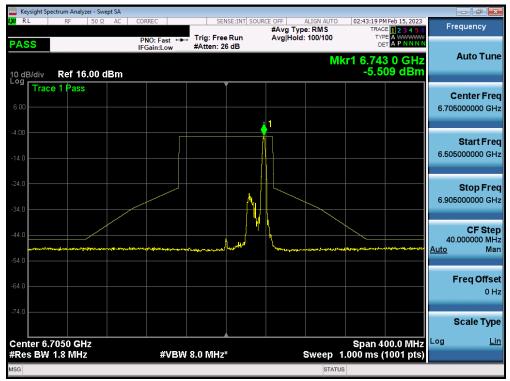
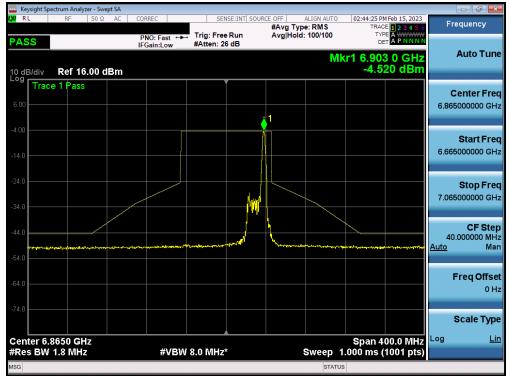
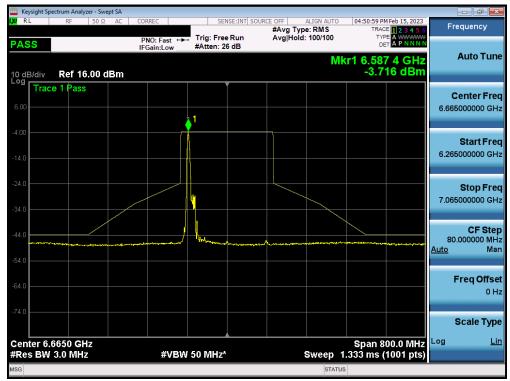

Plot 7-425. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 155)

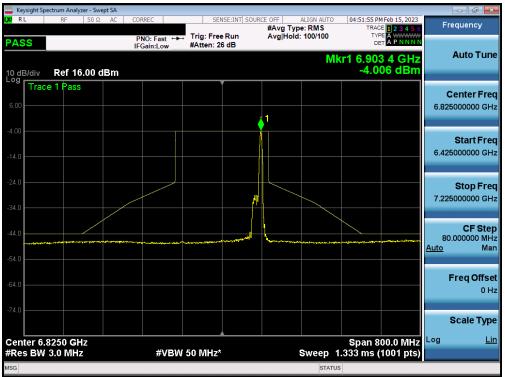

Plot 7-426. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 179)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 252 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 252 of 330	
© 2023 ELEMENT			V 9.0 02/01/2019	


Plot 7-427. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 119)


Plot 7-428. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 151)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 253 of 330
© 2023 ELEMENT			V 9.0 02/01/2019


Plot 7-429. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 183)

Plot 7-430. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 143)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 054 at 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 254 of 330
© 2023 ELEMENT			V 9.0 02/01/2019

Plot 7-431. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (26 Tones) (UNII Band 7) - Ch. 175)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 255 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 255 of 330
© 2023 ELEMENT	•	· · ·	V 9.0 02/01/2019

7.5.12 MIMO Antenna-2 In-Band Emission Measurements – (UNII Band 8 – Partial)

Plot 7-432. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 189)

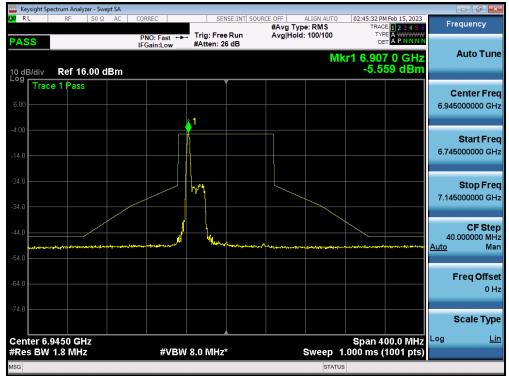
Plot 7-433. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 209)

FCC ID: PY7-84558E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 256 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 256 of 330
© 2023 ELEMENT	·		V 9.0 02/01/2019

Plot 7-434. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 233)

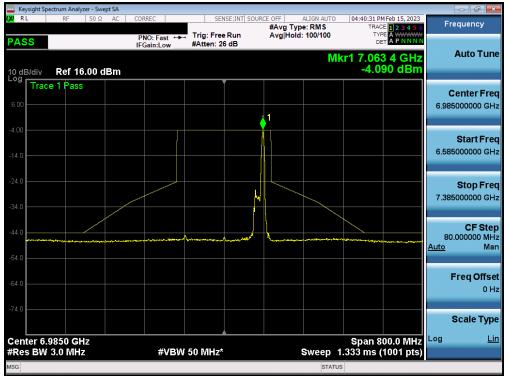
Plot 7-435. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 187)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 257 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 257 of 330
© 2023 ELEMENT	·		V 9.0 02/01/2019


Plot 7-436. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 211)

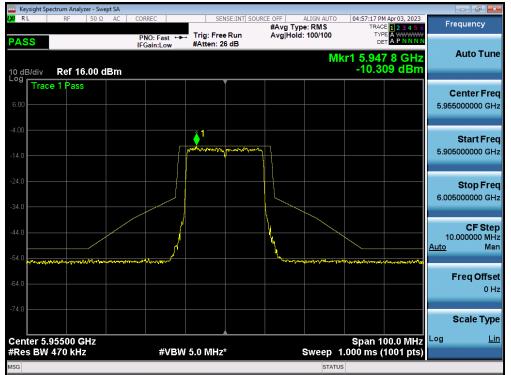

Plot 7-437. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 227)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 050 of 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 258 of 330
© 2023 ELEMENT	•		V 9.0 02/01/2019

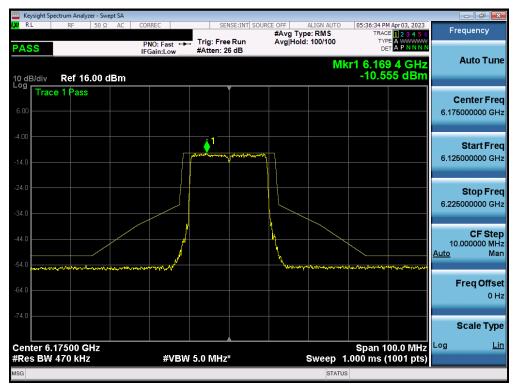

Plot 7-438. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 199)

Plot 7-439. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 215)

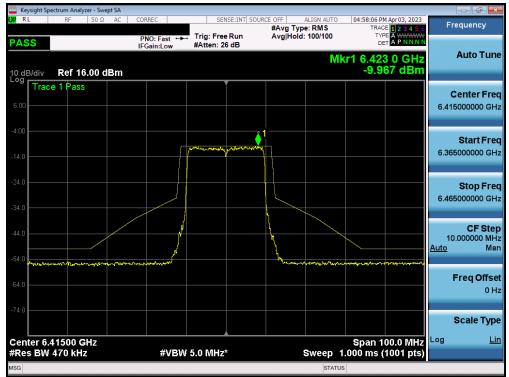
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 250 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 259 of 330
© 2023 ELEMENT	-	· · · · · · · · · · · · · · · · · · ·	V 9.0 02/01/2019

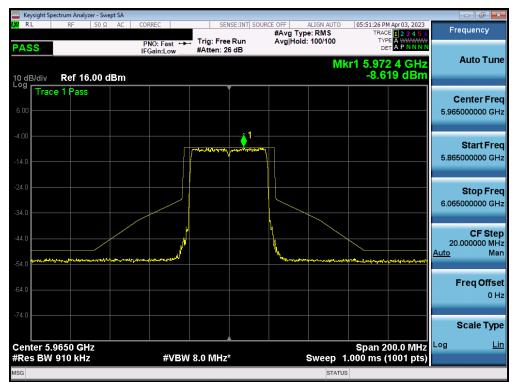


Plot 7-440. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (26 Tones) (UNII Band 8) - Ch. 207)

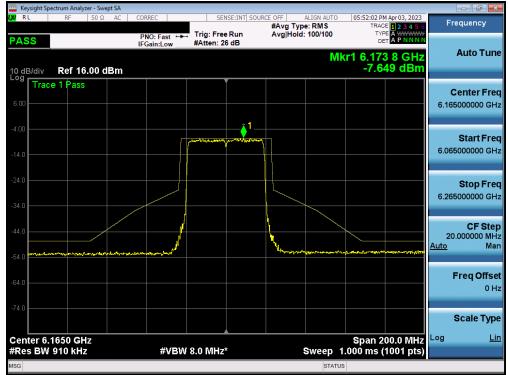

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 260 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 260 of 330
© 2023 ELEMENT	•	· · ·	V 9.0 02/01/2019

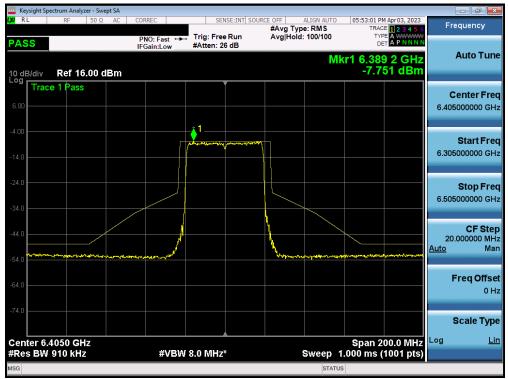
7.5.13 MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 5 - Full)


Plot 7-441. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) UNII Band 5) - Ch. 1

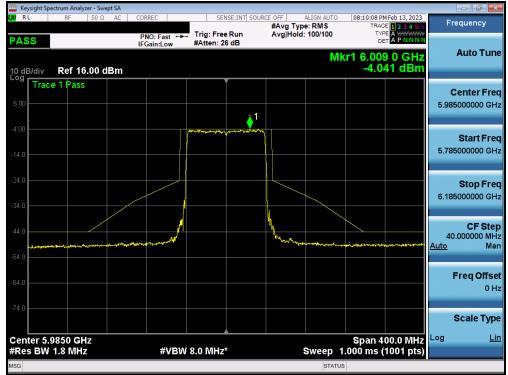

Plot 7-442. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 45)

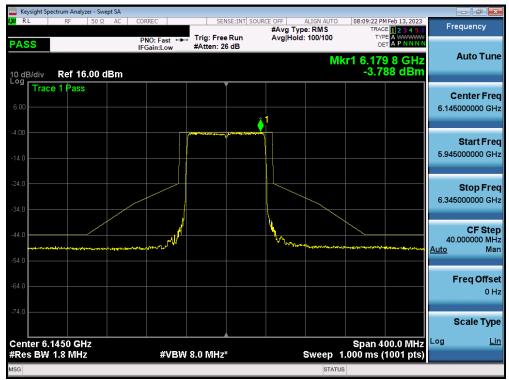
FCC ID: PY7-84558E		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 261 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 261 of 330
© 2023 ELEMENT		·	V 9.0 02/01/2019


Plot 7-443. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) UNII Band 5) - Ch. 93)

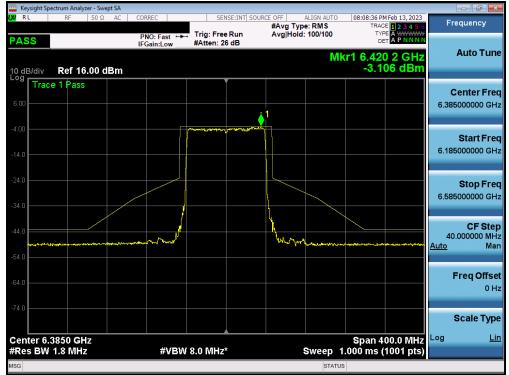

Plot 7-444. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 3)

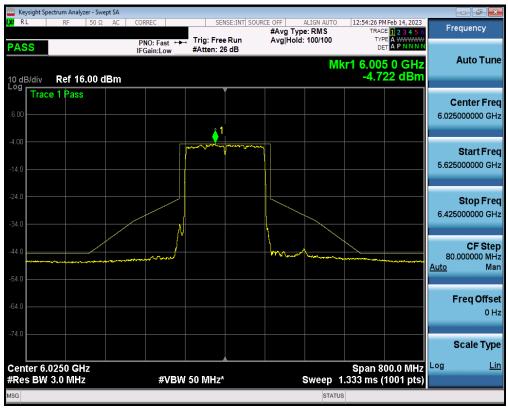
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 262 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 262 of 330
© 2023 ELEMENT	·		V 9.0 02/01/2019


Plot 7-445. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 43)

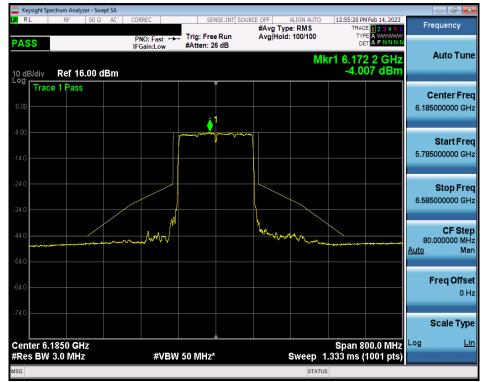

Plot 7-446. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 91)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 262 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 263 of 330	
© 2023 ELEMENT	•		V 9.0 02/01/2019	


Plot 7-447. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 7)


Plot 7-448. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 39)

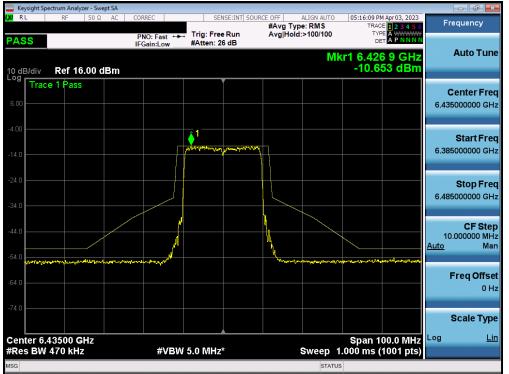
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 264 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 264 of 330
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-449. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 87)

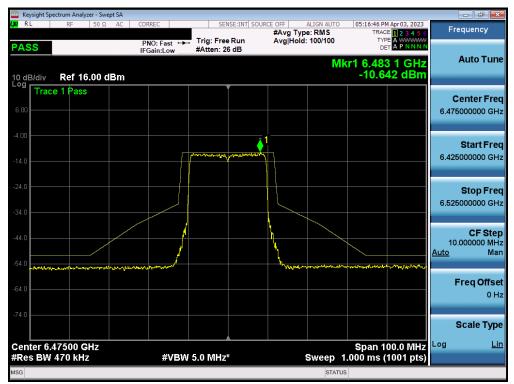
Plot 7-450. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 15)

FCC ID: PY7-84558E		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Daga 265 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 265 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				

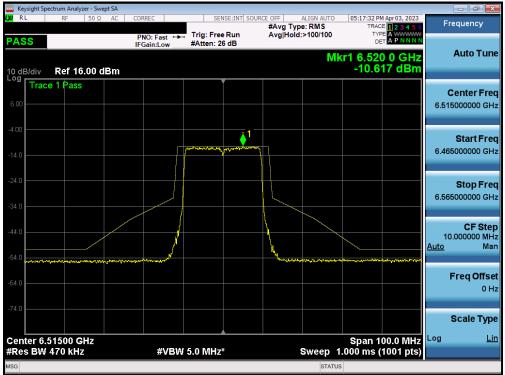
Plot 7-451. In-Band Emission Plot MIMO ANT2 160MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 47)

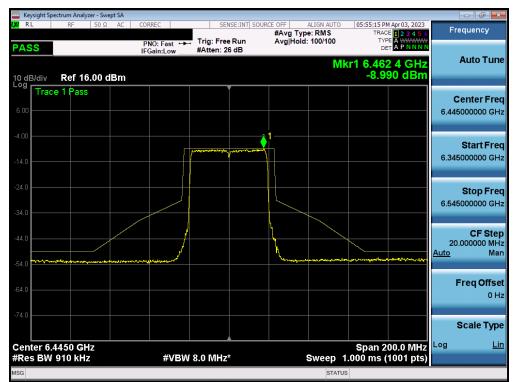


Plot 7-452. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 5) - Ch. 79)

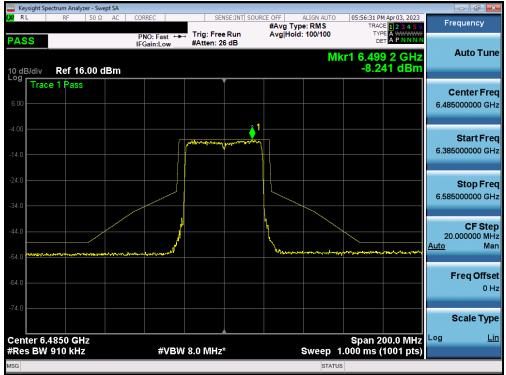

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 at 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 266 of 330
© 2023 ELEMENT			V 9.0 02/01/2019

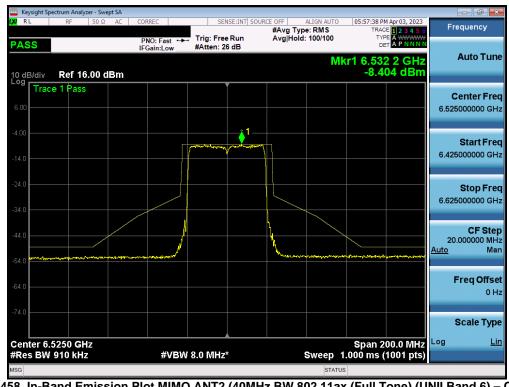
7.5.14 MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 6 - Full)


Plot 7-453. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 97)


Plot 7-454. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 105)

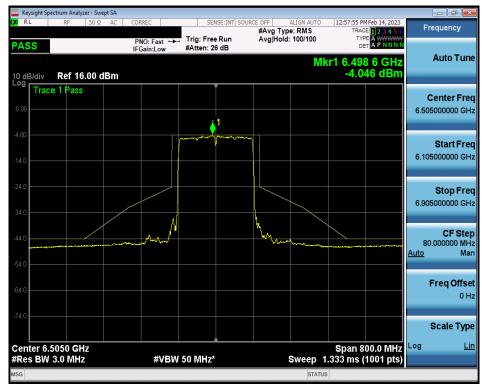
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 267 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 267 of 330
© 2023 ELEMENT	·	·	V 9.0 02/01/2019


Plot 7-455. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 113)


Plot 7-456. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 99)

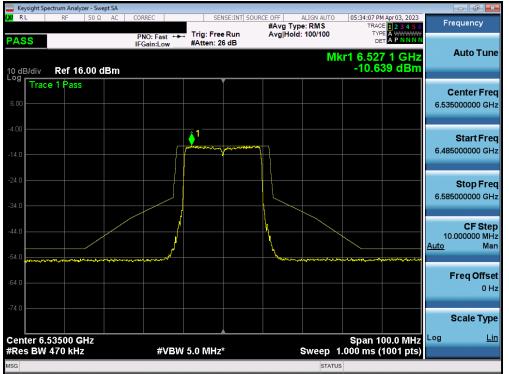
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da za 000 at 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 268 of 330
© 2023 ELEMENT	•	•	V 9.0 02/01/2019


Plot 7-457. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 107)

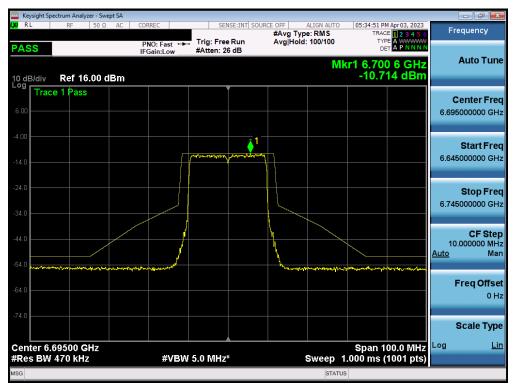

Plot 7-458. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 115)

FCC ID: PY7-84558E	MEASUREMENT REPORT		MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da za 000 at 000		
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 269 of 330		
© 2023 ELEMENT			V 9.0 02/01/2019		

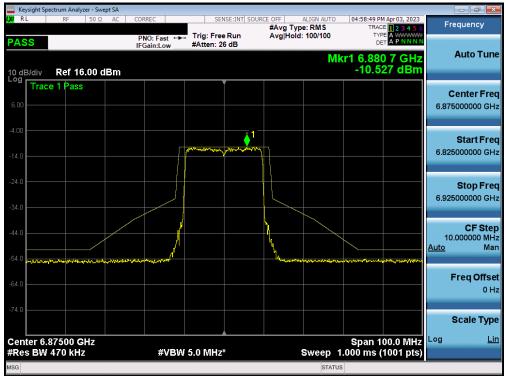
Plot 7-459. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 103)

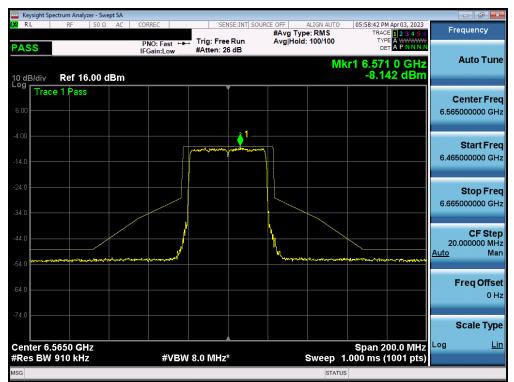


Plot 7-460. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 6) - Ch. 111)

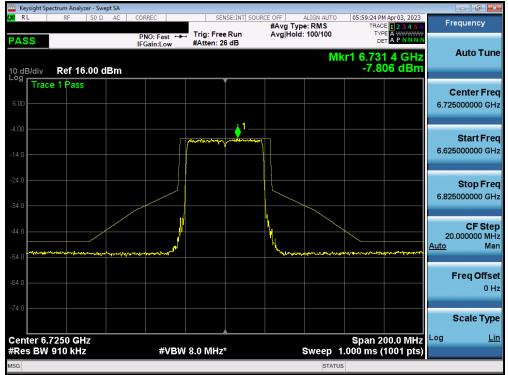

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da at 070 at 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 270 of 330
© 2023 ELEMENT	•	•	V 9.0 02/01/2019

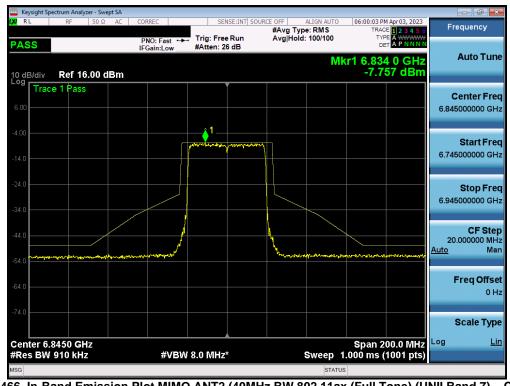
7.5.15 MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 7 - Full)


Plot 7-461. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 117)

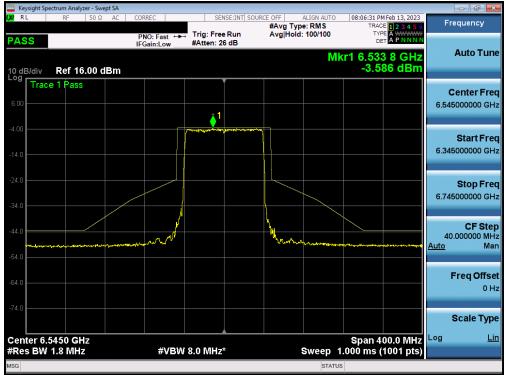

Plot 7-462. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 149)

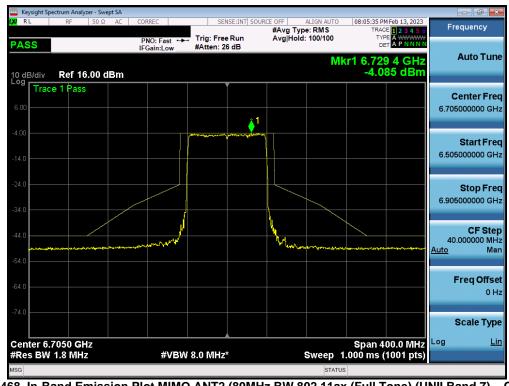
FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 271 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 271 of 330
© 2023 ELEMENT	•		V 9.0 02/01/2019


Plot 7-463. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 185)

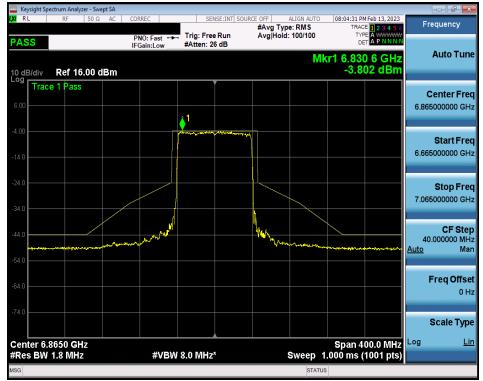

Plot 7-464. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 123)

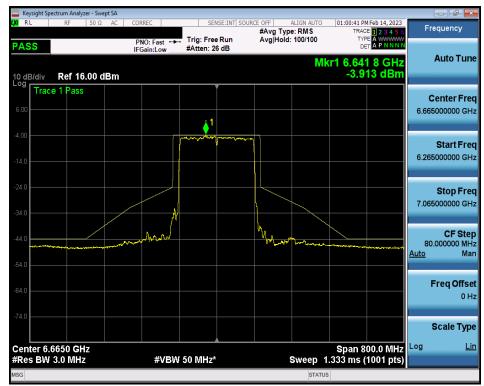
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 070 of 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 272 of 330
© 2023 ELEMENT			


Plot 7-465. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 155)


Plot 7-466. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 179)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da za 070 at 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 273 of 330
© 2023 ELEMENT			V 9.0 02/01/2019


Plot 7-467. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 119)

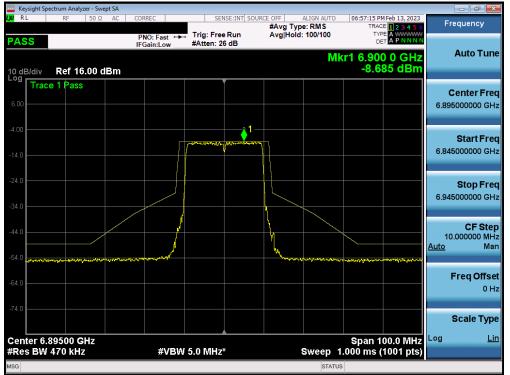

Plot 7-468. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 151)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 074 of 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 274 of 330
© 2023 ELEMENT		•	V 9.0 02/01/2019

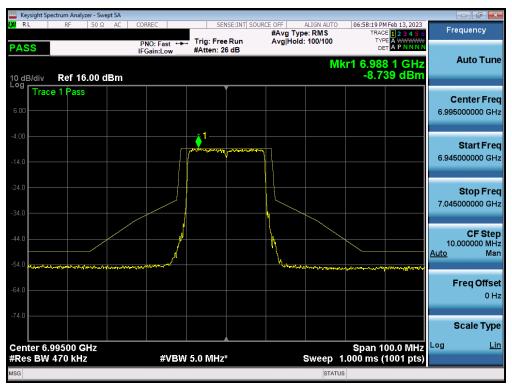
Plot 7-469. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 183)

Plot 7-470. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 143)

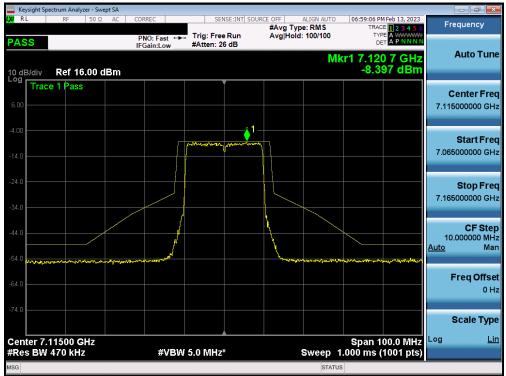
FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Da a 2075 at 2020
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 275 of 330
© 2023 ELEMENT	•	•	V 9.0 02/01/2019

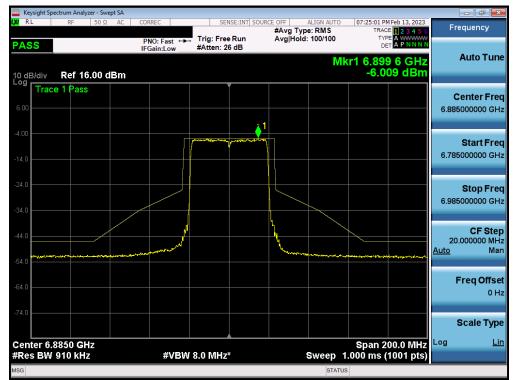


Plot 7-471. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 7) - Ch. 175)

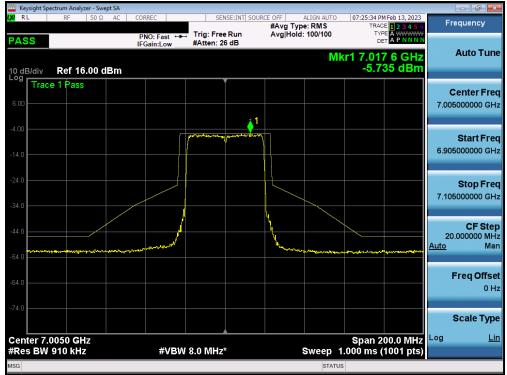

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 076 of 000
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 276 of 330
© 2023 ELEMENT		·	V 9.0 02/01/2019

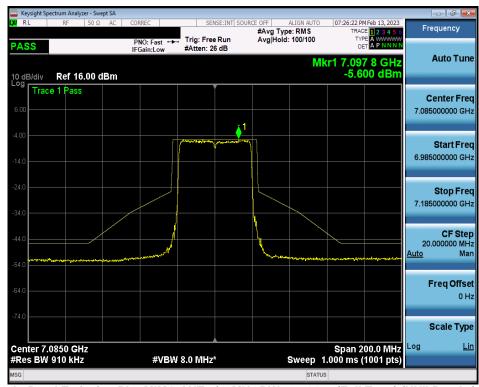
7.5.16 MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 8 - Full)


Plot 7-472. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 189)

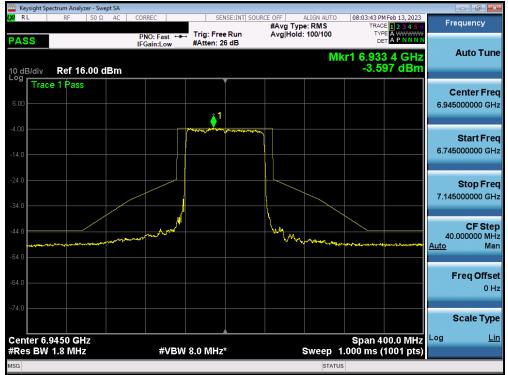

Plot 7-473. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 209)

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager					
Test Report S/N:	Test Dates:	Test Dates: EUT Type:						
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 277 of 330					
© 2023 ELEMENT V 9.0 02/01/2019								


Plot 7-474. In-Band Emission Plot MIMO ANT2 (20MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 233)


Plot 7-475. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 187)

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:				
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 278 of 330			
© 2023 ELEMENT	•	•	V 9.0 02/01/2019			


Plot 7-476. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 211)

Plot 7-477. In-Band Emission Plot MIMO ANT2 (40MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 227)

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:				
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 279 of 330			
© 2023 ELEMENT			V 9.0 02/01/2019			

Plot 7-478. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 199)

Plot 7-479. In-Band Emission Plot MIMO ANT2 (80MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 215)

FCC ID: PY7-84558E		MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Daga 200 of 220				
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 280 of 330				
© 2023 ELEMENT	•		V 9.0 02/01/2019				

Plot 7-480. In-Band Emission Plot MIMO ANT2 (160MHz BW 802.11ax (Full Tone) (UNII Band 8) - Ch. 207)

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 201 of 220		
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 281 of 330		
© 2023 ELEMENT	•	· · ·	V 9.0 02/01/2019		

7.6 Contention Based Protocol

Test Overview and Limit

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed indoor low-power devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel if detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel.

Test Procedure Used

KDB 987594 D02 v01r01

Test Settings

- 1. Configure the EUT to transmit with a constant duty cycle.
- 2. Set the operating parameters of the EUT including power level, operating frequency, modulation, and bandwidth.
- 3. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- 4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
- 5. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2.
- 7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- 8. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- 9. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 10. Refer to Table 1 of KDB 987594 D02 v01r01 to determine the number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal, and repeat the process.

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager					
Test Report S/N:	Test Dates:	Test Dates: EUT Type:						
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 282 of 330					
© 2023 ELEMENT V 9.0 02/01/20								

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

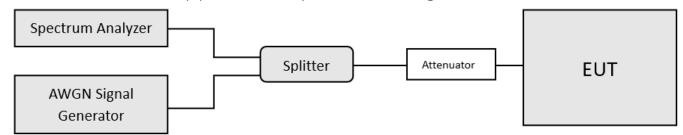


Figure 7-5. Contention-based protocol test setup, conducted method

Test Notes

- 1. Per guidance from KDB 987594 D02 v01r01, contention based protocol was tested using an AWGN signal with a bandwidth of 10MHz. The amplitude of the signal was increased until detected by the EUT, signaled by the ceasing of transmission, M1 indicates the point at which the AWGN signal is introduced. D1 indicates where the AWGN signal is terminated, at least 10 seconds following M1.
- 2. 15 trials were run in order to ensure certainty of 90%
- 3. Per Guidance from KDB 987594 D04 v01, contention based protocol was tested with receiver with the lowest antenna gain.
- 4. All CBP Timing Plots shown are for the ceased condition. Some spikes that may be shown are from adjacent portions of the spectrum that are still transmiting.

Detection Level = Injected AWGN Power (dBm) – Antenna Gain (dBi) + Path Loss (dB)

Band	Channel	Channel Freq [MHz]	Channel BW [MHz]	Incumbent Freq [MHz]	Injected (AWGN) [dBm]	Antenna Gain [dBi]	Adjusted Power Level [dBm]	Detection Limit [dBm]	Margin [dB]
	53	6215	20	6215	-75.50	-4.79	-70.71	-62.0	-8.71
UNII				6110	-80.99	-4.79	-76.20	-62.0	-14.20
Band 5	47	6185	160	6185	-72.09	-4.79	-67.30	-62.0	-5.30
				6260	-76.81	-4.79	-72.02	Limit [dBm] Margin [dB] -62.0 -8.71 -62.0 -14.20	
	101	6455	20	6455	-77.15	-3.83	-73.32	-62.0	-11.32
UNII				6430	-80.18	-3.83	-76.35	-62.0	-14.35
Band 6	111	6505	160	6505	-72.59	-3.83	-68.76	-62.0	-6.76
				6580	-79.92	-3.83	-76.09	-62.0	-14.09
	149	6695	20	6695	-80.83	-4.32	-76.51	-62.0	-14.51
UNII				6750	-79.74	-4.32	-75.42	-62.0	-13.42
Band 7	175	6825	160	6825	-71.48	-4.32	-67.16	-62.0	-5.16
				6900	-77.93	-4.32	-73.61	-62.0	-11.61
	197	6935	20	6935	-79.20	-4.33	-74.87	-62.0	-12.87
UNII				6910	-76.53	-4.33	-72.20	-62.0	-10.20
Band 8	207	6985	160	6985	-70.17	-4.33	-65.84	-62.0	-3.84
				7060	-74.12	-4.33	-69.79	-62.0	-7.79

Equation 7-1. Detection Level Calculation

Table 7-11. Contention Based Protocol – Incumbent Detection Results

FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager			
Test Report S/N:	Test Dates:	Test Dates: EUT Type:				
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 283 of 330			
© 2023 ELEMENT			V 9.0 02/01/2019			

						EUT T	ransmission S			
Band	Channel	Channel Freq [MHz]	Channel BW [MHz]	Incumbent Freq [MHz]	Antenna Gain [dBi]	Adjusted Normal	d AWGN Powe Minimal	er (dBm) Ceased	Detection Limit [dBm]	Margin [dB]
	53	6215	20	6215	-4.79	-75.52	-72.27	-70.71	-62.0	-8.71
UNII				6110	-4.79	-78.80	-76.50	-76.20	-62.0	-14.20
Band 5	47	6185	160	6185	-4.79	-72.20	-69.40	-67.30	-62.0	-5.30
				6260	-4.79	-74.22	-72.37	-72.02	-62.0	-10.02
	101	6455	20	6455	-3.83	-76.32	-75.14	-73.32	-62.0	-11.32
UNII				6430	-3.83	-78.60	-77.60	-76.35	-62.0	-14.35
Band 6	111	6505	160	6505	-3.83	-71.61	-70.26	-68.76	-62.0	-6.76
				6580	-3.83	-79.59	-77.30	-76.09	-62.0	-14.09
	149	6695	20	6695	-4.32	-80.01	-77.76	-76.51	-62.0	-14.51
UNII				6750	-4.32	-78.02	-76.50	-75.42	-62.0	-13.42
Band 7	175	6825	160	6825	-4.32	-71.06	-68.68	-67.16	-62.0	-5.16
				6900	-4.32	-76.93	-75.83	-73.61	-62.0	-11.61
	197	6935	20	6935	-4.33	-79.12	-77.08	-74.87	-62.0	-12.87
UNII				6910	-4.33	-76.11	-74.19	-72.20	-62.0	-10.20
Band 8	207	6985	160	6985	-4.33	-69.99	-67.99	-65.84	-62.0	-3.84
				7060	-4.33	-72.99	-70.99	-69.79	-62.0	-7.79

Table 7-12. Contention Based Protocol – Detection Results – All Tx Cases

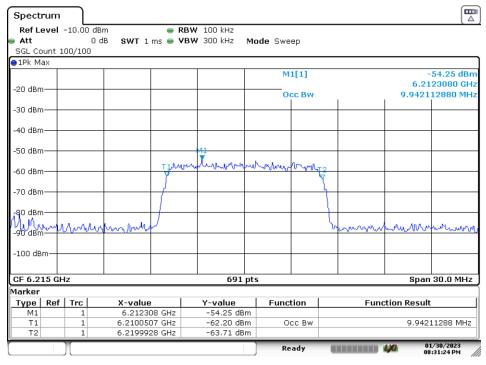
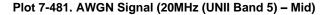
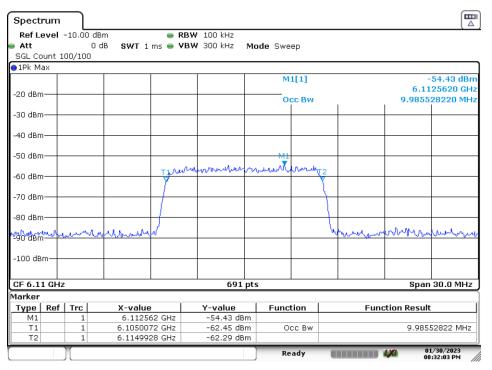

Band	Channel	Channel Freq [MHz]	Channel BW [MHz]	Incumbent Freq [MHz]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Detection Rate (%)
	53	6215	20	6215	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				6110	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 5	47	6185	160	6185	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				6260	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	101	6455	20	6455	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				6430	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 6	111	6505	160	6505	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				6580	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	149	6695	20	6695	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				6750	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 7	175	6825	160	6825	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				6900	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	197	6935	20	6935	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				6910	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 8	207	6985	160	6985	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				7060	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100

Table 7-13. Contention Based Protocol – Incumbent Detection Trial Results


FCC ID: PY7-84558E		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 284 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 284 of 330
© 2023 ELEMENT			V 9.0.02/01/2019

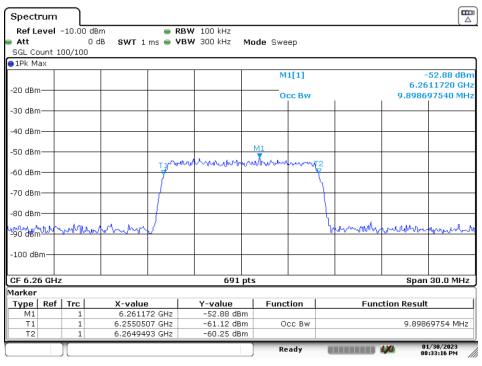


7.6.1 AWGN Plots

Date: 30.JAN.2023 20:31:24

Date: 30.JAN.2023 20:32:03

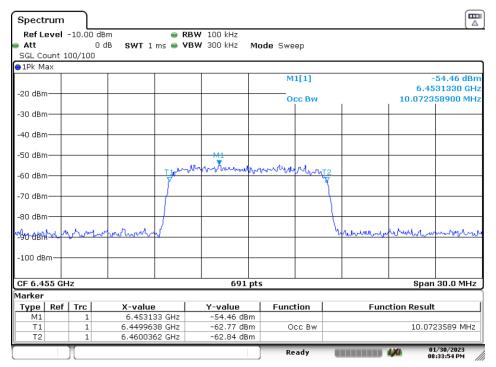
FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 205 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 285 of 330
© 2023 ELEMENT			V 9.0 02/01/2019



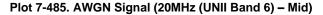
-20 dBm 6.1847400 G -30 dBm Occ Bw 9.985528220 M -30 dBm	Spectrur	n									
SGL Count 100/100 • PPk Max -20 dBm • M1[1] • 52.65 df -30 dBm • Occ Bw -30 dBm • Occ Bw -40 dBm • Occ Bw -50 dBm • M1 -50 dBm • M1 -60 dBm • M1 -70 dBm • M1 -100 dBm • G91 pts • Span 30.0 MH M1 • 6.18474 GHz -100 dBm -110 dBm -110 dBm -110 dBm -110 dBm -110 dBm -110 dBm -110 dBm -110 d.18474 GHz -52.65 dBm -111 d.1 6.180507 GHz -59.54 dBm -111 d.1 -111 d.1 </th <th>Ref Leve</th> <th>l -10.00</th> <th>dBm</th> <th>👄 R</th> <th>BW 100 kHz</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Ref Leve	l -10.00	dBm	👄 R	BW 100 kHz						
•1Pk Max •1Pk Max •52.65 dt -20 dBm •0cc Bw 9.985528220 M -30 dBm •0cc Bw 9.985528220 M -40 dBm •1 •1 -50 dBm •1 •1 -50 dBm •1 •1 -60 dBm •1 •1 -70 dBm •1	🗕 Att		0 dB SV	VT 1 ms 👄 V	/BW 300 kHz	Mode	Sweep				
-20 dBm -52.65 dt -20 dBm -52.65 dt -30 dBm -60 cc Bw -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -100 dBm -70 dBm <t< td=""><td>SGL Count</td><td>100/10</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SGL Count	100/10)								
-20 dBm 6.1847400 G -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm </td <td>⊖1Pk Max</td> <td></td>	⊖1Pk Max										
-20 dBm -30 dBm 0cc Bw 9.985528220 M -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -100 dBm <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>M1[1]</td> <td></td> <td></td> <td>-</td> <td>52.65 dBm</td>							M1[1]			-	52.65 dBm
-30 dBm -30 dBm 9.985528220 M -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -100 dBm -70 dBm -70 dBm -70 dBm	-20 dBm-										
-40 dBm M1 -50 dBm M1 -60 dBm T1/Mm -60 dBm T1/Mm -70 dBm Image: Constraint of the second secon	20 00111						Occ Bw			9.9855	28220 MHz
-50 dBm T1 Mm M1 -60 dBm T1 Mm M1 -60 dBm T1 Mm M1 -70 dBm Image: Constraint of the second	-30 dBm										
-50 dBm T1 Mm M1 -60 dBm T1 Mm M1 -60 dBm T1 Mm M1 -70 dBm Image: Constraint of the second											
-60 dBm T1/thm 1/thm 1/thm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -90 dBm -70 dBm -70 dBm -70 dBm -100 dBm -70 dBm	-40 dBm										
-60 dBm T1/thm 1/thm 1/thm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -90 dBm -70 dBm -70 dBm -70 dBm -100 dBm -70 dBm											
-60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -90 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -101 dBm -100 dBm -100 dBm -100 dBm -101 dBm -100 dBm -101 dBm -100 dBm -100 dBm -100 dBm -11 -10.18474 GHz -52.65 dBm -11 -10.18474 GHz -59.54 dBm 0ccc Bw 9.9	-50 dBm				M.						
-60 dBm -70 dBm -70 dBm -80 dBm -80 dBm -90 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -100 dBm -101 dBm -100 dBm -100 dBm -100 dBm -101 dBm -100 dBm -101 dBm -100 dBm -100 dBm -100 dBm -11 -10.18474 GHz -52.65 dBm -11 -10.18474 GHz -59.54 dBm 0ccc Bw 9.9				TINY	malower	mout	romanni	r2			
-80 dBm -80 dBm -80 dBm -100 dBm	-60 dBm—							9			
-80 dBm -90 dBm -100 dBm								\setminus			
Marker Function Function Result Type Ref Trc X-value Function Function Result M1 1 6.18474 GHz -52.65 dBm 9.98552822 MH	-70 dBm—										
Marker Function Function Result Type Ref Trc X-value Function Function Result M1 1 6.18474 GHz -52.65 dBm 9.98552822 MH								11			
-100 dBm -100 d	-80 dBm										8. Ú
-100 dBm -100 d	Augusta	mon	mound	runu				_ \v	mont	mon	mandly
CF 6.185 GHz 691 pts Span 30.0 MH Marker Type Ref Trc X-value Y-value Function Function Result M1 1 6.180507 GHz -52.65 dBm 9.98552822 MH T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH	-90 UBIII-										
CF 6.185 GHz 691 pts Span 30.0 MH Marker Type Ref Trc X-value Y-value Function Function Result M1 1 6.180507 GHz -52.65 dBm 9.98552822 MH T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH	-100 dBm-										
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 6.18474 GHz -52.65 dBm 9.98552822 MH T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH	-100 0511										
Marker Function Function Result Type Ref Trc X-value Y-value Function Function Result M1 1 6.18474 GHz -52.65 dBm 9.98552822 MH T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH											
Type Ref Trc X-value Y-value Function Function Result M1 1 6.18474 GHz -52.65 dBm -											
M1 1 6.18474 GHz -52.65 dBm T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH	Marker										
T1 1 6.1800507 GHz -59.54 dBm Occ Bw 9.98552822 MH							Function		Fund	ction Result	
12 1 6.1900362 GHZ -61.03 dBm							Occ Bw			9.985	52822 MHz
	<u>[12</u>	1	6.1	900362 GHZ	-61.03 dB	m					
Ready 01/30/2023 08:32:37 PM		T					Ready				1/30/2023

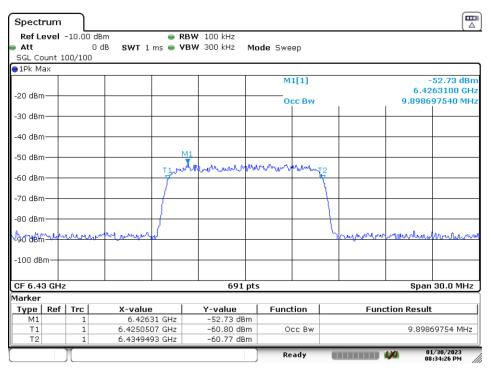
Plot 7-482. AWGN Signal (160MHz (UNII Band 5) - Low)

Date: 30.JAN.2023 20:32:38


Date: 30.JAN.2023 20:33:16

Plot 7-484. AWGN Signal (160MHz (UNII Band 5) - Mid)

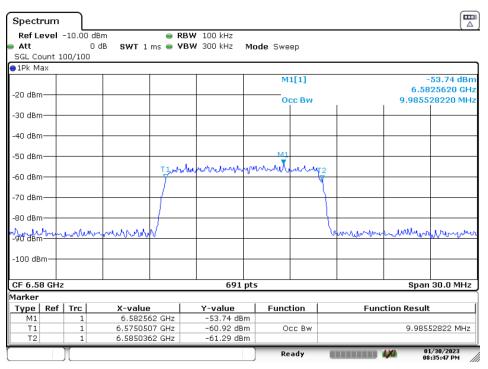

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 286 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 286 of 330
© 2023 ELEMENT		·	V 9.0 02/01/2019


permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Date: 30.JAN.2023 20:33:54

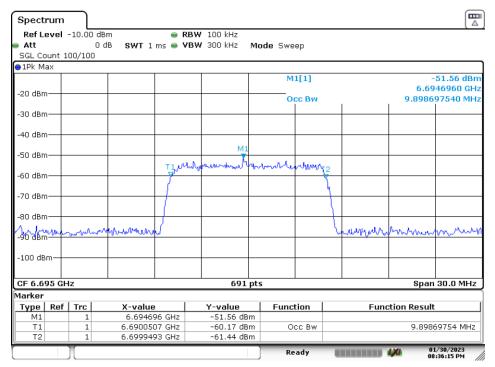
Date: 30.JAN.2023 20:34:27

Plot 7-486. AWGN Signal (160MHz (UNII Band 6) - Low)

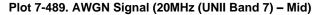

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 207 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 287 of 330
© 2023 ELEMENT	•		V 9.0 02/01/2019

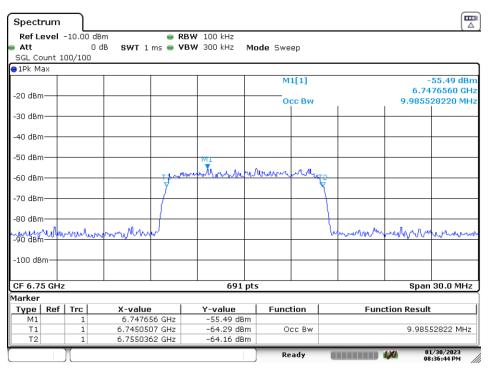
Spect	rum											
🕳 Att		-10.00	O dB SWT		RBW 100 kHz /BW 300 kHz	Mo	de Swee	əp				
●1Pk M	ax											
							M	[1]				-53.76 dBm)84730 GHz
-20 dBn	n						00	c Bw				97540 MHz
-30 dBn	n-+			+								
-40 dBn	n-+											
-50 dBn	n-+							M1				
-60 dBn	n			T1/W	mound	M	hypubur	h~j	2			
-70 dBn	n								$\left\{ \right\}$			
-80 dBn	n			+					+			
~96~8 66	2	more	Warman	vv/					h	Maneron	monto	man
-100 dB	ım—			_								
CF 6.5	05 Ġł	Ηz	1		691	pts					Spar	30.0 MHz
Marker												
Туре	Ref	Trc	X-val		Y-value		Funct	ion		Fun	ction Result	t
M1 T1		1		3473 GHz 3507 GHz	-53.76 dB -60.87 dB		Oc	c Bw			9.898	69754 MHz
T2		1		9493 GHz	-60.62 dB							
][Re	ady	1		1/0 0	1/30/2023 3:35:03 PM

Date: 30.JAN.2023 20:35:03

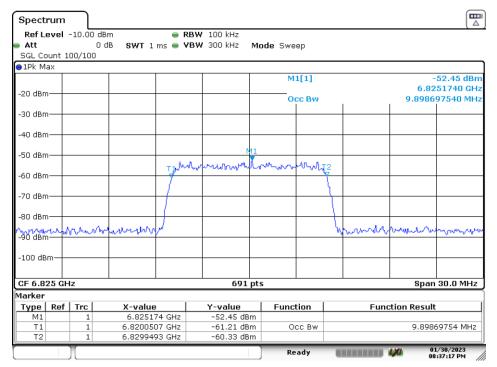


Date: 30.JAN.2023 20:35:47


Plot 7-488. AWGN Signal (160MHz (UNII Band 6) - High)

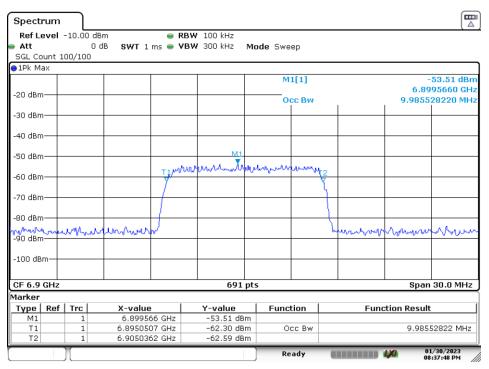

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 289 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 288 of 330
© 2023 ELEMENT	·		V 9.0 02/01/2019

Date: 30.JAN.2023 20:36:16

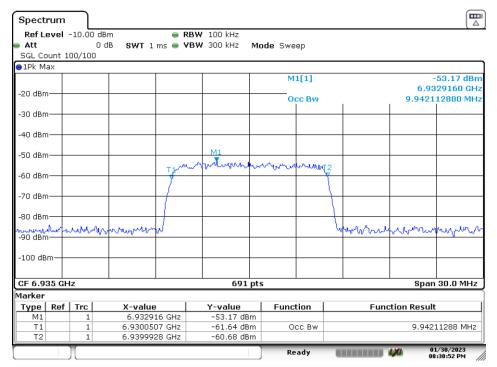


Date: 30.JAN.2023 20:36:44

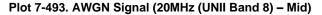
Plot 7-490. AWGN Signal (160MHz (UNII Band 7) - Low)

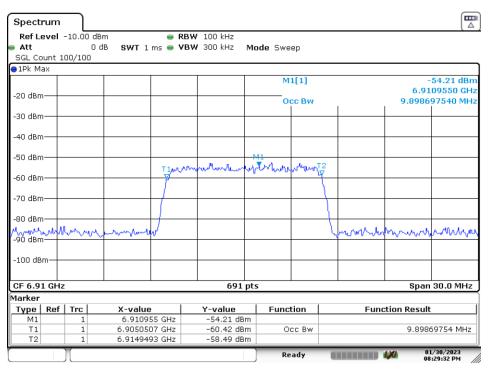

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 280 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 289 of 330
© 2023 ELEMENT	·	· · ·	V 9.0 02/01/2019

Date: 30.JAN.2023 20:37:17

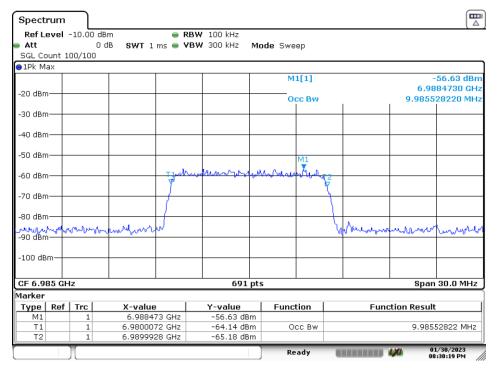


Date: 30.JAN.2023 20:37:48


Plot 7-492. AWGN Signal (160MHz (UNII Band 7) - High)

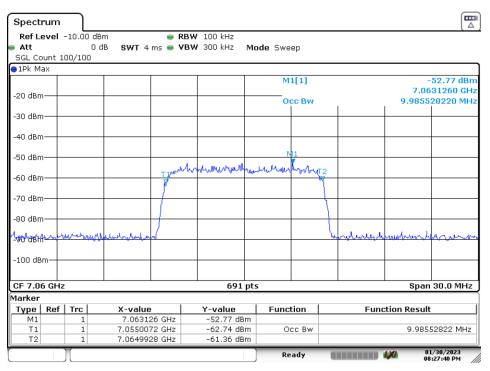

FCC ID: PY7-84558E		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 290 of 330	
© 2023 ELEMENT	·		V 9.0 02/01/2019	

Date: 30.JAN.2023 20:30:52

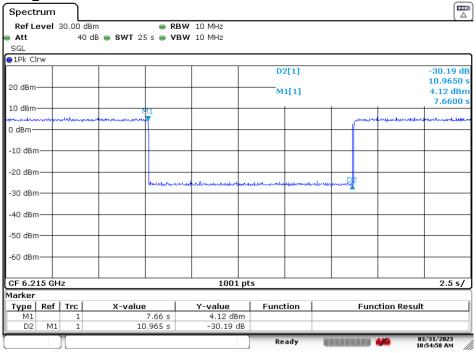


Date: 30.JAN.2023 20:29:32

Plot 7-494. AWGN Signal (160MHz (UNII Band 8) - Low)

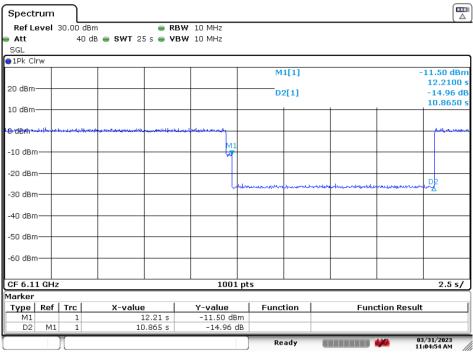

FCC ID: PY7-84558E		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 201 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 291 of 330	
© 2023 ELEMENT	•		V 9.0 02/01/2019	

Date: 30.JAN.2023 20:30:19


Date: 30.JAN.2023 20:27:40

Plot 7-496. AWGN Signal (160MHz (UNII Band 8) - High)

FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 202 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 292 of 330
© 2023 ELEMENT		· ·	V 9.0 02/01/2019

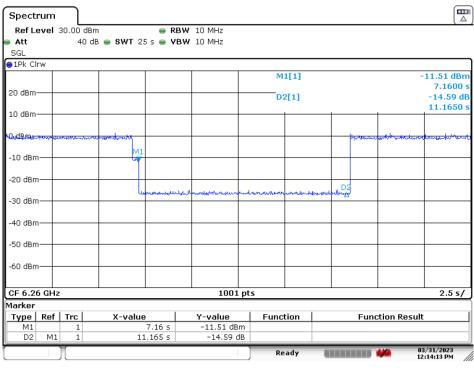


7.6.2 CBP Timing Plots

Date: 31.MAR.2023 10:54:58

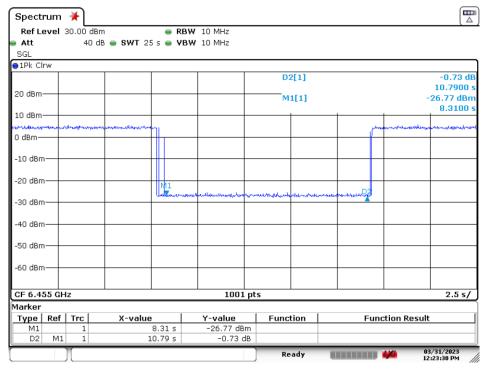
Date: 31.MAR.2023 11:04:54

Plot 7-498. Contention Based Protocol Timing Plot (160MHz (UNII Band 5) - Ch. 47 Low)


FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 202 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 293 of 330
© 2023 ELEMENT	•		V 9.0 02/01/2019

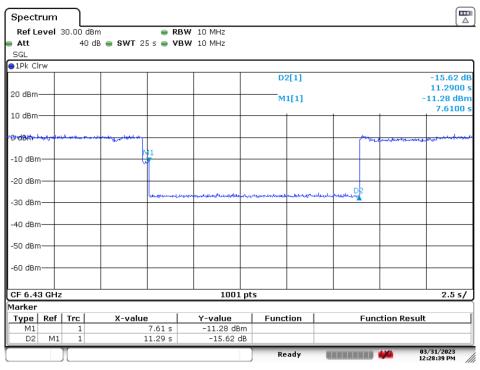
Spectru	ım											
Ref Lev	el 3	0.00 d	Bm	e Ri	BW 10 MHz							
🗕 Att		40	dB 👄 SWT 2	5 s 👄 ۷	BW 10 MHz							
SGL												
⊖1Pk Clrw	′											
							D	2[1]				-27.69 dB
20 dBm—	_		_				M	1[1]				10.4400 s 1.34 dBm
								111				5.7600 s
10 dBm—	-										1	1
0 dBm		Marian	M1							mounder	به و ما و مرود الاور الاور الاور الاور ال	وسلور والمراجع والمراجع
0'dBm—												
-10 dBm-												
10 00111												
-20 dBm—	_											
			humander	ورومه والمعاور ومقاسم	www.walktoward	Lune	mondulation	D	2			
-30 dBm—	+											
-40 dBm—												
-50 dBm-												
-50 0011												
-60 dBm—												
CF 6.185	GH	z			1001	pts		I				2.5 s/
Marker												
	≀ef	Trc	X-value	,	Y-value	1	Func	tion	1	Fun	ction Result	.
M1		1		5.76 s	1.34 dB							
D2	M1	1		LO.44 s	-27.69	JB						
							Re	ady			4// 12	3/31/2023 2:07:40 PM

Date: 31.MAR.2023 12:07:41



Date: 31.MAR.2023 12:14:12

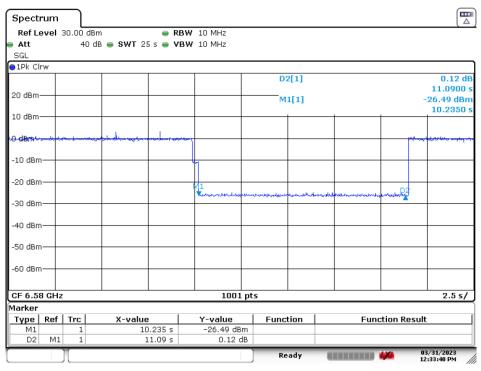
Plot 7-500. Contention Based Protocol Timing Plot (160MHz (UNII Band 5) - Ch. 47 High)


FCC ID: PY7-84558E		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 204 of 220
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 294 of 330
© 2023 ELEMENT			V 9.0 02/01/2019

Date: 31.MAR.2023 12:23:29

Date: 31.MAR.2023 12:28:38

Plot 7-502. Contention Based Protocol Timing Plot (160MHz (UNII Band 6) - Ch. 111 Low)


FCC ID: PY7-84558E		MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Daga 205 of 220			
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 295 of 330			
© 2023 ELEMENT	·		V 9.0 02/01/2019			

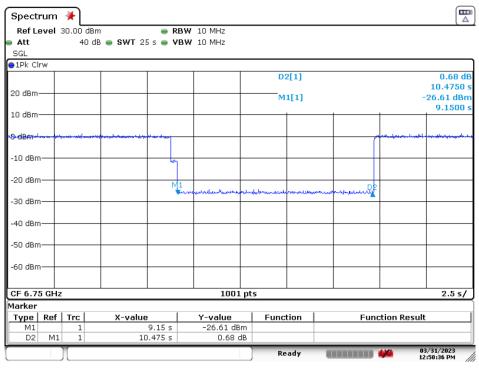
Spectrum								
Ref Level	30.00 0	lBm	👄 RB	W 10 MHz				· · · · · ·
Att	40	dB 👄 SWT 29	5 👄 VB	W 10 MHz				
SGL								
⊖1Pk Clrw								
					D	2[1]		-0.28 di
20 dBm								11.5650
20 00.00					M	1[1]		-26.60 dBn
10 dBm						1		8.4100
Ů ďBm	and the second sec	and a second and the second	<u>.</u>					- And and and and a state of the second seco
-10 dBm		-		-				
-20 dBm			M1				r	
-30 dBm			hour	- man mar mar when	monthanter	newson for the stand for	a about the manufacture and the	
-So abiii								
-40 dBm		_		_				
-50 dBm								
-60 dBm								
CF 6.505 G	Hz	1		1001	ots		I	2.5 s/
Marker								
Type Ref	Trc	X-value	1	Y-value	Fund	tion	Fun	ction Result
M1	1		8.41 s	-26.60 dBm				
D2 M	1 1	11	.565 s	-0.28 dE	s			
					Re	eady		03/31/2023
								12:30:14 PM

Date: 31.MAR.2023 12:30:14

Plot 7-503. Contention Based Protocol Timing Plot (160MHz (UNII Band 6) - Ch. 111 Mid)

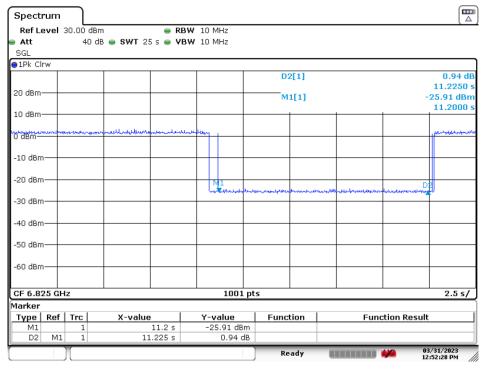
Date: 31.MAR.2023 12:33:41

Plot 7-504. Contention Based Protocol Timing Plot (160MHz (UNII Band 6) - Ch. 111 High)


FCC ID: PY7-84558E		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 206 of 220		
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 296 of 330		
© 2023 ELEMENT	•		V 9.0 02/01/2019		

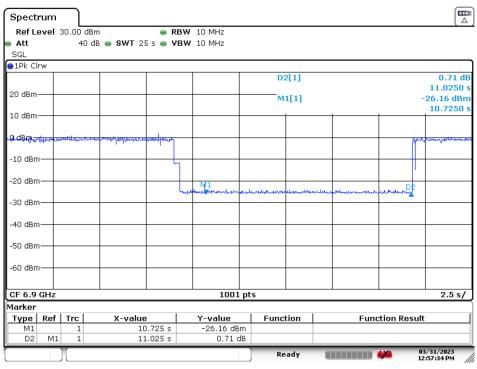
D - (1 1							
Ref Level			RBW 10 MHz				
Att	4U C	dB 👄 SWT 25 s 👄	VBW 10 MHz				
SGL 1Pk Clrw							
JIPK CITW				D2[1]			0.07 df
				02[1]			11.4250
20 dBm		+		M1[1]			-26.40 dBn
							8.9500
10 dBm		+					
	Martin and the Martin and and	marketer secured to any seg					-low them have be
0 dBm							
-10 dBm-							
-10 ubiii							
-20 dBm							
20 000			1	ومراجعه والمرجع والمرجع والمرجع	unanytrationspheric		
-30 dBm				01.01. Abort 00.400 00.00		X	
-40 dBm		+					
-50 dBm							
-50 dBm							
-50 dBm							
	Hz		1001	pts			2.5 s/
-60 dBm			1001	pts			2.5 s/
-60 dBm CF 6.695 G Marker Type Ref	f Trc	X-value	Y-value	Function		unction Resu	
-60 dBm CF 6.695 G Marker Type Ret M1	f Trc	8.95 s	Y-value -26.40 dB	Function	- Fi	unction Resu	•
-60 dBm CF 6.695 G Marker Type Ref	f Trc		Y-value -26.40 dB	Function			

Date: 31.MAR.2023 12:46:18



Date: 31.MAR.2023 12:50:37

Plot 7-506. Contention Based Protocol Timing Plot (160MHz (UNII Band 7) - Ch. 175 Low)


FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Daga 207 of 220	
1M2302060006-09-R3.PY7	01/30/2023 – 04/17/2023 Portable Handset		Page 297 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				

Date: 31.MAR.2023 12:52:28

Plot 7-507. Contention Based Protocol Timing Plot (160MHz (UNII Band 7) - Ch. 175 Mid)

Date: 31.MAR.2023 12:57:33

Plot 7-508. Contention Based Protocol Timing Plot (160MHz (UNII Band 7) – Ch. 175 High)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 298 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				

Spectrum					
Ref Level 30.00 dBm	n 🖷 R	BW 10 MHz			
Att 40 dB	8 👄 SWT 25 s 👄 V	BW 10 MHz			
SGL					
∋1Pk Clrw					
			D2[1]		0.18 di
20 dBm					11.2000
20 0011			M1[1]		-25.60 dBr
10 dBm					9.4500
	L. makes and second				- marine love and a second
0 dBm	and the second se				
-10 dBm					
-20 dBm		mi l			D
		enter another water more	Hard Seath Healton and more and and a second again	erhannennen er hende an	~ 1
-30 dBm					
40 d0					
-40 dBm					
-50 dBm					
-50 dbill					
-60 dBm					
oo abiii					
CF 6.935 GHz		1001 p	ts		2.5 s/
Aarker					,
Type Ref Trc	X-value	Y-value	Function	Funct	ion Result
M1 1	9.45 s	-25.60 dBm			
	11.2 s	0.18 dB			
D2 M1 1	11.2 5	0.10 00			

Date: 31.MAR.2023 13:00:56

Date: 31.MAR.2023 13:03:00

Plot 7-510. Contention Based Protocol Timing Plot (160MHz (UNII Band 8) - Ch. 207 Low)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Daga 200 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 299 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				

Spectrum							
Ref Level 30.00 dBr	n 🖷 🗑 🗑	3W 10 MHz					
Att 40 dl	8 👄 SWT 25 s 👄 VE	3W 10 MHz					
SGL							
●1Pk Clrw							
			D2	2[1]			0.40 dB
20 dBm							.9750 s
			M	1[1]			52 dBm .1250 s
10 dBm							.1250 \$
0 dBm	n and meaning willing and	ul				portalistic	աներութե
-10 dBm	and the second second second second	~					- 000 + 000 M
-10 000							
-20 dBm							
		La contraction and the second	manushuken		mound	mending	
-30 dBm							
-40 dBm							
-50 dBm							
00 00.00							
-60 dBm							
CF 6.985 GHz	I I	1001	pts	I	I	I	2.5 s/
Marker							
Type Ref Trc	X-value	Y-value	Funct	tion	Fun	ction Result	
M1 1	10.125 s	-25.52 dBn					
D2 M1 1	10.975 s	0.40 dł	3				
			Re	ady		03/31/ 01:05:5	2023 3 PM //

Date: 31.MAR.2023 13:05:54

Plot 7-511. Contention Based Protocol Timing Plot (160MHz (UNII Band 8) - Ch. 207 Mid)

Date: 31.MAR.2023 13:11:57

Plot 7-512. Contention Based Protocol Timing Plot (160MHz (UNII Band 8) - Ch. 207 High)

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Daga 200 of 220	
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 300 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				

7.7 Radiated Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. All channels, modes (e.g. 802.11ax (20/40/80/160MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of −27 dBm/MHz

Emissions found in a restricted band are subject to the limits of 15.209 as shown in the table below.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-14. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 - Sections 12.7.7.2, 12.7.6, 12.7.5

Test Settings – Above 1GHz

Average Field Strength Measurements (Method AD – Average Detection)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span}$)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces.

FCC ID: PY7-84558E	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	Test Dates: EUT Type:		
1M2302060006-09-R3.PY7	01/30/2023 - 04/17/2023	Portable Handset	Page 301 of 330	
© 2023 ELEMENT V 9.0 02/01/2019				