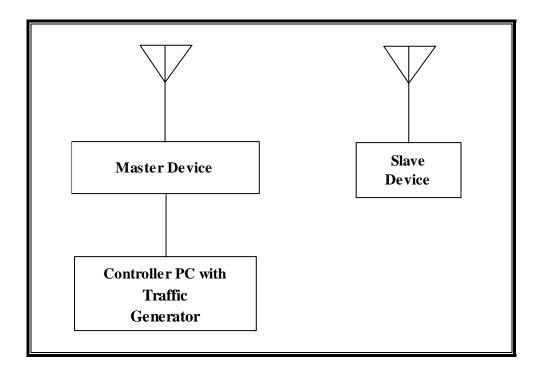
The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 266 of 297

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset Number	Cal Due
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/05/15
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/03/15

Page 267 of 297

14.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	FCC ID
802.11ac Dual Band	Cisco	AIR-CAP3702E-A-	FTX181570A6	LDK102087
Wireless Access Point		K9		
(Master Device)				
P.O.E. Injector (Master)	Phihong	POE30U-560(G)	PHI170102N2	DoC
Notebook PC (Controller)	Lenovo	Type 4236-B92	PB-HEX04 12/05	DoC
AC Adapter (Controller PC)	Lenovo	42T4418	11S42T4418Z1ZG WG08R90M	DoC

Page 268 of 297

14.1.4. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 11.74 dBm EIRP in the 5250-5350 MHz band and 12.27 dBm EIRP in the 5470-5725 MHz band.

The highest gain antenna assembly utilized with the EUT has a gain of -2.7 dBi in the 5250-5350 MHz band and -2.8 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of -2.7 dBi in the 5250-5350 MHz band and -2.8 dBi in the 5470-5725 MHz band.

Two identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the controller/server PC to the EUT using iPerf version 2.0.5 software package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11ac architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz and 80 MHz.

The software installed in the access point is AP3G2-K9W7-M version 15.2(4)JB4.

UNIFORM CHANNEL SPREADING

This is requirement not applicable to Slave Devices.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

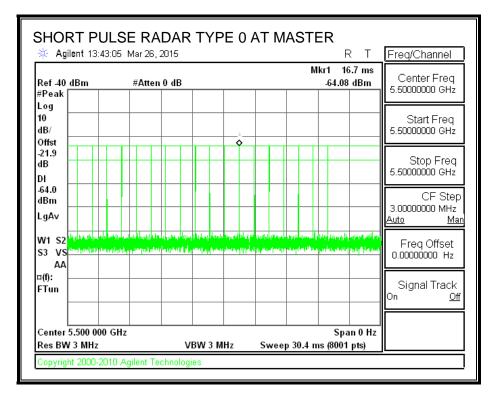
Page 269 of 297

The Master Device is a Cisco Access Point, FCC ID: LDK102087. The minimum antenna gain for the Master Device is 6 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

Page 270 of 297

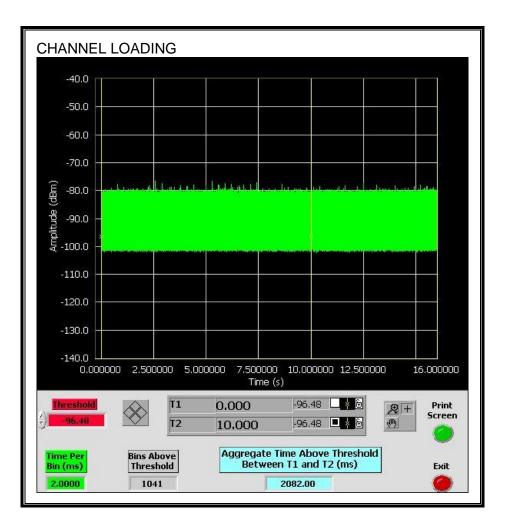

14.2. RESULTS FOR 20 MHz BANDWIDTH

14.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.

14.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM


Page 271 of 297

TRAFFIC

🔆 Agilent 10:41:	14 Mar 26, 2015			RТ	Freq/Channel
Ref -40 dBm #Peak	#Atten 0 dB		1 1	Mkr1 5.298 s -76.66 dBm	Center Freq 5.5000000 GHz
Log					Start Freq
dB/ Offst					5.50000000 GHz Stop Freq
dB DI -64.0				a duna da la	5.50000000 GHz
dBm LgAv					CF Step 3.0000000 MHz <u>Auto Ma</u>
W1 S2 S3 FS AA					Freq Offset 0.00000000 Hz
¤(f): FTun					Signal Track On <u>Off</u>
Center 5.500 000 (Res BW 3 MHz	GHz	VBW 3 MHz	Sweep 16	Span 0 Hz 5 s (8001 pts)	

Page 272 of 297

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 20.82%

Page 273 of 297

14.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

14.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

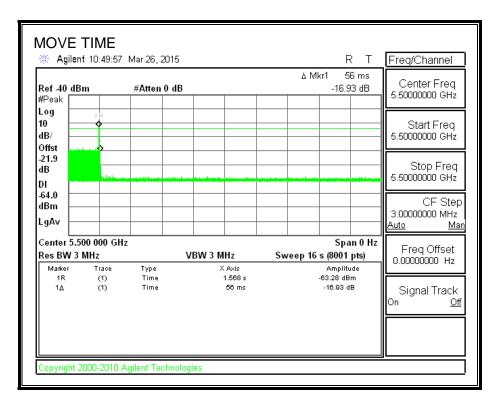
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

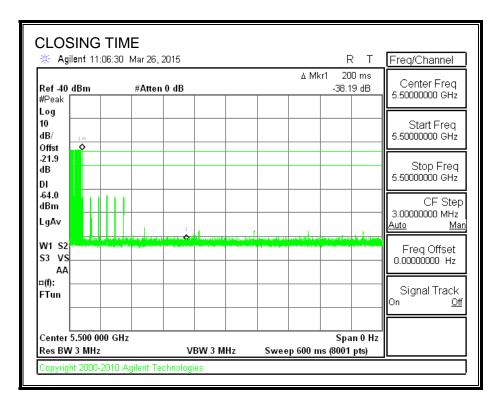
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

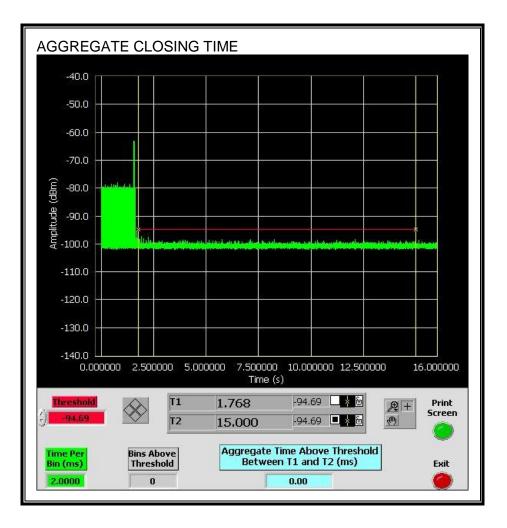
Channel Move Time	Limit
(sec)	(sec)
0.056	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60


Page 274 of 297

MOVE TIME

Page 275 of 297

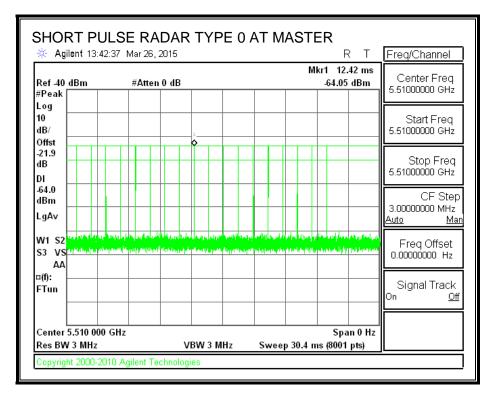

CHANNEL CLOSING TIME

Page 276 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 277 of 297

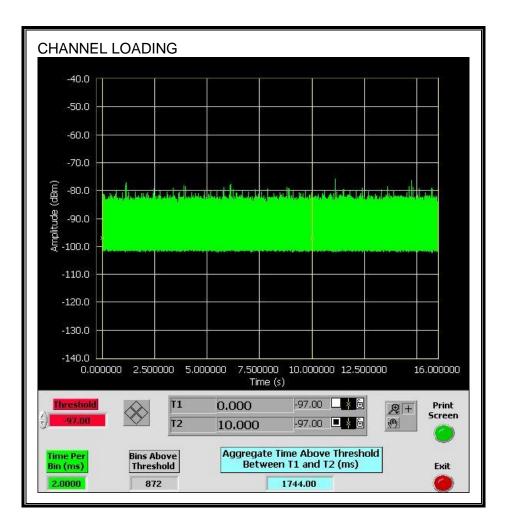

14.3. RESULTS FOR 40 MHz BANDWIDTH

14.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

14.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM


Page 278 of 297

TRAFFIC

🔆 Agilent 12:16	:09 Mar 26, 2015	R T	Freq/Channel
Ref -40 dBm #Peak	#Atten 0 dB	Mkr1 11.11 s -75.85 dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst			Start Freq 5.51000000 GHz
-21.9			Stop Freq 5.51000000 GHz
-64.0 hiddəldədən dBm LgAv	al na sa sa di mana na ika na sa sa sa sa mahada sa sa sa Na na sa		CF Step 3.00000000 MHz <u>Auto Ma</u>
W1 S2 S3 FS AA			Freq Offset 0.00000000 Hz
¤(f): FTun			Signal Track On <u>Of</u>
Center 5.510 000	GHz	Span 0 Hz	z

Page 279 of 297

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 17.44%

Page 280 of 297

14.3.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

14.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

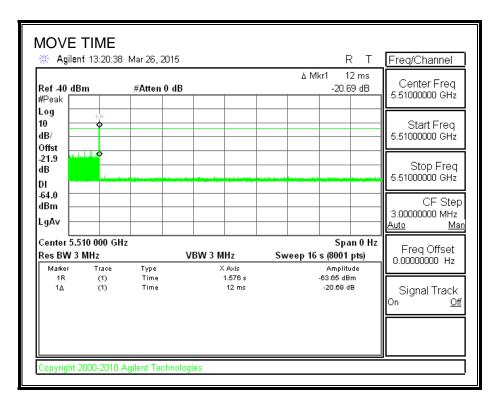
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

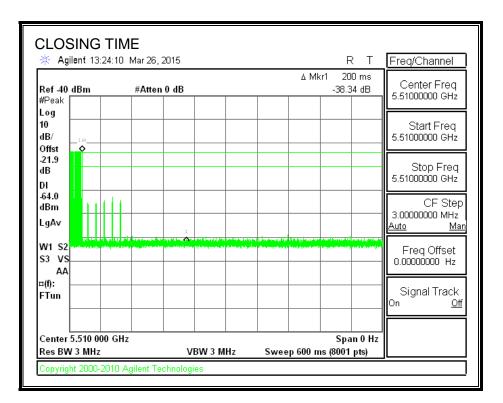
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

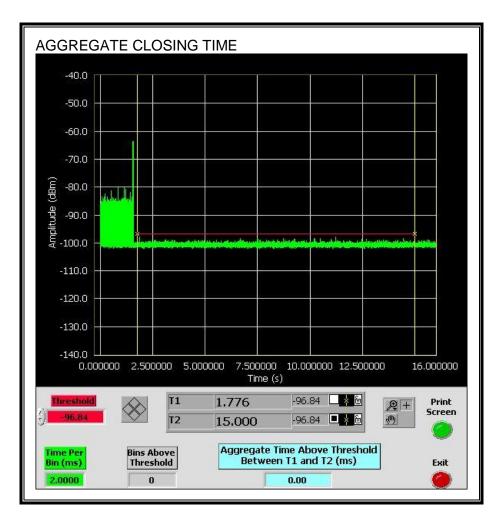
Channel Move Time	Limit
(sec)	(sec)
0.012	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60


Page 281 of 297

MOVE TIME

Page 282 of 297


CHANNEL CLOSING TIME

Page 283 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 284 of 297

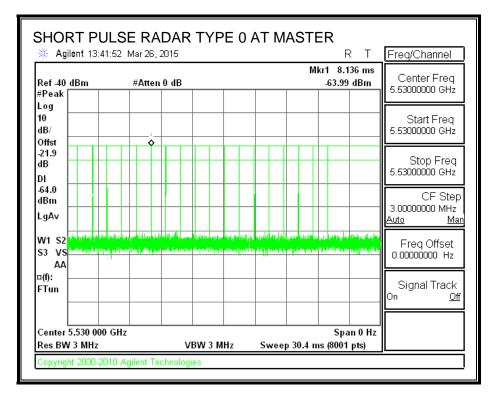
14.3.5. 10-MINUTE BEACON MONITORING PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 10-minute observation time.

Agileine 10.00.0	52 Mar 26, 2015	R T	Freq/Channe
f -40 dBm	#Atten 0 dB	∆ Mkr1 600 s -36.52 dB	Center Fre 5.51000000 GH
eak I			
IR			Start Fre 5.51000000 GH
st 🔷 .9			Stop Fre
			5.5100000 GH
.0 m			CF St
Av		1	3.00000000 MH <u>Auto</u>
S2 FS			Freq Offse
AA			0.00000000
: 			Signal Trac
nter 5.510 000 G	iHz	Span 0 Hz	

Page 285 of 297

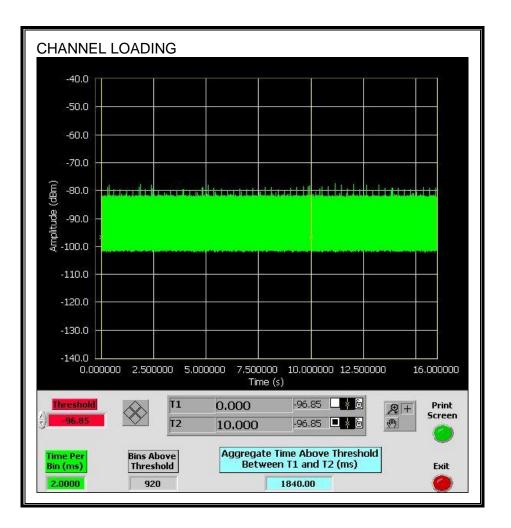

14.4. RESULTS FOR 80 MHz BANDWIDTH

14.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5530 MHz.

14.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM


Page 286 of 297

TRAFFIC

🔆 Agilent 13:30	:18 Mar 26, 2015		RT	Freq/Channel
Ref -40 dBm #Peak	#Atten 0 dB		Mkr1 11.14 s -77.59 dBm	Center Freq 5.53000000 GHz
Log 10 dB/ Offst				Start Freq 5.5300000 GHz
-21.9 dB DI		·····		Stop Freq 5.53000000 GHz
-64.0 dBm LgAv				CF Step 3.0000000 MHz <u>Auto Ma</u>
W1 S2 S3 FS AA				Freq Offset 0.00000000 Hz
¤(f): FTun				Signal Track ^{On <u>Of</u>}
Center 5.530 000 Res BW 3 MHz	GHz VBW 3	MHz Swaap 16	Span 0 Hz s (8001 pts)	

Page 287 of 297

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 18.4%

Page 288 of 297

14.4.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

14.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

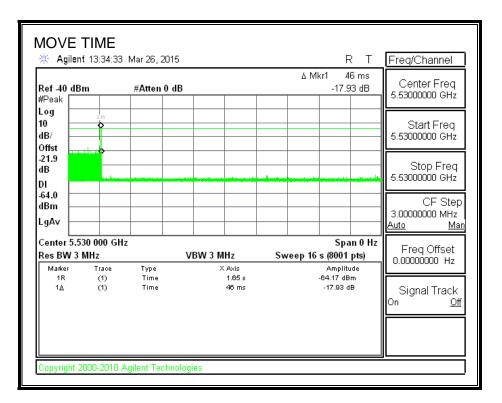
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

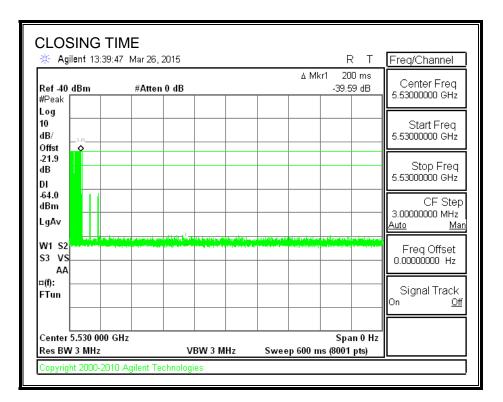
Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

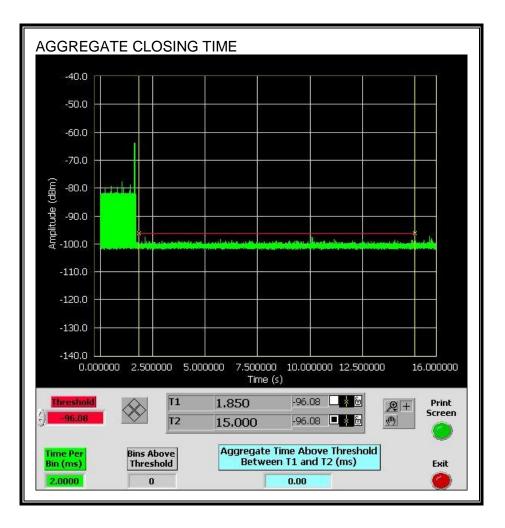
Channel Move Time	Limit
(sec)	(sec)
0.046	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60


Page 289 of 297

MOVE TIME

Page 290 of 297


CHANNEL CLOSING TIME

Page 291 of 297

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 292 of 297

14.4.5. 10-MINUTE BEACON MONITORING PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 10-minute observation time.

	53 Mar 26, 2015	R T	Freq/Channel
ef 40 dBm	#Atten 0 dB	∆ Mkr1 600 s -17.23 dB	Center Fred 5.53000000 GH
eak q			
			Start Fred 5.53000000 GH
fst I.9			Stop Fre
li l			5.53000000 GH
i.0			CF Ste
Av		1	3.00000000 MH <u>Auto N</u>
1 S2 FS			Freq Offse 0.00000000 H;
AA			
): un			Signal Trac
nter 5.530 000 (aHz	Span 0 Hz	

Page 293 of 297