

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

MEASUREMENT REPORT FCC PART 15.225 NFC

Applicant Name:

Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan Date of Testing: 02/08/2023 - 03/21/2023 Test Report Issue Date: 03/31/2023 Test Site/Location: Element lab, Columbia, MD USA Test Report Serial No.: 1M2302060006-18.PY7

FCC ID:

PY7-84558E

APPLICANT:

Sony Corporation

Application Type: EUT Type: Frequency: FCC Classification: FCC Rule Part(s): Test Procedure(s): Certification Portable Handset 13.56MHz Low Power Communications Device Transmitter (DXX) Part 15 Subpart C (15.225) ANSI C63.10-2013

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 af 00	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 1 of 28	
© 2023 Element		·	V 9.0 02/01/2019	

TABLE OF CONTENTS

1.0	Intro	duction
	1.1	Scope
	1.2	Element Test Location
	1.3	Test Facility / Accreditations
2.0	PRC	DDUCT INFORMATION
	2.1	Equipment Description4
	2.2	Device Capabilities4
	2.3	Test Configuration4
	2.4	Software and Firmware4
	2.5	EMI Suppression Device(s)/Modifications4
3.0	DES	SCRIPTION OF TEST
	3.1	Evaluation Procedure
	3.2	AC Line Conducted Emissions5
	3.3	Radiated Emissions6
	3.4	Environmental Conditions6
4.0	ANT	ENNA REQUIREMENTS7
5.0	MEA	ASUREMENT UNCERTAINTY
6.0	TES	T EQUIPMENT CALIBRATION DATA9
7.0	TES	T DATA
	7.1	Summary10
	7.2	Occupied Bandwidth Measurement11
	7.3	Frequency Stability Test Data13
	7.4	In-Band Radiated Spurious Emission Measurements16
	7.5	Radiated Spurious Emission Measurements, Out-of-Band19
	7.6	Line Conducted Measurement Data25
8.0	CON	NCLUSION

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 28	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	- 03/21/2023 Portable Handset		
© 2023 Element			V 9.0 02/01/2019	

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 28	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset		
© 2023 Element	*		V 9.0 02/01/2019	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Sony Portable Handset FCC ID: PY7-84558E**. The test data contained in this report pertains only to the emissions due to the NFC transmitter of the EUT.

Test Device Serial No.: 85463

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR FR1, 802.11b/g/n/ax WLAN, 802.11a/n/ac/ax UNII (5 and 6 GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer

2.3 Test Configuration

The EUT was set to continuously transmit at 13.56MHz. This was performed using manufacturer software loaded on the phone to allow for continuous transmission. This device was tested in accordance with the guidance of ANSI C63.10-2013. See Sections 3.2 and 3.3 of this test report for a description of the AC line conducted emissions and radiated emissions test setups, respectively.

2.4 Software and Firmware

The test was conducted with software/firmware version 0.621 installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added, and no modifications were made during testing.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 af 00	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023 Portable Handset		Page 4 of 28	
© 2023 Element	•		V 9.0 02/01/2019	

3.0 DESCRIPTION OF TEST

3.1 Evaluation Procedure

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.6. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	02/08/2023 - 03/21/2023 Portable Handset Page 5 of 2		
© 2023 Element	·		V 9.0 02/01/2019	

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 28	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset		
© 2023 Element	·		V 9.0 02/01/2019	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the EUT are permanently attached.
- This unit was tested with its standard battery.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 7 of 00		
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 7 of 28		
© 2023 Element	•	·	V 9.0 02/01/2019		

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 28	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset		
© 2023 Element	-		V 9.0 02/01/2019	

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-1
-	WL25-2	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-2
-	WL25-3	Conducted Cable Set (25GHz)	7/29/2022	Annual	7/29/2023	WL25-3
Agilent	N9038A	MXE EMI Receiver	1/21/2022	Annual	7/21/2023	MY51210133
Agilent	N9020A	MXA Signal Analyzer	3/15/2022	Annual	3/15/2023	US46470561
Agilent	N9030A	PXA Signal Analyzer (44GHz)	8/18/2022	Annual	8/18/2023	MY49430494
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	1/19/2022	Biennial	1/19/2024	121034
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/20/2021	Biennial	7/202023	9203-2178
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
Pasternack	NMLC-2	Line Conducted Emissions Cable (NM)	12/19/2021	Annual	12/19/2022	NMLC-2
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/29/2022	Annual	8/29/2023	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/25/2022	Annual	8/25/2023	100348
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	9/21/2021	Biennial	9/21/2023	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	1/14/2022	Biennial	1/14/2024	A050307

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 0 af 00	
1M2302060006-18.PY7	0006-18.PY7 02/08/2023 - 03/21/2023 Portable Handset		Page 9 of 28	
© 2023 Element			V 9.0 02/01/2019	

7.0 TEST DATA

7.1 Summary

Company Name:	Sony Corporation
FCC ID:	<u>PY7-84558E</u>
FCC Classification:	Low Power Communications Device Transmitter (DXX)

Frequencies Examined: <u>13.56MHz</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
15.225 (a)(b)(c)	In-Band Emissions	15,848µV/m @ 30m 13.553 – 13.567 MHz 334µV/m @ 30m 13.410 – 13.553 MHz 13.567 – 13.710 MHz 106µV/m @ 30m 13.110 – 13.410 MHz 13.710 – 14.010 MHz	RADIATED	PASS	Section 7.4
15.225 (d) 15.209	Out-of-Band Emissions	Emissions outside of the specified band (13.110 – 14.010 MHz) must meet the radiated limits detailed in 15.209 (RSS- Gen [8.9])		PASS	Section 7.5
15.225 (e)	Frequency Stability Tolerance	± 0.01% of Operating Frequency	Temperature Chamber	PASS	Section 7.3
15.207	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen)	LINE CONDUCTED	PASS	Section 7.6

Table 7-1. Summary of Test Results

Note:

This unit was tested with its standard battery.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 10 of 28
© 2023 Element	*		V 9.0 02/01/2019

7.2 Occupied Bandwidth Measurement

Test Overview and Limit

The occupied bandwidth is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequency.

Test Procedure Used

ANSI C63.10-2013 - Section 6.9.3

Test Settings

- 1. Spectrum analyzer frequency is set to the nominal EUT channel center frequency.
- 2. RBW = 1 5% OBW
- 3. VBW \geq 3 x RBW
- 4. Reference level set to keep signal from exceeding maximum input mixer level for linear operation.
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep = auto couple
- 8. The trace was allowed to stabilize
- 9. Using the 99% power bandwidth function of the instrument and report the measured bandwidth.

Test Notes

None.

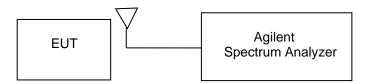


Figure 7-1. Test Instrument & Measurement Setup

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 11 of 28
© 2023 Element			V 9.0 02/01/2019

Frequency	Occupied Bandwidth		
13.56MHz	564.00kHz		
Table 7-2. Occupied Bandwidth Measurement			

Keysight Spectrum Analyzer - Occupied BW 09:50:31 AM Mar 21, 2023 Radio Std: None RI ALIGN AUTO Trace/Detector Center Freq: 13.560000 MHz Trig: Free Run Avg|Hold: 100/100 #Atten: 10 dB #IFGain:Low Radio Device: BTS Ref 10.00 dBm l0 dB/div og **Clear Write** Average Max Hold Center 13.56 MHz #Res BW 9.1 kHz Span 1 MHz Sweep 11.2 ms VBW 91 kHz **Min Hold Total Power** -5.17 dBm Occupied Bandwidth 564.00 kHz Detector Peak▶ <u>Man</u> -19.683 kHz 99.00 % Auto % of OBW Power Transmit Freq Error x dB Bandwidth 504.5 kHz x dB -20.00 dB STATUS

Figure 7-2. Occupied Bandwidth Plot

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 12 of 28
© 2023 Element			V 9.0 02/01/2019

7.3 Frequency Stability Test Data

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.10-2013. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -20°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non-hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 15.225, the frequency stability of the transmitter shall be maintained within ±0.01% of the center frequency.

Test Procedure Used

ANSI C63.10-2013 – Section 6.8

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -20°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 20
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 13 of 28
© 2023 Element			V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Frequency Stability Test Data

OPERATING FREQUENCY:	13,560,000	_Hz
REFERENCE VOLTAGE:	4.28	VDC
DEVIATION LIMIT:	± 0.01 % = 1356Hz	

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.28	+ 20 (Ref)	13,560,001	0	0.0000000
100 %		- 30	-	-	-
100 %		- 20	13,560,888	887	0.0065413
100 %		- 10	13,560,788	787	0.0058038
100 %		0	13,560,651	650	0.0047935
100 %		+ 10	13,560,405	404	0.0029794
100 %		+ 20	13,560,001	0	0.0000000
100 %		+ 30	13,560,538	537	0.0039602
100 %		+ 40	13,560,482	481	0.0035472
100 %		+ 50	13,560,364	363	0.0026770
BATT. ENDPOINT	3.69	+ 20	13,560,009	8	0.0000590

Table 7-3. Frequency Stability Test Data

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 14 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 14 of 28
© 2023 Element	•		V 9.0 02/01/2019

Frequency Stability Test Data

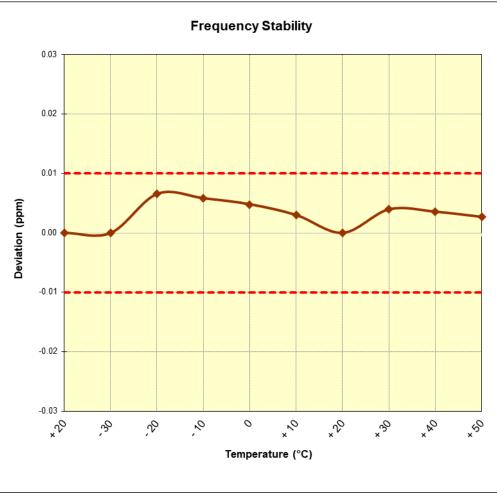


Figure 7-3. Frequency Stability Plot

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 15 of 28
© 2023 Element V 9.0 02/01			V 9.0 02/01/2019

7.4 In-Band Radiated Spurious Emission Measurements

Test Overview and Limit

The EUT was tested from 13.110 - 14.010 MHz. All in-band radiated spurious emissions are measured with a spectrum analyzer connected to a loop antenna while the EUT is operating at appropriate frequencies. Only the radiated emissions of the configuration that produced the worst-case emissions are reported in this section.

All in-band emissions must not exceed the limits shown in Table 7-4.

Frequency [MHz]	Field Strength [µV/m]	Measured Distance [Meters]
13.553-13.567 MHz	15,848	30
13.410-13.553 MHz and 13.567-13.710 MHz	334	30
13.110-13.410 MHz and 13.710-14.010 MHz	106	30

Table 7-4. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Section 6.4.7

Test Settings

- 1. RBW = 9kHz
- 2. VBW \geq 3 x RBW
- 3. Detector = peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize.

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 16 of 28
© 2023 Element			V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

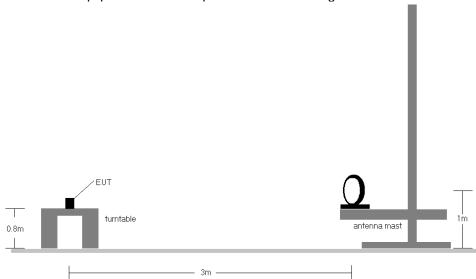


Figure 7-4. Radiated Test Setup

Test Notes:

- 1. All emissions lying in restricted bands specified in §15.225 are below the limit shown in Table 7-4.
- 2. All measurements were performed using a loop antenna. The antenna was positioned in three orthogonal positions (X front, Y side, Z top) and the position with the highest emission level was recorded.
- 3. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worst-case emissions.
- 4. Measurements were performed at 3m, and the data was extrapolated to the specified measurement distance of 30m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)(2). Extrapolation Factor = 20 log₁₀(30/3)² = 40dB.
- 5. The spectrum was investigated from 9kHz up to 30MHz using the loop antenna. Only the emissions shown in the table below were found to be significant.
- 6. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculation

- \circ Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- $\circ \quad \text{Margin}_{[dB]} = \text{Field Strength Level}_{[dB_{\mu}V/m]} \text{Limit}_{[dB_{\mu}V/m]}$

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 17 of 20
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 17 of 28
© 2023 Element	•		V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

In-Band Radiated Spurious Emission Measurements

Frequency:

13.56MHz

Measurement Distance: 3 Meters

Frequency [MHz]	Ant. Pol. [X/Y/Z]	Antenna Height [cm]	Turntable Azimuth [degree]	Level [dBm]	AFCL [dB/m]	3m Field Strength [dBµV/m]	30m Field Strength [dBµV/m]	Limit [µV/m]	Limit [dBµV/m]	Margin [dB]
13.138	х	100	280	-83.25	14.92	38.67	-1.33	106.00	40.51	-41.84
13.348	х	100	112	-77.67	14.90	44.23	4.23	106.00	40.51	-36.28
13.454	х	100	283	-74.75	14.89	47.14	7.14	334.00	50.47	-43.33
13.560	х	100	296	-66.21	14.89	55.68	15.68	15848.00	84.00	-68.32
13.666	х	100	308	-76.09	14.88	45.79	5.79	334.00	50.47	-44.69
13.772	х	100	335	-78.89	14.87	42.98	2.98	106.00	40.51	-37.53
13.851	х	100	-	-81.95	14.86	39.91	-0.09	106.00	40.51	-40.59

Table 7-5. In-Band Radiated Measurements

FCC ID: PY7-84558E		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 28	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	023 Portable Handset Page 18 0		
© 2023 Element	•		V 9.0 02/01/2019	

7.5 Radiated Spurious Emission Measurements, Out-of-Band

Test Overview and Limit

The EUT was tested from 9kHz up to the 1GHz excluding the band 13.110 – 14.010 MHz.

All out-of-band emissions appearing in a restricted band as specified in Section 15.225 of the Title 47 CFR must not exceed the limits shown in Table 7-6 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

 Table 7-6. Radiated Limits – Out of band

Test Procedures Used

ANSI C63.10-2013 – Section 6.5.4

Test Settings

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 9kHz for emissions below 30MHz and 100kHz for emissions between 30MHz and 1GHz
- 3. VBW \geq 3 x RBW
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize.

FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 20
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 19 of 28
© 2023 Element	•	·	V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

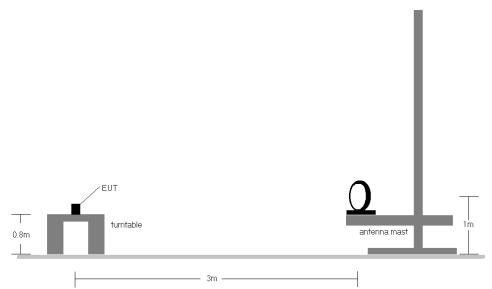
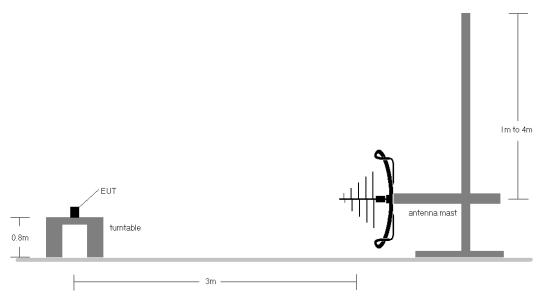
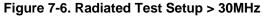
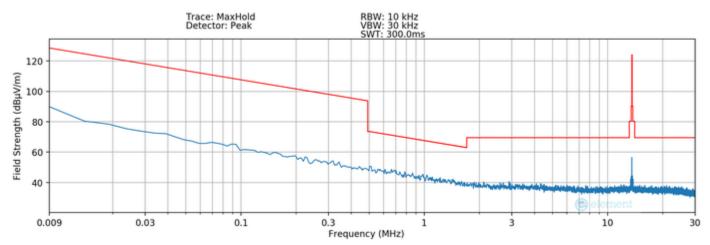




Figure 7-5. Radiated Test Setup < 30MHz

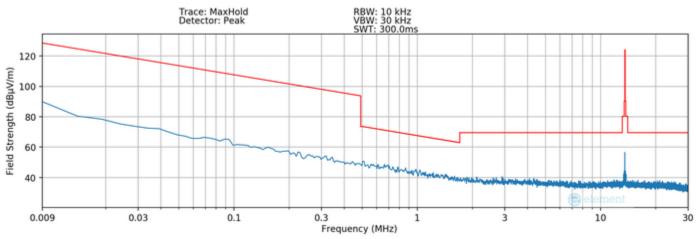
FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 29	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset Page 20 of 2		
© 2023 Element			V 9.0 02/01/2019	

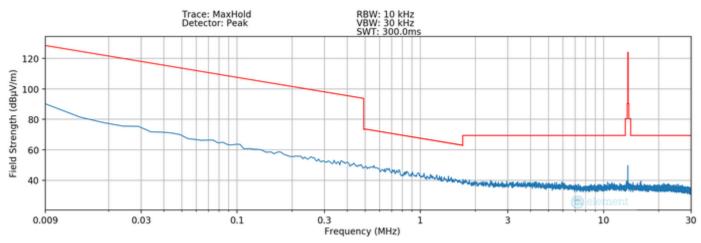
Test Notes:

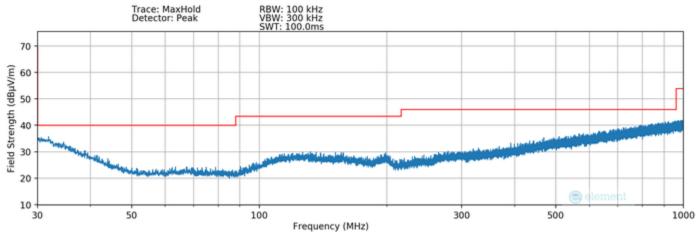
- 1. A loop antenna was used to investigate emissions below 30MHz.
- Both Vertical and Horizontal polarities of the receive antenna were evaluated with the worst-case emissions being reported. Below 30MHz the loop antenna was positioned in 3 orthogonal planes (X front, Y side, Z top) to determine the orientation resulting in the worst-case emissions.
- 3. The EUT was positioned in three orthogonal planes to determine the orientation resulting in the worstcase emissions.
- 4. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported.
- 5. No spurious emissions levels were found to be greater than the level of the fundamental.
- 6. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

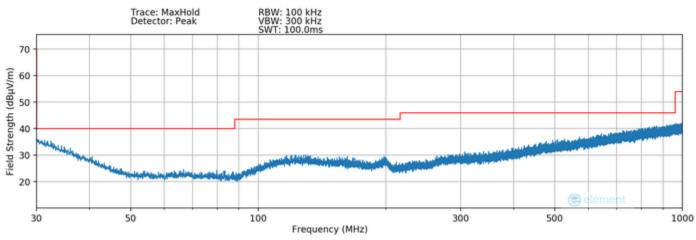

Sample Calculation

- \circ Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$


FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 29
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 21 of 28
© 2023 Element			V 9.0 02/01/2019


Radiated Spurious Emission Measurements, Out-of-Band





FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 22 of 28
© 2023 Element	•		V 9.0 02/01/2019

Plot 7-5. Radiated Spurious Plot 30MHz - 1GHz (Pol. V)

FCC ID: PY7-84558E	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 23 of 28
© 2023 Element			V 9.0 02/01/2019

Radiated Spurious Emission Measurements, Out-of-Band §15.209 §15.225(d)

Tx Frequency 13.56MHz

Measurement Distance: 3 Meters

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level [dBm]	AFCL [dB/m]	3m Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
27.12	х	-	-	-96.92	13.34	23.42	69.54	-46.12
40.68	V	-	-	-99.92	19.85	26.93	40.00	-13.07
54.24	V	-	-	-99.36	14.11	21.75	40.00	-18.25
67.80	V	-	-	-99.59	14.79	22.20	40.00	-17.80
81.36	V	-	-	-99.93	14.43	21.50	40.00	-18.50
94.92	V	-	-	-100.31	15.79	22.48	43.52	-21.04
108.48	V	-	-	-100.16	19.23	26.07	43.52	-17.45

Table 7-7. Radiated Measurements

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 28
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 24 01 28
© 2023 Element	•		V 9.0 02/01/2019

7.6 Line Conducted Measurement Data

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207.

Frequency of emission (MHz)	Conducted Limit (dBµV)					
	Quasi-peak	Average				
0.15 – 0.5	66 to 56*	56 to 46*				
0.5 – 5	56	46				
5 – 30	60	50				

Table 7-8. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

ANSI C63.10-2013, Section 6.2

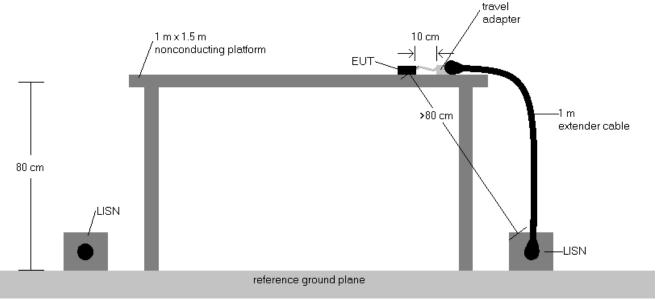
Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest.
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize.

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest.
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize.


FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 28				
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	/08/2023 - 03/21/2023 Portable Handset					
© 2023 Element	•		V 9.0 02/01/2019				

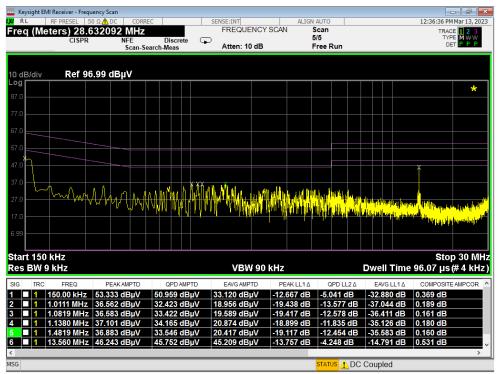
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

- All modes of operation were investigated, and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.
- 8. EUT was tested with the antenna terminated.


FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 28				
1M2302060006-18.PY7	06-18.PY7 02/08/2023 - 03/21/2023 Portable Handset						
© 2023 Element	·		V 9.0 02/01/2019				

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Keysight EM R L	RF PRESEL			CORF	DEC	_				6	ENSE	TAIT				01.7	GN AU	10	_							2.24.5		Mar 13, 2
	ters) 28.									5			UEN	ICY S	SCAN		Sca								1.			mar 13, 2 E 1 2 3
eq (me	CISPR	0520	NF			Di	scre	ete	C	-							5/5										TYP	M₩W
			S	can-S	earc	h-Me	as		_	-	A	tten:	10 c	dB			Fre	e Ru	ın								DE	T P P P
dB/div	Dof 0	e 00 /	403	,																								
aBialv g	Ref 9	0.99 (лдаг					_										_	_		_							
-																												*
.0																												
.0																												
.0																												
.0																												
													╡															
.0 🔺 🛛																									v			
- L J A																												
111																												
:.0 /	Xn .	× X.	х.				_	-																				
\sim	Mhud)Ă(ťΛ. Λ		η.	M	۱. ۱	J	ιŇ	hal	h K	ال سر ا	, ili	i Jita d	al II.	ual	h atu	. <mark>1</mark> 11.										
$^{\prime}$ $^{\prime}$	Mhy	\mathcal{M}	ŤЦЛ	M	n,	M	ĥΛ	A	ı₽	h		.	L A		14	a ilad	l, diji		-	11. 11. 11.		ⁱ "P ¶	(ⁿ n).	, interne				. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1
.0	M	\ _m ∕≬	Ň	M	ſ\ _A	M	hA	Ą	ŧĮ™		MM	hm	y ft		1			Ŵ	in lu		l y an L y an L y an	¹ Million Million	(* I), ,#41	de la sua <mark>ca du sua</mark>			upper a	
.0	May	\	₩,	M	Ŵ	M	hΛ	Ą	¶ [™]		Ŵ	M	, M	Ŵ	fi ļķ	WW						Perij di ji	(* n), <mark>Andrese (* n</mark>	Jelay <mark>P≜ti</mark> ∦p				ala ^{ba} san <mark>Tar^{ta}san</mark>
0.	N hyl	ЪЛ	ľ∿√	M	Nµ∕	M	ĥΛ	Ą	∦ [™]		Ŵ	h M	M		Í	N						¹² p ¹ ji uli, ji		kalen. raal∥e			1 1, (), 11 1, (),	ola ^{lon} ana <mark>yan^{an}ana</mark>
0.	n y y y	\ _~ ∕∖	Ň	W	M	M	ĥΛ	Ą	¶ [™]	Ŵ	Ŵ	h			f	N						¹² priji adb _a j _a		kalaa <mark>rat∥p</mark>			44.00 14 a 24	a Ja ⁿ a (Mara) <mark>1</mark> 44 ^{- Mara} (Mara)
.0	KHZ	\()	Т Д _Д Д	M	∩ _₩	M	ήĄ	Ą	N [™]	M	WN		N		f							¹² p. ¹]i Nik _{a k}		bila. <mark>rad∦</mark> r			ilian Pian Stor	ulduluu <mark>aa^{lo}sed</mark> 30 IV
.0 .0 .9 art 150		\ _~ ∕≬	ŤΛ _Λ Λ	M	Ŵ	M	ή	<u>}</u>	¶ [™]	Ŵ	WN	VB VB												· •) 30 M ##
.0 .0 .9 art 150 es BW 9	kHz	\.,∕≬	ľλ,Λ	M	^ \ ≁	Ń		Ą	,∦ [™]		WW		sw	90 k	۲						Dw	ell	Ti	ime	96	۶ 07.	μsi	#4 k⊦
.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	FREQ				^ ₩							AVG AI		90 k	(Hz PE	AK LL1	Δ	QPI	DLL	2Δ	Dw	'ell	Ti	ime 1∆	96 c	.07	μs (DSITE	
.0 .0 art 150 es BW 9 	FREQ 165.01 kHz	50.9	99 dE	βµV		6.71	 4 c	IB	μV		29.7	AVG AI 86 d		90 k D	(Hz PE	AK LL1 209 d	Δ Β -	QPI 8.49	D LL:	2 A B	Dw	ell EAVG	Ti 311	ime 1∆ dB	96 0.2	.07 :0MPC 283 c	µs (DSITE	#4 k⊦
art 150 es BW 9 frc 1	FREQ 165.01 kHz 221.29 kHz	50.9 44.8	99 dE 89 dE	BμV BμV	3	6.71 9.75	14 c 52 c	dB) dB)	μV μV	2	29.7 28.5	AVG AI 86 d 73 d	SW S MPTC IBµ\ IBµ\	90 > V	(Hz PE -14.	AK LL1 209 d 881 d	Δ Β -	QPI 3.49	D LL: 4 di 19 (2 A B dB	Dw -34	ell AVG 5.42 4.19	Ti 3 LL 22 (me 1∆ dB	96 0.2 0.1	.07 :0MPC 283 C	µs (DSITE 1B	#4 k⊦
art 150 as EW 9 s rrc 1 1	FREQ 165.01 kHz 221.29 kHz 377.52 kHz	50.9 44.8 37.6	99 dE 89 dE 80 dE	BμV BμV BμV	3	6.71 9.75 3.83	14 o 52 o 32 o	dB) dB) dB)	μV μV μV		29.7 28.5 24.3	AVG AI 86 d 73 d 30 d	SW I MPTC IBµ\ IBµ\ IBµ\	90 > V V	(Hz -14. -17. -20.	AK LL1 209 d 881 d 654 d	∆ В1 В1	QPI 3.49 13.0	D LL: 4 dl 19 (2∆ B dB dB	Dw -34 -34	ell AVC 5.42 4.19	Ti 22 (97 (04 (me 1∆ dB dB	96 0.2 0.1	.07 :0MP0 283 c 170 c	HS DSITE 1B 1B 1B	#4 k⊦
art 150 es BW 9	FREQ 165.01 kHz 221.29 kHz 377.52 kHz 410.73 kHz	50.9 44.8 37.6 37.9	99 dE 89 dE 80 dE 11 dB	3μV 3μV 3μV 3μV	3 3 3	6.71 9.75 3.83 3.32	14 c 52 c 32 c 29 c	dB) dB) dB) dB)	μV μV μV μV		29.7 28.5 24.3 21.8	AVG A 86 d 73 d 30 d 03 d		90 V V V V	(Hz -14. -17. -20. -19.	AK LL1 209 d 881 d 654 d 723 d	Δ Β - Β - Β - Β -	QP 3.49 13.0 14.5	0 LL: 14 dl 19 (02 (04 (2∆ B dB dB	Dw -3(-34 -34 -34	cell EAVC 5.42 4.19 4.00	Ti 311 22 0 97 0 04 0 31 0	ime 1∆ 1B 1B 1B	96 0.2 0.1 0.1	.07 :00PC 283 c 170 c 156 c 098 c	HS DSITE B B B B B B B B B B	#4 k⊦
art 150 s BW 9	FREQ 165.01 kHz 221.29 kHz 377.52 kHz	50.99 44.8 37.6 37.9 36.6	99 dE 89 dE 80 dE 11 dE 72 dE	BμV BμV BμV BμV BμV	3	6.71 9.75 3.83	14 c 52 c 32 c 29 c 26 c	dBi dBi dBi dBi dBi	μV μV μV μV		29.7 28.5 24.3 21.8 20.6	AVG AI 86 d 73 d 30 d		90 k V V V V V	(Hz -14. -17. -20. -19. -19.	AK LL1 209 d 881 d 654 d	△ - B - B - B - B - B -	QPI 3.49 13.0 14.5 14.3 12.6	D LL: 4 dl 19 (2∆ B dB dB dB	Dw -34 -34 -34 -34	ell AVC 5.42 4.19	Ti 3 LL 22 c 37 c 31 c 31 c	ime 1∆ dB dB dB dB dB	96 0.2 0.1 0.1 0.0	.07 :0MP0 283 c 170 c	HS B B B B B B B B B B B B B B B B B B B	#4 k⊦

Plot 7-6. Line-Conducted Test Plot (L1)

Plot 7-7. Line-Conducted Test Plot (N)

FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 00				
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 27 of 28				
© 2023 Element	<u>.</u>	·	V 9.0 02/01/2019				

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Sony Portable Handset FCC ID: PY7-84558E** has been tested to show compliance with Part 15 Subpart C (15.225) of the FCC Rules.

FCC ID: PY7-84558E		MEASUREMENT REPORT (CERTIFICATION)					
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 20				
1M2302060006-18.PY7	02/08/2023 - 03/21/2023	Portable Handset	Page 28 of 28				
© 2023 Element	•		V 9.0 02/01/2019				