

APPENDIX E: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

beclarable, or hazardous components.									
CAS: 107-21-1	Ethanediol	>1.0-4.9%							
EINECS: 203-473-3	STOT RE 2, H373;								
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302								
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%							
EINECS: 271-781-5	Eye Irrit. 2, H319								
Reg.nr.: 01-2119527859-22-0000									
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%							
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319								
Reg.nr.: 01-2119539582-35-0000									
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%							
NLP: 500-236-9	Aquatic Chronic 2, H411;								
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319								
A delitional information.									

Additional information:

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

withheld as a trade secret.

Figure E-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: PY7-84558E	FCC URS (UNINTENTIONAL RADIATOR RF SOURCES) RF EXPOSURE EVALUATION	Approved by: Technical Manager		
DUT Type:		APPENDIX E		
Portable Handset		Page 1 of 2		

© 2023 Element REV 1.0

e a g Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss Measurement Certificate / Material Test Body Tissue Simulating Liquid (MBBL600-6000V6) Product No. SL AAM U16 BC (Batch: 210621-3) Manufacturer Measurement Method TSL dielectric parameters measured using calibrated DAK probe. Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C 23-Jun-21 Test Date WM Operator

Additional Information TSL Density

TSL Heat-capacity

	Measu	red		Targe	t	Diff.to Targ	jet [%]	15.0							
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0							_
600	55.7	26.7	0.89	56.1	0.95	-0.7	-6.3	> 5.0							
750	55.3	22.5	0.94	55.5	0.96	-0.4	-2.1	Permittivity 0.0 0.0							
800	55.1	21.5	0.96	55.3	0.97	-0.4	-1.0	-5.0						_	
825	55.1	21.1	0.97	55.2	0.98	-0.3	-1.0								
835	55.1	20.8	0.97	55.1	0.99	0.0	-1.5	-10.0							
850	55.0	20.6	0.97	55.2	0.99	-0.3	-2.0	-15.0	500	1500	2500	3500	4500	550	0
900	54.9	19.9	0.99	55.0	1.05	-0.2	-5.7	`		1000	Freque	3500 ency MHz			-
1400	54.1	15.9	1.24	54.1	1.28	0.0	-3.1	15.0	_		11124				
1450	54.0	15.7	1.27	54.0	1.30	0.0	-2.3	10.0							_
1600	53.8	15.3	1.36	53.8	1.39	0.0	-2.2	% > 5.0		1	-				
1625	53.8	15.2	1.38	53.8	1.41	0.1	-2.1	Conductivity 6-6-7			1				
1640	53.8	15.2	1.39	53.7	1.42	0.1	-2.1	Jipuo -5.0	1	L	1				
1650	53.7	15.1	1.39	53.7	1.43	0.0	-2.8	8 -5.0	1						
1700	53.7	15.0	1.42	53.6	1.46	0.3	-2.7	à-10.0		11		112 -		TI IE	
1750	53.6	14.9	1.45	53.4	1.49	0.3	-2.7	-15.0	500	1500	2500	3500 ency MHz	4500	550	0
1800	53.5	14.9	1.49	53.3	1.52	0.4	-2.0				2500 Freque	ncy MHz			
1810	53.5	14.9	1.50	53.3	1.52	0.4	-1.3	3500	50.9	15.9	3.10	51.3	3.31	-0.9	-6.
1825	53.5	14.8	1.51	53.3	1.52	0.4	-0.7	3700	50.6	16.2	3.33	51.1	3.55	-1.0	-6
1850	53.5	14.8	1.52	53.3	1.52	0.4	0.0	5200	47.7	18.6	5.39	49.0	5.30	-2.6	1.
1900	53.4	14.8	1.56	53.3	1.52	0.2	2.6	5250	47.6	18.7	5.46	49.0	5.36	-2.7	1.
1950	53.4	14.7	1.60	53.3	1.52	0.2	5.3	5300	47.5	18.8	5.54	48.9	5.42	-2.8	2.
2000	53.3	14.7	1.63	53.3	1.52	0.0	7.2	5500	47.1	19.1	5.83	48.6	5.65	-3.0	3.
2050	53.3	14.7	1.67	53.2	1.57	0.1	6.4	5600	46.9	19.2	5.98	48.5	5.77	-3.2	3.
2100	53.2	14.7	1.71	53.2	1.62	0.1	5.6	5700	46.7	19.3	6.13	48.3	5.88	-3.3	4.
2150	53.1	14.7	1.75	53.1	1.66	0.0	5.4	5800	46.5	19.4	6.27	48.2	6.00	-3.5	4
2200	53.1	14.7	1.80	53.0	1.71	0.1	5.3	6000	46.1	19.7	6.57	47.9	6.23	-3.7	5
2250	53.0	14.7	1.84	53.0	1.76	0.1	4.5	6500							
2300	52.9	14.7	1.88	52.9	1.81	0.0	3.9	7000			1				
2350	52.9	14.8	1.93	52.8	1.85	0.1	4.3	7500	189				1		
2400	52.8	14.8	1.98	52.8	1.90	0.1	4.2	8000	112			6.			
2450	52.7	14.8	2.02	52.7	1.95	0.0	3.6	8500	940						
2500	52.6	14.9	2.07	52.6	2.02	-0.1	2.5	9000			12. 3				
2550	52.5	14.9	2.12	52.6	2.09	-0.1	1.4	9500							

Figure E-2: Body Tissue Equivalent Matter

FCC URS (UNINTENTIONAL RADIATOR RF SOURCES) RF EXPOSURE EVALUATION			
	APPENDIX E		
	Page 2 of 2		

© 2023 Element