

	Test Report	
47 CFF In	R FCC Part 15 subpart C Itentional Radiators	
Report reference no	28112194 005	
FCC Designation Number	IT0008	
FCC Test Firm Registration #	804595	
Tested by (name + signature)	Deto	D.

Roberto Radice \ Tester

Approved by (name + signature).....:

Rolerto Routa

	Giovanni Molteni \ TM
Date of issue	April, 19 th 2019
Total number of pages	67 Pages
Testing Laboratory	TÜV Rheinland Italia S.r.l.
Address	Via Mattei 3 - 20010 - Pogliano Milanese (MI) – Italy
Applicant's name	Sony Mobile Communications Inc.
Address	4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002, Japan
Test item description	Room and desk occupancy detection system
Trade Mark	Sony
Manufacturer	Sony Mobile Communications Inc. 4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-0002, Japan
Ratings	+5V dc via USB port.
Sample	
Samples received on	26/10/2018
TUV reference samples	180718 (sampled by the customer)
Samples tested n	1
FCC ID	PY7-70664G
Testing	
Start Date:	30/10/2018
End Date:	31/10/2018
The results in this Test Report are exclusively re	ferred to the tested samples. Without the written authorization of TÜV Rheinland Italia is document can be reproduced only integrally

Report No. 28112194 005

RELEASE CONTROL RECORD			
Test report Number	Reason of change	Date of Issue	
28112194 001	Original release	2018-11-16	
28112194 005	Insert a new graphics of "6dB Bandwidth" test.	2019-04-19	

SUMMARY

1.	Reference Standards	3
2.	Summary of testing	4
3.	General product information	6
4.	Equipment Used During Test	7
5.	Input/Output Ports	7
6.	Power Interface	8
7.	EUT Operation Modes	8
8.	EUT Configuration Modes	9
9.	Test Conditions and Results	10
9.1	TEST: Antenna requirements	10
9.2	TEST: AC Power Conducted Emission	11
9.3	TEST: Radiated Emission	18
9.4	TEST: 6dB Bandwidth	42
9.5	TEST: RF power output, radiated (EIRP)	46
9.6	TEST: Out-of-band emissions	50
9.7	TEST: 100 kHz Bandwidth of Frequency Band Edges	54
9.8	TEST: Power Spectral Density	61
9.9	TEST: Additional provisions to the general radiated emission limitations.	65
9.10	TEST: RF Exposure Requirements	66

1. Reference Standards			
Standard	Description		
FCC Part 15 (Subpart C)	§15.247 Operation within the bands 902-928 MHz, 2400-2483,5 MHz, and 5725-5850 MHz.		
FCC Part 15 (Subpart C)	§15.207 Conducted Limits		
FCC Part 15 (Subpart C)	§15.209 Radiated emission limits; general requirements		
FCC Part 15 (Subpart C)	§15.203 Antenna Requirement		
FCC Part 15 (Subpart B)	§15.107 + 15.109		
ANSI C63.4:2014	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz		
ANSI C63.10:2013	American National Standard for Testing Unlicensed Wireless Devices		
558074 D01 DTS Meas Guidance v05 - August 24,2018	Guidance for performing compliance measurements on digital transmission systems (dts) operating under §15.247		

Г

2. Summary of testing				
§ 15.203 § 15.247 (b)(4)(i)	Antenna Requirements	PASS		
§ 15.207 (a)	Power Line Conducted Emission	PASS		
§ 15.209 (a) (f)	Radiated Emission	PASS		
§ 15.215 (a) (b) (c)	Additional provisions to the general radiated emission limitations	PASS		
§ 15.247 (d)	Out-of-band emissions	PASS		
§ 15.247 (d)	100 kHz Bandwidth of Frequency Band Edges	PASS		
§ 15.247 (a)	Frequency Hopping Spread Spectrum Specifications			
§ 15.247(a)	20 dB Bandwidth	N.A. ¹		
§ 15.247(a)(1)	Carrier frequency (Hopping Channel) Separation	N.A. ¹		
§ 15.247(a)(1)(iii)	Number of Hopping Channels Used	N.A. ¹		
§ 15.247(a)(1)(iii)	Time occupancy (Dwell Time) of Each Ch. within a 0,4 x Nch (sec) Period	N.A. ¹		
§ 15.247(a)(2)	6dB Minimum Bandwidth	PASS		
§ 15.247(b)	Maximum Peak Output Power			
§ 15.247(b) (1)	Peak Output Power, radiated (EIRP)	N.A. ¹		
§ 15.247(b) (3)	RF power output, radiated (EIRP)	PASS		
§ 15.247(b) (4)	Antenna gain			
§ 15.247(c)	Operation with directional antenna gains greater than 6 dBi	N.A.		
§ 15.247 (e)	Power Spectral Density	PASS		
§ 15.247 (f)	Hybrid systems	N.A. ¹		
§ 15.247 (g)	FHSS Transmission characteristics	N.A. ¹		
§ 15.247 (h)	Recognition of occupied channel and multiple transmission system	N.A		
§ 15.247(i) (§ 47CFR 1.1307(b)(1))	RF humane exposure	PASS		

Note 1	Not applicable for DTS equipment
--------	----------------------------------

Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	PASS
- test object does not meet the requirement:	FAIL

General remarks:

The test results presented in this report relate only to the object tested.

The results contained in this report reflect the results for this particular model and serial number. It is the responsibility of the manufacturer to ensure that all production models meet the intent of the requirements detailed within this report.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory. "(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

3. General product information The Sony Nimway sensor system is used to detect and report occupancy in rooms and at desks. The sensor system consists of four major hardware components. One door sensor, one room sensor, one desk sensor and one access point. Typically, multiple sensors talk to one access point. 1 cm - US(TA8) External antenna Access Point Siretta MIKE1A Radio MCU and transceiver Texas Instruments CC1350 Both Where Value Type Radio frequency Both ISM Band (915MHz US) +14 dBm Radio maximum output power Both ~ 100m Radio indoor range Both Target environment Both Office environment ~ 15 - 40°C Max number of sensors per AP Access point At least 600 sensors

Weight

About 60 grams

Sensor

4. Equipment Used During Test				
Use*	Product Type	Manufacturer	FCC ID	Comments
EUT	Gateway	Sony	PY7-70664G	
AE	Cellular phone			Used to set Gateway parameters
Note:				

* Use :

EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, or

SIM - Simulator (Not Subjected to Test)

No other Auxiliary/Associated Equipment was connected/installed on the EUT

5. Input/Output Ports

CONNECTIONS					
Port		Description	Connection	Cable lenght	
1	Enclosure	Non conductive surface	Closed by 4 metallic screws		
2	AC Power Port	AC	Port not present		
3	DC Power Port	DC	Input +5V via USB port	No cable	
4	USB	I/O	TX/RX	No cable	
5	Antenna	Ant. Siretta MIKE1A	Internal sma connector	< 2m.	
	*Note: AC = AC Power Port DC = DC Power Port N/E = Non-Electrical I/O = Signal Input or Output Port (Not Involved in Process Control) WN = Wired Network				

6.	Power Interf	ace				
Mode #	Voltage (V)	Current (A)	Power (W)	Frequency (DC/AC-Hz)	Phases (#)	Comments
Rated	+5 dc					

7. EUT Operation Modes				
Operation mode	Description			
#1	Continuous Modulated RF Transmission RF setting during tests: Frequency: 904,0 MHz (low channel); 915,5MHz (mid channel); 927,0MHz (high channel); Max. Power Setting. Equipment supplied at +5V dc via battery pack			
#2	Continuous Modulated RF Transmission RF setting during tests: Frequency: 904,0 MHz (low channel); 915,5MHz (mid channel); 927,0MHz (high channel); Max. Power Setting. Equipment supplied at +5V dc via USB port connected at a Personal Computer. Personal Computer connected to AC Mains Power (115Vac 60Hz)			
#3	Equipment supplied at +5V dc via USB port connected at a Personal Computer. Personal Computer connected to AC Mains Power (115Vac 60Hz) EUT in stand-by mode.			

Mode #	Description
#1	Gateway supply at +5V by a battery packet provided by applicant.
#2	Gateway supply at +5V by a USB port of PC.
he field str ntenna Co	rength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and rrection Factor to the measured reading. The basic equation is as follows:
	Field Strength ($dB\mu V/m$) = RAW - AMP + CBL + ACF
	Where: $RAW = Measured$ level before correction ($dB\mu V$)
	AMP = Amplifier Gain (dB)
	CBL = Cable Loss (dB)
	ACF = Antenna Correction Factor (dB/m)
	$\mu V/m = 10^{\frac{dB\mu V/m}{20}}$
	Sample radiated emissions calculation @ 30 MHz
	Measurement +Antenna Factor–Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)
	25 dBuV/m + 17.5 dB - 20 dB + 1.0 dB = 23.5 dBuV/m

9. Test Conditions and Results

9.1 TEST: Antenna requirements			PASS		
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C	;		
test	Relative Humidity (%)	30 to 60 %			
Parameters recorded during the	Laboratory Ambient Temperature (°C)	21°C			
test	Relative Humidity (%)	56%			
	Air pressure (hPa)	1020			
_	Power Supply / Frequency	Application Point			
Fully configured sample tested at the power line frequency	+5V dc	Enclosure			
Equipment mode:	Operation mode	#1			
FCC Standard	§15.203 § 15.247 (B)(4)(I)				
A substantian at an all stands all the stand		where the set for some in the set of the set	-		

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

Antenna specifications							
N° of authorized antenna types	1						
Antenna type	Quad Band GSM/GPRS & 3G/ 1/4 Wave Mag Mount Siretta MIKE1A						
Maximum total gain	+3.0 dBi						
External power amplifiers	Not present						

9.2 TEST: AC Power Conducted Emission PAS							
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °	С				
test	Relative Humidity (%)	30 to 60 %	6				
Parameters recorded during the	Laboratory Ambient Temperature (°C)	21°C					
test	Relative Humidity (%)	56%					
	Air pressure (hPa)	1020					
_	Power Supply / Frequency	Application Point					
Fully configured sample tested at the power line frequency	115V ~ 60Hz	AC Main	AC Mains				
Equipment mode:	Operation mode	#2					
FCC Standard	§15.20	7					
Frequency (MHz)	Quasi-peak (dBuV)	verage (dBuV)	Result				
0.15-0.5	66 to 56	56 to 46	PASS				
0.5-5	56 46						
5-30	60	60 50 PA					
Except as shown in paragraphs (b)	and (c) of this section, for an intentiona	radiator that is desig	ned to be				

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

Further information to test setup

Test Equipment Used										
Description	Manufacturer	Model	TUV Identifier	Calibration date	Calibration due					
EMI Test Receiver R&S		ESR	87020864	12/2017	12/2018					
Two line V-Network	R&S	ENV216	87020993	01/2018	01/2020					
Stabilized Power Supply	Elettrotest	TPS T 30K60S	87020490	09/2018	09/2021					

Report No. 28112194 005

9.3 TEST: Radiated Emission		PASS
Parameters required prior to the	Laboratory Ambient Temperature	e (°C) 15 to 35 °C
test	Relative Humidity (%)	30 to 60 %
Parameters recorded during the	Laboratory Ambient Temperature	e (°C) 22°C
test	Relative Humidity (%)	54%
	Air pressure (hPa)	1020
	Power Supply / Frequency	Application Point
Fully configured sample tested at the power line frequency	+5V dc	Enclosure
Equipment mode:	Operation mode	#1 #3
FCC Standard	§15.205; §	15.209; §15.247
Except as provided elsewhere in this the field strength levels specified in	s subpart, the emissions from an i the following table :	ntentional radiator shall not exceed
0.009-0.490 2400/F(K 0.490-1.705 24000/F(K 0.490-1.705 24000/F(K 1.705-30.0 30 30-88 100** 88-216 150** 216-960 200** Above 960 500 **Except as provided in paragraph (this section shall not be located in th MHz. However, operation within the §§15.231 and 15.241. Remark: In accordance with part 15 300 meters, a correction factor was separation distance. The applied for 2004b Extense letting (dD)	Hz) (kHz) g), fundamental emissions from in the frequency bands 54-72 MHz, 70 se frequency bands is permitted u .31 (f) (2), where the measurement applied in order to permit measure mula for limits at 3 meter is:Extrap	and the sections of this part, e.g., and the sections of the sectio
Smeter) = +800b Extrapolation (dB) Further information to test setup. For frequencies above 1GHz, the anechoic material is also placed on the metallic floor between EUT and Antenna	= 40log (30meter / 3meter) = +40	CD Sm semi-anechoic chamber shield Room with absorbing materials) tenna Tower metal Plate Metal Plate

Test Equipment Used										
Description	on Manufacturer Model		Identifier	Calibration date	Calibration due					
CSSA	ETS Lindgren	FACT3	87020484	03/2018	03/2020					
EMI Test Receiver	R&S	ESW44	87020967	07/2018	07/2019					
Loop Antenna	EMCO	6512	87020465	02/2017	02/2020					
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2017	04/2020					
Antenna Horn with Preamplifier	ETS Lindgren	3117-PA	87020458	04/2017	04/2020					
Highpass Filter	Wainwright Instr.	WHKX10-1170- 1300	87020800	05/2018	05/2019					
Stabilized Power Supply	Elettrotest	TPS T 30K60S	87020490	09/2018	09/2021					

Report No. 28112194 005

Result Table_Single

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
904.140000		106.8	1000.0	120.000	107.0	۷	340.0	27.4	

Report No. 28112194 005

Result Table_Single

	Frequency (MHz)	MaxPeak (dBuV/m)	QuasiPeak (dBuV/m)	Meas.	Bandwidth	Height	Pol	Azimuth (deg)	Corr.	Comment
I	(11112)	(abp v/m)	(abpr/m)	THILE	(((())))	(em)		(deg)	(ub/iii)	
				(ms)						
	904.140000		107.9	1000.0	120.000	179.0	н	286.0	27.4	

Report No. 28112194 005

Result Table Single

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
915.330000		107.5	1000.0	120.000	107.0	V	340.0	28.0	

Report No. 28112194 005

Result Table Single

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
			(ms)						
915.330000		108.6	1000.0	120.000	179.0	Н	286.0	28.0	

Report No. 28112194 005

Result Table_Single

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
			(ms)						
926.820000		106.3	1000.0	120.000	107.0	V	340.0	28.7	

Report No. 28112194 005

Result Table_Single

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
			(ms)						
926.820000		106.7	1000.0	120.000	179.0	н	286.0	28.7	

				Report N	lo. 28112194 005		
	Graphical repres	sentation of Rad	ated Emission Mea	asurement			
	Operation	Mode: #1 – Low	v Channel (904,0 M	IHz)			
		Frequency: 1G	Hz – 10GHz				
	Antenna Polarization: Vertical						
MultiView 😁 Spectru	m 🔌 🖾 Receiver	Spectrum 2	. 🔆 🖾				
Meas BW (6dB) 1 MHz Att 0 dB Input 1 AC TDF Input1 "EMI RAD 1-18GH:	Meas Time 100 ms Preamp Off Step PS On Noto z.TDF"	TD Scan h Off		Frequenc	y 10.0000000 GHz		
2 Scan				N	●1Pk Max ● 2Av Max 18[2] 49.36 dBµV/m		
90 dBµV/m				N	6.326750000 GHz 41[1] 47.99 dBμV/m		
80 dBµV/m					1.808250000 GHz		
FCC 1-40 GHZ PK							
60 dBuV/m-			M3	M4			
ECC 1-40GHZ AV	M1	M6	1.9 model Vice	MB	whater and when and when when the		
30 00 pv/m2 Av	Mannahmmann	and and a second	and the second				
.40-dBpV/m	the formation of the second						
30 dBµV/m							
20 dBuV/m							
20 00000							
10 dBµV/m							
		Range	3		; ; TF		
Start 1.0 GHz					Stop 10.0 GHz		
1 Marker Table		1	V 1	1			
Scan M1	_ Ref Irc 1		1.80825 GHz	47.	99 dBµV/m		
Scan M2 Scan M3	1		2.7125 GHz 4.519 GHz	55. 57.	33 dBµV/m 58 dBuV/m		
Scan M4	1		6.32675 GHz	57.	47 dBµV/m		
Scan M5 Scan M6	2		2.7115 GHz	40.	/.9 dBμV/m		
Scan M7 Scan M8	2		4.519 GHz 6.32675 GHz	48. 49.	95 dBµV/m 36 dBµV/m		
	-				• •		

PEAK RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1808 (2 nd harm)	57,29	-14,58	5,28	47,99	no	87,57*	39,58
2712 (3 rd harm)	60,79	-12,14	6,68	55,33	yes	74,00	18,67
4520 (5 th harm)	58,67	-9,65	8,56	57,58	yes	74,00	16,42
6328 (7 th harm)	55,22	-8,03	10,28	57,47	no	87,57*	30,1
*=fundamental level in Vertical polarization – 20dB							

AVERAGE RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1808 (2 nd harm)	49,37	-14,58	5,28	40,07	no	67,57*	27,5
2712 (3 rd harm)	53,36	-12,14	6,68	47,90	yes	54,00	6,1
4520 (5 th harm)	50,04	-9,65	8,56	48,95	yes	54,00	5,05
6328 (7 th harm)	47,11	-8,03	10,28	49,36	no	67,57*	18,21
*=Peak limit – 2	*=Peak limit – 20dB						

	Report No. 28112194 005					
Graphical representation of Radiated Emission M	easurement					
Operation Mode: #1 – Low Channel (904,0	MHz)					
Frequency: 1GHz – 10GHz						
Antenna Polarization: Horizontal						
MultiView 🗄 Spectrum 🔌 🖾 Receiver 🛛 Spectrum 2 🔌 🖾	\bigtriangledown					
Meas BW (6dB) 1 MHz Meas Time 100 ms Att 0 dB Preamp Off Step TD Scan Input 1 AC PS On Notch Off TDF Input1 EMI RAD 1-18GHz.TDF" U Off Off	Frequency 10.0000000 GHz					
2 Scan	● 1Pk Max ● 2Av Max M8[2] 46.07 dBµV/m					
90 dBµV/m	M1[1] 50.11 dBμV/m					
80 dBµV/m	1.807750000 GHz					
FCC 1-40 GHZ PK						
60.40 m						
	M4					
CC 1-HORE AV						
40 dBpV/martinetaria	manual manua					
30 dBµV/m						
20 dBµV/m						
10 dBµV/m						
Panne 3	TF					
Start 1.0 GHz	Stop 10.0 GHz					
1 Marker Table						
Wnd Type Ref Trc X-value Scap M1 1 1 80775 GHz	Y-value					
Scan M2 1 2.7125 GHz	54.69 dBµV/m					
Scan M3 1 4.519 GHZ Scan M4 1 6.32675 GHZ	55.83 dBµV/m 54.88 dBµV/m					
Scan M5 2 1.808 GHz	43.91 dBµV/m 46.83 dBuV/m					
Scan M7 2 4.519 GHz	47.08 dBµV/m					
Scan M8 2 6.32675 GHZ	46.07 abµv/m					

PEAK RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1808 (2 nd harm)	59,41	-14,58	5,28	50,11	no	88,63*	38,52
2712 (3 rd harm)	60,15	-12,14	6,68	54,69	yes	74,00	19,31
4520 (5 th harm)	56,92	-9,65	8,56	55,83	yes	74,00	18,17
6328 (7 th harm)	52,63	-8,03	10,28	54,88	no	88,63*	33,75
*=fundamental l	*=fundamental level in Horizontal polarization – 20dB						

AVERAGE RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1808 (2 nd harm)	53,21	-14,58	5,28	43,91	no	68,63*	24,72
2712 (3 rd harm)	52,29	-12,14	6,68	46,83	yes	54,00	7,17
4520 (5 th harm)	48,17	-9,65	8,56	47,08	yes	54,00	6,92
6328 (7 th harm)	43,82	-8,03	10,28	46,07	no	68,63*	22,56
*=Peak limit – 2	*=Peak limit – 20dB						

	Report No. 28112194 005					
Graphical representation of Radiate	ed Emission Measurement					
Operation Mode: #1 – Middle	Channel (915,5 MHz)					
Frequency: 1GHz	– 10GHz					
Antenna Polarization: Vertical						
MultiView Spectrum Image: Constraint of the system Image: Constrais Image: Constraint	✓ X v ✓ Frequency 10.000000 GHz					
Input "EMI RAD 1-18GHz.TDF" On Notell On On 2 Scan 90 dBµV/m 90 dBµV/m 80 dBµV/m 90 dBµV/m 90 dBµV/m 60 dBµV/m 90 dBµV/m 90 dBµV/m 90 dBµV/m 90 dBµV/m 90 dBµV/m	• 1Pk Max • 2Av Max M1[1] 49.89 dBµV/m 1.830750000 GHz M2[1] 55.31 dBµV/m 2.747000000 GHz M3 M4 M8 M9					
20 dBµV/m-	Т					
Start 1.0 GHz Rafige 3 1 Marker Table 1 Wnd Type Ref Trc Scan M1 1 1.8 Scan M2 1 4.5 Scan M4 1 6.4 Scan M5 2 5 Scan M6 2 4.5 Scan M7 2 4.5	Stop 10.0 GHz X-value Y-value 33075 GHz 49.89 dBµV/m 2.747 GHz 55.31 dBµV/m 7825 GHz 56.56 dBµV/m 1.831 GHz 43.87 dBµV/m 2.746 GHz 43.87 dBµV/m 1.831 GHz 43.87 dBµV/m 77825 GHz 48.29 dBµV/m					

PEAK RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1831 (2 nd harm)	58,91	-14,34	5,32	49,89	no	88,47*	38,58
2747 (3 rd harm)	60,77	-12,15	6,69	55,31	yes	74,00	18,69
4578 (5 th harm)	57,54	-9,63	8,65	56,56	yes	74,00	17,44
6408 (7 th harm)	56,93	-7,99	10,38	59,32	no	88,47*	29,15
*=fundamental l	*=fundamental level in Vertical polarization – 20dB						

AVERAGE RESULT (RBW=1MHz)							
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)
1831 (2 nd harm)	52,89	-14,34	5,32	43,87	no	68,47*	24,6
2747 (3 rd harm)	53,16	-12,15	6,69	47,70	yes	54,00	6,30
4578 (5 th harm)	49,27	-9,63	8,65	48,29	yes	54,00	5,71
6408 (7 th harm)	48,77	-7,99	10,38	51,16	no	68,47*	17,31
*=Peak limit – 2	*=Peak limit – 20dB						

		Report No. 28112194 005					
Graphical representation of	Radiated Emission Measure	ment					
Operation Mode: #1 – I	Middle Channel (915,5 MHz)	1					
Frequency	Frequency: 1GHz – 10GHz						
Antenna Polarization: Horizontal							
MultiView 🕀 Spectrum 🤾 🖾 Receiver 🖾 Spectr	rum 2 🔌 🗵	▽					
Meas BW (6dB) 1 MHz Meas Time 100 ms Att 0 dB Preamp Off Step TD Scan Input 1 AC PS On Notch Off TDF Input1 EMI RAD 1-18GHZ-TDF" Units Mathematical State Output Off Step Ste		Frequency 10.000000 GHz					
2 Scan 90 dBµV/m		● 1Pk Max ● 2Av Max M1[1] 50.49 dBµV/m 1.830500000 GHz M2[1] 54.02 dBµV/m					
80 dBµV/m-		2.747000000 GHz					
60 dBµV/m	M3	M4					
40.dBt/m	and the second s	and have a second and a second and a second a se					
30 dBµV/m							
20 dBµV/m							
	Range 3	ग					
Start 1.0 GHz		Stop 10.0 GHz					
Wind Type Ref Trc Scan M1 1 Scan M2 1 Scan M3 1 Scan M4 1 Scan M4 2 Scan M6 2 Scan M7 2 Scan M8 2	X-value 1.8305 GHz 2.747 GHz 4.57825 GHz 6.4095 GHz 1.831 GHz 2.746 GHz 4.57825 GHz 6.40725 GHz	Y-value 50.49 dBμV/m 54.02 dBμV/m 56.14 dBμV/m 45.05 dBμV/m 46.23 dBμV/m 47.32 dBμV/m 48.69 dBμV/m					

PEAK RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1831 (2 nd harm)	59,51	-14,34	5,32	50,49	no	89,43*	38,94	
2747 (3 rd harm)	59,48	-12,15	6,69	54,02	yes	74,00	19,98	
4578 (5 th harm)	57,12	-9,63	8,65	56,14	yes	74,00	17,86	
6408 (7 th harm)	54,52	-7,99	10,38	56,91	no	89,43*	32,52	
*=fundamental l	*=fundamental level in Horizontal polarization – 20dB							

AVERAGE RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1831 (2 nd harm)	54,07	-14,34	5,32	45,05	no	69,43*	24,38	
2747 (3 rd harm)	51,69	-12,15	6,69	46,23	yes	54,00	7,77	
4578 (5 th harm)	48,30	-9,63	8,65	47,32	yes	54,00	6,68	
6408 (7 th harm)	46,30	-7,99	10,38	48,69	no	69,43*	20,74	
*=Peak limit – 2	*=Peak limit – 20dB							

	Report No. 28112194 005							
Graphical representation of Radiated Emission Measuren	nent							
Operation Mode: #1 – High Channel (927,0 MHz)								
Frequency: 1GHz – 10GHz								
Antenna Polarization: Vertical								
MultiView Spectrum Image: Construction of the system Image: Construction of the system Meas BW (6dB) 1 MHz Meas Time 100 ms Image: Construction of the system Image: Construction of the system Meas BW 0 dB Preamp Off Step TD Scan Input 1 AC PS On Notch Off TDF Input1 1-186Hz.TDF" Construction Off Off	Frequency 10.0000000 GHz							
2 Scan 90 dBµV/m 80 dBµV/m FCC 1_40 GHZ PK 60 dBµV/m FCC 1_40 GHZ AV M3 FCC 1_40 GHZ AV M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	● 1Pk Max ● 2Av Max M1[1] 48.75 dBµV/m 1.854250000 GHz M2[1] 54.27 dBµV/m 2.781500000 GHz M4 Ma							
Range 3 Start 1.0 GHz I Marker Table Wind Type Ref Trc X-value Scan M1 1 1.85425 GHz 1 Scan M2 1 2.7815 GHz 1 Scan M3 1 4.634 GHz 1 Scan M4 1 6.49025 GHz 1 Scan M5 2 1.854 GHz 1 Scan M6 2 2.7805 GHz 1 Scan M8 2 6.48775 GHz 1	TF Stop 10.0 GHz Y-value 48.75 dBµV/m 54.27 dBµV/m 56.97 dBµV/m 59.51 dBµV/m 41.65 dBµV/m 48.15 dBµV/m 48.36 dBµV/m 51.55 dBµV/m							

PEAK RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1854 (2 nd harm)	59,35	-14,21	5,35	50,49	no	87,42*	36,93	
2781 (3 rd harm)	59,40	-12,08	6,70	54,02	yes	74,00	19,98	
4635 (5 th harm)	57,03	-9,61	8,72	56,14	yes	74,00	17,86	
6489 (7 th harm)	54,36	-7,95	10,50	56,91	no	87,42*	30,51	
*=fundamental l	*=fundamental level in Vertical polarization – 20dB							

AVERAGE RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1854 (2 nd harm)	53,91	-14,21	5,35	45,05	no	67,42*	22,37	
2781 (3 rd harm)	51,61	-12,08	6,70	46,23	yes	54,00	7,77	
4635 (5 th harm)	48,21	-9,61	8,72	47,32	yes	54,00	6,68	
6489 (7 th harm)	46,14	-7,95	10,50	48,69	no	67,42*	18,73	
*=Peak limit – 2	*=Peak limit – 20dB							

	Report No. 28112194 005						
Graphical representation of Radiated En	mission Measurement						
Operation Mode: #1 – High Chann	nel (927,0 MHz)						
Frequency: 1GHz – 100	GHz						
Antenna Polarization: Horizontal							
MultiView Spectrum Mail Receiver X Meas BW (6dB) 1 MHz Meas Time 100 ms Meas Time 100 ms Att 0 dB Preamp Off Step TD Scan Input 1 AC PS On Notch Off TDF Input1 "EMI RAD 1-18GHz.TDF"	Frequency 10.000000 GHz						
2 Scan 90 dBµV/m 9	1Pk Max 2Av Max M1[1] 47.88 dBµV/m 1.854250000 GHz 34.87 dBµV/m 2.781500000 GHz 2.781500000 GHz						
10 dBµV/m	Stop 10.0 GHz						
1 Marker Table Vnd Type Ref Trc X-valu Scan M1 1 1.85425 Scan M2 1 2.7815 Scan M2 1 2.7815 Scan M3 1 4.634 Scan M4 1 6.49025 Scan M5 2 1.854 Scan M3 1 4.634 1 6.49025 Scan M6 2 2.7805 Scan M6 2 2.7805 Scan M6 2 4.634 Scan M6 2 2.7805 Scan M6 2 4.634 Scan M8 2 6.48775 Scan M6 2 3.854 Scan M8 2 5.856 5.856 5.856 5.856 3.856 3.854 Scan M8 2 5.856 5.856 5.856 3.856 3.856 3.856 3.856 3.856 3.856 3.856 3.856 3.856 3.856 3.856	Y-value GHz 47.88 dBµV/m GHz 54.87 dBµV/m GHz 56.95 dBµV/m GHz 59.98 dBµV/m GHz 39.72 dBµV/m GHz 47.5 dBµV/m GHz 39.72 dBµV/m GHz 39.72 dBµV/m GHz 52.29 dBµV/m						

PEAK RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	PK Limit (AV Limit + 20dB)	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1854 (2 nd harm)	56,74	-14,21	5,35	47,88	no	87,82*	39,94	
2781 (3 rd harm)	60,25	-12,08	6,70	54,87	yes	74,00	19,13	
4635 (5 th harm)	57,84	-9,61	8,72	56,95	yes	74,00	17,05	
6489 (7 th harm)	57,43	-7,95	10,50	59,98	no	87,82*	27,84	
*=fundamental l	*=fundamental level in Horizontal polarization – 20dB							

AVERAGE RESULT (RBW=1MHz)								
Frequency	Reading value	Antenna Factor with Pre-Amp. Gain	Cable Loss	Correcting reading	Restricted band	AV Limit	Margin	
(MHz)	(dBµV)	(dB3/m)	(dB)	(dBµV/m)	1	(dBµV/m)	(dB)	
1854 (2 nd harm)	48,58	-14,21	5,35	39,72	no	67,82*	28,10	
2781 (3 rd harm)	52,88	-12,08	6,70	47,50	yes	54,00	6,50	
4635 (5 th harm)	49,13	-9,61	8,72	48,24	yes	54,00	5,76	
6489 (7 th harm)	49,74	-7,95	10,50	52,29	no	67,82*	15,53	
*=Peak limit – 2	*=Peak limit – 20dB							

9.4 TEST: 6dB Bandwidth PASS							
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C					
test	Relative Humidity (%)	30 to 60 %					
Parameters recorded during the	Laboratory Ambient Temperature (°C)	24°C					
test	Relative Humidity (%)	48%					
	Air pressure (hPa)	1020					
_	Power Supply / Frequency	Application Point					
Fully configured sample tested at the power line frequency	+5V dc	SMA Connector					
Equipment mode:	Operation mode	#1					
FCC Standard	§15.247 (A)(2)						
Systems using digital modulation te 5725-5850 MHz bands. The minimu	chniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and m 6 dB bandwidth shall be at least 500 kHz.						
Further information to test setup							
	EUT Attenuator (optional)	Spectrum Analyzer (or Power Meter)					

Test Equipment Used							
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due		
EMI Test Receiver	R&S	ESU40	2782345	05/2018	05/2019		

Channel (No.)	Frequency (MHz)	Channel Bandwidth at -6dB (kHz)	Limit (kHz)	Plot (No.)
Low	904,00	519,230	≥ 500	1

Bandwidth at -6dB (Fmin and Fmax)						
Fmin	903,727 MHz	Fmax	904,246 MHz			

Channel (No.)	Frequency (MHz)	Channel Bandwidth at -6dB (kHz)	Limit (kHz)	Plot (No.)
Middle	915,50	522,46	≥ 500	2

Bandwidth at -6dB (Fmin and Fmax)				
Fmin 915,227 MHz Fmax 915,749 MHz				

Channel (No.)	Frequency (MHz)	Channel Bandwidth at -6dB (kHz)	Limit (kHz)	Plot (No.)
High	927,00	525,640	≥ 500	3

Bandwidth at -6dB (Fmin and Fmax)				
Fmin 926,723 MHz Fmax 927,247 MHz				

9.5 TEST: RF power output, radiated (EIRP)			
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C	;
test	Relative Humidity (%)	30 to 60 %	
Parameters recorded during the	Laboratory Ambient Temperature (°C)	22,5°C	
test	Relative Humidity (%)	51%	
	Air pressure (hPa)	1020	
	Power Supply / Frequency	Application Po	oint
Fully configured sample tested at the power line frequency	+5V dc	SMA Connector	
Equipment mode:	Operation mode	#1	
FCC Standard	§15.247 (B) (3)		

(b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:

(1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Further information to test setup	EUT	Attenuator	Spectrum Analyzer (or Power Meter)	
		Attenuator (optional)		

Test Equipment Used					
Description Manufacturer Model Identifier Calibration Calil					
EMI Test Receiver	R&S	ESU40	2782345	05/2018	05/2019

Channel (No.)	Frequency (MHz)	Conducted Output Power		Limit (W)
		(dBm)	(mW)	
Low	904,00	13,64	23,12	1

Report No. 28112194 005

Channel (No.)	Frequency (MHz)	Conducted Output Power		Conducted Output Power		Limit (W)
		(dBm)	(mW)			
Middle	915,50	13,86	24,32	1		

Report No. 28112194 005

Channel (No.)	Frequency (MHz)	Conducted Output Power		Conducted Output Power		Limit (W)
		(dBm)	(mW)			
High	927,00	13,71	23,49	1		

9.6 TEST: Out-of-band emissions				
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C		
test	Relative Humidity (%)	30 to 60 %		
Parameters recorded during the	Laboratory Ambient Temperature (°C)	22°C		
lest	Relative Humidity (%)	50%		
	Air pressure (hPa)	1020		
	Power Supply / Frequency	Application Point		
Fully configured sample tested at the power line frequency	+5V dc	SMA Connector		
Equipment mode:	Operation mode	#1		
FCC Standard	§15.247 (D)			
(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional				

modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Further information to test setup		7	[]	
	EUT	Attenuator (optional)	Spectrum Analyzer (or Power Meter)	

Test Equipment Used						
Description	ManufacturerModelIdentifierCalibration dateCa					
EMI Test Receiver	R&S	ESU40	2782345	05/2018	05/2019	
Highpass Filter	Wainwright Instr.	WHKX10-1170- 1300	87020800	05/2018	05/2019	

9.7 TEST: 100 kHz Bandwidth of	Frequency Band Edges		PASS
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C	;
test	Relative Humidity (%)	30 to 60 %	
Parameters recorded during the	Laboratory Ambient Temperature (°C)	21°C	
test	Relative Humidity (%)	52%	
	Air pressure (hPa)	1020	
	Power Supply / Frequency	Application Point	
Fully configured sample tested at the power line frequency	configured sample tested at +5V dc		tor
Equipment mode:	Operation mode		
FCC Standard	§15.247 (D)		

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment Used						
Description	Manufacturer	Model	Identifier	Calibration date	Calibration due	
CSSA	ETS Lindgren	FACT3	87020484	03/2018	03/2020	
EMI Test Receiver	R&S	ESW44	87020967	07/2018	07/2019	
EMI Test Receiver	R&S	ESU40	2782345	05/2018	05/2019	
Antenna BiConiLog	ETS Lindgren	3124E-PA	87020457	04/2017	04/2020	

Frequency (MHz	Measured power at the band edge (dBµV)	Measured peak power at fundamental frequency (dBµV)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV)	Margin (dB)
902	72,18	119,83	47,65	99,83	27,65
928	51,83	119,83	68,00	99,83	48,00

Frequency (MHz	Measured power at the band edge (dBµV)	Measured peak power at fundamental frequency (dBµV)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV)	Margin (dB)
902	50,56	119,57	69,01	99,57	49,01
928	83,90	119,57	35,67	99,57	15,67

Graphical repre	sentation of 100 kHz	Bandwidth of Frequency B	and Edges - Radiated
Operation	Mode: #1 – Low Cha	annel (904,0 MHz) – Horizo	ontal polarization
		Plot n°3	
MultiView 🗄 Spectrum 🛛 🔆	🛛 Spectrum 2 🛛 🖾	Receiver 🖾	
Meas BW (QPK) 120 kHz Meas Tir Att 5 dB Preamp Input 1 AC PS TDF Input1 "EMI RAD 26-1000MHz horiz:	ne 1 s On Step TD Scan On Notch Off ontal"		Frequency 1.0000000 GHz
2 Scan	M1		● 1Pk Max M2[1] 61.21 dBµV/m 901.990000 MHz
110 авµV/m	<u> </u>		M1[1] 108.67 dBµV/m 904.150000 MHz
90 dBµV/m			
80 dBµV/m			
70 dBµV/m	MZ		
50 dBµV/m	-4		
40 dBµV/m		Ma Martine	www.cs
30 dBµV/m			
20 авµv/m 10 авµv/m			
		Range 2	TF→
Start 880.0 MHz 1 Marker Table			Stop 950.0 MHz
Wnd Type R Scan M1 Scan M2 Scan M3 Scan M3	ef Trc 1 1 1	X-value 904.15 MHz 901.99 MHz 928.03 MHz	Y-value 108.67 dBμV/m 61.21 dBμV/m 38.27 dBμV/m

Frequency (MHz	Measured power at the band edge (dBµV/m)	Measured peak power at fundamental frequency (dBµV/m)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV/m)	Margin (dB)
902	61,21	108,67	47,46	88,67	27,46
928	38,27	108,67	70,40	88,67	50,40

Graphical repr	esentation of 100 kHz	Bandwidth of Frequency Ba	nd Edges - Radiated
Operatio	on Mode: #1 – Low Ch	annel (904,0 MHz) – Vertic	al polarization
		Plot n°4	
MultiView 🗄 Spectrum 🔌	Spectrum 2	Receiver 🖾	
Meas BW (QPK) 120 kHz Meas T Att 0 dB Pream Input 1 AC PS TDF Input1 "EMI RAD 26-1000MHz ver	ime 1s p On Step TD Scan On Notch Off tical.TDF"		Frequency 1.0000000 GHz
2 Scan	M1		● 1Pk Max M3[1] 34.37 dBµV/m 928.000000 MHz
110 dBµv/m	<u> </u>		M1[1] 107.19 dBμV/m 904.150000 MHz
90 dBµV/m			
80 dBµV/m			
60 dBµV/m	Ma		
50 dBµV/m			
40 авру/т 30 авру/т 30 авру/т		M3	www.hallaneereereereereereereereereereereereereer
20 dBµV/m			
10 dBµV/m	V1		TF→
Start 880.0 MHz		Kange 2	Stop 950.0 MHz
I Marker Table Wnd Type Scan M1 Scan M2 Scan M3	Ref Trc 1 1 1 1 1 1 1	X-value 904.15 MHz 901.99 MHz 928.0 MHz	<u>Y-value</u> 107.19 dBµV/m 59.62 dBµV/m 34.37 dBµV/m

Frequency (MHz	Measured power at the band edge (dBµV/m)	Measured peak power at fundamental frequency (dBµV/m)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV/m)	Margin (dB)
902	59,62	107,19	47,57	87,19	27,57
928	34,37	107,19	72,82	87,19	52,82

Graph	ical representa	ation of 100 kH	z Bandwidth of	Frequency Bar	nd Edges - Radi	ated
C	Operation Mod	e: #1 – High Cl	hannel (927,0 N	/IHz) – Horizon	tal polarization	
			Plot n°5			
MultiView 🔠 Spec	:trum 🔌 🖾 SI	pectrum 2	Receiver	Z)		
Meas BW (QPK) 120 kl Att 0 Input 17 TDF Input1 "EMI RAD 26-	Hz Meas Time dB Preamp AC PS 1000MHz vertical.TDF''	1 s On Step TD Scan On Notch Off			Frequency 9:	50.0000000 MHz
2 Scan					M3	● 1Pk Max [1] 30.45 dBµV/m
110 dBµV/m				MI	M1	901.990000 MHz [1] 106.49 dBµV/m 926.830000 MHz
90 dBuV/m						
90 dBµ0//m						
				M2		
				/		
6U dBµV/m						
50 dBµV/m-				American	wy	
40 dBµV/m		M3 La La handle	Manmandun	10°	and the second second	man More many man
3p,dBuWmcmaan when he	all and a second and the second and a second and a second as a					
20 dBµV/m						
10 dBµV/m		V1				
			Range 2		<u> </u>	
Start 880.0 MHz						Stop 950.0 MHz
Wnd Typ Scan M1 Scan M2 Scan M3 Scan M3	e Ref	Trc 1 1 1 1 1 1 1	X-v. 926.83 928.0 901.99	alue 3 MHz 3 MHz 9 MHz	۲ 106.49 71.01 30.45	-value) dBµV/m . dBµV/m ; dBµV/m

Frequency (MHz	Measured power at the band edge (dBµV/m)	Measured peak power at fundamental frequency (dBµV/m)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV/m)	Margin (dB)
902	30,45	106,49	76,04	86,49	56,04
928	71,01	106,49	35,48	86,49	15,48

Graphical repro	esentation of 100 kHz	Bandwidth of Frequency Bar	nd Edges - Radiated
Operatio	on Mode: #1 – High Ch	nannel (927,0 MHz) – Vertica	al polarization
		Plot n°6	
MultiView 🗄 Spectrum 🛛 👹	Spectrum 2	Receiver 🖾	
Meas BW (QPK) 120 kHz Meas T Att 5 dB Pream Input 1 AC PS TDF Input1 "EMI RAD 26-1000MHz hori	ime 1 s On Step TD Scan On Notch Off zontal"		Frequency 880.000000 MHz
2 Scan			● 1Pk Мах M3[1] 36.69 dBµV/m
110 dBµV/m		M1	901.990000 MHz M1[1] 106.88 dBµV/m 926.830000 MHz
90 dBµV/m-			
80 dBµv/m-		M2	
70 dBµV/m-			
60 dBµV/m			r.
50 dBµV/m			and the second s
40 dBµV/m	and the second and the	hand a day water and a second of the	and the second and th
30 dBµV/m			
20 dBµV/m			
10 dBµV/m	V1	v2	
TF		Range 2	
Start 880.0 MHz			Stop 950.0 MHz
Wind Type Scan M1 Scan M2 Scan M3	Ref Trc 1 1 1	X-value 926.83 MHz 928.0 MHz 901.99 MHz	Y-value 106.88 dBµV/m 71.63 dBµV/m 36.69 dBµV/m

Frequency (MHz	Measured power at the band edge (dBµV/m)	Measured peak power at fundamental frequency (dBµV/m)	Difference Peak / band edge (dB)	Peak Limit at PK power –20 dB (dBµV/m)	Margin (dB)
902	36,69	106,88	70,19	86,88	50,19
928	71,69	106,88	35,19	86,88	15,19

9.8 TEST: Power Spectral Dens	PASS		
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C	
test	Relative Humidity (%)	30 to 60	%
Parameters recorded during the	Laboratory Ambient Temperature (°C)	24°C	
test	Relative Humidity (%)	37%	
	Air pressure (hPa)	1020	
—	Power Supply / Frequency	Application	Point
Fully configured sample tested at the power line frequency	+5V dc	SMA Connector	
Equipment mode:	Operation mode	#1	
FCC Standard	§15.24	7 (E)	
(e) For digitally modulated systems antenna shall not be greater than a This power spectral density shall b section. The same method of dete spectral density.	s, the power spectral density conducted fr 3 dBm in any 3 kHz band during any time be determined in accordance with the prov rmining the conducted output power shall	om the intentional rad interval of continuous isions of paragraph (k be used to determine	liator to the transmission. b) of this the power
Further information to test setup	EUT Attenuator (optional)	Spectrum Analyzer (or Power Meter)	

Test Equipment Used								
Description Manufacturer Model Identifier Calibration date Calibrati								
EMI Test Receiver	R&S	ESU40	2782345	05/2018	05/2019			

Channel (No.)	Frequency (MHz)	Conducted Power Spectral Density	Limit (dBm)
		(dBm)	
Low	904,00	1,76	8

Report No. 28112194 005

Channel (No.)	Frequency (MHz)	Conducted Power Spectral Density	Limit (dBm)
		(dBm)	
Middle	915,50	1,14	8

Report No. 28112194 005

Channel (No.)	Frequency (MHz)	Conducted Power Spectral Density	Limit (dBm)
		(dBm)	
High	927,00	1,24	8

9.9 TEST: Additional provisions	to the general radiated emission limita	tions.	PASS		
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to	35 °C		
test	Relative Humidity (%)	30 to	60 %		
Parameters recorded during the	Laboratory Ambient Temperature (°C)	24	°C		
test	Relative Humidity (%)	37	%		
	Air pressure (hPa)	10	20		
—	Power Supply / Frequency	Applicati	on Point		
Fully configured sample tested at the power line frequency	ully configured sample tested at +5V dc				
Equipment mode:	ipment mode: Operation mode				
FCC Standard	§15.215 (A) (B) (C)			
(A) The regulations in §§ 15.217-15, emission limits for intentional radiate otherwise stated, there are no restric sections.	adiated Is. Unless ted under these				
(B) In most cases, unwanted emissi	ons outside of the frequency bands show	vn in these	VERDICT		
no case shall the level of the unwan under these additional provisions ex	uated to the emission limits shown in Sec ted emissions from an intentional radiato ceed the field strength of the fundament	ction 15.209. In or operating al emission.	PASS		
(C) Intentional radiators operating un limits as contained in §§ 15 217 thr	nder the alternative provisions to the gen ough 15 257 and in Subpart F of this par	eral emission	VERDICT		
limits, as contained in §§ 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least					

9.10 TEST: RF Exposure Requirements					
Parameters required prior to the	Laboratory Ambient Temperature (°C)	15 to 35 °C			
test	Relative Humidity (%)	30 to 60 %			
Parameters recorded during the	Laboratory Ambient Temperature (°C)				
test	Relative Humidity (%)				
	Air pressure (hPa)	1020			
_	Power Supply / Frequency	Application Po	oint		
Fully configured sample tested at the power line frequency	+5V dc				
Equipment mode:	Operation mode	#1			
FCC Standard	§ 1.1310 (1)	(B)			
Systems operating under the provis the public is not exposed to radio fr 1.1310, table (1) (b)	ions of this section shall be operated in equency energy levels in excess of the (a manner that ensur Commission's guideli	es that nes §		
EUT classification (fixed, mobile or portable devices)	e or Fixed equipment used in Uncontrolled Exposure environment				
Limits Freq. Range 300÷1500MHz	f/1500 (Power Density (mW/cm ²))				
Power Density (mW/cm ²)	$S = P * G / 4\pi r^2$				

Note:			

P = Conducted Power (mW); G = Numeric Gain (10^(dBi/10)); r = distance (cm)

Operation Mode: #1							
СН	Frequency	Conducted Output Power	Conducted Output Power (P)	Numeric Gain (G)	Distance (r)	Power Density (S)	Limits (f/1500)
	(MHz)	(dBm)	(mW)		(cm)		
Low	904,00	13,64	23,12	2	20	0,009179	0,6026
Mid	915,50	13,86	24,32	2	20	0,009656	0,6103
High	927,00	13,71	23,49	2	20	0,009330	0,6180
	VERDICT						
The EUT Radiated Power density at evaluation distance is WHITIN THE LIMIT at the distance of 20cm.							
	The EUT Ra	adiated Pow	er density is	OUT OF T	HE LIMIT if	i the distance is < 2,5 [,]	16cm

END OF TEST REPORT