

FCC Test Report

APPLICANT	: Sony Mobile Communications Inc.
EQUIPMENT	: GSM/WCDMA/LTE Phone+Bluetooth,
	DTS/UNII a/b/g/n and NFC
BRAND NAME	: Sony
FCC ID	: PY7-98591H
STANDARD	: FCC 47 CFR FCC Part 15 Subpart B
CLASSIFICATION	: FCC CLASS B PERSONAL
	COMPUTERS AND PERIPHERALS

The product was received on Sep. 23, 2016 and testing was completed on Oct. 29, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Lunis Wu

Reviewed by: Louis Wu / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-98591H Page Number: 1 of 24Report Issued Date: Feb. 06, 2017Report Version: Rev. 01Report Template No.: BU5-FD15B Version 1.3

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1.	GENE	ERAL DESCRIPTION	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Product Feature of Equipment Under Test	
	1.4.	Modification of EUT	
	1.5.	Test Location	
	1.6.	Applicable Standards	7
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1.	Test Mode	8
	2.2.	Connection Diagram of Test System	9
	2.3.	Support Unit used in test configuration and system	
	2.4.	EUT Operation Test Setup	
3.	TEST	RESULT	
	3.1.	Test of AC Conducted Emission Measurement	11
	3.2.	Test of Radiated Emission Measurement	17
4.	LIST	OF MEASURING EQUIPMENT	23
5.	UNCE	ERTAINTY OF EVALUATION	24

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC692213-01	Rev. 01	Initial issue of report	Feb. 06, 2017

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.107	AC Conducted Emission	onducted Emission < 15.107 limits PASS		Under limit 12.10 dB at 0.150 MHz
3.2	15.109	Radiated Emission	< 15.109 limits	PASS	Under limit 9.93 dB at 167.970 MHz

1. General Description

1.1. Applicant

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.2. Manufacturer

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.3. Product Feature of Equipment Under Test

Product Specification subjective to this standard			
	WWAN: Coupling type (LDS) Antenna		
	WLAN: PIFA Antenna		
Antenna Type	Bluetooth: PIFA Antenna		
	GPS/Glonass: PIFA Antenna		
	NFC: Loop Antenna		

EUT Information List					
HW Version	SW Version	S/N	Performed Test Item		
А	0.85	RQ3002L4VP	Conducted Emission Radiated Spurious Emission		

Accessory List			
Formhone d	Model No. : MH410c		
Earphone 1	S/N : 1632A8640000088		
Earphone 2	Model No. : MH410c		
	S/N : N/A		
USB Cable	Model No. : UCB20		
	S/N : 1625A91900007E2		

Note:

- 1. Above EUT list and accessory list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test.
- 3. For other wireless features of this EUT, test report will be issued separately.

1.4. Modification of EUT

No modifications are made to the EUT during all test items.

1.5. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Office Less files	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
Test Site Location	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
	CO05-HY 03CH06-HY		

1.6. Applicable Standards

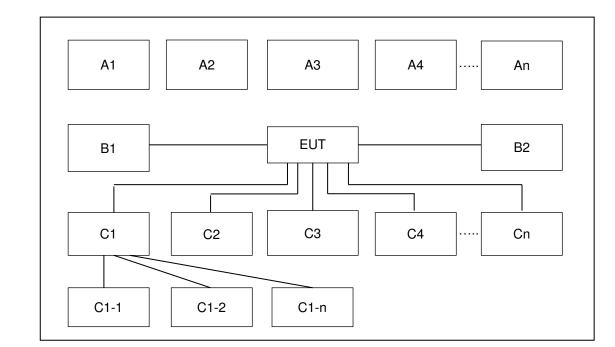
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. For FCC 15 Subpart B Unintentional Radiators, device supporting USB interface or similar peripherals (defined as the Section 15.3 (r) Peripheral device) acting as a peripheral for personal computers shall be authorized as "The Class B personal computers and peripherals" per the Section 15.101 (a) Equipment authorization of unintentional radiators.
- 3. For other Unintentional Radiators features of this EUT, test reports are be issued separately. Per the Note of the Section 15.101, when device supports features (USB, FM Radio, digital devices...etc) more than one category of authorization, type of authorization shall be appropriately chosen for FCC 15B compliance rule, and the Section 15.101 (b), only those receivers that operate (tune) within the frequency range of 30-960 MHz, CB receivers and radar detectors are subject to the authorizations shown in paragraph (a) of the Section 15.101. However, receivers indicated as being subject to Declaration of Conformity that are contained within a transceiver, the transmitter portion of which is subject to certification, shall be authorized under the verification procedure.

2. Test Configuration of Equipment Under Test


2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type				
AC Conducted	Mode 1: Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone 1				
Emission	Mode 2: Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone 2				
Radiated	Mode 1: Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone 1				
Emissions	Mode 2: Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone 2				
Remark:					
1. The worst	1. The worst case of Radiated Emissions was measured for signal above 1GHz.				
2. Data Link	 Data Link with Notebook means data application transferred mode between EUT and Notebook. 				
Notebook					

2.2. Connection Diagram of Test System

Conduction and Radiation Test Setup Test Mode No. **Setup Peripherals Connection Type** 1 2 ----C1 Notebook USB cable Х Х C1-2 iPod USB Cable to C1 Х Х C1-3 **AP** Router RJ-45 Cable to C1 Х Х C2 Х Х Earphone Earphone jack SD I/O interface СЗ SD card Х Х without cable

2.3.	Support Unit used in test conf	iguration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4. EUT Operation Test Setup

The data application (each file size is greater than 30Mbytes) is continuously transferred between the EUT and Notebook connected via USB cable, while Flight mode.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

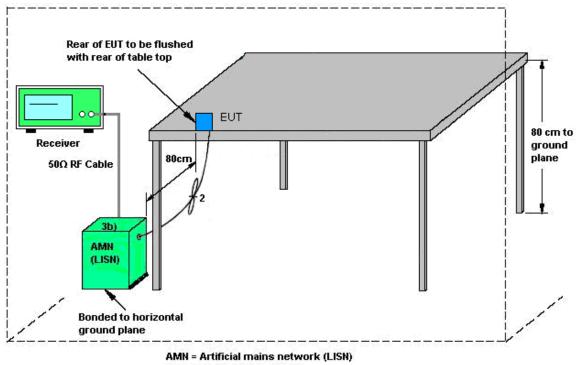
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

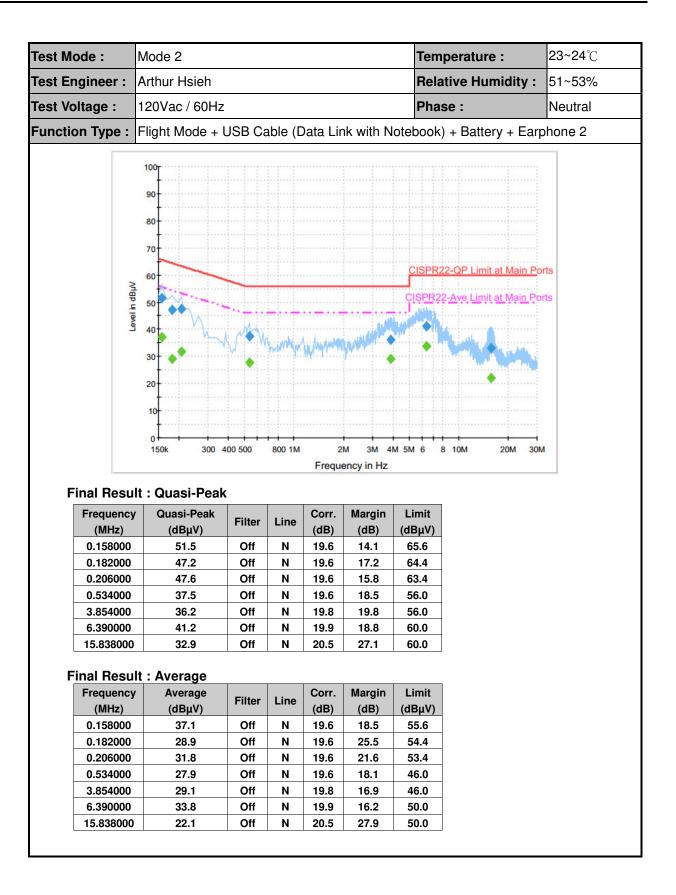
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

- AE = Associated equipment
- EUT = Equipment under test
- ISN = Impedance stabilization network

3.1.5 Test Result of AC Conducted Emission

t Mode :	Mode 1			Temp	erature :		23~24 ℃	
t Engineer	Engineer : Arthur Hsieh			Relative Humidity :			51~53%	
t Voltage :	120Vac / 60H	lz	Phase :				Line	
nction Type	: Flight Mode -	Flight Mode + USB Cable				otebool	k) + Battery + Earphone 1	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10140-114			2-OP Limit at Main Ports 2-Ave Limit at Main Ports	
	10 0 150k 300	400 500 E	800 1M	2M Frequen	3M 4M 5 cy in Hz	iM 6 8	10M 20M 30M	
	sult : Quasi-Pea	ak			icy in Hz	Limit	10M 20M 30M	
Freque (MHz	sult : Quasi-Peak (dBµV)	ak Filter	300 1M	Frequen	Margin (dB)	Limit (dBµV)	10M 20M 30M	
Freque (MHz 0.1500	sult : Quasi-Peak (dBμV) 00 53.9	ak Filter Off	Line L1	Corr. (dB) 19.6	Margin (dB) 12.1	Limit (dBµV) 66.0	10M 20M 30M	
Freque (MHz 0.1500 0.1900	ο         300           sult : Quasi-Peak           ncy         Quasi-Peak           )         (dBμV)           00         53.9           00         49.7	Ak Filter Off Off	Line L1 L1	Frequen Corr. (dB) 19.6 19.6	Margin (dB) 12.1 14.3	Limit (dBµV) 66.0 64.0	10M 20M 30M	
Freque (MHz 0.1500 0.1900 0.2620	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6	Ak Filter Off Off Off	Line L1 L1 L1	Frequen (dB) 19.6 19.6	Margin (dB) 12.1 14.3 20.8	Limit (dBµV) 66.0 64.0 61.4	10M 20M 30M	
Freque (MHz 0.1500 0.1900 0.2620 0.5260	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2	Ak Filter Off Off Off Off	Line L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6	Margin (dB) 12.1 14.3 20.8 16.8	Limit (dBµV) 66.0 64.0 61.4 56.0	10M 20M 30M	
Freque (MHz 0.1500 0.1900 0.2620 0.5260 3.7580	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2           00         36.8	Ak Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8	Margin (dB) 12.1 14.3 20.8 16.8 19.2	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0	10M 20M 30M	
Freque (MHz 0.1500 0.1900 0.2620 0.5260 3.7580 6.3180	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         49.7           00         39.2           00         36.8           00         40.5	Ak Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.8 19.8 19.9	Margin (dB) 12.1 14.3 20.8 16.8 19.2 19.5	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0	10M 20M 30M	
Freque (MHz 0.1500 0.1900 0.2620 0.5260 3.7580 6.3180 15.8860	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         49.7           00         39.2           00         36.8           00         40.5	Ak Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8	Margin (dB) 12.1 14.3 20.8 16.8 19.2	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0		
Freque (MHz 0.1500 0.1900 0.2620 0.5260 3.7580 6.3180 15.8860	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average	ak Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.8 19.8 19.9	Margin (dB) 12.1 14.3 20.8 16.8 19.2 19.5	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0		
Freque (MHz 0.1500 0.1900 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average         Average	Ak Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5	Margin (dB)           12.1           14.3           20.8           16.8           19.2           19.5           28.7	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz 0.1500	sult : Quasi-Peak (dBµV) 00 53.9 00 49.7 00 40.6 00 39.2 00 36.8 00 40.5 00 31.3 sult : Average ncy Average ) (dBµV) 00 39.3	ak Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6	Margin       (dB)         12.1       14.3         20.8       16.8         19.2       28.7         28.7       28.7         Margin       (dB)         16.7       16.7	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 kLimit (dBµV) 56.0		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz	ο         300           sult : Quasi-Peak           hcy         Quasi-Peak           0         53.9           00         49.7           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average           hcy         Average           (dBμV)         00           00         39.3           00         32.0	ak Filter Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6	Margin       (dB)         12.1       14.3         20.8       16.8         19.2       19.5         28.7       28.7         Margin       (dB)         16.7       22.0	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 60.0 Limit (dBµV) 56.0 54.0		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz 0.1500	ο         300           sult : Quasi-Peak           (dBµV)           00         53.9           00         49.7           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average           (dBµV)           00         31.3	ak Filter Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6	Margin       (dB)         12.1       14.3         20.8       16.8         19.2       28.7         28.7       28.7         Margin       (dB)         16.7       16.7	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 kLimit (dBµV) 56.0		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz 0.1500 0.1900	ο         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average           hcy         Average           (dBμV)         39.3           00         32.0           00         32.0	ak Filter Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6	Margin       (dB)         12.1       14.3         20.8       16.8         19.2       19.5         28.7       28.7         Margin       (dB)         16.7       22.0	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 60.0 Limit (dBµV) 56.0 54.0		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz 0.1500 0.1900 0.2620	out         300           sult : Quasi-Peak           (dBμV)           00         53.9           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average         (dBμV)           00         39.3           00         32.0           00         32.0           00         24.9           00         27.2	ak Filter Off Off Off Off Off Off Off Filter Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6 19.6	Margin       (dB)         12.1       14.3         20.8       16.8         19.2       28.7         Margin       (dB)         16.7       22.0         26.5       26.5	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 56.0 54.0 51.4		
Freque (MHz 0.1500 0.2620 0.5260 3.7580 6.3180 15.8860 Final Re Freque (MHz 0.1500 0.1900 0.2620 0.5260	ο         300           sult : Quasi-Peak (dBμV)         300           00         53.9           00         49.7           00         49.7           00         40.6           00         39.2           00         36.8           00         40.5           00         31.3           sult : Average (dBμV)         Average (dBμV)           00         39.3           00         32.0           00         24.9           00         27.2           00         29.0	ak Filter Off Off Off Off Off Off Off Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB)         12.1         14.3         20.8         16.8         19.2         19.5         28.7         Margin (dB)         16.7         22.0         26.5         18.8	Limit (dBµV) 66.0 64.0 61.4 56.0 56.0 60.0 60.0 60.0 60.0 60.0 55.0 56.0 54.0 54.0 51.4 46.0		




st Mode :	Mode 1			Temp	erature :		<b>23~24</b> ℃	
t Engineer :	Arthur Hsieh		Relative Humidity :			idity :	51~53%	
st Voltage :	120Vac / 60Hz			Phase :			Neutral	
nction Type :	ction Type : Flight Mode + USB Cab		able (E	Data Lir	nk with N	oteboo	k) + Battery + Earphone 1	
Level in dBuV	30 20		елурнау				2-QP Limit at Main Ports 2-Ave Limit at Main Ports	
	10- 0- 150k 300 40	0 500 8	300 1M	2M Frequen		5M 6 8	3 10M 20M 30M	
Final Res	0		300 1M		cy in Hz	5M 6 8	3 10M 20M 30M	
Frequence	ult : Quasi-Peak		300 1M	Frequen	cy in Hz Margin	Limit		
Frequence (MHz)	ult : Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	cy in Hz Margin (dB)	Limit (dBµV)		
Frequence (MHz) 0.150000	ult : Quasi-Peak (dBµV) 0 51.9	Filter Off	Line N	Frequent Corr. (dB) 19.6	Margin (dB) 14.1	Limit (dBµV) 66.0		
Frequence (MHz) 0.150000 0.190000	ult : Quasi-Peak (dBµV) 0 51.9 0 49.1	Filter Off Off	Line N N	Frequen Corr. (dB) 19.6 19.6	Margin (dB) 14.1 14.9	Limit (dBµV) 66.0 64.0		
Frequence (MHz) 0.150000 0.190000 0.238000	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7	Filter Off Off Off	Line N N N	Frequen (dB) 19.6 19.6	Margin (dB) 14.1 14.9 24.5	Limit (dBµV) 66.0 64.0 62.2		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7 0 37.2	Filter Off Off Off Off	Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.6	Margin (dB) 14.1 14.9 24.5 18.8	Limit (dBµV) 66.0 64.0 62.2 56.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.8	Margin (dB) 14.1 14.9 24.5 18.8 19.0	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000	ult : Quasi-Peak (dBµV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9	Filter Off Off Off Off Off Off Off	Line N N N N	Frequen (dB) 19.6 19.6 19.6 19.8 19.8 19.9	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000 6.134000 15.75800	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9 0 33.4	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.8	Margin (dB) 14.1 14.9 24.5 18.8 19.0	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9 0 33.4 ult : Average	C Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.6 19.6 19.8 19.8 19.9	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000 6.134000 15.75800 Final Res Frequence	0         300         40           ult : Quasi-Peak (dBμV)         300         40           0         51.9         0         49.1           0         37.7         0         37.2           0         37.0         0         33.4           ult : Average         xy         Average         xy	Filter Off Off Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5 Corr.	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin	Limit (dBμV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res Frequence (MHz)	μ         300 40           ult : Quasi-Peak (dBμV)         300 40           0         51.9           0         49.1           0         37.7           0         37.2           0         37.0           0         41.9           0         33.4           ult : Average (dBμV)         40	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB)	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB)	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 Limit (dBµV)		
Frequence (MHz) 0.150000 0.190000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res Frequence (MHz) 0.150000	0         300         40           ult : Quasi-Peak (dBμV)         300         40           0         51.9         0         49.1           0         37.7         0         37.2           0         37.0         0         37.4           0         41.9         0         33.4           ult : Average (dBμV)         0         34.8	C Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB) 21.2	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 56.0		
Frequence (MHz) 0.150000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res Frequence (MHz) 0.150000 0.190000	ult : Quasi-Peak (dBμV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9 0 33.4 ult : Average (dBμV) 0 34.8 0 31.7	Filter Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N	Frequen (dB) 19.6 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB) 21.2 22.3	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 Limit (dBµV) 56.0 54.0		
Frequence (MHz) 0.150000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res Frequence (MHz) 0.150000 0.190000 0.238000	ult : Quasi-Peak (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV) (dBµV)	Filter Off Off Off Off Off Off Off Filter Off Off Off Off	Line N N N N N N Line N N N	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6 19.6	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB) 21.2 22.3 25.8	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 60.0 60.0 60.0		
Frequence (MHz) 0.150000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Ress Frequence (MHz) 0.150000 0.238000 0.238000 0.574000	ult : Quasi-Peak (dBµV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9 0 33.4 ult : Average (dBµV) 0 33.4 ult : Average (dBµV) 0 34.8 0 31.7 0 26.4 0 27.0	Filter Off Off Off Off Off Off Off Filter Off Off Off Off Off Off	Line N N N N N N Line N N N N N	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6 19.6 19.6	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB) 21.2 22.3 25.8 19.0	Limit (dBμV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 60.0 56.0 56.0		
Frequence (MHz) 0.150000 0.238000 0.574000 3.958000 6.134000 15.758000 Final Res Frequence (MHz) 0.150000 0.190000 0.238000	ult : Quasi-Peak (dBµV) 0 51.9 0 49.1 0 37.7 0 37.2 0 37.0 0 41.9 0 33.4 ult : Average (dBµV) 0 33.4 ult : Average (dBµV) 0 34.8 0 31.7 0 26.4 0 27.0 0 29.6	Filter Off Off Off Off Off Off Off Filter Off Off Off Off	Line N N N N N N Line N N N	Frequen (dB) 19.6 19.6 19.6 19.8 19.9 20.5 Corr. (dB) 19.6 19.6 19.6	Margin (dB) 14.1 14.9 24.5 18.8 19.0 18.1 26.6 Margin (dB) 21.2 22.3 25.8	Limit (dBµV) 66.0 64.0 62.2 56.0 56.0 60.0 60.0 60.0 60.0 60.0 60.0		



Test Engineer :Arthur HsiehRelative Humidity :Test Voltage :120Vac / 60HzPhase :	E1. E00/
Test Voltage : 120Vac / 60Hz Phase :	51~53%
	Line
Function Type : Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earpho	ne 2
Final Result : Quasi-Peak	
Frequency Quasi-Peak Filter Line Corr. Margin Limit	
(MHz)         (dBµV)         Inter         Inter         (dB)         (dB)         (dBµV)           0.150000         51.2         Off         L1         19.6         14.8         66.0	
0.182000 46.6 Off L1 19.6 17.8 64.4	
0.262000 39.2 Off L1 19.6 22.2 61.4	
0.534000 38.2 Off L1 19.6 17.8 56.0	
3.774000 36.8 Off L1 19.8 19.2 56.0	
6.134000 40.1 Off L1 19.9 19.9 60.0	
15.590000 30.4 Off L1 20.4 29.6 60.0	
Final Result : Average	
Frequency Average Filter Line Corr. Margin Limit	
$(MHz) \qquad (dB\mu V) \qquad (dB) \qquad (dB) \qquad (dB) \qquad (dB\mu V)$	
0.150000 41.7 Off L1 19.6 14.3 56.0	
0.182000 29.1 Off L1 19.6 25.3 54.4	
0.262000 24.8 Off L1 19.6 26.6 51.4	
0.534000 27.2 Off L1 19.6 18.8 46.0	
3.774000 29.1 Off L1 19.8 16.9 46.0	
6.134000 33.5 Off L1 19.9 16.5 50.0	
15.590000 21.3 Off L1 20.4 28.7 50.0	







#### 3.2. Test of Radiated Emission Measurement

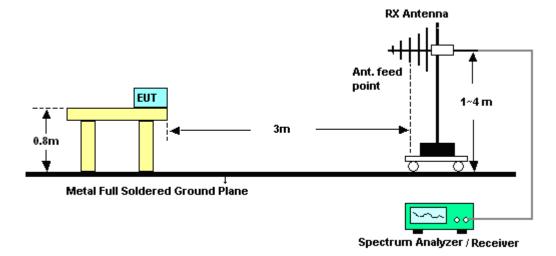
#### 3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

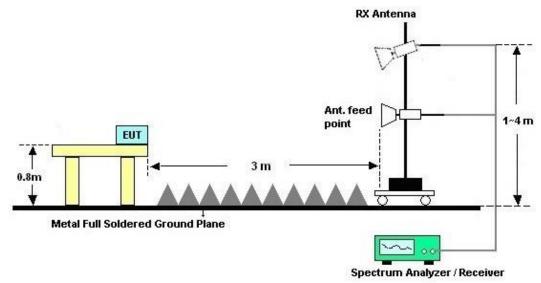
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

#### 3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


#### 3.2.3. Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level.

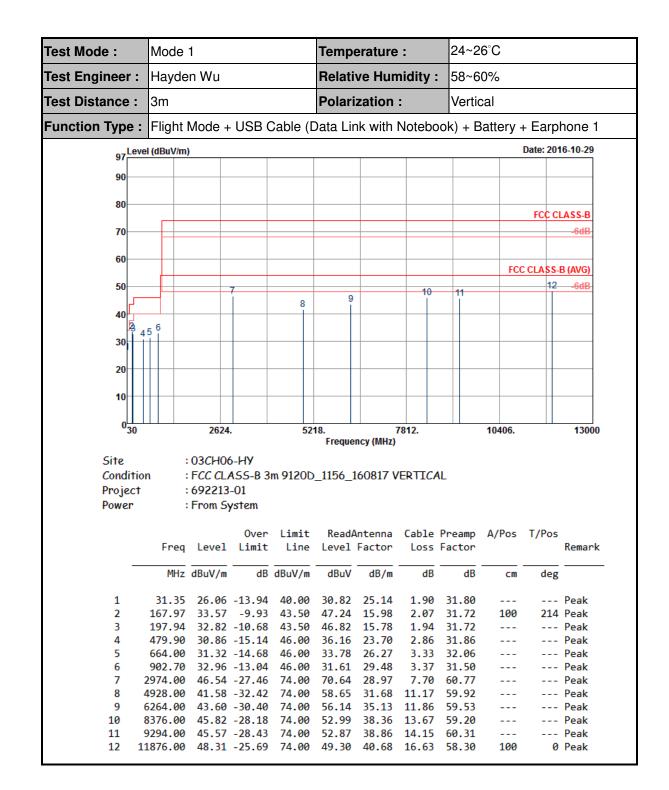



#### 3.2.4. Test Setup of Radiated Emission

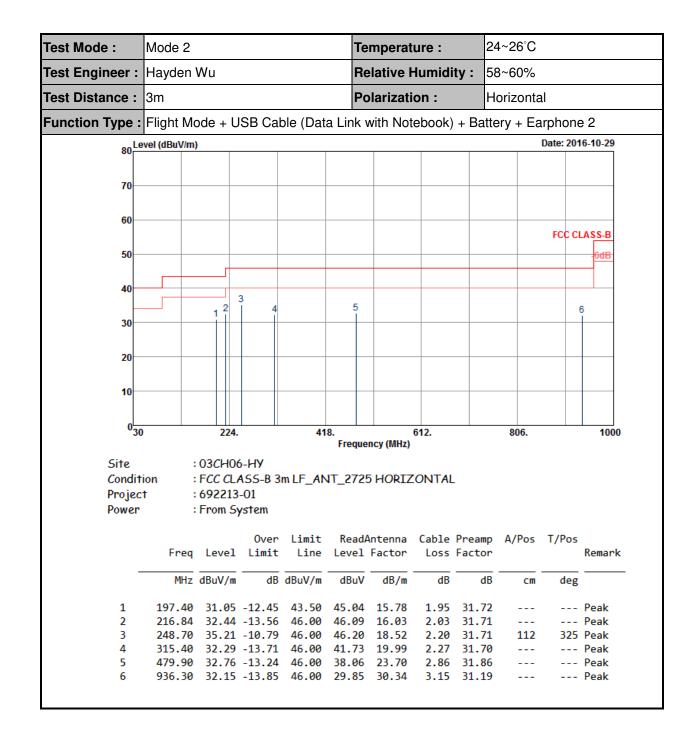
#### For radiated emissions from 30MHz to 1GHz



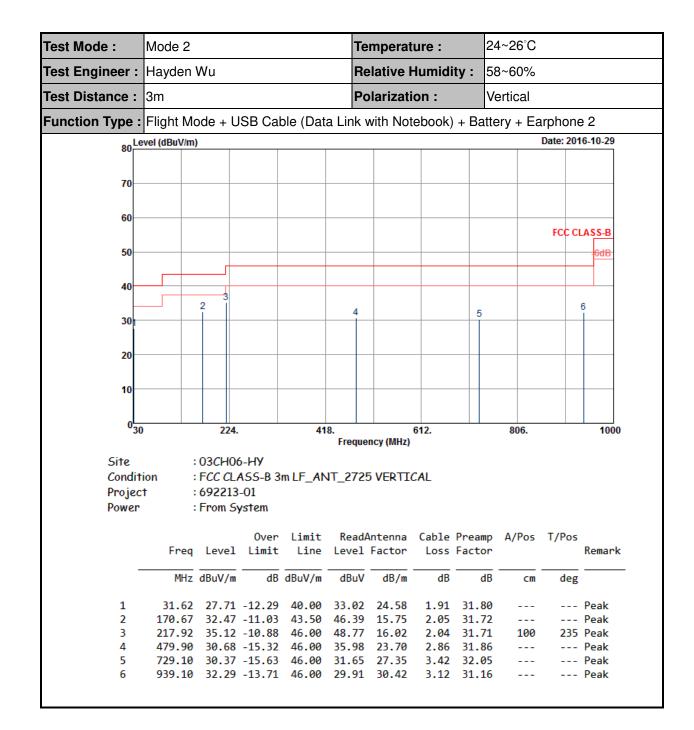
For radiated emissions above 1GHz







#### 3.2.5. Test Result of Radiated Emission

Fest Mode :	Mode 1				Tempe	erature	:	24~2	6°C		
Test Engineer :	Hayde	n Wu			Relativ	Relative Humidity :			58~60%		
Fest Distance :	3m				Polarization :			Horiz	Horizontal		
Function Type :	Flight Mode + USB Cable (Data Link					k with	Notebc	ook) + B	attery -	+ Earpl	hone 1
97	(dBuV/m)					1				Date: 201	6-10-29
90							_				
80										FCC CI	ASS-B
70											-6dB
<b>C</b> 0											
60									FCC	CLASS-	B (AVG)
50								0	11	12	-6dB
	7		8		9	9	1		Ï		
40 3 5	5										
30											
20											
10											
10											
030											
30		2624.		521	8.	1	7812.		10406.		13000
30		2624.		521		ncy (MHz)	7812.		10406.		13000
Site		2624. 03CH06		521			7812.	1 1	10406.	I	13000
Site Condition	i :	03CH06 FCC CLA	5-НУ 455-в 3	521 m 9120D	Freque	ncy (MHz)		INTAL	10406.		13000
Site Condition Project	۱ : :	03CH06 FCC CLA 692213	5-HY 455-B 3 -01		Freque	ncy (MHz)		NTAL	10406.	1	13000
Site Condition	۱ : :	03CH06 FCC CLA	5-HY 455-B 3 -01		Freque	ncy (MHz)		INTAL	10406.		13000
Site Condition Project	۱ : :	03CH06 FCC CLA 692213	5-HY 455-B 3 -01		Freque	ncy (MHz) 60817 ŀ	IORIZC	Preamp		T/Pos	13000
Site Condition Project	۱ : : :	03CH06 FCC CLA 692213	5-HY 155-B3 -01 vstem Over	m 9120D	Freque	ncy (MHz) 60817 ŀ ntenna	(ORIZC Cable			T/Pos	13000 Remark
Site Condition Project	I : : Freq	03CH06 FCC CLA 692213 From Sy	5-HY ASS-B3 -01 vstem Over Limit	m 9120D	Frequer _1156_1 ReadA	ncy (MHz) 60817 ŀ ntenna	(ORIZC Cable	Preamp		T/Pos deg	
Site Condition Project Power	I : : Freq	03CH06 FCC CL4 692213 From Sy Level dBuV/m	6-HY ASS-B3 -01 vstem Over Limit dB	m 9120D Limit Line dBuV/m	Freques _1156_1 ReadA Leve1 dBuV	ncy (MHz) 60817 F ntenna Factor dB/m	ORIZO Cable Loss dB	Preamp Factor  dB	A/Pos	deg	
Site Condition Project Power	1 : Freq MHz 168.51	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06	0-HV 455-B 3 -01 /stem Uver Limit 	m 9120D Limit Line	Freques _1156_1 ReadA Leve1 dBuV 40.83	ncy (MHz) 60817 F ntenna Factor dB/m 15.89	Cable Loss dB 2.06	Preamp Factor	A/Pos	deg	Remark
Site Condition Project Power 1 2 3	1 : Freq MHz 168.51 190.92 246.54	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24	0-HV 455-B 3 -01 vstem Uver Limit -16.44 -14.08 -10.76	m 91200 Limit Line dBuV/m 43.50 43.50 46.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42	ncy (MHz) 60817 F ntenna Factor dB/m 15.89 15.36 18.34	Cable Loss dB 2.06 1.96 2.19	Preamp Factor dB 31.72 31.72 31.71	A/Pos   103	deg  308	Remark Peak Peak Peak
Site Condition Project Power 1 2 3 4	Freq HHz 168.51 190.92 246.54 315.40	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24 32.25	0-HY 455-B 3 -01 vstem Ustem -16.44 -14.08 -10.76 -13.75	m 9120D Limit Line dBuV/m 43.50 43.50 46.00 46.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42 41.69	ncy (MHz) 60817 F ntenna Factor dB/m 15.89 15.36 18.34 19.99	Cable Loss dB 2.06 1.96 2.19 2.27	Preamp Factor dB 31.72 31.72 31.71 31.70	A/Pos   103 	deg  308 	Remark Peak Peak Peak Peak Peak
Site Condition Project Power 1 2 3 4 5	Freq Freq MHz 168.51 190.92 246.54 315.40 479.90	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24 32.25 34.78	0-HV 455-B 3 -01 vstem Over Limit -16.44 -14.08 -10.76 -13.75 -11.22	m 91200 Limit Line dBuV/m 43.50 43.50 46.00 46.00 46.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42 41.69 40.08	ncy (MHz) 60817 F ntenna Factor dB/m 15.89 15.36 18.34 19.99 23.70	Cable Loss dB 2.06 1.96 2.19 2.27 2.86	Preamp Factor dB 31.72 31.72 31.71 31.70 31.86	A/Pos   103	deg  308 	Remark Peak Peak Peak Peak Peak Peak
Site Condition Project Power 1 2 3 4 5 6	Freq HHz 168.51 190.92 246.54 315.40	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24 32.25 34.78 32.60	0-HY 455-B 3 -01 vstem Ustem -16.44 -14.08 -10.76 -13.75	m 9120D Limit Line dBuV/m 43.50 43.50 46.00 46.00 46.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42 41.69	ncy (MHz) 60817 F ntenna Factor dB/m 15.89 15.36 18.34 19.99	Cable Loss dB 2.06 1.96 2.19 2.27 2.86 3.33 5.83	Preamp Factor dB 31.72 31.72 31.71 31.70	A/Pos cm  103 	deg  308 	Remark Peak Peak Peak Peak Peak
Site Condition Project Power	Freq HHz 168.51 190.92 246.54 315.40 479.90 666.10 750.00 018.00	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24 32.25 34.78 32.60 42.87 39.65	0-HV 455-B 3 -01 vstem 0ver Limit -16.44 -14.08 -10.76 -13.75 -11.22 -13.40 -31.13 -34.35	m 9120D Limit Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42 41.69 40.08 35.03 71.44 63.63	ntenna Factor dB/m 15.89 15.36 18.34 19.99 23.70 26.30 26.00 29.07	Cable Loss dB 2.06 1.96 2.19 2.27 2.86 3.33 5.83 7.76	Preamp Factor dB 31.72 31.72 31.71 31.70 31.86 32.06 60.40 60.81	A/Pos cm 103   	deg  308  	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power 1 2 3 4 5 6 7 1 8 3 9 6	Freq Freq MHz 168.51 190.92 246.54 315.40 479.90 666.10 750.00 018.00 446.00	03CH06 FCC CL4 692213 From Sy Level dBuV/m 27.06 29.42 35.24 32.25 34.78 32.60 42.87 39.65 43.40	0-HV 455-B 3 -01 vstem 0ver Limit -16.44 -14.08 -10.76 -13.75 -11.22 -13.40 -31.13 -34.35 -30.60	m 9120D Limit Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00	Freques _1156_1 ReadA Leve1 dBuV 40.83 43.82 46.42 41.69 40.08 35.03 71.44 63.63 55.57	ntenna Factor dB/m 15.89 15.36 18.34 19.99 23.70 26.30 26.00 29.07 35.47	Cable Loss dB 2.06 1.96 2.19 2.27 2.86 3.33 5.83 7.76 12.15	Preamp Factor dB 31.72 31.72 31.71 31.70 31.86 32.06 60.40 60.81 59.79	A/Pos cm 103   	deg  308   	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power 1 2 3 4 5 6 7 1 8 3 9 6 10 8	Freq HHz 168.51 190.92 246.54 315.40 479.90 666.10 750.00 018.00	03CH06 FCC CL4 692213 From Sy Level 27.06 29.42 35.24 32.25 34.78 32.60 42.87 39.65 43.40 45.44	0-HV 455-B 3 -01 vstem 0ver Limit -16.44 -14.08 -10.76 -13.75 -11.22 -13.40 -31.13 -34.35	m 9120D Limit Line dBuV/m 43.50 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00	Freques _1156_1 ReadA Level dBuV 40.83 43.82 46.42 41.69 40.08 35.03 71.44 63.63 55.57 52.31	ntenna Factor dB/m 15.89 15.36 18.34 19.99 23.70 26.30 26.00 29.07	Cable Loss dB 2.06 1.96 2.19 2.27 2.86 3.33 5.83 7.76	Preamp Factor dB 31.72 31.72 31.71 31.70 31.86 32.06 60.40 60.81 59.79 59.53	A/Pos cm 103   	deg  308    	Remark Peak Peak Peak Peak Peak Peak Peak Pea
















### 4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Oct. 27, 2016	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Oct. 27, 2016	Aug. 29, 2017	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Apr. 19, 2016	Oct. 27, 2016	Apr. 18, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Oct. 27, 2016	Dec. 01, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 14, 2015	Oct. 27, 2016	Dec. 13, 2016	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 06, 2016	Oct. 27, 2016	Jan. 05, 2017	Conduction (CO05-HY)
Test Software	N/A	EMC32	8.40.0	N/A	N/A	Oct. 27, 2016	N/A	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C&N- 6-06	2725&AT-N06 01	30MHz~1GHz	Oct. 15, 2016	Oct. 29, 2016	Oct. 14, 2017	Radiation (03CH06-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100472	20Hz~26.5GHz	Jan. 07, 2016	Oct. 29, 2016	Jan. 06, 2017	Radiation (03CH06-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1156	1GHz~18GHz	Aug. 05, 2016	Oct. 29, 2016	Aug. 04, 2017	Radiation (03CH06-HY)
Preamplifier	SONOMA	310N	186713	9kHz~1GHz	Apr. 19, 2016	Oct. 29, 2016	Apr. 18, 2017	Radiation (03CH06-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1850117	1GHz ~ 18GHz	Jun. 22, 2016	Oct. 29, 2016	Jun. 21, 2017	Radiation (03CH06-HY)
RF Cable	HUBER + SUHNER	RG_142_B/U	NA	30MHz ~ 1GHz	Nov. 16, 2015	Oct. 29, 2016	Nov. 15, 2016	Radiation (03CH06-HY)
RF Cable	HUBER + SUHNER	RG_142_B/U	NA	1GHz ~ 26GHz	Nov. 16, 2015	Oct. 29, 2016	Nov. 15, 2016	Radiation (03CH06-HY)
Controller	INN-CO	EM1000	060782	Control Turn table & Ant Mast	N/A	Oct. 29, 2016	N/A	Radiation (03CH06-HY)
Antenna Mast	MF	MF-7802	MF78020821 2	1m~4m	N/A	Oct. 29, 2016	N/A	Radiation (03CH06-HY)
Turn Table	INN-CO	DS2000	420/650/00	0-360 degree	N/A	Oct. 29, 2016	N/A	Radiation (03CH06-HY)
Hygrometer	WISEWIND	410	BU5004	N/A	May 03, 2016	Oct. 29, 2016	May 02, 2017	Radiation (03CH06-HY)
Test Software	Audix	E3	6.2009-8-24	N/A	N/A	Oct. 29, 2016	N/A	Radiation (03CH06-HY)



### 5. Uncertainty of Evaluation

#### Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2.70
Confidence of 95% (U = 2Uc(y))	2.70

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.90
Confidence of 95% (U = 2Uc(y))	3.90

#### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of	4.70
Confidence of 95% (U = 2Uc(y))	4.70