

Report No.: SEWM2212000309RG08 Page : 1 of 78

FCC SAR TEST REPORT

Application No.:	SEWM2212000309RG08
Applicant:	Sony Corporation
Manufacturer:	Sony Corporation
EUT Description:	GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, NFC and GNSS
Brand Name:	Sony
FCC ID:	PY7-97087H
Standards:	FCC 47CFR §2.1093
Date of Receipt:	2022-12-16
Date of Test:	2023-01-05 to 2023-02-02
Date of Issue:	2023-03-08
Test conclusion:	PASS *
* In the configuration tested	the ELIE detailed in this report complied with the standards aposition above

* In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

tanta Sun

Panta Sun

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions,aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-an-Document.agk</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 2 of 78

REVISION HISTORY

Report Number	Revision	Description	Issue Date
SEWM2212000309RG08	01	Original	2023-02-24
	02	Revise comment	2023-03-08

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDcountent.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulleet extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@sgs.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 : 3 of 78 Page

Frequency Bond		Maximum Reported SAR(W/k		
Frequency Band	Head	Body-worn	Hotspot	Product specific 10g SAR
GSM850	0.50 ¹	0.61 ²	0.61 ³	/
GSM1900	0.15	0.43	0.43	/
WCDMA Band V	0.35	0.51	0.51	/
LTE Band 5	0.32	0.46	0.46	/
LTE Band 12	0.20	0.41	0.41	/
WI-FI (2.4GHz)	0.18	0.12	0.12	/
WI-FI (5GHz)	0.27	0.23	0.18	0.41
BT	<0.10	<0.10	<0.10	/
NFC	/	/	/	<0.10
SAR Limited(W/kg)		1.6		4.0
	Maximum Simul	taneous Transmissior	n SAR (W/kg)	
Scenario	Head	Body-worn	Hotspot	Product specific 10g SAR
Sum SAR	0.80	0.87	0.81	0.43
SPLSR	/	/	/	/
SPLSR Limited		0.04		0.1

TEST SUMMARY

The Head Maximum SAR is on page 63

*2 The Body-worn Maximum SAR is on page 63

*3 The Hotspot Maximum SAR is on page page 63

Reviewed by

Well Wei

Prepared by

Njek Un

Nick Hu

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing / Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443. e: (86-755) 8307 1443

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 4 of 78

CONTENTS

1	GENERAL INFORMATION	6
	1.1 DETAILS OF CLIENT	6 7 8 9 10
2	LABORATORY ENVIRONMENT	12
3	SAR MEASUREMENTS SYSTEM CONFIGURATION	13
	3.1 THE SAR MEASUREMENT SYSTEM	
4	SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	22
	 4.1 SAR MEASUREMENT VARIABILITY	
5	DESCRIPTION OF TEST POSITION	
	 5.1 HEAD EXPOSURE CONDITION	23 24 24 25 25 26 26 26
6	SAR SYSTEM VERIFICATION PROCEDURE	28
	 6.1 TISSUE SIMULATE LIQUID	
7	TEST CONFIGURATION	33

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions</u>.aspx.and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions</u>.Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) nearestatus at telephone: (66-75) 8307 1443, or email: <u>Ch.Doceheck@ags.com</u> Subdhk.@Rub.Nt.hsmiteg@Rub.Mtabiataks.Mbu.kee.Qins(Jargai)PldfhesTa&zme 215000 t (86-512) 62992980 www.sgsgroup.com.cn

Report No.: SEWM2212000309RG08 Page : 5 of 78

		SSM SAR TEST REDUCTION PROCEDURE	33
		CAR TEST REDUCTION PROCEDURE IS APPLIED TO 8-PSK EDGE WITH GMSK GPRS/EDGE/DTM AS THE	~~
	7.1.1 7.2 (3G SAR Test Reduction Procedure	
	7.2.1	WCDMA Test Configuration	
	7.2.1	WCDMA Test Configuration	
	7.2.2	LTE Test Configuration	
8	-	RESULT	
	8.1 N	REASUREMENT OF RF CONDUCTED POWER	49
	8.1.1	Conducted Power of GSM	
	8.1.2	Conducted Power of WCDMA	
	8.1.3	Conducted Power of LTE	
	8.1.4	Conducted Power of WIFI	. 56
	8.1.5	Conducted Power of BT	60
		STAND-ALONE SAR TEST EVALUATION	-
	8.3 N	IEASUREMENT OF SAR DATA	
	8.3.1	SAR Result of GSM 850	
	8.3.1	SAR Result of GSM 1900	
	8.3.2	SAR Result of WCDMA Band V	
	8.3.3	SAR Result of LTE Band 5	
	8.3.4	SAR Result of LTE Band 12	
	8.3.5	SAR Result of WIFI 2.4G	
	8.3.6	SAR Result of WIFI 5G	
	8.3.7	SAR Result of BT	
	8.3.8 8.4	SAR Result of NFC IULTIPLE TRANSMITTER EVALUATION	
	0.4 1 8.4.1	Simultaneous SAR SAR test evaluation	
	0.4.1 842	Simultaneous SAR SAR lest evaluation Simultaneous Transmission SAR Summation Scenario	
	0		
9	• -	PMENT LIST	
10	CALIE	BRATION CERTIFICATE	78
11	PHOT	OGRAPHS	78
AI	PPENDIX	A: DETAILED SYSTEM CHECK RESULTS	78
AI	PENDIX	B: DETAILED TEST RESULTS	78
AI	PENDIX	C: CALIBRATION CERTIFICATE	78
AI	PENDIX	D: PHOTOGRAPHS	78
		-	-

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDcountent.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulleet extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@sgs.com

South of Na.6 Plan, No.1, Runsheng Read, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 6 of 78

1 General Information

1.1 Details of Client

Applicant:	Sony Corporation
Address:	1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan
Manufacturer:	Sony Corporation
Address:	1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan

1.2 Test Location

Company:	SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.
Address:	South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone
Post code:	215000
Test Engineer:	Alan Zhang, Leon Xu

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction lissues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ss.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 7 of 78

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 6336.01)

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 6336.01.

Innovation, Science and Economic Development Canada

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0120.

IC#: 27594.

• FCC – Designation Number: CN1312

SGS-CSTC STANDARDS TECHNICAL SERVICES (SUZHOU) CO., LTD. has been recognized as an accredited testing laboratory.

Designation Number: CN1312.

Test Firm Registration Number: 717327

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 8 of 78

1.4 General Description of EUT

Device Type:	portable device					
Exposure Category:	uncontrolled environme	uncontrolled environment / general population				
EUT Description:	GSM/WCDMA/LTE Pho	GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, NFC and GNSS				
Trade Mark:	Sony					
FCC ID:	PY7-97087H					
SN:	HQ62B20644,HQ62B2	0636				
Hardware Version:	Ν					
Software Version:	0.116					
Antenna Type:	Integrated					
Device Operating Configuratio	ns :					
Modulation Mode:	LTE: QPSK,16QAM,64	ſΜ; WCDMA: QPSK, 16QAM(HSPA ·QAM T: GFSK, π/4DQPSK,8DPSK	+);			
Device Class:	В					
GPRS Multi-slots Class:	33 EGPRS Multi-	slots Class: 33 DTM Multi-slo	ots Class: 11			
HSDPA UE Category:	24	HSUPA UE Category	6			
DC-HSDPA UE Category:	24					
	4,tested with power lev					
Power Class	1,tested with power lev	· · · · · · · · · · · · · · · · · · ·				
	3, tested with power control "all 1"(WCDMA Band V)					
	3, tested with power control Max Power(LTE Band 5/12)					
	Band	Tx (MHz)	Rx (MHz)			
	GSM850	824~849	869~894			
	GSM1900	1850~1910	1930~1990			
	WCDMA Band V	824~849	869~894			
	LTE Band 5	824~849	869~894			
Frequency Bands:	LTE Band 12	699~716	729~746			
Trequency Danus.	Bluetooth	2402~2480	2402~2480			
	Wi-Fi 2.4G	2412~2462	2412~2462			
		5150~5250	5150~5250			
	Wi-Fi 5G	5250~5350	5250~5350			
	WI-1136	5470~5725	5470~5725			
		5725~5850	5725~5850			
RF Cable:	Provided	by the aplicant 🔲 Provided by the la	aboratory			
NFC	Wireless Technology and Frequency Range	13.56MHz				
_	mode ASK					

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulleet axtent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)8307 1443, Neurottic (U.B.C.).

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 9 of 78

1.4.1 DUT Antenna Locations(Back View)

The DUT Antenna Locations (Back View) can refer to Appendix D.

Note:

The test device is a smart phone. The overall diagonal dimension of this device is 164.8 mm, and display diagonal dimension is 153.81 mm. Per KDB 648474 D04, because the display diagonal dimension > 150mm and overall diagonal dimension > 160 mm, so it is a phablet.

According to the distance between antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing							
Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom
Ant 0	Hotspot	Yes	Yes	Yes	Yes	No	Yes
Ant 1	Hotspot	Yes	Yes	Yes	No	No	Yes
Ant 6	Hotspot	Yes	Yes	Yes	No	Yes	No

Table 1: EUT Sides for SAR Testing

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 10 of 78

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC/IEEE 62209-1528:2020	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body- mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
KDB 941225 D01	3G SAR Measurement Procedures v03r01
KDB 941225 D05	SAR for LTE Devices v02r05
KDB 941225 D06	Hotspot Mode SAR v02r01
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 648474 D04	Handset SAR v01r03
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03
KDB 616217 D04	SAR for laptop and tablets v01r02

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDcountent.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulleet extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@sgs.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 11 of 78

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 W/Kg	8.00 W/Kg
Spatial Average SAR** (Whole Body)	0.08 W/Kg	0.40 W/Kg
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 W/Kg	20.00 W/Kg

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 12 of 78

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

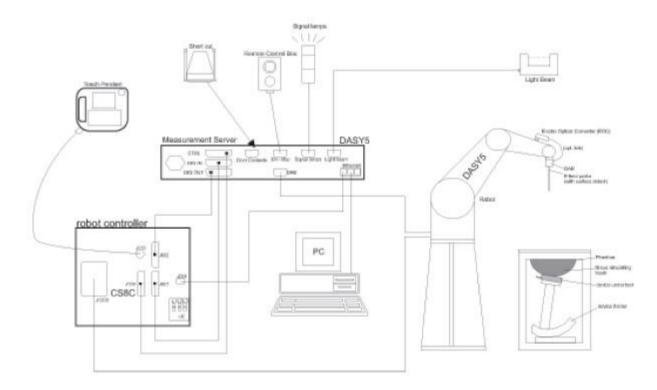
Table 2: The Ambient Conditions

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sas.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terms and Conditions for Electronic Documents at <u>http://www.sas.com/en/Terms-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 13 of 78

3 SAR Measurements System Configuration 3.1 The SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-end-conditions

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 14 of 78

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

3.2 Isotropic E-field Probe EX3DV4

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Courdinations. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsai) Plot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 15 of 78

3.3 Data Acquisition Electronics (DAE)

Model	DAE	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	1 Ale
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 f A	
Dimensions	60 x 60 x 68 mm	

3.4 SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE- GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	I
Dimensions (incl. Wooden Support)	Length: 1000mm Width: 500mm Height: adjustable feet	
Filling Volume	approx. 25 liters	-
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditi</u>

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 16 of 78

3.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)				
Liquid	Compatible with all SPEAG tissue				
Compatibility	simulating liquids (incl. DGBE type)				
Shell Thickness	2.0 ± 0.2 mm (bottom plate)				
Dimensions	Major axis: 600 mm				
	Minor axis: 400 mm				
Filling Volume	approx. 30 liters				
Wooden Support SPEAG standard phantom table					
Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating lighted and be been entimized regarding its performance and each be integrated into our standard.					

of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 17 of 78

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 18 of 78

3.7 Measurement procedure

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of $32mm^*32mm^*30mm$ (f≤2GHz), $30mm^*30mm^*30mm$ (f for 2-3GHz) and $24mm^*24mm^*22mm$ (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days ony.

South of No. 6 Plant, No. 1, Runsheng Road, Stuchou Industrial Park, Stuchou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 19 of 78

			\leq 3 GHz	> 3 GHz	
Maximum distance from (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle surface normal at the n			30°±1°	20°±1°	
Maximum area scan sp	atial resolu	ation: ∆x _{Area} , ∆y _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$			$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz}: \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz}: \le 4 \text{ mm}^*$	
	uniform	grid: ∆z _{Z∞m} (n)	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 4 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz:} \leq 3 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz:} \leq 2 \ \mathrm{mm} \end{array}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	∆z _{Zoom} (1): between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	x, y, z	•	\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 20 of 78

3.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivit	.y	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
 Diode compression point 	Dcpi	
Device parameters: - Frequen	су	f
- Crest factor	cf	
Media parameters: - Conducti	vity	3
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$V_i = U_i + U_i^2 \cdot c f / d c p_i$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

Oness ourelwise agreed in winning, this document is issued by to overleaf, available on request or accessible at http://www.sgs.com// subject to Terms and Conditions for Electronic Documents at http Attention is drawn to the limitation of liability, indemnification and advised that information contained hereon reflects the Company's Client's instructions, if any. The Company's sole responsibility is transaction from exercising all their rights and obligations under except in full, without prior written approval of the Company. Any appearance of this document is unlawful and offenders may be pro- results shown in this test report refer only to the sample(s) tested ann	on/Terms-and-Conditio //www.sgs.com/en/Ter jurisdiction issues det findings at the time o to its Client and this the transaction docum unauthorized alterati secuted to the fullest e	ns.apx and, for electro ms-and-Conditions/Tern fined therein. Any hold f its intervention only a document does not e nents. This document c ion, forgery or falsifica extent of the law. Unless	nic format documents, ms-e-Document.aspx. er of this document is ind within the limits of xonerate parties to a cannot be reproduced tion of the content or s otherwise stated the
Attention: To check the authenticity of testing /inspection repor or email: <u>CN.Doccheck@sgs.com</u>	t & certificate, please	contact us at telephor	ne: (86-755) 8307 1443,
South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone	215000	t (86-512) 62992980	www.sgsgroup.com.cn
中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编:	215000	t (86–512) 62992980	sgs.china@sgs.com

iting this desumant is issued by the Company subject to its Consel Conditions of Conject relies

Report No.: SEWM2212000309RG08 Page : 21 of 78

H-field probes:

 $\begin{array}{ll} H_i = \left(V_i \right)^{1/2} \cdot \left(a_{i0} + a_{i1}f + a_{i2}f^2 \right) / f \\ \text{With} & \text{Vi} = \text{compensated signal of channel i} & (i = x, y, z) \\ \text{Normi = sensor sensitivity of channel I} & (i = x, y, z) \\ [mV/(V/m)2] \text{ for E-field Probes} \\ \text{ConvF = sensitivity enhancement in solution} \\ aij = \text{sensor sensitivity factors for H-field probes} \\ f = \text{carrier frequency [GHz]} \\ \text{Ei = electric field strength of channel i in V/m} \\ \text{Hi = magnetic field strength of channel i in A/m} \end{array}$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$

The primary field data are used to calculate the derived field units.

$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

with SAR = local specific absorption rate in mW/g Etot = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ϵ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$

with Ppwe = equivalent power density of a plane wave in mW/cm2 Etot = total electric field strength in V/m Htot = total magnetic field strength in A/m

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document is end exonetate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document client exonets partice partices to appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the evaluation in this test report refer only test the stated the evaluation of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the evaluation of the state of the document is the state of the state of the order of the state of the state of the state of the state of the law. These otherwise stated the evaluation of the state of the state of the document of the state of the state of the state of the evaluation of the state of the

South of No. 6 Plant, No. 1, Runsheng Read, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂店南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 22 of 78

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \ge 1.45 W/kg (~ 10% from the 1-g SAR limit).

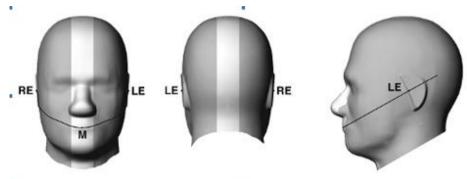
4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

4.2 SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

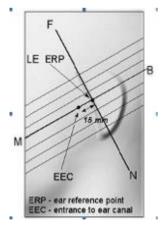


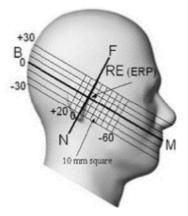
Report No.: SEWM2212000309RG08 Page : 23 of 78

5 Description of Test Position

5.1 Head Exposure Condition

5.1.1 SAM Phantom Shape



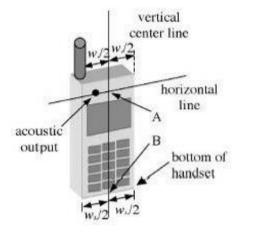

F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.

Note: The centre strip including the nose region has a different thickness tolerance.

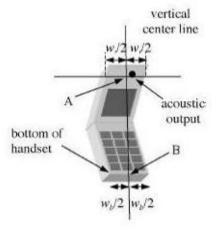
F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document to excore a coverate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@ags.com

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000



Report No.: SEWM2212000309RG08 Page : 24 of 78

5.1.2 EUT constructions

F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

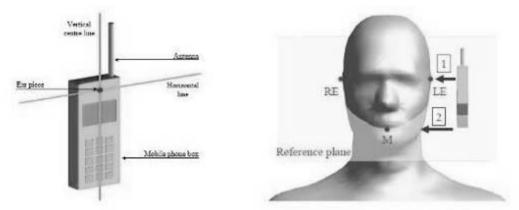
5.1.3 Definition of the "cheek" position

a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact

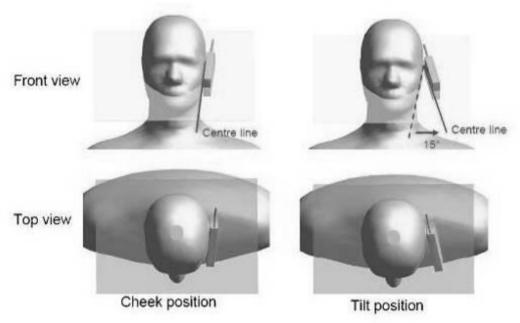
telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits to Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to be example(s) tested and such sample(s) are relained for 30 days only.

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000



Report No.: SEWM2212000309RG08 Page : 25 of 78


5.1.4 Definition of the "tilted" position

a) Position the device in the "cheek" position described above;

b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

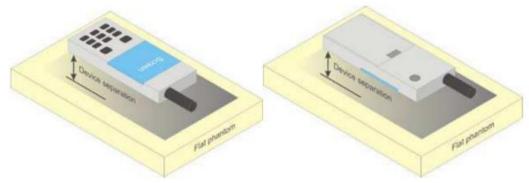
F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection reports & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 26 of 78

5.2 Body Exposure Condition


5.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: <u>O check the authenticity of testing / Inspection report & certificate, please contact us as telephone</u>: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Stuchou Industrial Park, Stuchou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 27 of 78

5.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

5.3 Extremity exposure conditions

Per FCC KDB 648474D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet". The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 28 of 78

6 SAR System Verification Procedure

6.1 Tissue Simulate Liquid

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients	Frequency (MHz)						
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700		
Water	38.56	40.30	55.24	55.00	54.92		
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23		
Sucrose	56.32	57.90	0	0	0		
HEC	0.98	0.24	0	0	0		
Bactericide	0.19	0.18	0	0	0		
Tween	0	0	44.45	44.80	44.85		
Salt: 99 ⁺ % Pure S Water: De-ionized Tween: Polyoxyet	l, 16 MΩ⁺ resistivi	ty	Sucrose: 98+% Pure HEC: Hydroxyethyl (
HSL13MHz is cor	nposed of the follo	owing ingredients:					
Water: 50-90%							
Non-ionic deterge	ents: 5-50%						
Nacl: 0-2%							
Preservative: 0.0)3-0.1%						
HSL5GHz is composed of the following ingredients:							
Water: 50-65%							
Mineral oil: 10-30%							
Emulsifiers: 8-25%							
Sodium salt: 0-1	.5%						

Table 3: Recipe of Tissue Simulate Liquid

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 29 of 78

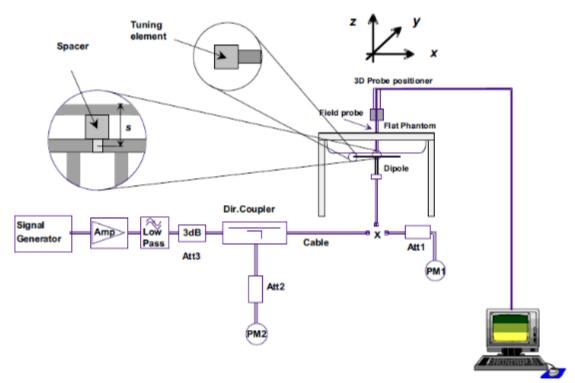
6.1.2 Measurement for Tissue Simulate Liquid

The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

	Measured	Target Tis	sue (±5%)	Measure	d Tissue	Liquid Temp.	
Tissue Type	Frequency (MHz)	٤r	σ(S/m)	٤r	σ(S/m)	(°C)	Test Date
13 Head	13	55 (52.25~57.75)	0.75 (0.71~0.79)	54.558	0.726	22.1	2023-02-02
750 Head	750	41.9 (39.81~44)	0.89 (0.85~0.94)	42.702	0.886	22.0	2023-1-10
835 Head	835	41.5 (39.43~43.58)	0.90 (0.86~0.95)	40.026	0.907	22.2	2023-1-7
1900 Head	1900	40.0 (38.00~42.00)	1.40 (1.33~1.47)	39.970	1.393	21.9	2023-1-9
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	38.416	1.791	21.8	2023-1-10
5250 Head	5250	35.9 (34.11~37.70)	4.66 (4.47~4.95)	36.526	4.739	21.8	2023-1-5
5600 Head	5600	35.5 (33.73~37.30)	5.07 (4.82~5.32)	35.623	5.148	21.9	2023-1-6
5750 Head	5750	35.4 (33.63~37.17)	5.22 (4.96~5.48)	35.196	5.308	22.1	2023-1-6

 Table 4:
 Measurement result of Tissue electric parameters

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,


South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 30 of 78

6.2 SAR System Check

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system check

Report No.: SEWM2212000309RG08 Page : 31 of 78

6.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

a) There is no physical damage on the dipole;

- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 32 of 78

6.2.2 Summary System Check Result(s)

Valie	dation Kit	Measured SAR 250mW	Measured SAR 250mW	Measured SAR (normalized to 1W)	Measured SAR (normalized to 1W)	(normalized	Target SAR (normalized to 1W)			Liquid Temp. (℃)	Test Date	
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	1- g(W/kg)	10- g(W/kg)			
CLA13	Head	0.14	0.09	0.58	0.34	0.58	0.36	-0.34%	-5.29%	22.5	2023/2/2	
D750V3	Head	2.17	1.42	8.68	5.68	8.48	5.56	2.36%	2.16%	22.0	2023/1/10	
D835V2	Head	2.25	1.48	9.00	5.92	9.52	6.17	-5.46%	-4.05%	22.2	2023/1/7	
D1900V2	Head	9.32	4.84	37.28	19.36	39.70	20.30	-6.10%	-4.63%	21.9	2023/1/9	
D2450V2	Head	12.5	5.83	50.00	23.32	52.20	24.50	-4.21%	-4.82%	21.8	2023/1/10	
Valio	Measured SAR 100mW		Validation Kit Measured Measured SAR SAR SAR 100mW 100mW (normalized					normalized (normalized (With		eviation hin ±10%) Liquid Temp		I Det
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	1- g(W/kg)	10- g(W/kg)	(°C)		
	Head(5.25GHz)	7.62	2.16	76.20	21.60	78.00	21.80	-2.31%	-0.92%	21.8	2023/1/5	
D5GHzV2	Head(5.6GHz)	7.66	2.15	76.60	21.50	79.90	22.50	-4.13%	-4.44%	21.9	2023/1/6	
	Head(5.75GHz)	7.45	2.11	74.50	21.10	76.40	21.20	-2.49%	-0.47%	22.1	2023/1/6	

 Table 5:
 SAR System Check Result

6.2.3 Detailed System Check Results

Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 33 of 78

7 Test Configuration

7.1 GSM SAR Test Reduction Procedure

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMW500 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS/DTM function. Since the GPRS class is 33 for this EUT, it has at most 4 timeslots in uplink and at most 5 timeslots in downlink, the maximum total timeslot is 6. The EGPRS class is 33 for this EUT, it has at most 4 timeslots is 11 for this EUT, it has at most 3 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 6.

SAR test reduction for GPRS and EDGE/DTM modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS/DTM mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE/DTM as the primary mode

7.1.1 3G SAR Test Reduction Procedure

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

7.2 Operation Configurations

7.2.1 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2). Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode.

Report No.: SEWM2212000309RG08 Page : 34 of 78

Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3). Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4). HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq 1/4$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) <u>HSDPA</u>

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) are set according to values indicated in the following table The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

βc	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
2/15	15/15	64	2/15	4/15	0.0	0
12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
15/15	8/15	64	15/8	30/15	1.5	0.5
15/15	4/15	64	15/4	30/15	1.5	0.5
-	2/15 12/15(3) 15/15	2/15 15/15 12/15(3) 15/15(3) 15/15 8/15	2/15 15/15 64 12/15(3) 15/15(3) 64 15/15 8/15 64	pc bt pc/pt 2/15 15/15 64 2/15 12/15(3) 15/15(3) 64 12/15(3) 15/15 8/15 64 15/8	pc bd pc,pd pc,pd pc 2/15 15/15 64 2/15 4/15 12/15(3) 15/15(3) 64 12/15(3) 24/15 15/15 8/15 64 15/8 30/15	pc bd r x r pc/pd r x r pc/pd r x r 2/15 15/15 64 2/15 4/15 0.0 12/15(3) 15/15(3) 64 12/15(3) 24/15 1.0 15/15 8/15 64 15/8 30/15 1.5

Note1: ΔACK, ΔNACK and ΔCQI= 8 Ans = βhs/βc=30/15 βhs=30/15 βc Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, ΔACK and ΔNACK= 8 (Ahs=30/15) with βhs=30/15*βc,and ΔCQI=

7 (Ahs=24/15) with βhs=24/15*βc.

Note3: CM=1 forβc/βd =12/15, βhs/βc=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are relating for days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@ags.com

中國 • 苏州 • 中国 (江苏) 自由贸易试验区苏州片区苏州工业园区润胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 35 of 78

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 6: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sas.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terms and Conditions for Electronic Documents at <u>http://www.sas.com/en/Terms-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 36 of 78

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter- TTI Interval	MaximumH S-DSCH Transport BlockBits/HS- DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 7: HSDPA UE category

b) <u>HSUPA</u>

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the WCDMA Handset and Release 5 HSUPA Data Device sections of 3G device.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 37 of 78

Sub -test₽	βe≁	βd≁	βd (SF)ψ	β₀∕βd≠	β _{hs} (1)+ ²	β _{ec+} ∂	$\beta_{ed^{4^2}}$	β. • ^{4-]} (SF)+ ²	β _{ed+} , (code)+ ¹	CM(2)+' (dB)+'	MP Re (dB)e	AG ⁽⁴)+ ^J Inde x+ ^J	E- TFC I+
14	11/15(3)	15/15(3)0	<mark>6</mark> 4₽	11/15(3)+3	22/15¢	209/22 5+3	1039/225	4₽	10	1.04	<mark>0.0</mark> ₽	20₽	75₽
2.0	6/15+2	15/15+2	<mark>6</mark> 4₽	6/15+	12/15¢	12/15+2	<mark>9</mark> 4/75₊∂	4 ø	10	3.0 ₽	2.0₽	12φ	<mark>67</mark> ₽
3₽	15/15+	9/15₽	64₽	15/94	30/154	30/15¢	β _{ed1} :47/1 5 ₄ , β _{ed2:} 47/1 5 ₄ ,	4₽	20	2.04	1.0₽	150	92 ₽
40	2/15₽	15/154	6 4₽	2/154	4/15₽	2/15₽	56/75₽	4 ₽	1 ø	3.0 ∉	2.043	17 ₽	71 @
5₽	15/15(4)+7	15/15(4)+3	6 4₽	15/15(4)+3	30/15₽	24/15	134/15+	4 @	1 @	1.04	<mark>0.0</mark> ₽	21.0	<mark>81</mark> ₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_e = 30/15$ $\beta_{hs} = 30/15 * \beta_{ee}$

Note 2: CM = 1 for $\beta_e/\beta_d = 12/15$, $\beta_{hs}/\beta_e = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15_{+1}$

Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: $\beta_{ed}\, can \, not \, be \, set \, directly; it is set by Absolute Grant Value.$ $<math display="inline">\diamond$

Table 8: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)						
1	1	4	10	4	7110	0.7296						
2	2	8	2	4	2798	1.4592						
2	2	4	10	4	14484	1.4092						
3	2	4	10	4	14484	1.4592						
4	2	8	2	2	5772	2.9185						
4	2	4	10	2	20000	2.00						
5	2	4	10	2	20000	2.00						
6	4	8	10	2SF2&2SF	11484	5.76						
(No DPDCH)	4	4	2	4	20000	2.00						
7	4	8	2	2SF2&2SF	22996	?						
(No DPDCH)	4	4	10	4	20000	?						
	NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-											

7.3.0)

Table 9: HSUPA UE category

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions/Terms-and-Conditions</u>, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection reports & certificate, please contact us at telehone: (86-755) 5307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsai) Plot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

SGS

Report No.: SEWM2212000309RG08 Page : 38 of 78

c) <u>DC-HSDPA</u>

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13.

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK.

-

Table 10: settings of required H-Set 12 QPSK acc. to 3GPP 34.121

Note:

1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.

2. Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telehome: (86-755) 8307 1443.

Segmentation

SGS-CSTC Standards Technical Services (Suzhou) Co., Ltd.

Report No.: SEWM2212000309RG08 Page : 39 of 78

Inf. Bit Payload	120	
CRC Addition	120 24 CRC	
Code Block Segmentation	144	
Turbo-Encoding (R=1/3)	432	12 Tail Bits
1st Rate Matching	432	
RV Selection	960	
Physical Channel		

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test.	βc [₽]	β _d ⊷	β _d (SF) ₄	βc⁺/βd⁴∂	$\beta_{hs}(1)$	CM(dB)(2),0	MPR (dB)					
10	2/15	15/15@	<mark>64</mark> ₽	2/15@	4/15@	0.0	0.0					
20	12/15(3)	15/15(3)	<mark>64</mark> ₽	12/15(3)	24/15	1.00	0.0					
3₽	15/15@	8/15₽	<mark>64</mark> ₽	15/8~	30/15@	1.50	0.50					
4.0	15/15@	4/15₽	<mark>64</mark> ₽	15/4~	30/15@	1.50	0.50					
Note·1: △ AC	Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c + 10^{-10}$											
Note2:CM=	$1 \text{ for } \beta_c / \beta_{d=} 1$	$2/15, \beta_{\rm hs}/\beta_{\rm c}=$	24/15.For all o	ther combination	onsofDPDCI	I,DPCCH and H	S-DPCCH the MPR is					
based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.												
Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting												
the signalled g	gain factors fo	or the reference	eTFC (TF1,TF	F1) to $\beta_c = 11/1$	$5 \text{ and } \beta_d = 15/$	15 <i>-</i>						

Up commands are set continuously to set the UE to Max power.

Note:

1. The Dual Carriers transmission only applies to HSDPA physical channels

2. The Dual Carriers belong to the same Node and are on adjacent carriers.

3. The Dual Carriers do not support MIMO to serve UEs configured for dual cell operation

4. The Dual Carriers operate in the same frequency band.

960

5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.

6. The device doesn't support carrier aggregation for it just can operate in Release 8.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 40 of 78

d) <u>HSPA+</u>

Per KDB941225D01, SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode. Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.

Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM

Sub-	βc⊷	βd∉	β°Hs⊬	β _{ec} ₊≀	β _{ed} ₊≀	β _{ed} ₊≀	CM⊷	MPR↩	AG⊷	E-TFCI	E-TFCI		
test∂	(Note3)₽		(Note1)₽	÷	(2xSF2) ⊬	(2xSF4)⊬	(dB)⊬	(dB)⊬	Index.₀	(Note 5)	(boost)⇔		
					(Note 4)₽	(Note 4)↩	(Note 2)∉	(Note 2)⊹	(Note 4)₽				
1 ₽	1 ₽	0+ 30/15+ 30/15+ βed3: 24/15+ 3.5+ 2.5+ 14+ 105+ 105+ 4											
	βed2: 30/15∉ βed4: 24/15∉												
Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c \cdot \psi$													
Note 2	Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1,0).												
					refore the β ₀								
Note 4	: βed can	not l	be set dire	ctly; it is	s set by Abso	lute Grant Va	lue.⊬						
Note 5	: All the s	sub-t	ests requir	re the U	IE to transmit	2SF2+2SF4	16QAM E	DCH and t	hey apply	for UE usi	ng E-		
	DPDCF	l cat	egory 7. E	-DCH T	TI is set to 2r	ms TTI and E	-DCH table	e index = 2	2. To suppo	ort these E	-DCH		
	configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.												

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 41 of 78

7.2.2 WiFi Test Configuration

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

7.2.2.1 Duty cycle

1) Wi-Fi 2.4GHz 802.11b: Duty cycle=99.12%

Spect	rum							("
Ref Le	vel 3	1.00 dB			RBW 3 MHz			
Att		50 d	B 📾 SWT 🛛 3	10 ms 👄	VBW 3 MHz			
SGL								
1Pk Cl	rw							
						D2[1]		-0.04 dB
20 dBm					M1			8.5086 ms
20 0011		000			INT.	M1[1]	D2	15.06 dBm
10 dBm	-							14.3673 ms
0 dBm-	-				+			
-10 dBm					+ +			
-20 dBm								
-20 uBn	-							
-30 dBm			1		<u>, 1</u>		1	
50 000	·							
-40 dBm			_					
-50 dBm						2°		
-60 dBm	1							
CF 2.4	12 GH	z			2001 p	ots		3.0 ms/
Marker								
Type	Ref		X-value	2	Y-value	Function	Function	1 Result
M1 D1	M1	1	14.367 8.434		15.06 dBm -0.06 dB			
D2	M1	1	8.508		-0.00 dB			
		-	01000		0101100		Ready	

Date: 12.DEC.2022 10:52:14

2) Wi-Fi 5GHz 802.11ac VHT80:

Spect	rum)							1
Ref Le	vel 2	3.00 dBn	Offset 1	1.00 dB 🥃 I	RBW 10 MHz				i i i
Att		40 de	B 👄 SWT	20 ms 👄 '	VBW 10 MHz				
SGL				The second second					
1Pk M	ах								
20 dBm						M1[1]			4.76 dB
					D1				7.0150 m
210/dam	in the state of th	asterflife fille	and the work of the	ant a grant and a grant of a gran	A service or the service	and the state of the second se	patroport have been been been been been been been be	shay themesterines in	
0 dBm					1	т.	T T	1	2.9050 m
J aBm									
-10 dBm									
10 000									
-20 dBm									
-30 dBm			4	0	Ŷ		V		U
-40 dBm	1								
-50 dBrr									
-30 ubii									
-60 dBm								_	
-70 dBm			-		-				
CF 5.2	1 GHz				1001 pt	s			2.0 ms/
1arker									
Туре	Ref		X-value		Y-value	Function		Function R	esult
M1 D1	M1	1		015 ms 805 ms	4.76 dBm 5.55 dB				
D1 D2	M1	1		.91 ms	1.94 dB				
02	1VIII	- 1	2	. 21.115	1.94 00	L.			

Date: 7.DEC.2022 17:30:35

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 42 of 78

7.2.2.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

7.2.2.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration. For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is \leq 1.2 W/kg or all required channels are tested.

7.2.2.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

1) When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.

overle subje Atten advis Client transa excep appea result Atten	s otherwise agreed in writing, this document is issued by arf, available on request or accessible at http://www.sgs.cor to Terms and Conditions for Electronic Documents at Jn ion is drawn to the limitation of liability, indemnification ar ad that information contained hereon reflects the Company is instructions, if any. The Company's sole responsibility totion from exercising all their rights and obligations und in full, without prior written approval of the Company. A rance of this document is unlawful and offenders may be p shown in this test report refer only to the sample(s) tested a tion: To check the authenticity of testing /inspection rep all: CN_Doccheck@ags.com	m/ei ttp:// nd ju /'s f is f er th any rose	n/Terms-and- /www.sgs.com unisdiction iss indings at the to its Client is the transaction unauthorized ecuted to the such sample(Conditions. m/en/Terms sues define e time of its and this do n documen I alteration, fullest exter (s) are retai	<u>aspx</u> and, <u>-and-Conc</u> ad therein, s intervent ocument d ots. This d , forgery c ant of the l ined for 30	for electron ditions/Term . Any holde tion only an loes not ex ocument ca or falsificati aw. Unless days only.	ic format documents- e-Document.as r of this document d within the limits onerate parties t annot be reprodu on of the conten otherwise stated	nts, spx. it is s of ced t or the
South of	No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zo	one	215000	t ((86-512) 62	992980	www.sgsgroup.con	n.cn
中国・	5州·中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮	编:	215000	t ((86–512) 62	992980	sgs.china@sgs.cor	n

Member of the SGS Group (SGS SA)

Report No.: SEWM2212000309RG08 Page : 43 of 78

When the highest *reported* SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

- 2) The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 3) SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.asox and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.ashx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document is unaperval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unaperval of the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing fuspection reports & certificate, please contact us at telephone: (86-755) 8307 1443.

Report No.: SEWM2212000309RG08 Page : 44 of 78

7.2.2.5 2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

• 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1). When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

• SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 45 of 78

7.2.2.6 5 GHz WiFi SAR Procedures

• U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

• U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) itested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing / Inspection reports & certificate, please contact us at telehome: (86-755) 8307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 46 of 78

• OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - a) The channel closest to mid-band frequency is selected for SAR measurement.
 - b) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

• SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443.

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Plot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的约号厂房南部 邮编: 215000

7.2.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

Modulation	Channel bandwidth / Transmission bandwidth configuration [RB]								
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz			
QPSK	> 5	>4	> 8	> 12	> 16	> 18	· ≤1		
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1		
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤2		
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤2		
64 QAM	> 5	>4	> 8	> 12	> 16	> 18	≤ 3		
256 QAM				≥ 1			≤ 5		

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > $\frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-a-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing imspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: Ch.Doccheck@ags.com

Report No.: SEWM2212000309RG08 Page : 48 of 78

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. **F) Frequency range and channel bandwidth**

		Fransmission (H	I, M, L) channe	el numbers and	frequencies in	each LTE band	ł		
				LTE Band 5					
	Bandwidt	h 1.4 MHz	Bandwid	th 3 MHz	Bandwid	th 5 MHz	Bandwidth 10 MHz		
	Ch. #	Freq. (MHz)	Ch. # Freq. (MHz)		Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	
L	20407	824.7	20415	825.5	20425	826.5	20450	829	
М	20525	836.5	20525	836.5	20525	836.5	20525	836.5	
н	20643	848.3	20635	847.5	20625	846.5	20600	844	
				LTE Band 12					
	Bandwidt	h 1.4 MHz	Bandwid	th 3 MHz	Bandwid	th 5 MHz	Bandwidth 10 MHz		
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	
L	23017	699.7	23025	700.5	23035	701.5	23060	704	
М	23095	707.5	23095	707.5	23095	707.5	23095	707.5	
Н	23173	715.3	23165	714.5	23155	713.5	23130	711	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 49 of 78

8 Test Result

8.1 Measurement of RF conducted Power

8.1.1 Conducted Power of GSM

	GSM 850										
В	urst Output Power(dBm)				Tung un	Division Fostore	Frame-Aver	age Output I	Power(dBm)	Tung un	
Cł	nannel	128	190	251	Tune up	Division Factors	128	190	251	Tune up	
GSM(GMSK)	GSM	32.22	32.19	31.95	33.50	-9.19	23.03	23.00	22.76	24.31	
	1 TX Slot	32.15	32.07	31.92	33.50	-9.19	22.96	22.88	22.73	24.31	
GPRS/EGPRS	2 TX Slots	30.23	30.20	29.85	31.50	-6.18	24.05	24.02	23.67	25.32	
(GMSK)	3 TX Slots	28.55	28.62	28.56	30.00	-4.42	24.13	24.20	24.14	25.58	
	4 TX Slots	27.69	27.59	27.61	28.50	-3.17	24.52	24.42	24.44	25.33	
	1 TX Slot	25.84	25.89	25.76	27.00	-9.19	16.65	16.70	16.57	17.81	
EGPRS(8PSK)	2 TX Slots	24.19	24.29	24.22	25.50	-6.18	18.01	18.11	18.04	19.32	
	3 TX Slots	23.16	23.19	23.26	24.50	-4.42	18.74	18.77	18.84	20.08	
	4 TX Slots	22.12	22.14	22.07	23.50	-3.17	18.95	18.97	18.90	20.33	
DTM Multi-slot	GSM 1 TX Slot	30.24	30.28	29.95	31.50	-6.18	24.06	24.10	23.77	25.32	
class5	GPRS 1 TX Slot	30.21	30.25	29.93	31.50	-0.10	24.00	24.10	23.11	20.02	
DTM Multi-slot	GSM 1 TX Slot	30.21	30.31	29.95	31.50	-6.18	24.03	24.13	23.77	25.32	
class9	GPRS 1 TX Slot	30.26	30.35	29.92	31.50	-0.10	24.00	24.10	20.11	20.02	
DTM Multi-slot	GSM 1 TX Slot		_	28.53		-4.42	24.17	24.18	24.11	25.58	
class11	GPRS 2 TX Slot			28.56			24.17	24.10	24.11	20.00	
DTM Multi-slot	GSM 1 TX Slot			24.26		-6.18	18.06	18.21	18.08	19.32	
class5	EGPRS 1 TX Slot	24.27	24.31	24.24	25.50	-0.10	10.00	10.21	10.00	19.52	
DTM Multi-slot	GSM 1 TX Slot			24.31	25.50	-6.18	18.04	18.20	18.13	19.32	
class9	EGPRS 1 TX Slot			24.38		-0.10	10.04	10.20	10.15	10.02	
DTM Multi-slot	GSM 1 TX Slot	23.16	23.18	23.30	24.50	-4.42	18.74	18.76	18.88	20.08	
class11	EGPRS 2 TX Slot	23.12	23.19	23.33	24.50	-4.42	10.74	10.70	10.00	20.00	

GSM 1900 Burst Output Power(dBm) Chapped 512 661 810 Tune up Division Factors Frame-Average Output Power(dBm) Tune up										
B	urst Output Power(dBm)				Tune up	Division Factors	Frame-Aver	age Output F	Power(dBm)	
Ch	nannel	512	661	810	rune up	DIVISION FACIOIS	512	661	810	rune up
GSM(GMSK)	GSM	26.67	26.86	26.79	28.00	-9.19	17.48	17.67	17.60	18.81
	1 TX Slot	26.77	26.68	26.48	28.00	-9.19	17.58	17.49	17.29	18.81
GPRS/EGPRS	2 TX Slots	25.76	25.70	25.41	27.00	-6.18	19.58	19.52	19.23	20.82
(GMSK)	3 TX Slots	23.73	23.72	23.52	25.00	-4.42	19.31	19.30	19.10	20.58
	4 TX Slots	22.69	22.70	22.51	24.00	-3.17	19.52	19.53	19.34	20.83
	1 TX Slot	22.48	22.38	22.20	23.50	-9.19	13.29	13.19	13.01	14.31
EGPRS(8PSK)	2 TX Slots	21.96	21.90	21.90	23.00	-6.18	15.78	15.72	15.72	16.82
EGERG(OFSK)	3 TX Slots	20.31	19.81	19.92	21.00	-4.42	15.89	15.39	15.50	16.58
	4 TX Slots	19.34	19.34	19.68	20.50	-3.17	16.17	16.17	16.51	17.33
DTM Multi-slot	GSM 1 TX Slot	25.70	25.89	25.84	27.00	6 1 9	19.52	19.71	19.66	20.02
class5	GPRS 1 TX Slot	25.71	25.83	25.81	27.00	-6.18	19.52	19.71	19.00	20.82
DTM Multi-slot	GSM 1 TX Slot	25.68	25.93	25.89	27.00	-6.18	19.50	19.75	19.71	20.92
class9	GPRS 1 TX Slot	25.63	25.96	25.84	27.00	-0.10	19.50	19.75	19.71	20.82
DTM Multi-slot	GSM 1 TX Slot	23.72	23.69	23.50	25.00	-4.42	19.30	19.27	19.08	20.58
class11	GPRS 2 TX Slot	23.77	23.63	23.53	25.00	-4.42	19.30	19.27	19.06	20.56
DTM Multi-slot	GSM 1 TX Slot	21.68	21.56	21.51	23.00	-6.18	15.50	15.38	15.33	16.82
class5	EGPRS 1 TX Slot	21.65	21.51	21.52	23.00	-0.10	15.50	15.50	15.55	10.02
DTM Multi-slot	GSM 1 TX Slot	21.73	21.57	21.51	23.00	6 1 9	15.55	15.20	15.00	16.82
class9	EGPRS 1 TX Slot	21.72	21.54	21.56	23.00	-6.18	10.00	15.39	15.33	10.62
DTM Multi-slot	GSM 1 TX Slot	20.33	19.81	19.88	21.00	4.40	15.01	15.20	15 46	16 50
class11	EGPRS 2 TX Slot	20.32	19.87	19.86	21.00	-4.42	15.91	15.39	15.46	16.58

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Cocument.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company hay unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are restained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443, or email: CM.Ooccheck@s.gs.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, Chine (Jiangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 50 of 78

Note:

1) . CMW500 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

2) . The maximum output power channel is used for SAR testing and for further SAR test reduction

3) For DTM multi-slot class mode, the device was linked with base station simulator (CMW500)and transmit maximum power on maximum number of TX slots, ie.one CS timeslot, and additional PS timeslots(1 for DTM class5) in one TDMA frame.

- 4) . CMW500 was used to setup the device operated under DTM mode for power measurement and SAR testing. For conducted power, the power of the burst for voice and the power of the bursts for data was reported separately in the table above, and the frame-average power is derived below to determine SAR testing.
- 5) The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below: Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8
- 6) . When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used
- 7) . For SAR testing, the EUT was set in DTM11(2TX slots) and GPRS 3 TX Slots for GSM850 due to its same frame-average power, Give priority to GPRS 3 TX test, and DTM Class 11 to test the worst conditions.

WCDMA Band V										
Average Conducted Power(dBm)										
Cha	annel	4132	4182	4233	Tune up					
WCDMA	12.2kbps RMC	23.48	23.59	23.49	24.50					
VVCDIVIA	12.2kbps AMR	23.47	23.47	23.42	24.50					
	Subtest 1	22.74	22.77	22.74	23.50					
	Subtest 2	22.77	22.82	22.75	23.50					
HSDPA	Subtest 3	21.80	21.76	21.81	23.00					
	Subtest 4	21.89	21.77	21.83	23.00					
	Subtest 1	22.78	22.85	22.78	23.50					
	Subtest 2	20.83	20.78	20.83	21.50					
HSUPA	Subtest 3	21.70	21.79	21.88	22.50					
	Subtest 4	20.74	20.71	20.73	21.00					
	Subtest 5	22.75	22.77	22.76	23.50					
	Subtest 1	22.69	22.72	22.69	23.50					
	Subtest 2	22.66	22.84	22.77	23.50					
DC-HSDPA	Subtest 3	21.76	21.75	21.88	23.00					
	Subtest 4	21.77	21.69	21.91	23.00					
HSPA+	16QAM	20.74	20.71	20.82	22.50					

8.1.2 Conducted Power of WCDMA

Note:

1) when the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

Report No.: SEWM2212000309RG08 Page : 51 of 78

8.1.3 Conducted Power of LTE

	LTE B	and 5			Conducted	Power(dBm)	
				Channel	Channel	Channel	_
Bandwidth	Modulation	RB size	RB offset	20407	20525	20643	Tune up
		1	0	23.16	22.99	22.89	24.50
		1	2	23.15	23.03	22.95	24.50
		1	5	23.17	23.13	23.05	24.50
	QPSK	3	0	22.70	22.55	22.54	24.50
		3	2	22.79	22.55	22.58	24.50
		3	3	22.72	22.59	22.51	24.50
		6	0	22.26	22.12	22.09	23.50
		1	0	22.31	22.07	22.06	23.50
		1	2	22.21	22.04	22.02	23.50
		1	5	22.24	22.11	22.11	23.50
1.4MHz	16QAM	3	0	22.24	22.13	22.06	23.50
		3	2	22.20	22.08	22.09	23.50
		3	3	22.24	22.12	22.03	23.50
		6	0	21.27	21.16	20.99	22.50
		1	0	21.31	21.11	21.05	22.50
		1	2	21.21	21.19	21.17	22.50
		1	5	21.27	21.19	21.07	22.50
	64QAM	3	0	21.30	21.15	21.09	22.50
		3	2	21.27	21.09	21.12	22.50
		3	3	21.15	21.15	21.10	22.50
		6	0	20.25	20.29	20.23	21.50
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up
Bandwidth	Wodulation	RD SIZE	KB Oliset	20415	20525	20635	Tune up
		1	0	23.17	22.97	23.02	24.50
		1	7	23.17	22.99	22.90	24.50
		1	14	23.22	23.02	22.99	24.50
	QPSK	8	0	22.17	22.08	22.05	23.50
		8	4	22.28	22.04	22.04	23.50
		8	7	22.26	22.01	22.07	23.50
2MЦ~		15	0	22.24	22.06	22.03	23.50
3MHz		1	0	22.27	22.08	22.07	23.50
		1	7	22.24	22.00	22.02	23.50
		1	14	22.26	22.10	22.08	23.50
	16QAM	8	0	21.26	21.14	21.10	22.50
		8	4	21.30	21.11	21.15	22.50
		8	7	21.28	21.20	21.08	22.50
		15	0	21.28	21.16	21.07	22.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiciton issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document to be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing linspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@gs.com

Green Control Contr

Report No.: SEWM2212000309RG08 Page : 52 of 78

		1	0	21.27	21.13	21.13	22.50
			7				
		1		21.14	21.17	21.05	22.50
		1	14	21.28	21.18	21.13	22.50
	64QAM	8	0	20.33	20.22	20.21	21.50
		8	4	20.28	20.24	20.18	21.50
		8	7	20.34	20.28	20.20	21.50
		15	0	20.33	20.24	20.29	21.50
Bandwidth	Modulation	RB size	RB offset	Channel 20425	Channel 20525	Channel 20625	Tune up
		1	0	23.15	22.97	23.01	24.50
		1	13	23.18	22.97	22.95	24.50
		1	24	23.18	23.02	22.95	24.50
	QPSK	12	0	23.18		22.95	24.50
	QPSK				22.07		
		12	6	22.30	22.05	22.05	23.50
		12	13	22.24	22.03	22.03	23.50
		25	0	22.24	22.11	22.05	23.50
		1	0	22.33	22.03	22.12	23.50
		1	13	22.29	22.07	22.05	23.50
	5MHz 16QAM	1	24	22.34	22.11	22.12	23.50
5MHz		12	0	21.28	21.14	21.05	22.50
		12	6	21.26	21.15	21.20	22.50
		12	13	21.28	21.13	21.02	22.50
		25	0	21.27	21.14	21.06	22.50
		1	0	21.30	21.06	21.06	22.50
		1	13	21.13	21.12	21.12	22.50
		1	24	21.26	21.15	21.15	22.50
	64QAM	12	0	20.31	20.20	20.23	21.50
		12	6	20.27	20.25	20.21	21.50
		12	13	20.32	20.34	20.21	21.50
		25	0	20.29	20.21	20.23	21.50
Donaluriate	Modulation	PR size	PP offect	Channel	Channel	Channel	Tupo up
Bandwidth	Modulation	RB size	RB offset	20450	20525	20600	Tune up
		1	0	23.23	23.02	22.97	24.50
		1	25	23.14	22.97	22.92	24.50
		1	49	23.21	23.05	23.00	24.50
	QPSK	25	0	22.21	22.04	22.08	23.50
		25	13	22.27	22.10	22.03	23.50
10MHz	25	25	22.25	22.07	22.03	23.50	
		50	0	22.31	22.08	22.05	23.50
		1	0	22.27	22.05	22.08	23.50
		1	25	22.27	22.04	22.08	23.50
	16QAM	1	+				
			49	22.30	22.12	22.09	23.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions (for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, Chine (Jiangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 53 of 78

	25	13	21.28	21.10	21.21	22.50
	25	25	21.28	21.20	21.08	22.50
	50	0	21.28	21.10	21.04	22.50
	1	0	21.31	21.13	21.09	22.50
	1	25	21.16	21.16	21.08	22.50
	1	49	21.21	21.16	21.14	22.50
64QAM	25	0	20.37	20.21	20.21	21.50
	25	13	20.28	20.20	20.23	21.50
	25	25	20.37	20.34	20.21	21.50
	50	0	20.28	20.28	20.27	21.50

	LTE FDD	Band 12		Conducted Power(dBm)					
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tune up		
Bandwidth	Woodation	KB SIZE	KB onset	23017	23095	23173	i une up		
		1	0	23.24	23.21	23.21	24.50		
		1	2	23.04	23.10	23.07	24.50		
		1	5	23.22	23.23	23.19	24.50		
	QPSK	3	0	22.70	22.75	22.74	24.50		
		3	2	22.79	22.76	22.81	24.50		
		3	3	22.73	22.75	22.76	24.50		
		6	0	22.21	22.28	22.27	23.50		
		1	0	22.21	22.28	22.23	23.50		
		1	2	22.26	22.31	22.30	23.50		
		1	5	22.33	22.28	22.29	23.50		
1.4MHz	1.4MHz 16QAM	3	0	22.22	22.22	22.21	23.50		
		3	2	22.26	22.28	22.33	23.50		
		3	3	22.33	22.33	22.21	23.50		
		6	0	21.15	21.19	21.21	22.50		
		1	0	21.27	21.30	21.25	22.50		
		1	2	21.28	21.32	21.18	22.50		
		1	5	21.21	21.23	21.21	22.50		
	64QAM	3	0	21.28	21.20	21.26	22.50		
		3	2	21.31	21.19	21.27	22.50		
		3	3	21.24	21.26	21.21	22.50		
		6	0	20.30	20.26	20.25	21.50		
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel	Tupo up		
Bandwidth	wooulation	KD SIZE	KD UISET	23025	23095	23165	Tune up		
		1	0	23.24	23.25	23.17	24.50		
3MHz	QPSK	1	7	22.99	23.05	23.06	24.50		
SIVITIZ	ULOV	1	14	23.15	23.26	23.15	24.50		
		8	0	22.17	22.23	22.23	23.50		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic bocuments at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information constained hereon reflects the Company's findings at the time of its intervention only and within the limits of Clients' instructions, if any. The Company's soil responsibility is to its Client and this document cannot be reproduced except in fully, without prior written approval of the Company. Any unauthorized alteration, forgery or faisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN_Doccheck@ags.com

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Plot Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州 汁区苏州 工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 54 of 78

				00.00	00.00	00.00	00.50
		8	4	22.29	22.26	22.29	23.50
		8	7	22.26	22.23	22.26	23.50
		15	0	22.23	22.25	22.27	23.50
		1	0	22.18	22.28	22.28	23.50
		1	7	22.25	22.33	22.31	23.50
		1	14	22.31	22.28	22.34	23.50
	16QAM	8	0	21.20	21.18	21.22	22.50
		8	4	21.23	21.31	21.30	22.50
		8	7	21.30	21.32	21.27	22.50
		15	0	21.18	21.20	21.24	22.50
		1	0	21.27	21.23	21.21	22.50
		1	7	21.25	21.29	21.19	22.50
		1	14	21.21	21.17	21.23	22.50
	64QAM	8	0	20.37	20.31	20.24	21.50
		8	4	20.35	20.29	20.27	21.50
		8	7	20.30	20.28	20.29	21.50
		15	0	20.37	20.32	20.30	21.50
Developed	Marchaladian			Channel	Channel	Channel	T
Bandwidth	Modulation	RB size	RB offset	23035	23095	23155	Tune up
		1	0	23.17	23.21	23.13	24.50
		1	13	23.02	23.06	23.05	24.50
		1	24	23.14	23.24	23.14	24.50
	QPSK	12	0	22.17	22.23	22.27	23.50
		12	6	22.26	22.25	22.32	23.50
		12	13	22.22	22.21	22.19	23.50
		25	0	22.23	22.26	22.23	23.50
		1	0	22.21	22.26	22.29	23.50
		1	13	22.22	22.34	22.31	23.50
		1	24	22.29	22.23	22.28	23.50
5MHz	16QAM	12	0	21.26	21.22	21.27	22.50
		12	6	21.26	21.29	21.33	22.50
		12	13	21.33	21.31	21.27	22.50
		25	0	21.19	21.18	21.24	22.50
		1	0	21.28	21.29	21.25	22.50
		1	13	21.27	21.32	21.21	22.50
		1	24	21.25	21.21	21.19	22.50
	64QAM	12	0	20.31	20.24	20.25	21.50
		12	6	20.37	20.28	20.27	21.50
		12	13	20.30	20.32	20.25	21.50
		25	0	20.39	20.23	20.26	21.50
				Channel	Channel	Channel	
Bandwidth	Modulation	RB size	RB offset	23060	23095	23130	Tune up
10MHz	QPSK	1	0	23.18	23.30	23.13	24.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions (for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions

South of Na.6 Plan, No.1, Runsheng Read, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 55 of 78

	1	25	23.01	23.04	23.06	24.50
	1	49	23.19	23.29	23.13	24.50
	25	0	22.16	22.31	22.27	23.50
	25	13	22.23	22.25	22.31	23.50
	25	25	22.24	22.26	22.27	23.50
	50	0	22.28	22.30	22.30	23.50
	1	0	22.25	22.27	22.25	23.50
	1	25	22.21	22.33	22.29	23.50
	1	49	22.33	22.26	22.30	23.50
16QAM	25	0	21.20	21.17	21.23	22.50
	25	13	21.25	21.32	21.29	22.50
	25	25	21.34	21.32	21.25	22.50
	50	0	21.19	21.21	21.21	22.50
	1	0	21.26	21.28	21.26	22.50
	1	25	21.23	21.29	21.18	22.50
	1	49	21.20	21.17	21.23	22.50
64QAM	25	0	20.33	20.28	20.30	21.50
	25	13	20.33	20.27	20.24	21.50
	25	25	20.30	20.28	20.27	21.50
	50	0	20.31	20.24	20.22	21.50

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-enDcountent.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulleet extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@sgs.com

Report No.: SEWM2212000309RG08 Page : 56 of 78

8.1.4 Conducted Power of WIFI

Mode	Channel Frequency(MHz)		Data Rate(Mbps)	Average Power (dBm)	Tune up
	1	2412		14.86	15.00
802.11b	6	2437	1	14.29	15.00
	11	2462		14.12	15.00
	1	2412		14.33	15.00
802.11g	6	2437	6	13.81	15.00
	11	2462		13.80	15.00
	1	2412		14.14	15.00
802.11n HT20	6	2437	6.5	13.54	15.00
	11	2462		13.50	15.00

5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		36	5180		9.22	10.00
	U-NII-1	40	5200	-	9.42	10.00
	U-INII-1	44	5220	-	9.62	10.00
		48	5240	-	9.81	10.00
		52	5260		9.87	10.00
	U-NII-2A	56	5280	-	9.72	10.00
	U-NII-ZA	60	5300	-	9.66	10.00
		64	5320	-	9.31	10.00
		100	5500	-	9.57	10.00
		104	5520	-	9.65	10.00
		108	5540	-	9.64	10.00
		112	5560	6	9.49	10.00
802.11a		116	5580	6	9.27	10.00
		120	5600	-	9.17	10.00
	U-NII-2C	124	5620		9.09	10.00
		128	5640		9.25	10.00
		132	5660		9.33	10.00
		136	5680		9.42	10.00
		140	5700	-	9.53	10.00
		144	5720	-	9.54	10.00
		149	5745		9.39	10.00
		153	5765		9.34	10.00
	U-NII-3	157	5785		9.36	10.00
		161	5805		9.32	10.00
		165	5825		9.38	10.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
802.11n-HT20	U-NII-1	36	5180	MCS0	9.07	10.00
002.1111-1120	U-INII- I	40	5200	IVIC SU	9.27	10.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/terms-and-Co

South of No. 6 Plant, No.1, Runsheng Road, Stanbu Industrial Park, Stuchou Area, Chine (Jangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润脏路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 57 of 78

		4.4	5000		0.00	10.00
		44	5220		9.39	10.00
		48	5240		9.57	10.00
		52	5260	-	9.65	10.00
	U-NII-2A	56	5280	-	9.54	10.00
		60	5300	-	9.41	10.00
		64	5320	-	9.01	10.00
		100	5500	-	9.30	10.00
		104	5520	-	9.36	10.00
		108	5540	-	9.45	10.00
		112	5560	-	9.27	10.00
		116	5580	_	8.98	10.00
	U-NII-2C	120	5600	_	8.95	10.00
	011120	124	5620		8.86	10.00
		128	5640		9.01	10.00
		132	5660		9.06	10.00
		136	5680		9.19	10.00
		140	5700		9.39	10.00
		144	5720		9.31	10.00
		149	5745		9.16	10.00
		153	5765		9.13	10.00
	U-NII-3	157	5785		9.13	10.00
		161	5805		9.05	10.00
		165	5825		9.15	10.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		38	5190		8.98	10.00
	U-NII-1	40	5230		9.18	40.00
		46	5250		9.10	10.00
		46 54	5270		9.63	10.00
	U-NII-2A			-		
	U-NII-2A	54	5270	-	9.63	10.00
	U-NII-2A	54 62	5270 5310		9.63 9.42	10.00 10.00
802.11n-HT40		54 62 102	5270 5310 5510	MCS0	9.63 9.42 9.35	10.00 10.00 10.00
802.11n-HT40	U-NII-2A U-NII-2C	54 62 102 110	5270 5310 5510 5550	MCS0	9.63 9.42 9.35 9.41	10.00 10.00 10.00 10.00
802.11n-HT40		54 62 102 110 118	5270 5310 55510 5550 5590	MCS0	9.63 9.42 9.35 9.41 9.31	10.00 10.00 10.00 10.00 10.00
802.11n-HT40		54 62 102 110 118 126	5270 5310 55510 5550 5590 5630	MCSO	9.63 9.42 9.35 9.41 9.31 9.29	10.00 10.00 10.00 10.00 10.00 10.00 10.00
802.11n-HT40	U-NII-2C	54 62 102 110 118 126 134	5270 5310 5510 5550 5590 5630 5670	MCS0	9.63 9.42 9.35 9.41 9.31 9.29 8.97	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
802.11n-HT40		54 62 102 110 118 126 134 142	5270 5310 5550 5550 5590 5630 5670 5710	MCS0	9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
802.11n-HT40 5GHz	U-NII-2C	54 62 102 110 118 126 134 142 151	5270 5310 5550 5550 5590 5630 5670 5710 5755	MCS0 Data Rate(Mbps)	9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90 9.11	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
	U-NII-2C U-NII-3	54 62 102 110 118 126 134 142 151 159	5270 5310 5550 5550 5590 5630 5670 5710 5755 5795		9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90 9.11 9.06 Average Power	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
	U-NII-2C U-NII-3 mode	54 62 102 110 118 126 134 142 151 159 Channel	5270 5310 5510 5550 5590 5630 5670 5710 5755 5795 Frequency(MHz)		9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90 9.11 9.06 Average Power (dBm)	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Tune up
	U-NII-2C U-NII-3	54 62 102 110 118 126 134 142 151 159 Channel 36	5270 5310 5510 5550 5590 5630 5670 5710 5755 5795 Frequency(MHz) 5180		9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90 9.11 9.06 Average Power (dBm) 8.99	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Tune up 10.00
5GHz	U-NII-2C U-NII-3 mode	54 62 102 110 118 126 134 142 151 159 Channel 36 40	5270 5310 5510 5550 5590 5630 5670 5710 5775 5795 Frequency(MHz) 5180 5200	Data Rate(Mbps)	9.63 9.42 9.35 9.41 9.31 9.29 8.97 8.90 9.11 9.06 Average Power (dBm) 8.99 9.15	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 Tune up 10.00 10.00

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document, so not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in fully, without provide the Company, Any unauthorized alleration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fulles extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@gs.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 58 of 78

		50	5000		0.50	40.00
		56	5280	4	9.52	10.00
		60	5300	-	9.33	10.00
		64	5320	-	9.07	10.00
		100	5500	-	9.33	10.00
		104	5520	-	9.39	10.00
		108	5540	-	9.36	10.00
		112	5560	-	9.27	10.00
		116	5580	-	8.98	10.00
	U-NII-2C	120	5600		8.92	10.00
	0-111-20	124	5620		8.89	10.00
		128	5640		9.05	10.00
		132	5660		9.03	10.00
		136	5680	-	9.11	10.00
		140	5700	1	9.30	10.00
		144	5720	1	9.35	10.00
		149	5745	-	9.15	10.00
		153	5765		9.07	10.00
	U-NII-3	157	5785	-	9.05	10.00
		161	5805	-	9.11	10.00
		165	5825	-	9.22	10.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
		38	5190		8.99	10.00
	U-NII-1	46	5230		9.16	10.00
		54	5270		9.63	10.00
	U-NII-2A	62	5310		9.46	10.00
		102	5510		9.31	10.00
		110	5550	-	9.45	10.00
802.11ac-40		118	5590	MCS0	9.40	10.00
	U-NII-2C	126	5630	-	9.21	10.00
		134	5670	1	8.94	10.00
		142	5710	1	8.91	10.00
		151	5755	1	9.06	10.00
	U-NII-3	159	5795	1	9.07	10.00
5GHz	mode	Channel	Frequency(MHz)	Data Rate(Mbps)	Average Power (dBm)	Tune up
	U-NII-1	42	5210		8.71	10.00
	U-NII-2A	58	5290	1	9.02	10.00
802.11ac		106	5530	-	8.99	10.00
80M	U-NII-2C	122	5610	MCS0	8.48	10.00
	_	138	5690	1	8.67	10.00
	U-NII-3	155	5775	1	8.58	10.00
	0.111.0		0.10		0.00	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document, only and within the limits of a version of the company. Any unauthorized alteration, forgery or faisification of the company, any be prosecuted to the fulles extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CAL.Doccheck@gs.com

Grennan: <u>CHADGCENECKU25GS-COM</u> South Mb. 6 Peru, No. 1, Runkeng Rada: Subuch Masking Jank, Subou Area, China (Jangsu) Pild Free Trade Zone 215000 中国 - 苏州 - 中国(江苏)自由贸易试验区苏州片区苏州工业园区测胜路号約6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 59 of 78

Note:

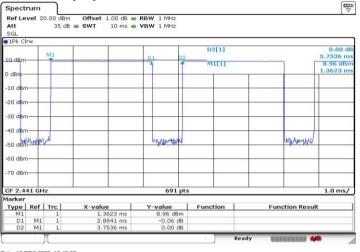
a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

 When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
 When the same highest maximum output power is specified for multiple largest channel bandwidth

configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.


Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 60 of 78

8.1.5 Conducted Power of BT

BT DH5 Duty Cycle=76.84%

Date: 12.DEC.2022 10:40:07

	вт		Average Conduc	ted Power(dBm)	
Band	Channel	0	39	78	Tune up
	GFSK	8.40	8.68	8.45	9.00
BT	π/4DQPSK	6.70	6.45	6.52	8.00
	8DPSK	6.68	6.43	6.59	8.00
Band	Channel	0	19	39	Tune up
BLE 1M	GFSK	8.02	7.81	8.02	8.50
BLE 2M	GFSK	7.88	7.80	8.04	8.50

Note:

1)The conducted power of BT is measured with RMS detector.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 61 of 78

8.2 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency	Position		erage ower	Test Separation	Calculate	Exclusion	Exclusion
-	(GHz)		dBm	mW	(mm)	Value	Threshold	(Y/N)
		Head	15	31.62	5	9.94	3	N
Wi-Fi 2.4G	2.462	Body-worn	15	31.62	10	4.17	3	N
		Hotspot	15	31.62	10	4.17	3	N
		Head	10	10.00	5	4.83	3	N
Wi-Fi 5G	5.850	Body-worn	10	10.00	10	2.42	3	Y
		Hotspot	10	10.00	10	2.42	3	Y
		Head	9	7.94	5	2.50	3	Y
Bluetooth	2.480	Body-worn	9	7.94	10	1.25	3	Y
		Hotspot	9	7.94	10	1.25	3	Y

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

• f(GHz) is the RF channel transmit frequency in GHz

• Power and distance are rounded to the nearest mW and mm before calculation

The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 62 of 78

8.3 Measurement of SAR Data

Note:

1) According to the declaration letter from manufacturer, for the Sample 2 variant test at the worst-case SAR in Head/Body worn and Hotspot.

- 2) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B.
- 3) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - \leq 0.8W/kg for 1-g or 2.0W/kg for 10-g respectively, when the transmission band is \leq 100MHz.
 - \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz.

WiFi 2.4G:

 When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

WiFi 5G:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration.
- 2) For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot function.
- 3) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.Terms-en-Courdents, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

South of No. 6 Plant, No. 1, Runsheng Read, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂店南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 63 of 78

8.3.1 SAR Result of GSM 850

Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g		Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
				ŀ	lead Test Da	ita				
Left cheek	GPRS 3TS	190/836.6	1:2.77	0.316	0.06	28.62	30.00	1.374	0.434	22.2
Left tilted	GPRS 3TS	190/836.6	1:2.77	0.183	0.09	28.62	30.00	1.374	0.251	22.2
Right cheek	GPRS 3TS	190/836.6	1:2.77	0.360	0.07	28.62	30.00	1.374	0.495	22.2
Right cheek	DTM Class 11	190/836.6	1:2.77	0.328	0.01	28.62	30.00	1.374	0.450	22.2
Right tilted	GPRS 3TS	190/836.6	1:2.77	0.180	0.07	28.62	30.00	1.374	0.247	22.2
				Body worn	Fest data(Sep	parate 10mm)				
Front side	GPRS 3TS	190/836.6	1:2.77	0.305	0.07	28.62	30.00	1.374	0.419	22.2
Back side	GPRS 3TS	190/836.6	1:2.77	0.443	-0.04	28.62	30.00	1.374	0.609	22.2
Back side	DTM Class 11	190/836.6	1:2.77	0.421	-0.03	28.62	30.00	1.374	0.578	22.2
				Hotspot Te	est data(Sepa	arate 10mm)				
Front side	GPRS 3TS	190/836.6	1:2.77	0.305	0.07	28.62	30.00	1.374	0.419	22.2
Back side	GPRS 3TS	190/836.6	1:2.77	0.443	-0.04	28.62	30.00	1.374	0.609	22.2
Back side	DTM Class 11	190/836.6	1:2.77	0.421	-0.03	28.62	30.00	1.374	0.578	22.2
Left side	GPRS 3TS	190/836.6	1:2.77	0.287	0.03	28.62	30.00	1.374	0.394	22.2
Right side	GPRS 3TS	190/836.6	1:2.77	0.433	0.02	28.62	30.00	1.374	0.595	22.2
Bottom side	GPRS 3TS	190/836.6	1:2.77	0.289	0.03	28.62	30.00	1.374	0.397	22.2

Table 11: SAR of GSM 850 for Head and Body

8.3.1 SAR Result of GSM 1900

Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
				I	Head Test Da	ita				
Left cheek	GPRS 4TS	661/1880	1:2.075	0.108	-0.04	22.70	24.00	1.349	0.146	21.9
Left tilted	GPRS 4TS	661/1880	1:2.075	0.067	0.01	22.70	24.00	1.349	0.091	21.9
Right cheek	GPRS 4TS	661/1880	1:2.075	0.085	0.09	22.70	24.00	1.349	0.115	21.9
Right tilted	GPRS 4TS	661/1880	1:2.075	0.039	0.05	22.70	24.00	1.349	0.052	21.9
				Body worn	Test data(Sep	parate 10mm)				
Front side	GPRS 4TS	661/1880	1:2.075	0.281	0.09	22.70	24.00	1.349	0.379	21.9
Back side	GPRS 4TS	661/1880	1:2.075	0.319	0.04	22.70	24.00	1.349	0.430	21.9
				Hotspot Te	est data(Sepa	arate 10mm)				
Front side	GPRS 4TS	661/1880	1:2.075	0.281	0.09	22.70	24.00	1.349	0.379	21.9
Back side	GPRS 4TS	661/1880	1:2.075	0.319	0.04	22.70	24.00	1.349	0.430	21.9
Left side	GPRS 4TS	661/1880	1:2.075	0.161	0.01	22.70	24.00	1.349	0.217	21.9
Bottom side	GPRS 4TS	661/1880	1:2.075	0.225	0.07	22.70	24.00	1.349	0.304	21.9

Table 12: SAR of GSM 1900 for Head and Body

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.app</u>; and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions</u>, <u>Forms-and-Conditions</u>, <u>Forms-and-Conditions</u>

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 64 of 78

8.3.2 SAR Result of WCDMA Band V

Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
				Head	Test Data					
Left cheek	RMC	4182/836.4	1:1	0.250	0.01	23.59	24.50	1.233	0.308	22.2
Left tilted	RMC	4182/836.4	1:1	0.183	0.07	23.59	24.50	1.233	0.226	22.2
Right cheek	RMC	4182/836.4	1:1	0.286	0.06	23.59	24.50	1.233	0.353	22.2
Right tilted	RMC	4182/836.4	1:1	0.140	0.03	23.59	24.50	1.233	0.173	22.2
			Body	worn Test d	ata(Separa	ate 10mm)				
Front side	RMC	4182/836.4	1:1	0.244	0.03	23.59	24.50	1.233	0.301	22.2
Back side	RMC	4182/836.4	1:1	0.412	0.09	23.59	24.50	1.233	0.508	22.2
			Hote	spot Test da	ta(Separat	e 10mm)				
Front side	RMC	4182/836.4	1:1	0.244	0.03	23.59	24.50	1.233	0.301	22.2
Back side	RMC	4182/836.4	1:1	0.412	0.09	23.59	24.50	1.233	0.508	22.2
Left side	RMC	4182/836.4	1:1	0.181	0.03	23.59	24.50	1.233	0.223	22.2
Right side	RMC	4182/836.4	1:1	0.272	-0.07	23.59	24.50	1.233	0.335	22.2
Bottom side	RMC	4182/836.4	1:1	0.237	0.01	23.59	24.50	1.233	0.292	22.2

Table 13: SAR of WCDMA V for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Com-Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: Opticek the authenticity of testing /Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 65 of 78

8.3.3 SAR Result of LTE Band 5

Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(°C)
					Head Te	st Data(1	RB)				
Left cheek	10	QPSK 1_0	20450/829	1:1	0.207	-0.02	23.23	24.50	1.340	0.277	22.2
Left tilted	10	QPSK 1_0	20450/829	1:1	0.115	0.01	23.23	24.50	1.340	0.154	22.2
Right cheek	10	QPSK 1_0	20450/829	1:1	0.242	0.05	23.23	24.50	1.340	0.324	22.2
Right tilted	10	QPSK 1_0	20450/829	1:1	0.118	0.04	23.23	24.50	1.340	0.158	22.2
				ŀ	lead Test	Data(50%	%RB)				
Left cheek	10	QPSK 25_13	20450/829	1:1	0.174	-0.07	22.27	23.50	1.327	0.231	22.2
Left tilted	10	QPSK 25_13	20450/829	1:1	0.098	0.02	22.27	23.50	1.327	0.130	22.2
Right cheek	10	QPSK 25_13	20450/829	1:1	0.194	0.04	22.27	23.50	1.327	0.258	22.2
Right tilted	10	QPSK 25_13	20450/829	1:1	0.100	0.01	22.27	23.50	1.327	0.132	22.2
			В	ody wor	n Test dat	a(Separa	te 10mm 1RB)			
Front side	10	QPSK 1_0	20450/829	1:1	0.209	-0.02	23.23	24.50	1.340	0.280	22.2
Back side	10	QPSK 1_0	20450/829	1:1	0.340	0.05	23.23	24.50	1.340	0.455	22.2
			Bo	dy worn	Test data	(Separate	e 10mm 50%R	B)			
Front side	10	QPSK 25_13	20450/829	1:1	0.174	-0.08	22.27	23.50	1.327	0.231	22.2
Back side	10	QPSK 25_13	20450/829	1:1	0.227	0.01	22.27	23.50	1.327	0.301	22.2
				Hotspot	Test data	(Separate	10mm 1RB)				
Front side	10	QPSK 1_0	20450/829	1:1	0.209	-0.02	23.23	24.50	1.340	0.280	22.2
Back side	10	QPSK 1_0	20450/829	1:1	0.340	0.05	23.23	24.50	1.340	0.455	22.2
Left side	10	QPSK 1_0	20450/829	1:1	0.174	0.03	23.23	24.50	1.340	0.233	22.2
Right side	10	QPSK 1_0	20450/829	1:1	0.262	0.09	23.23	24.50	1.340	0.351	22.2
Bottom side	10	QPSK 1_0	20450/829	1:1	0.184	0.07	23.23	24.50	1.340	0.247	22.2
			H	otspot Te	est data(S	eparate 1	0mm 50%RB)				
Front side	10	QPSK 25_13	20450/829	1:1	0.174	-0.08	22.27	23.50	1.327	0.231	22.2
Back side	10	QPSK 25_13	20450/829	1:1	0.227	0.01	22.27	23.50	1.327	0.301	22.2
Left side	10	QPSK 25_13	20450/829	1:1	0.143	0.07	22.27	23.50	1.327	0.190	22.2
Right side	10	QPSK 25_13	20450/829	1:1	0.219	0.04	22.27	23.50	1.327	0.291	22.2
Bottom side	10	QPSK 25_13	20450/829	1:1	0.157	0.05	22.27	23.50	1.327	0.208	22.2

Table 14: SAR of LTE band 5 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terme and Conditions for Electronic Documents at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443,

South of No. 6 Plant, No. 1, Runsheng Road, Suzhou Industrial Park, Suzhou Area, China (Jangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 66 of 78

8.3.4 SAR Result of LTE Band 12

Test position	BW.	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
					Head Te	est Data(1	RB)				
Left cheek	10	QPSK 1_0	23095/707.5	1:1	0.149	0.02	23.30	24.50	1.318	0.196	22.0
Left tilted	10	QPSK 1_0	23095/707.5	1:1	0.109	0.01	23.30	24.50	1.318	0.144	22.0
Right cheek	10	QPSK 1_0	23095/707.5	1:1	0.151	0.09	23.30	24.50	1.318	0.199	22.0
Right tilted	10	QPSK 1_0	23095/707.5	1:1	0.083	0.03	23.30	24.50	1.318	0.109	22.0
					Head Tes	t Data(50	%RB)				
Left cheek	10	QPSK 25_0	23095/707.5	1:1	0.116	0.05	22.31	23.50	1.315	0.153	22.0
Left tilted	10	QPSK 25_0	23095/707.5	1:1	0.090	-0.11	22.31	23.50	1.315	0.119	22.0
Right cheek	10	QPSK 25_0	23095/707.5	1:1	0.119	0.02	22.31	23.50	1.315	0.157	22.0
Right tilted	10	QPSK 25_0	23095/707.5	1:1	0.067	0.03	22.31	23.50	1.315	0.088	22.0
			В	ody wor	n Test da	ta(Separa	ate 10mm 1RE	3)			
Front side	10	QPSK 1_0	23095/707.5	1:1	0.162	-0.07	23.30	24.50	1.318	0.214	22.0
Back side	10	QPSK 1_0	23095/707.5	1:1	0.307	-0.01	23.30	24.50	1.318	0.405	22.0
			Bo	dy worn	Test data	(Separat	e 10mm 50%F	RB)			
Front side	10	QPSK 25_0	23095/707.5	1:1	0.132	0.09	22.31	23.50	1.315	0.174	22.0
Back side	10	QPSK 25_0	23095/707.5	1:1	0.246	-0.12	22.31	23.50	1.315	0.324	22.0
				Hotspot	Test data	(Separate	e 10mm 1RB)				
Front side	10	QPSK 1_0	23095/707.5	1:1	0.162	-0.07	23.30	24.50	1.318	0.214	22.0
Back side	10	QPSK 1_0	23095/707.5	1:1	0.307	-0.01	23.30	24.50	1.318	0.405	22.0
Left side	10	QPSK 1_0	23095/707.5	1:1	0.162	-0.05	23.30	24.50	1.318	0.214	22.0
Right side	10	QPSK 1_0	23095/707.5	1:1	0.218	0.09	23.30	24.50	1.318	0.287	22.0
Bottom side	10	QPSK 1_0	23095/707.5	1:1	0.085	-0.11	23.30	24.50	1.318	0.112	22.0
			H	otspot T	est data(S	Separate	10mm 50%RE	3)			
Front side	10	QPSK 25_0	23095/707.5	1:1	0.132	0.09	22.31	23.50	1.315	0.174	22.0
Back side	10	QPSK 25_0	23095/707.5	1:1	0.246	-0.12	22.31	23.50	1.315	0.324	22.0
Left side	10	QPSK 25_0	23095/707.5	1:1	0.133	0.04	22.31	23.50	1.315	0.175	22.0
Right side	10	QPSK 25_0			0.177	0.05	22.31	23.50	1.315	0.233	22.0
Bottom side	10	QPSK 25_0			0.068	-0.02	22.31	23.50	1.315	0.090	22.0

Table 15: SAR of LTE Band 12 for Head and Body.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terme and Conditions for Electronic Documents at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443,

South of No. 6 Plant, No. 1, Runsheng Road, Stanbu Industrial Park, Suzhou Area, Chine (Jangsu) Plot Free Trade Zone 215000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区润胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 67 of 78

8.3.5 SAR Result of WIFI 2.4G

Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)	
Head Test data												
Left cheek	802.11b	1/2412	99.12%	1.009	0.064	-0.08	14.86	15.00	1.033	0.067	21.8	
Left tilted	802.11b	1/2412	99.12%	1.009	0.057	0.04	14.86	15.00	1.033	0.059	21.8	
Right cheek	802.11b	1/2412	99.12%	1.009	0.177	0.01	14.86	15.00	1.033	0.184	21.8	
Right tilted	802.11b	1/2412	99.12%	1.009	0.129	0.09	14.86	15.00	1.033	0.134	21.8	
				Boo	ly worn Te	st data(Sepa	arate 10mm)					
Front side	802.11b	1/2412	99.12%	1.009	0.031	0.08	14.86	15.00	1.033	0.032	21.8	
Back side	802.11b	1/2412	99.12%	1.009	0.118	-0.01	14.86	15.00	1.033	0.123	21.8	
				Ho	otspot Test	data (Sepa	ate 10mm)					
Front side	802.11b	1/2412	99.12%	1.009	0.031	0.08	14.86	15.00	1.033	0.032	21.8	
Back side	802.11b	1/2412	99.12%	1.009	0.118	-0.01	14.86	15.00	1.033	0.123	21.8	
Left side	802.11b	1/2412	99.12%	1.009	0.031	-0.13	14.86	15.00	1.033	0.032	21.8	
Top side	802.11b	1/2412	99.12%	1.009	0.089	0.09	14.86	15.00	1.033	0.092	21.8	

Table 16: SAR of WIFI 2.4G for Head and Body. Note:

 As the 802.11b highest reported SAR is smaller than 1.2 W/kg, and the tune-up of the other 802.11 modes are not higher than 802.11b, therefore the adjusted SAR is ≤ 1.2 W/kg for other 802.11 modes, SAR test for the other 802.11 modes are not required.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-en-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Diless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 68 of 78

8.3.6 SAR Result of WIFI 5G

Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)
		1		He	ad Test dat	a of U-NI	I-2A			I	
Left cheek	802.11ac 80M		96.39%	1.037	0.068	-0.05	9.02	10.00	1.253	0.088	21.8
Left tilted	802.11ac 80M	58/5290	96.39%	1.037	0.077	0.04	9.02	10.00	1.253	0.100	21.8
Right cheek	802.11ac 80M	58/5290	96.39%	1.037	0.132	0.07	9.02	10.00	1.253	0.172	21.8
Right tilted	802.11ac 80M	58/5290	96.39%	1.037	0.159	0.02	9.02	10.00	1.253	0.207	21.8
				He	ad Test dat	a of U-NI	I-2C				
Left cheek	802.11ac 80M	106/5530	96.39%	1.037	0.171	0.04	8.99	10.00	1.262	0.224	21.9
Left tilted	802.11ac 80M	106/5530	96.39%	1.037	0.196	-0.03	8.99	10.00	1.262	0.257	21.9
Right cheek	802.11ac 80M	106/5530	96.39%	1.037	0.190	0.04	8.99	10.00	1.262	0.249	21.9
Right tilted	802.11ac 80M	106/5530	96.39%	1.037	0.208	0.07	8.99	10.00	1.262	0.272	21.9
				He	ead Test da	ta of U-N	II-3				
Left cheek	802.11ac 80M	155/5775	96.39%	1.037	0.043	-0.07	8.58	10.00	1.387	0.062	22.1
Left tilted	802.11ac 80M	155/5775	96.39%	1.037	0.052	0.01	8.58	10.00	1.387	0.075	22.1
Right cheek	802.11ac 80M	155/5775	96.39%	1.037	0.088	0.16	8.58	10.00	1.387	0.126	22.1
Right tilted	802.11ac 80M	155/5775	96.39%	1.037	0.100	0.06	8.58	10.00	1.387	0.144	22.1
			Bod	y worn Te	st data of U	-NII-2A(S	eparate 10mn	n)			
Front side	802.11ac 80M	58/5290	96.39%	1.037	0.040	0.01	9.02	10.00	1.253	0.052	21.8
Back side	802.11ac 80M	58/5290	96.39%	1.037	0.131	0.06	9.02	10.00	1.253	0.170	21.8
			Bod	y worn Te	st data of U	-NII-2C(S	eparate 10mn	n)			
Front side	802.11ac 80M	106/5530	96.39%	1.037	0.057	0.07	8.99	10.00	1.262	0.074	21.9
Back side	802.11ac 80M	106/5530	96.39%	1.037	0.177	0.09	8.99	10.00	1.262	0.232	21.9
			Boo	dy worn Te	est data of L	J-NII-3(Se	eparate 10mm)			
Front side	802.11ac 80M	155/5775	96.39%	1.037	0.010	0.05	8.58	10.00	1.387	0.014	22.1
Back side	802.11ac 80M	155/5775	96.39%	1.037	0.124	0.01	8.58	10.00	1.387	0.178	22.1
			H	otspot Tes	t data of U-	NII-1(Sep	parate 10mm)				
Front side	802.11ac 80M	42/5210	96.39%	1.037	0.017	-0.04	8.71	10.00	1.346	0.024	21.8
Back side	802.11ac 80M	42/5210	96.39%	1.037	0.092	0.09	8.71	10.00	1.346	0.128	21.8
Left side	802.11ac 80M	42/5210	96.39%	1.037	0.010	-0.03	8.71	10.00	1.346	0.014	21.8
Top side	802.11ac 80M	42/5210	96.39%	1.037	0.031	0.07	8.71	10.00	1.346	0.043	21.8
			H	otspot Tes	t data of U-	NII-3(Sep	arate 10mm)				
Front side	802.11ac 80M	155/5775	96.39%	1.037	0.021	0.05	8.58	10.00	1.387	0.030	22.1
Back side	802.11ac 80M	155/5775	96.39%	1.037	0.124	0.01	8.58	10.00	1.387	0.178	22.1
Left side	802.11ac 80M	155/5775	96.39%	1.037	0.012	0.09	8.58	10.00	1.387	0.017	22.1
Top side	802.11ac 80M	155/5775	96.39%	1.037	0.038	0.08	8.58	10.00	1.387	0.055	22.1
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 10- g (W/kg)	Liquid Temp.(℃)
		Pi	oduct sp	ecific 10g	SAR Test d	ata of U-N	NII-2A(Separa	te 0mm)			
Front side	802.11ac 80M	58/5290	96.39%	1.037	0.233	0.09	9.02	10.00	1.253	0.329	21.8

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document is excerted the excert in full, without provide within approval of the Company nay unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Ch.Doccheck@sgs.com

Grein and Control Co

Report No.: SEWM2212000309RG08 Page : 69 of 78

Back side	802.11ac 80M	58/5290	96.39%	1.037	0.253	0.04	9.02	10.00	1.253	0.303	21.8
Left side	802.11ac 80M	58/5290	96.39%	1.037	0.014	-0.15	9.02	10.00	1.253	0.018	21.8
Top side	802.11ac 80M	58/5290	96.39%	1.037	0.147	0.06	9.02	10.00	1.253	0.191	21.8
		Р	roduct sp	ecific 10g	SAR Test d	ata of U-N	III-2C(Separat	te 0mm)			
Front side	802.11ac 80M	106/5530	96.39%	1.037	0.283	0.01	8.99	10.00	1.262	0.370	21.9
Back side	802.11ac 80M	106/5530	96.39%	1.037	0.316	0.05	8.99	10.00	1.262	0.414	21.9
Left side	802.11ac 80M	106/5530	96.39%	1.037	0.024	-0.11	8.99	10.00	1.262	0.032	21.9
Top side	802.11ac 80M	106/5530	96.39%	1.037	0.196	0.03	8.99	10.00	1.262	0.257	21.9

 Table 17: SAR of WIFI 5G for Head and Body.

Note:

 As the 802.11a highest reported SAR is smaller than 1.2 W/kg, and the tune-up of the other 802.11 modes are not higher than 802.11a,therefore the adjusted SAR is ≤ 1.2 W/kg for other 802.11 modes, SAR test for the other 802.11 modes are not required. For Product specific 10gSAR the highest reported SAR is smaller than 3.0 W/kg, SAR test for the other 802.11 modes are also not required.

2) For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot function.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions,aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-an-Document.agk</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing/Inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Report No.: SEWM2212000309RG08 Page : 70 of 78

8.3.7 SAR Result of BT

Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)
	Head Test data										
Left cheek	DH5	39/2441	76.84%	1.301	0.012	-0.01	8.68	9.00	1.076	0.017	21.8
Left tilted	DH5	39/2441	76.84%	1.301	0.010	0.09	8.68	9.00	1.076	0.014	21.8
Right cheek	DH5	39/2441	76.84%	1.301	0.038	0.12	8.68	9.00	1.076	0.053	21.8
Right tilted	DH5	39/2441	76.84%	1.301	0.025	0.10	8.68	9.00	1.076	0.035	21.8
				Body	worn Test	data(Sepa	arate 10mm)				
Front side	DH5	39/2441	76.84%	1.301	0.009	-0.06	8.68	9.00	1.076	0.013	21.8
Back side	DH5	39/2441	76.84%	1.301	0.019	0.09	8.68	9.00	1.076	0.027	21.8
				Hots	pot Test d	ata (Separ	ate 10mm)				
Front side	DH5	39/2441	76.84%	1.301	0.009	-0.06	8.68	9.00	1.076	0.013	21.8
Back side	DH5	39/2441	76.84%	1.301	0.019	0.09	8.68	9.00	1.076	0.027	21.8
Left side	DH5	39/2441	76.84%	1.301	0.007	-0.04	8.68	9.00	1.076	0.010	21.8
Top side	DH5	39/2441	76.84%	1.301	0.012	0.11	8.68	9.00	1.076	0.017	21.8

Table 18: SAR of BT for Head and Body

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terme and Conditions for Electronic Documents at <u>http://www.sag.com/en/Terme-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443,

Report No.: SEWM2212000309RG08 Page : 71 of 78

8.3.8 SAR Result of NFC

Ant8 Test Record										
Test position	Test mode	Test ch./Freq.	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 10-g	Power drift (dB)	Scaled factor	Scaled SAR 10-g (W/kg)	Liquid Temp.(℃)	
		1	NFC Test da	ata (Separ	ate 0mm)					
Front side	NFC	13.56MHz	100.00%	1.000	0.001	0.07	1.000	0.001	22.5	
Back side	NFC	13.56MHz	100.00%	1.000	0.013	0.04	1.000	0.013	22.5	
Left side	NFC	13.56MHz	100.00%	1.000	0.001	0.02	1.000	0.001	22.5	
Right side	NFC	13.56MHz	100.00%	1.000	0.001	-0.01	1.000	0.001	22.5	
Top side	NFC	13.56MHz	100.00%	1.000	0.001	0.05	1.000	0.001	22.5	
Bottom side	NFC	13.56MHz	100.00%	1.000	0.001	-0.09	1.000	0.001	22.5	

Table 19: SAR of NFC for Body

Note:

- NFC mainly operate in hand-held extremity exposure conditions and NFC sensing distance with other device or reading tag is about 20cm, therefore Standalone 10-g extremity SAR testing for NFC will be performed with active mode and max power mode, with 100% duty cycle at 0mmseparation distance.
- 2) NFC SAR is measured for all edges and surfaces of the device.
- 3) NFC 13.56MHz antenna por is not available on the device to support conducted power measurement, therefore the measured results are referred to as reported SAR.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/ferms-and-Conditions.aspx</u> and, for electronic Documents at <u>http://www.sgs.com/en/ferms-and-Conditions</u>. For tectronic Documents at <u>http://www.sgs.com/en/ferms-and-Conditions</u>. And the company subject to the service printed documents, subject to the service printed service printed and service printed servic

Report No.: SEWM2212000309RG08 Page : 72 of 78

8.4 Multiple Transmitter Evaluation

8.4.1 Simultaneous SAR SAR test evaluation

Simultaneous Transmission Possibilities

NO	Simultaneous TX Combination	Head	Body- worn	Hotspot	Product specific 10g SAR
1	WWAN+BT	Y	Y	Y	Y
2	WWAN+WIFI 2.4G	Y	Y	Y	Y
3	WWAN+WIFI 5G	Y	Y	Y	Y
4	WIFI 5G+BT	Y	Y	Y	Y
5	WWAN+WIFI 5G+BT	Y	Y	Y	Y
6	WIFI 5G+BT+NFC	-	-	-	Y
7	BT+NFC	-	-	-	Y
8	WIFI2.4G+NFC	-	-	-	Y
9	WIFI 5G+NFC	-	-	-	Y
10	WWAN+NFC	-	-	-	Y
11	WWAN+BT+NFC	-	-	-	Y
12	WWAN+WIFI2.4G+NFC	-	-	-	Y
13	WWAN+WIFI 5G+NFC	-	-	-	Y
14	WWAN+WIFI 5G+BT+NFC	-	-	-	Y

Note:

- 1) The device support DTM function.
- 2) For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot function.
- NFC is different from the working scenario of WWAN/WIFI(Head/Body-worn/Hotspot) and does not participate in the simultaneous transmission.
- 4) Per FCC KDB Publication 648474 D04 Handset SAR, Phablet SAR tests were not required it wireless router 1g SAR(Scaled to the maximum output power ,including tolerance) < 1.2 W/Kg. Therefore, no further analysis beyond tables included in this section was required to determine that possible Simultaneous transmission scenarios would not exceed the SAR limit.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-and-Conditions</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Suzhou Industria Park, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区湖胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 73 of 78

8.4.2 Simultaneous Transmission SAR Summation Scenario

Simultaneous Transmission SAR Summation Scenario for WLAN Head:

Test position			Summed SAR				
		Main	WiFi 2.4G	WiFi 5G	BT	Summed SAR	
		1	2	3	4	1+2	1+3+4
GSM850	Left cheek	0.434	0.067	0.224	0.017	0.501	0.675
	Left tilted	0.251	0.059	0.257	0.014	0.310	0.522
6310050	Right cheek	0.495	0.184	0.249	0.053	0.679	0.797
	Right tilted	0.247	0.134	0.272	0.035	0.381	0.554
	Left cheek	0.146	0.067	0.224	0.017	0.213	0.387
GSM1900	Left tilted	0.091	0.059	0.257	0.014	0.150	0.362
GSM1900	Right cheek	0.115	0.184	0.249	0.053	0.299	0.417
	Right tilted	0.052	0.134	0.272	0.035	0.186	0.359
	Left cheek	0.308	0.067	0.224	0.017	0.375	0.549
WCDMA B5	Left tilted	0.226	0.059	0.257	0.014	0.285	0.497
WCDIVIA BS	Right cheek	0.353	0.184	0.249	0.053	0.537	0.655
	Right tilted	0.173	0.134	0.272	0.035	0.307	0.480
	Left cheek	0.277	0.067	0.224	0.017	0.344	0.518
LTE B5	Left tilted	0.154	0.059	0.257	0.014	0.213	0.425
LIEBO	Right cheek	0.324	0.184	0.249	0.053	0.508	0.626
	Right tilted	0.158	0.134	0.272	0.035	0.292	0.465
	Left cheek	0.196	0.067	0.224	0.017	0.263	0.437
LTE B12	Left tilted	0.144	0.059	0.257	0.014	0.203	0.415
LIEDIZ	Right cheek	0.199	0.184	0.249	0.053	0.383	0.501
	Right tilted	0.109	0.134	0.272	0.035	0.243	0.416

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction lissues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ss.com

Report No.: SEWM2212000309RG08 Page : 74 of 78

Simultaneous Transmission SAR Summation Scenario for WLAN Body-worn:

Test position							
		Main	WiFi 2.4G Ant6	WiFi 5G Ant6	ВТ	Summe	ed SAR
			2	3	4	1+2	1+3+4
GSM850	Front side	0.419	0.032	0.074	0.013	0.451	0.506
6310050	Back side	0.609	0.123	0.232	0.027	0.732	0.868
CCM4000	Front side	0.379	0.032	0.074	0.013	0.411	0.466
GSM1900	Back side	0.430	0.123	0.232	0.027	0.553	0.689
	Front side	0.301	0.032	0.074	0.013	0.333	0.388
WCDMA B5	Back side	0.508	0.123	0.232	0.027	0.631	0.767
LTE B5	Front side	0.280	0.032	0.074	0.013	0.312	0.367
LIE DO	Back side	0.455	0.123	0.232	0.027	0.578	0.714
	Front side	0.214	0.032	0.074	0.013	0.246	0.301
LTE B12	Back side	0.405	0.123	0.232	0.027	0.528	0.664

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.Terms-e-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurigdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, Numerki (¹). Descheck the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, Numerki (¹).

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 75 of 78

Simultaneous Transmission SAR Summation Scenario for WLAN Hotspot:

Test position							
		Main	WiFi 2.4G Ant6	WiFi 5G Ant6	ВТ	Summed SAR	
		1	2	3	4	1+2	1+3+4
	Front side	0.419	0.032	0.030	0.013	0.451	0.462
	Back side	0.609	0.123	0.178	0.027	0.732	0.814
GSM850	Left side	0.394	0.032	0.017	0.010	0.426	0.421
63101650	Right side	0.595	-	-	-	0.595	0.595
	Top side	-	0.092	0.055	0.017	0.092	0.072
	Bottom side	0.397	-	-	-	0.397	0.397
	Front side	0.379	0.032	0.030	0.013	0.411	0.425
	Back side	0.430	0.123	0.178	0.027	0.553	0.641
GSM1900	Left side	0.217	0.032	0.017	0.010	0.249	0.246
G3W1900	Right side	-	-	-	-	-	-
	Top side	-	0.092	0.055	0.017	0.092	0.076
	Bottom side	0.304	-	-	-	0.304	0.304
	Front side	0.301	0.032	0.030	0.013	0.333	0.347
	Back side	0.508	0.123	0.178	0.027	0.631	0.719
WCDMA B5	Left side	0.223	0.032	0.017	0.010	0.255	0.252
	Right side	0.351	-	-	-	0.351	0.351
	Top side	-	0.092	0.055	0.017	0.092	0.076
	Bottom side	0.292	-	-	-	0.292	0.292
	Front side	0.280	0.032	0.030	0.013	0.312	0.326
	Back side	0.455	0.123	0.178	0.027	0.578	0.666
LTE B5	Left side	0.233	0.032	0.017	0.010	0.265	0.262
LIE BS	Right side	0.351	-	-	-	0.351	0.351
	Top side	-	0.092	0.055	0.017	0.092	0.076
	Bottom side	0.247	-	-	-	0.247	0.247
	Front side	0.214	0.032	0.030	0.013	0.246	0.260
	Back side	0.405	0.123	0.178	0.027	0.528	0.616
	Left side	0.214	0.032	0.017	0.010	0.246	0.243
LTE B12	Right side	0.287	-	-	-	0.287	0.287
	Top side	-	0.092	0.055	0.017	0.092	0.076
	Bottom side	0.112	-	-	-	0.112	0.112

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Cilent and this document to excere the reproduced excerpt in full, without prior written approval of the Company. Any unauthorized alteration, forgery or faislication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the faw. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443, Nermethic (1990).

of units. Chr. Douglastic Status Units Status Units Park, Status Verse, Chine (Jargsu) Plot Free Trade Zone 215000 中国・苏州・中国(江苏)自由贸易试验区苏州片区苏州工业国区润胜路1号的6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 76 of 78

Simultaneous Transmission SAR Summation Scenario for Product specific 10g SAR:

Test position	WiFi 5G Ant6	NFC Ant8	Summed SAR
	1	2	1+2
Front side	0.370	0.001	0.371
Back side	0.414	0.013	0.427
Left side	0.032	0.001	0.033
Right side	-	0.001	-
Top side	0.257	0.001	0.258
Bottom side	-	0.001	-

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction lissues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CM.Doccheck@ss.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 77 of 78

9 Equipment list

	Test Platform	SPEAG DASY	5 Professional						
	Description	SAR Test System (Frequency range 300MHz-6GHz)							
	Software Reference	DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)							
			ardware Referen	. ,					
	Equipment	Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration			
\boxtimes	Twin Phantom	SPEAG	SAM5	1481	NCR	NCR			
\square	Twin Phantom	SPEAG	SAM3	1770	NCR	NCR			
\square	Twin Phantom	SPEAG	ELI5	1143	NCR	NCR			
	DAE	SPEAG	DAE4	1428	2022-04-27	2023-04-26			
\square	DAE	SPEAG	DAE4	1324	2022-10-17	2023-10-16			
\square	E-Field Probe	SPEAG	EX3DV4	7620	2022-11-20	2023-11-19			
\square	E-Field Probe	SPEAG	EX3DV4	3789	2022-09-30	2023-09-29			
\square	E-Field Probe	SPEAG	EX3DV4	3793	2022-09-30	2023-09-29			
\square	Validation Kits	SPEAG	CLA13	1009	2022-05-16	2023-05-15			
	Validation Kits	SPEAG	D750V3	1210	2021-09-08	2023-09-07			
	Validation Kits	SPEAG	D835V2	4d256	2020-04-15	2023-04-14			
\square	Validation Kits	SPEAG	D1900V2	5d114	2020-08-27	2023-08-26			
	Validation Kits	SPEAG	D2450V2	1038	2020-04-08	2023-04-07			
\square	Validation Kits	SPEAG	D5GHzV2	1313	2022-01-25	2025-01-24			
\boxtimes	Dielectric parameter probes	SPEAG	DAKS-3.5	1120	2022-05-30	2023-05-29			
	Vector Network Analyzer and Vector Reflectometer	SPEAG	DAKS_VNA R140	0050920	2022-05-23	2023-05-22			
\boxtimes	Universal Radio Communication Tester	R&S	CMW500	111637	2022-09-26	2023-09-26			
\boxtimes	RF Bi-Directional Coupler	Agilent	86205-60001	MY31400031	NCR	NCR			
\square	Signal Generator	R&S	SMB100A	182393	2022-02-14	2023-02-13			
\square	Preamplifier	Qiji	YX28980933	202104001	NCR	NCR			
\boxtimes	Power Sensor	Keysight	U2002H	MY5639004	2022-9-16	2023-09-15			
\boxtimes	Power Sensor	Keysight	U2002H	MY48200110	2022-12-23	2023-12-22			
\square	Attenuator	SHX	TS2-3dB	30704	NCR	NCR			
\square	Coaxial low pass filter	Mini-Circuits	VLF-2500(+)	NA	NCR	NCR			
\square	Coaxial low pass filter	Microlab Fxr	LA-F13	NA	NCR	NCR			
\square	DC POWER SUPPLY	SAKO	SK1730SL5A	NA	NCR	NCR			
\square	Speed reading thermometer	LKM	DTM3000	SUW201-30-01	2022-09-19	2023-09-18			
\boxtimes	Humidity and Temperature Indicator	MingGao	MingGao	NA	2022-09-19	2023-09-18			

Note: All the equipments are within the valid period when the tests are performed.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sag.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, outpiect to Terms and Conditions for Electronic Documents at <u>http://www.sag.com/en/Terms-and-Conditions.aspx</u> and, for electronic format document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Cilent's instructions, if any. The Company's sole responsibility is to its Client and this document is a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company, any unauthorized alteration, forger or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755)83071443, or amail: CALOcocheck@ses.com

South of No. 6 Plant, No. 1, Runsheng Road, Suchou Industrial Park, Suchou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号约6号厂房南部 邮编: 215000

Report No.: SEWM2212000309RG08 Page : 78 of 78

- **10** Calibration certificate Please see the Appendix C
- 11 Photographs Please see the Appendix D

Appendix A: Detailed System Check Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END----

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.ags.com/en/Terms-and-Conditions.aspx</u> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <u>http://www.ags.com/en/Terms-and-Conditions/Terms-an-Document.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Attention: To check the authenticity of testing finspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

South of No. 8 Plant, No. 1, Runsheng Road, Stathou Industrial Park, Stathou Area, China (Jiangsu) Pilot Free Trade Zone 2150000 中国 • 苏州 • 中国(江苏)自由贸易试验区苏州片区苏州工业园区调胜路1号的6号厂房南部 邮编: 215000