CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 10/Oct/2017

CERTIFICATE NUMBER : 11903941JD01D

UL VS LTD PAVILION A

ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masce

Naseer Mirza

Customer :

UL VS Ltd Pavilion A, Ashwood Park, Ashwood Way Basingstoke, RG23 8BG, England

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	29/Sep/2017	
Manufacturer:	Speag			
Type/Model Number:	D1900V2			
Serial Number:	5d163			
Calibration Date:	05/Oct/2017			
Calibrated By:	Chanthu Thevarajah Laboratory Engineer			
Signature:				

.....

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2587	Probe	SPEAG	ES3DV3	3341	14 Aug 2017	12
A2200	Dipole	SPEAG	D1900V2	537	09 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1908	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	08 Nov 2016	12

the second second second second at a second seco

Chiefe and when specific and states (1997) (1997

CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number:	F14/5T5ZA1/A/01				
DASY Version:	DASY 52 (v52.8.8.1258)				
Phantom:	Flat section of SAM Twin Phantom				
Distance Dipole Centre:	10 mm (with spacer)				
Frequency:	1900 MHz				

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Cinculant Liquid	Frequency	xy Room Temp Liquid Temp Paramete	Parameters	Target	Measured	Uncertainty							
Simulant Liquid	(MHz)	Start	End Start End	i animetero	Value	Value	(%)						
					04.000	04.000	04.000	00.000		٤r	40.00	39.71	± 5%
Head	1900	23.0 °C	22.0 °C	21.0°C	22.0°C	σ	1.40	1.36	± 5%				

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	9.74 W/Kg	38.77 W/Kg	± 17.57%
Head	SAR averaged over 10g	5.05 W/Kg	20.10 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	50.143 Ω -3.33 μΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	29.77	± 2.03 dB

CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

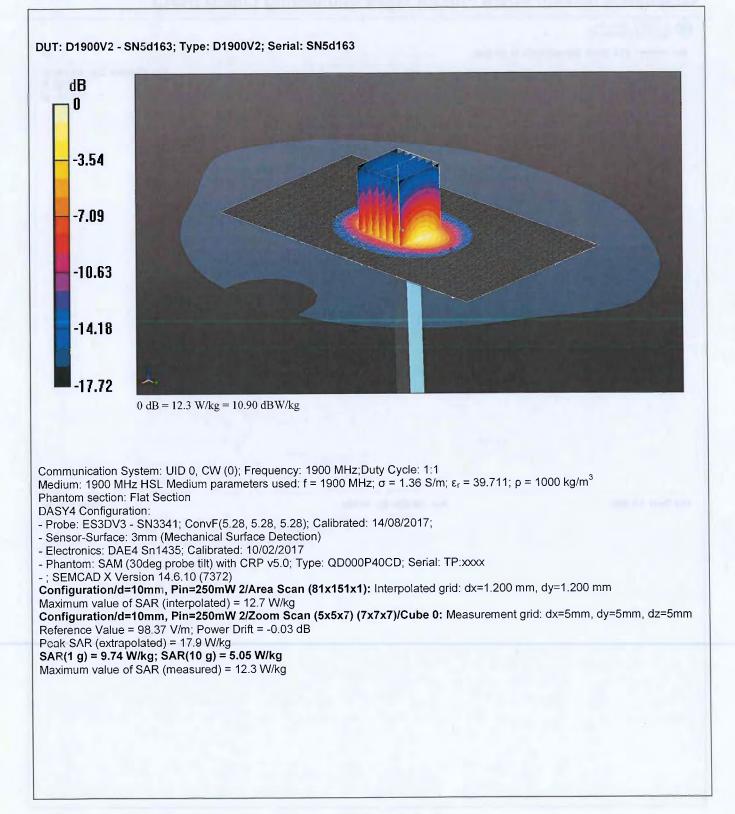
Dielectric Property Measurements – Body Simulating Liquid (MSL)

a	Frequency	Room Temp		Liquid Temp			Target	Measured	Uncertainty	
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Parameters	Value	Value	(%)
Body	1900 2	22.0 °C	.0 °C 22.0 °C	22.0.00 22.000	22.0°C 22.0°C -	٤r	53.30	52.22	± 5%	
DOUY	1900	22.0 %	22.0 %	22.0%		σ	1.52	1.57	± 5%	

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body -	SAR averaged over 1g	10.80 W/Kg	42.99 W/Kg	± 18.06%
	SAR averaged over 10g	5.52 W/Kg	21.97 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

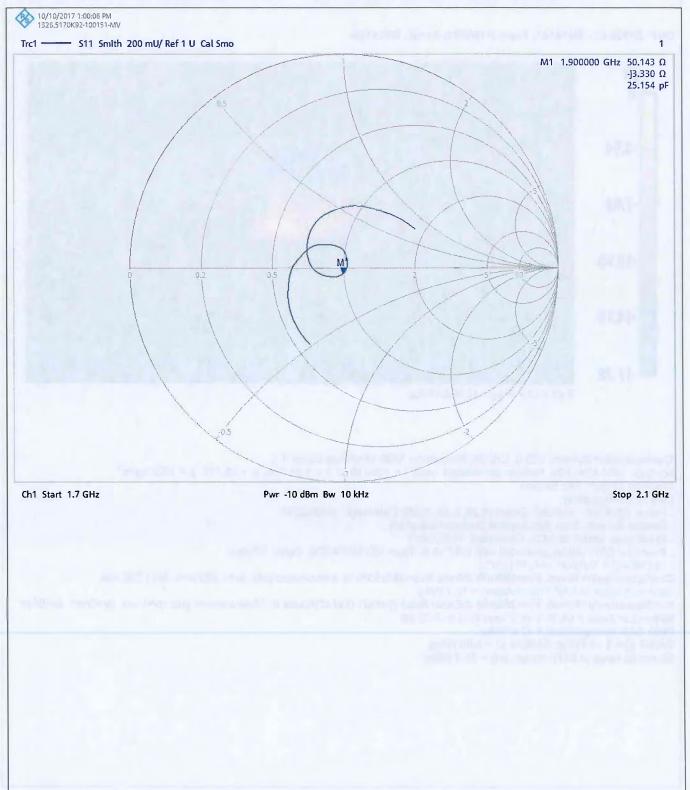

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	52.90 Ω -5.74 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	24.03	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11903941JD01D

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

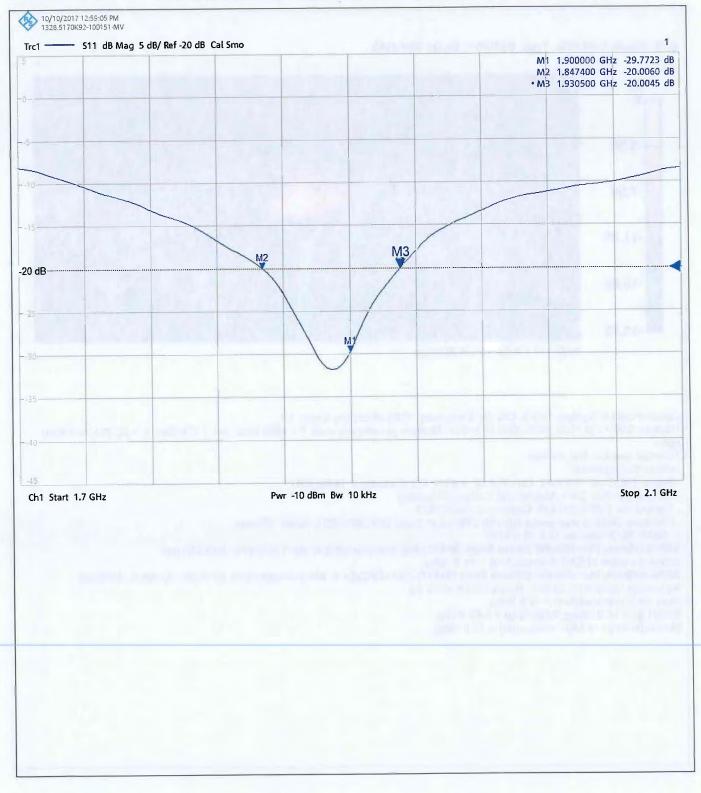


CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

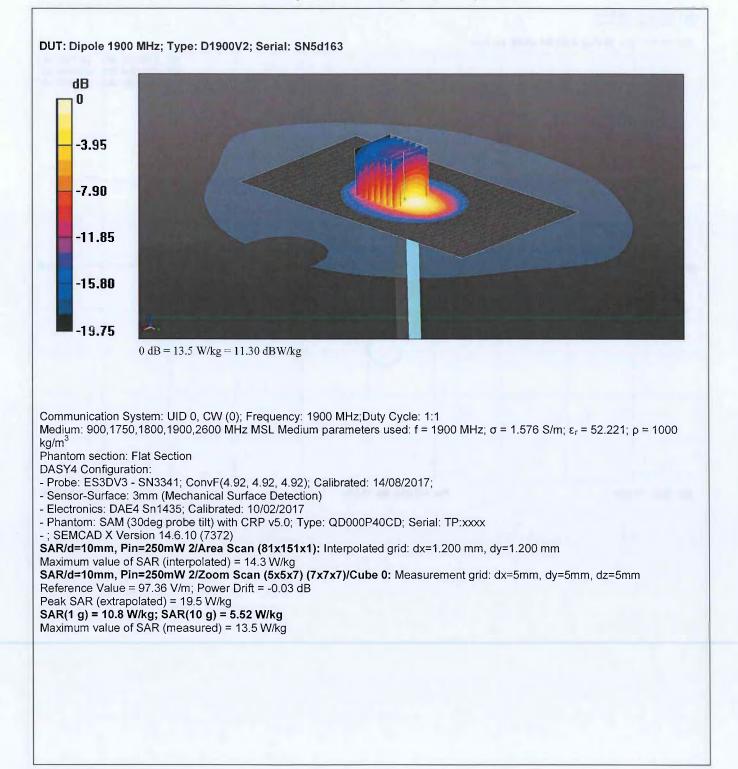


CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

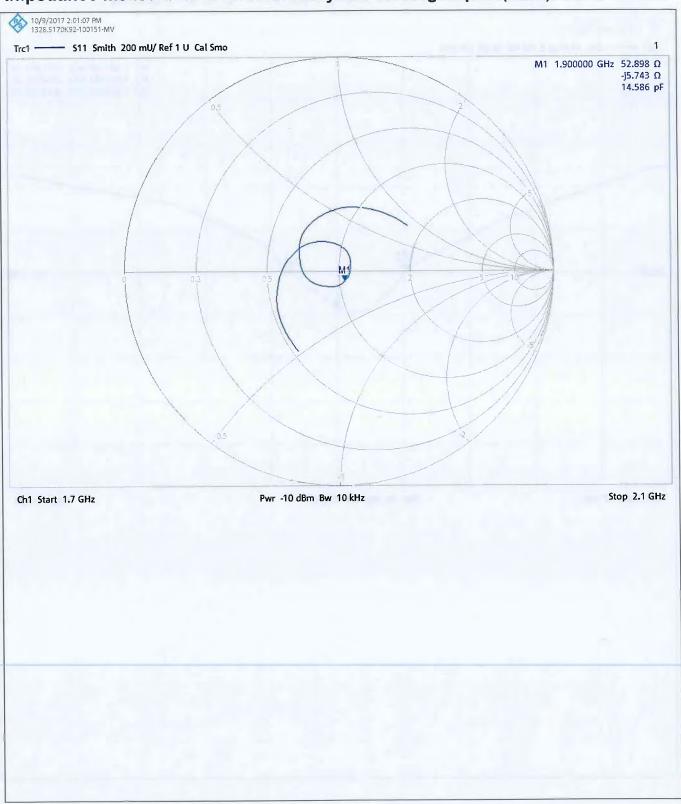


UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11903941JD01D

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)

CERTIFICATE NUMBER : 11903941JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01D

Instrument ID: 5d163

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01D

Instrument ID: 5d163

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01D

Instrument ID: 5d163

Calibration Date: 05/Oct/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 29/Nov/2017

CERTIFICATE NUMBER : 11903932JD01E

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY **BASINGSTOKE, HAMPSHIRE RG23 8BG, UK** TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	20/Nov/2017
Manufacturer:	Speag		
Type/Model Number:	D1900V2		
Serial Number:	5d043		
Calibration Date:	22/Nov/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	120		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. IEEE 1528: 2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2545	Probe	SPEAG	ES3DV4	3395	04 May 2017	12
A2200	Dipole	SPEAG	D1900V2	537	09 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mars 2017	12

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F14/5T5ZA1/A/01	
DASY Version:	DASY 52 (v52.8.8.1258)	
Phantom:	Flat section of SAM Twin Phantom	den r
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	1900 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid Temp		Parameters	Target	Measured	Uncertainty		
	(MHz)	Start	End	Start	End	r arameters	Value	Value	(%)
		01000	21.0.%	00 500	04.000	٤r	40.00	39.91	± 5%
Head	1900	21.0 °C	21.0 ℃	20.5°C	21.0°C	σ	1.40	1.44	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	10.80 W/Kg	42.99 W/Kg	± 17.57%
Head -	SAR averaged over 10g	5.57 W/Kg	22.17 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	52.432 Ω -3.49 ϳΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	27.60	± 2.03 dB

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

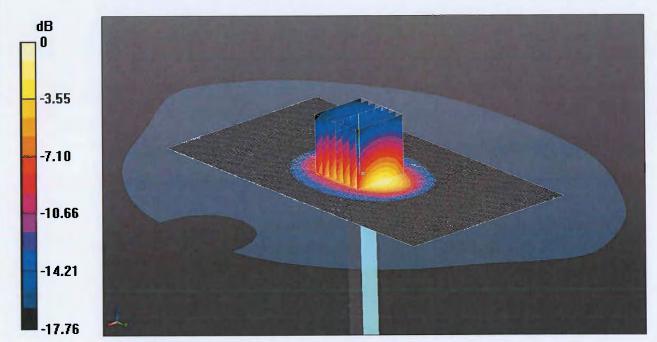
Oliver dans Linuid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	MHz) Start En	End	Start	End	rarameters	Value	Value	(%)
				21.0%	04.000	٤r	53.30	52.87	± 5%
Body	1900	21.0 °C	21.0 °C	21.0°C	21.0°C	σ	1.52	1.56	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	10.30 W/Kg	41.00 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.25 W/Kg	20.90 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	55.43 Ω -4.69 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	23.18	± 2.03 dB


CERTIFICATE NUMBER : 11903932JD01E

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1900V2 - SN: 5D043; Type: D1900V2; Serial: SN: 5D043

0 dB = 13.6 W/kg = 11.34 dBW/kg

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 750,835,900,1800,1900 MHz HSL Medium parameters used: f = 1900 MHz; σ = 1.438 S/m; ϵ_r = 39.91; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(8.37, 8.37, 8.37); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

-; SEMCAD X Version 14.6.10 (7372)

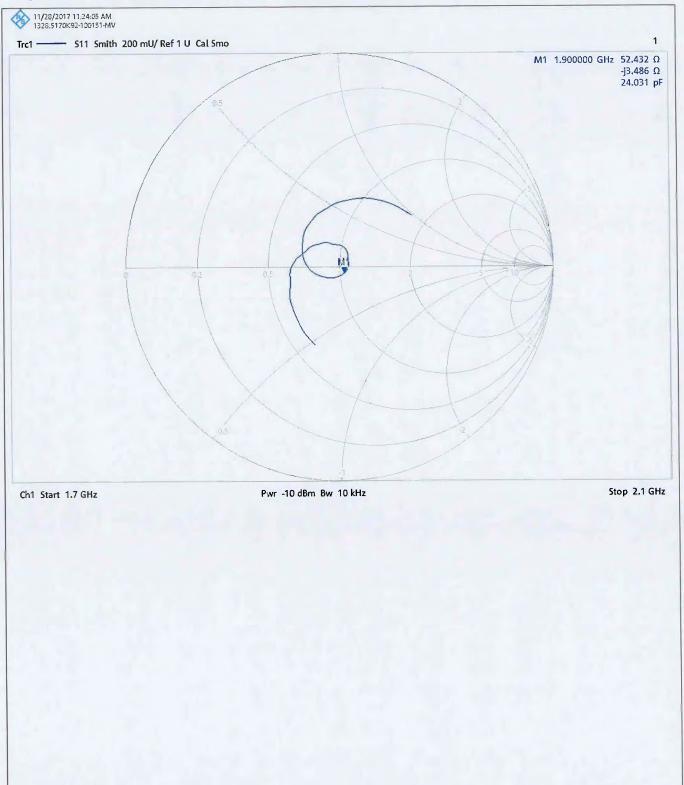
Configuration/d=10mm, Pin=250mW/Area Scan (81x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 14.1 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.92 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 20.2 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.57 W/kg

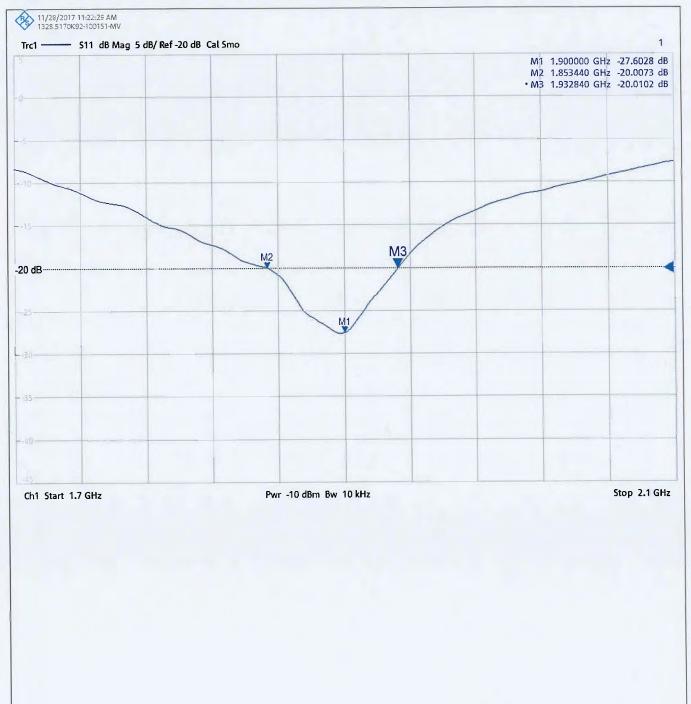

Maximum value of SAR (measured) = 13.6 W/kg

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

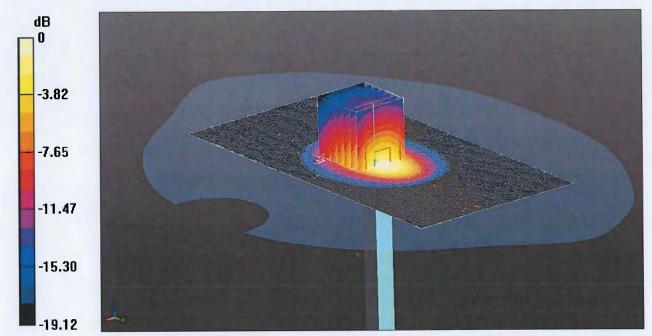


CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN5d043

0 dB = 13.0 W/kg = 11.14 dBW/kg

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL(750,835,900,1800,1900,5G) Medium parameters used: f = 1900 MHz; σ = 1.564 S/m; ϵ_r = 52.87; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY 5 Configuration:

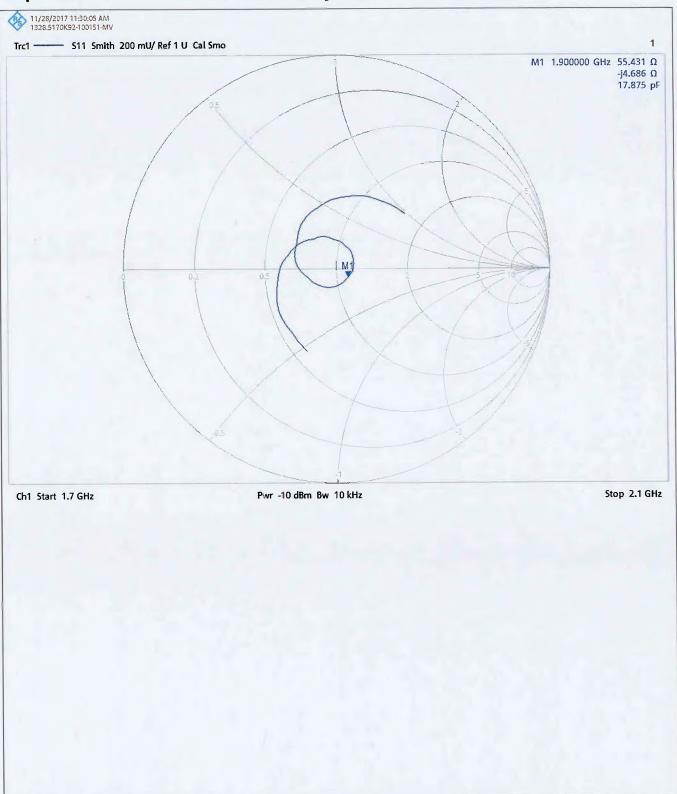
- Probe: EX3DV4 - SN3995; ConvF(8.04, 8.04, 8.04); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7372)
- SAR/d=10mm, Pin=250mW/Area Scan (81x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
- Maximum value of SAR (interpolated) = 13.4 W/kg
- SAR/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.38 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.25 W/kg

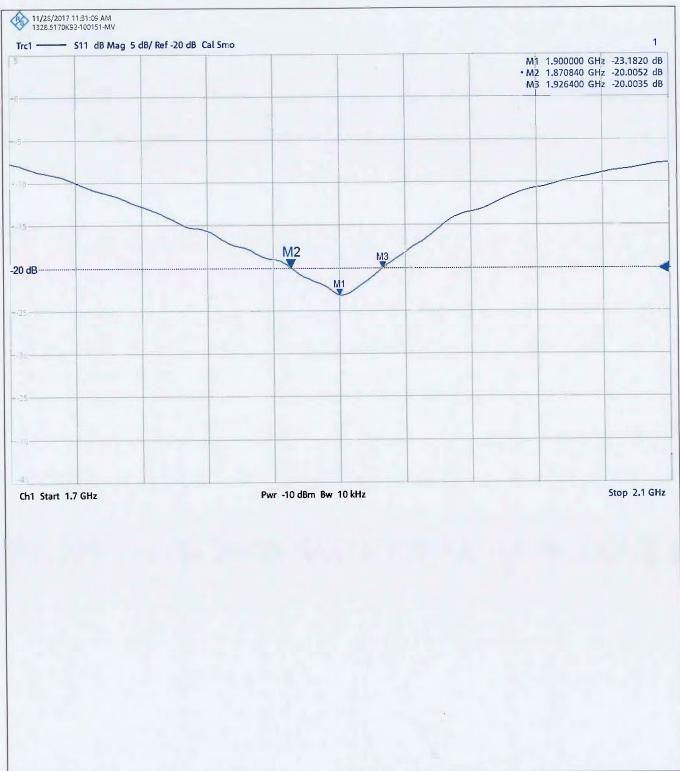

Maximum value of SAR (measured) = 13.0 W/kg

CERTIFICATE NUMBER : 11903932JD01E

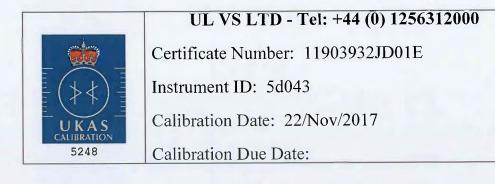
UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903932JD01E


UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01E

Instrument ID: 5d043

Calibration Date: 22/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01E

Instrument ID: 5d043

Calibration Date: 22/Nov/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 19/Feb/2018

18 CERTIFICATE NUMBER : 12129912JD01A

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	09/Feb/2018
Manufacturer:	Speag		
Type/Model Number:	D2450V2		
Serial Number:	748		
Calibration Date:	14/Feb/2018		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	9		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	08 Nov 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	28 Sep 2017	12
A1322	Dipole	SPEAG	D2450V2	725	19 Sep 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0176448	Power Sensor	Rhode & Schwarz	NRP-Z51	103459	20 June 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	14 Dec 2016	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	09 May 2016	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 March 2017	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L
Robot Serial Number:	F14/5T5ZA1/A/01
DASY Version:	DASY 52 (v52.8.8.1258)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	2450 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Head	2450	22.0 °C	22.0 °C	21.6°C	22.0°C	٤r	39.20	38.11	± 5%
Tieau	2450	22.0 C	22.0 C	21.0 C	22.0 C	σ	1.80	1.78	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.30 W/Kg	52.94 W/Kg	± 17.57%
neau	SAR averaged over 10g	6.18 W/Kg	24.60 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	52.358 Ω 3.89 jΩ	± 0.28 Ω ± 0.044 jΩ
neau	Return Loss	27.52	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

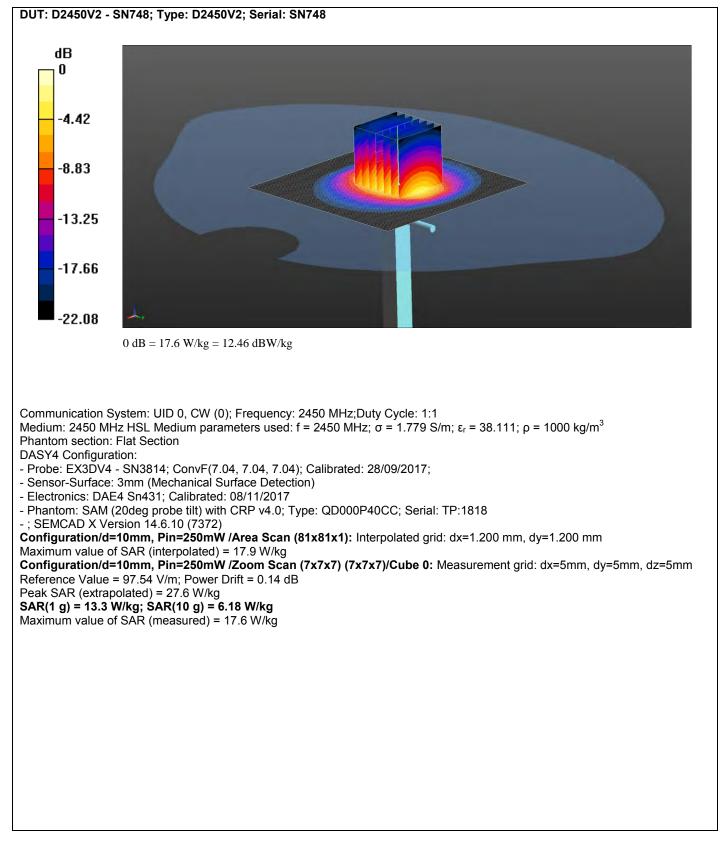
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	Falameters	Value	Value	(%)
Body	2450 22.0	22.0 %	22 0 °C 22 0 °C	21.6°C 22	22.0°C	٤r	52.70	50.63	± 5%
		22.0 L 22.0 L	21.0 C	22.0°C	σ	1.95	2.02	± 5%	

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	12.80 W/Kg	50.95 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.98 W/Kg	23.80 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

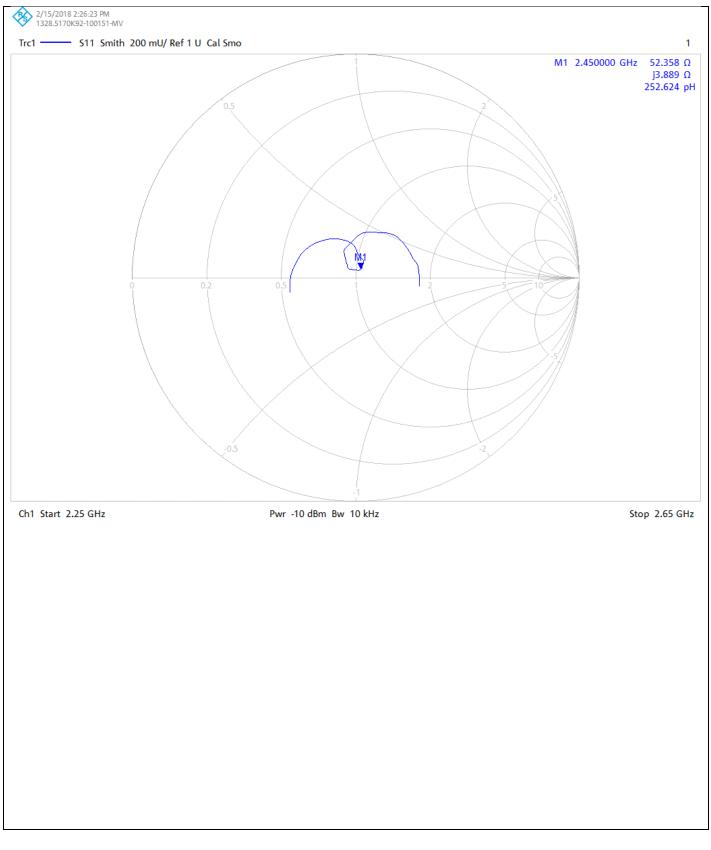

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	52.47 Ω <i>-</i> 1.10 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	30.00	± 2.03 dB

CERTIFICATE NUMBER : 12129912JD01A

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

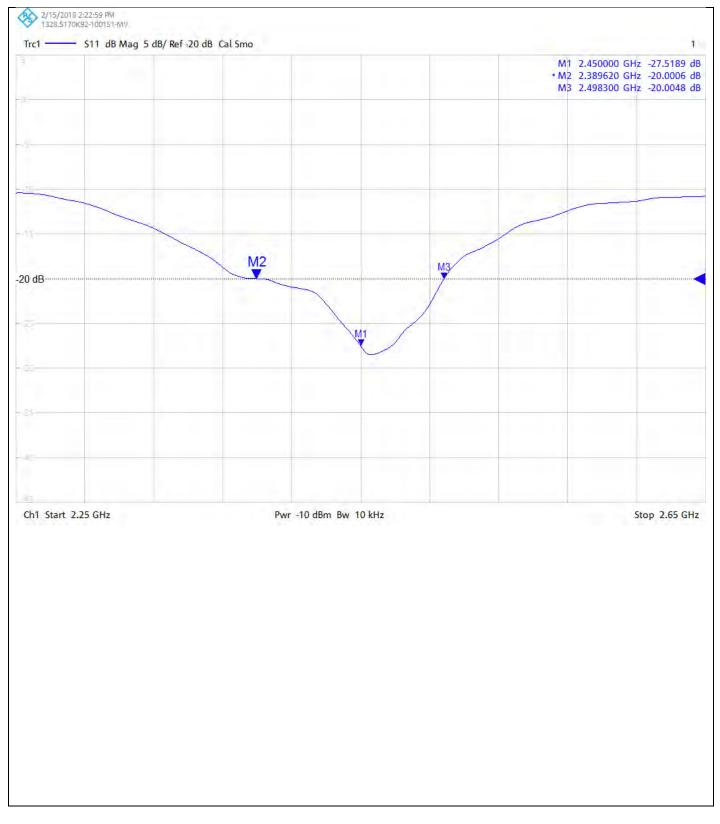


CERTIFICATE NUMBER : 12129912JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 12129912JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER : 12129912JD01A

Page 8 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 MSL Medium parameters used: f = 2450 MHz; σ = 2.02 S/m; ϵ_r = 50.632; ρ = 1000 kg/m³

Phantom section: Flat Section

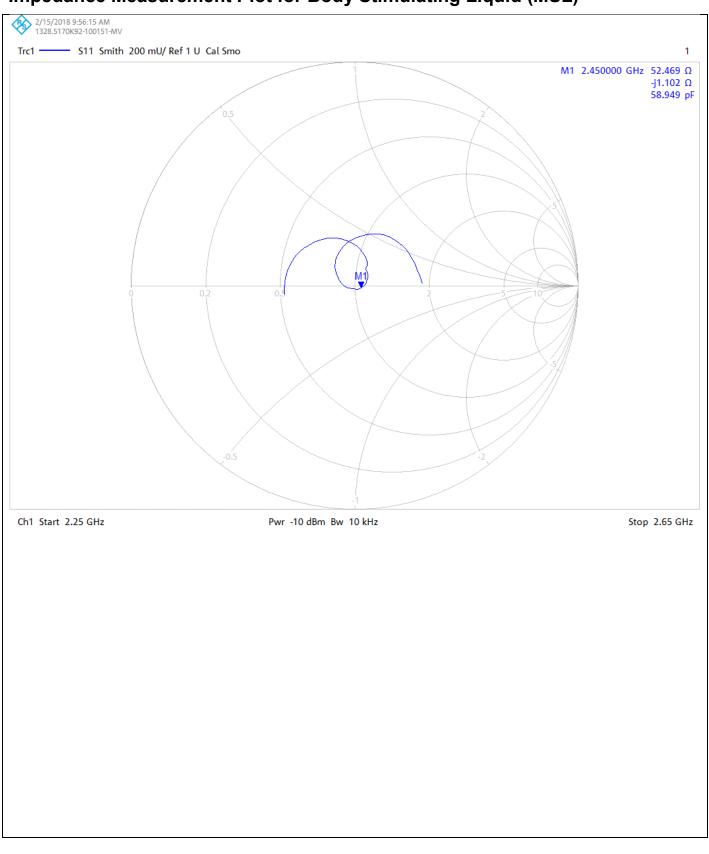
DASY4 Configuration:

- Probe: EX3DV4 SN3814; ConvF(7.2, 7.2, 7.2); Calibrated: 28/09/2017;
- Sensor-Surface: 4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn431; Calibrated: 08/11/2017
- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:1818
- ; SEMCAD X Version 14.6.10 (7372)

Configuration/d=10mm, Pin=250mW /Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

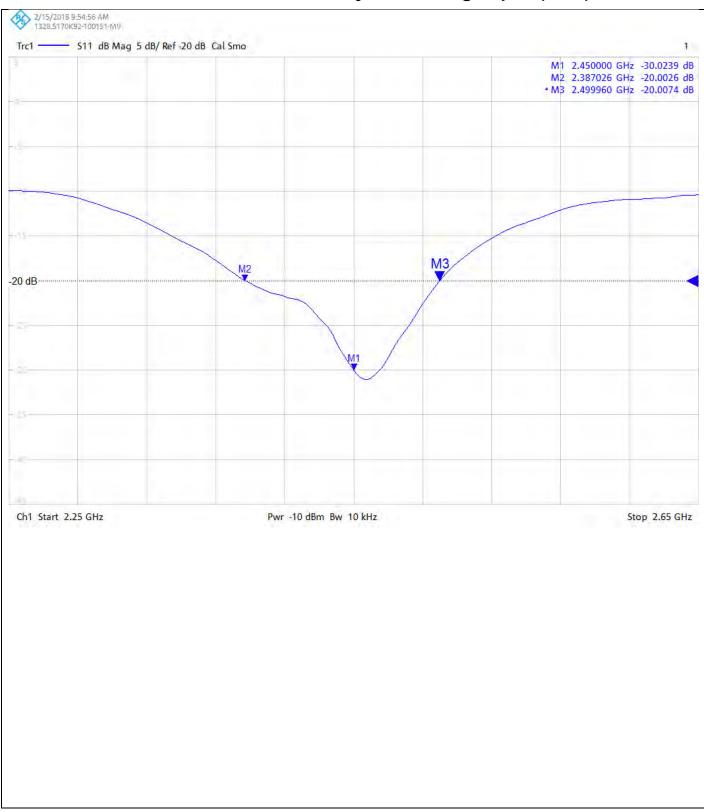
Maximum value of SAR (interpolated) = 15.4 W/kg

Configuration/d=10mm, Pin=250mW /Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.33 V/m; Power Drift = -0.00 dB

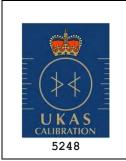

Peak SAR (extrapolated) = 25.8 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.98 W/kg

Maximum value of SAR (measured) = 19.4 W/kg


UKAS Accredited Calibration Laboratory No. 5248

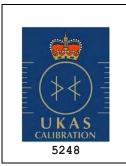
Impedance Measurement Plot for Body Stimulating Liquid (MSL)


Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 12129912JD01A
	Instrument ID: 748
	Calibration Date: 14/Feb/2018
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12129912JD01A

Instrument ID: 748

Calibration Date: 14/Feb/2018

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 12129912JD01A

Instrument ID: 748

Calibration Date: 14/Feb/2018

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 10/Oct/2017

CERTIFICATE NUMBER : 11903941JD01E

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	29/Sep/2017
Manufacturer:	Speag		
Type/Model Number:	D2600V2		
Serial Number:	1006		
Calibration Date:	05/Oct/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2587	Probe	SPEAG	ES3DV3	3341	14 Aug 2017	12
A2767	Dipole	SPEAG	D2600V2	1109	13 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	i1877 Calibration Kit Rhode & Schwarz		Z135	102947-Bt	02 Dec 2016	12
M1908	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	08 Nov 2016	12

CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F14/5T5ZA1/A/01	
DASY Version:	DASY 52 (v52.8.8.1258)	
Phantom:	Flat section of SAM Twin Phantom	1244
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	2600 MHz	1122

Dielectric Property Measurements – Head Simulating Liquid (HSL)

	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	Parameters	Value	Value	(%)
			00.0.00	00.000	00.000	٤٢	39.00	37.06	± 5%
Head	2600	23.0 °C	22.0 °C	20.0°C	22.0°C	σ	1.96	1.97	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	14.00 W/Kg	55.73 W/Kg	± 17.57%
Head	SAR averaged over 10g	6.30 W/Kg	25.08 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	50.38 Ω 6.70 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	23.52	± 1.27 dB

CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

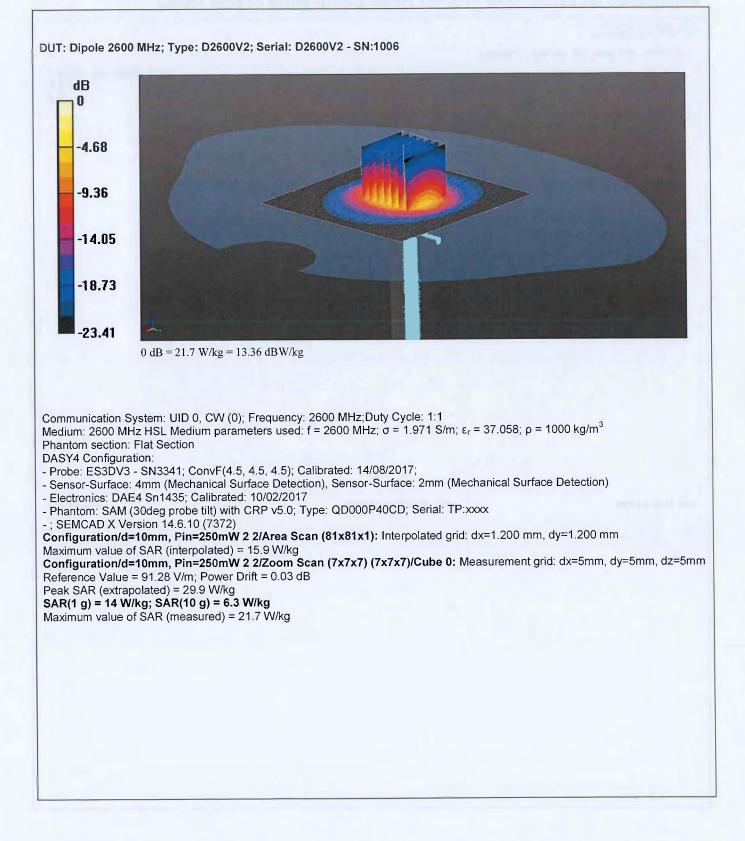
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	1 didificieis	Value	Value	(%)
Dedu	2600	22.0.80	22.0.00	22.090	22.0°C	٤r	52.50	51.39	± 5%
Body	2600	22.0 °C	22.0 °C	22.0°C	22.0°C	σ	2.16	2.19	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Dedu	SAR averaged over 1g	14.10 W/Kg	56.13 W/Kg	± 18.06%
Body	SAR averaged over 10g	6.28 W/Kg	25.00 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

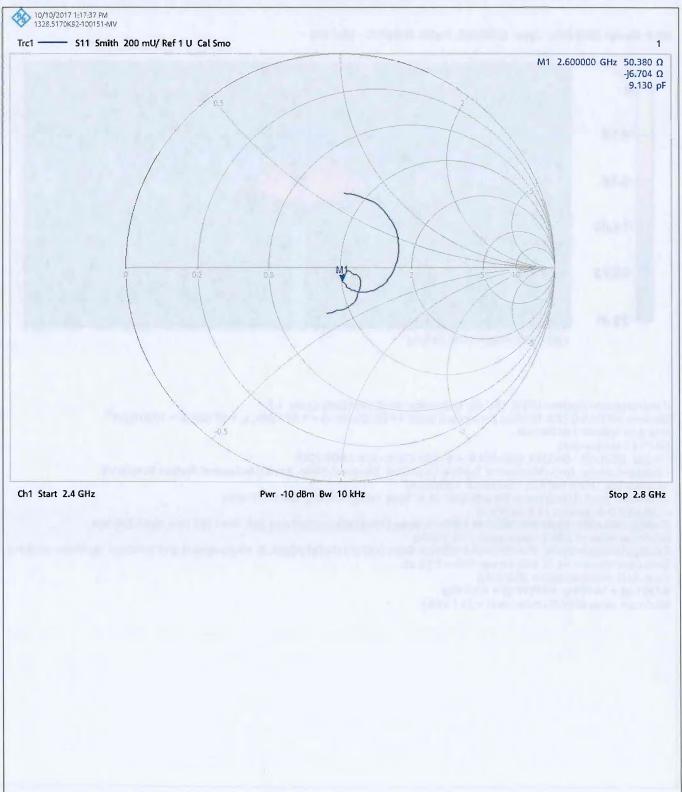

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	48.51 Ω -2.73 ϳΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	30.37	± 1.27 dB

UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11903941JD01E

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

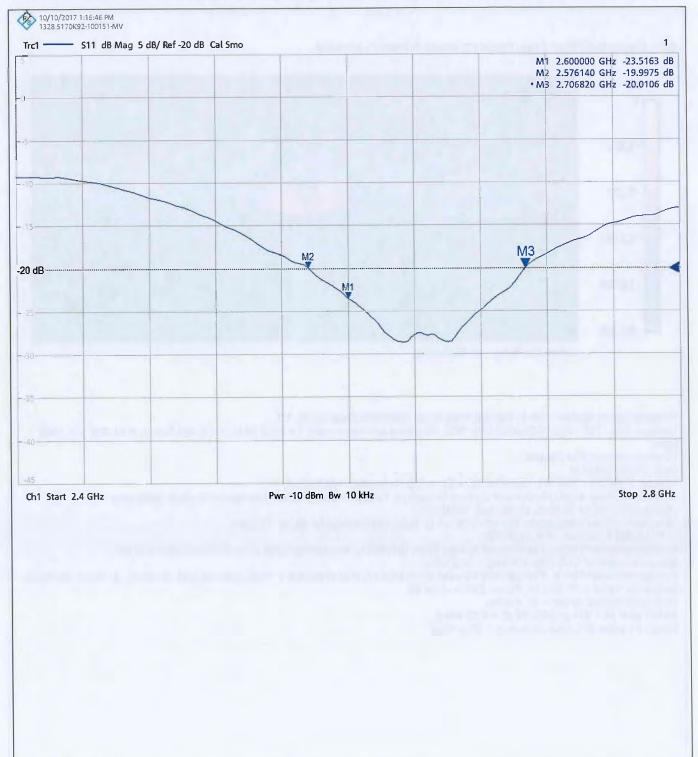


CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

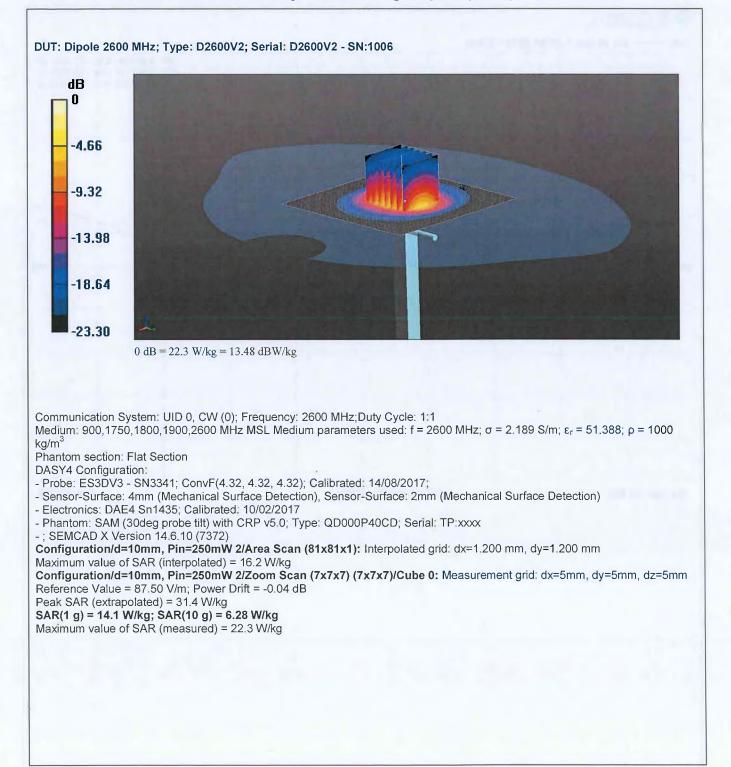


CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

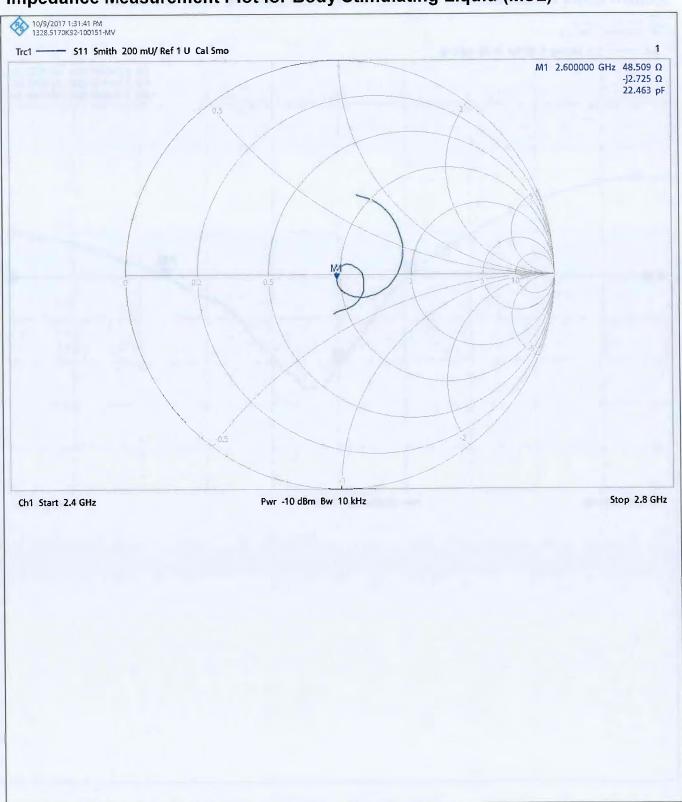


CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

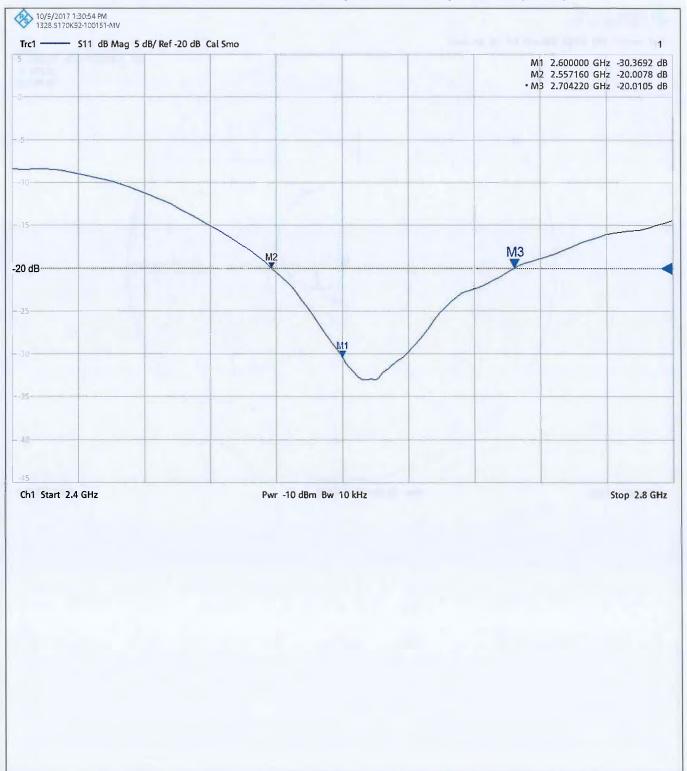


UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11903941JD01E

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903941JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01E

Instrument ID: 1006

Calibration Date: 05/Oct/2017

Calibration Due Date:

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

S

С

S

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1138_Oct17

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: October 26, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 10472 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 5058 (20k) 07-Apr-17 (No. 217-02529) Apr-18 Power sensor NRP-Z91 SN: 503 31-Dec-16 (No. 217-02222) In house check: Oct-18 Ower sensor NRP Power Senso	Dbject	D5GHzV2 - SN:1	138	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration procedure(s)		dure for dipole validation kits bet	ween 3-6 GHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.	Calibration date:	October 26, 2017	7	
Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02529) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 DAE4 SN: 781 13-Jul-17 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: GB37480704 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Network Analyzer HP 8753E Name F				. ,
Primary StandardsID #Cal Date (Certificate No.)Scheduled CalibrationPower meter NRPSN: 10477804-Apr-17 (No. 217-02521/02522)Apr-18Power sensor NRP-Z91SN: 10324404-Apr-17 (No. 217-02521)Apr-18Power sensor NRP-Z91SN: 10324504-Apr-17 (No. 217-02522)Apr-18Reference 20 dB AttenuatorSN: 5058 (20k)07-Apr-17 (No. 217-02529)Apr-18Type-N mismatch combinationSN: 5047.2 / 0632707-Apr-17 (No. 217-02529)Apr-18Reference Probe EX3DV4SN: 350331-Dec-16 (No. EX3-3503_Dec16)Dec-17DAE4SN: 60128-Mar-17 (No. DAE4-601_Mar17)Mar-18DAE4SN: 78113-Jul-17 (No. DAE4-781_Jul-17)Jul-18Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Oct-16)In house check: Oct-18RF generator R&S SMT-06SN: 10037215-Jun-15 (in house check Oct-16)In house check: Oct-18Network Analyzer HP 8753EN: US3739058518-Oct-01 (in house check Oct-17)In house check: Oct-18Calibrated by:NameFunctionSignatureCalibrated by:NameFunctionSignature	All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02529) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 3503 31-Dec-16 (No. EX3-3503_Dec16) Dec-17 DAE4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 DAE4 SN: 781 13-Jul-17 (No. 217-02222) In house check: Oct-18 Power meter EPM-442A SN: GB37480704 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Oct-16)	Calibration Equipment used (M&T	E critical for calibration)		
Power meter NRP SN: 104778 04-Apr-17 (No. 217-02521/02522) Apr-18 Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5047.2 / 06327 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 3503 31-Dec-16 (No. EX3-3503_Dec16) Dec-17 DAE4 SN: 601 28-Mar-17 (No. DAE4-601_Mar17) Mar-18 DAE4 SN: 781 13-Jul-17 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Oct-16) In house check: Oct-18 RF generator R&S SMT-06 SN: US37390585 18-Oct-01 (i	Primary Standards	D #	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91 SN: 103244 04-Apr-17 (No. 217-02521) Apr-18 Power sensor NRP-Z91 SN: 103245 04-Apr-17 (No. 217-02522) Apr-18 Reference 20 dB Attenuator SN: 5058 (20k) 07-Apr-17 (No. 217-02528) Apr-18 Type-N mismatch combination SN: 5058 (20k) 07-Apr-17 (No. 217-02529) Apr-18 Reference Probe EX3DV4 SN: 3503 31-Dec-16 (No. EX3-3503_Dec16) Dec-17 DAE4 SN: 781 13-Jul-17 (No. DAE4-601_Mar17) Mar-18 DAE4 SN: 781 13-Jul-17 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: GB37480704 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: US37292783 07-Oct-16 (No. 217-02222) In house check: Oct-18 Power sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Power sensor HP 8481A SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 RF generator R&S SMT-06 SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Nativer Kanalyzer HP 8753E Natre		SN: 104778		
Power sensor NRP-Z91SN: 10324504-Apr-17 (No. 217-02522)Apr-18Reference 20 dB AttenuatorSN: 5058 (20k)07-Apr-17 (No. 217-02528)Apr-18Type-N mismatch combinationSN: 5047.2 / 0632707-Apr-17 (No. 217-02529)Apr-18Reference Probe EX3DV4SN: 350331-Dec-16 (No. EX3-3503_Dec16)Dec-17DAE4SN: 60128-Mar-17 (No. DAE4-601_Mar17)Mar-18DAE4SN: 78113-Jul-17 (No. DAE4-781_Jul17)Jul-18Secondary StandardsID #Check Date (in house)Scheduled CheckPower sensor HP 8481ASN: US3729278307-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: 1097215-Jun-15 (in house check Oct-16)In house check: Oct-18SN: 100972SN: 10097215-Jun-15 (in house check Oct-17)In house check: Oct-18Network Analyzer HP 8753ENameFunctionSignatureCalibrated by:NameFunctionSignature	Power sensor NRP-Z91	SN: 103244		•
Reference 20 dB AttenuatorSN: 5058 (20k)07-Apr-17 (No. 217-02528)Apr-18Type-N mismatch combinationSN: 5047.2 / 0632707-Apr-17 (No. 217-02529)Apr-18SN: 5047.2 / 0632707-Apr-17 (No. 217-02529)Apr-18DAE4SN: 350331-Dec-16 (No. EX3-3503_Dec16)Dec-17DAE4SN: 60128-Mar-17 (No. DAE4-601_Mar17)Mar-18Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter EPM-442ASN: GB3748070407-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: US3729278307-Oct-16 (No. 217-02223)In house check: Oct-18SN: 10097215-Jun-15 (in house check Oct-16)In house check: Oct-18SN: 100972SN: 10097215-Jun-15 (in house check Oct-17)In house check: Oct-18NameFunctionSignatureCalibrated by:NameFunctionSignature	ower sensor NRP-Z91	SN: 103245		
Type-N mismatch combination Reference Probe EX3DV4SN: 5047.2 / 06327 0547.2 / 06327 07-Apr-17 (No. 217-02529)Apr-18 Dec-17 Apr-18 Dec-17DAE4SN: 3503 0AE431-Dec-16 (No. EX3-3503_Dec16) SN: 601 SN: 781Dec-17 Mar-18 Jul-17DAE4SN: 781 SN: 78113-Jul-17 (No. DAE4-601_Mar17) Jul-18Mar-18 Scheduled CheckSecondary StandardsID # Check Date (in house)Scheduled Check Scheduled CheckPower meter EPM-442A Power sensor HP 8481A SPower sensor HP 8481A SN: MY41092317SN: 07-Oct-16 (No. 217-02222) O7-Oct-16 (No. 217-02223)In house check: Oct-18 In house check: Oct-18 SN: 100972RF generator R&S SMT-06 Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-17)In house check: Oct-18 In house check: Oct-18Calibrated by:NameFunctionSignature Laboratory TechnicianSignature	Reference 20 dB Attenuator	SN: 5058 (20k)		•
Aseference Probe EX3DV4 DAE4SN: 3503 SN: 601 SN: 601 SN: 78131-Dec-16 (No. EX3-3503_Dec16) SN: 0. DAE4-601_Mar17) Jul-18Dec-17 Mar-18 Jul-18Secondary StandardsID # Check Date (in house)Scheduled Check Scheduled CheckPower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A SN: US37292783SN: 07-Oct-16 (No. 217-02222) OF-Oct-16 (No. 217-02222)In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 SN: 100972 SN: 100972 SN: 100972 SN: US37390585In house check Oct-16) In house check: Oct-18 In house check: Oct-18	ype-N mismatch combination			•
DAE4 DAE4SN: 601 SN: 78128-Mar-17 (No. DAE4-601_Mar17) 13-Jul-17 (No. DAE4-781_Jul17)Mar-18 Jul-18Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481ASN: GB37480704 SN: US3729278307-Oct-16 (No. 217-02222) SN: 07-Oct-16 (No. 217-02222)In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 SN: 10972Power sensor HP 8481A Power sensor HP 8481A SN: MY41092317SN: 100972 SN: 10097215-Jun-15 (in house check Oct-16) In house check: Oct-18 In house check: Oct-18Calibrated by:Name Jeton KastratiFunction Laboratory Technician	••			•
DAE4SN: 78113-Jul-17 (No. DAE4-781_Jul17)Jul-18Secondary StandardsID #Check Date (in house)Scheduled CheckPower meter EPM-442ASN: GB3748070407-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: US3729278307-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: MY4109231707-Oct-16 (No. 217-02223)In house check: Oct-18Power sensor HP 8481ASN: 10097215-Jun-15 (in house check Oct-16)In house check: Oct-18RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-17)In house check: Oct-18Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-17)In house check: Oct-18Calibrated by:NameFunctionSignatureLaboratory TechnicianJul-18				
Power meter EPM-442ASN: GB3748070407-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: US3729278307-Oct-16 (No. 217-02222)In house check: Oct-18Power sensor HP 8481ASN: MY4109231707-Oct-16 (No. 217-02223)In house check: Oct-18Power sensor HP 8481ASN: MY4109231707-Oct-16 (No. 217-02223)In house check: Oct-18RF generator R&S SMT-06SN: 10097215-Jun-15 (in house check Oct-16)In house check: Oct-18Network Analyzer HP 8753ESN: US3739058518-Oct-01 (in house check Oct-17)In house check: Oct-18Calibrated by:NameFunctionSignatureLaboratory TechnicianJeton KastratiLaboratory TechnicianJeton Kastrati				
Power sensor HP 8481A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753ESN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US3739058507-Oct-16 (No. 217-02223) I5-Jun-15 (in house check Oct-16) I8-Oct-01 (in house check Oct-16) In house check: Oct-18 In house check: Oct-18Calibrated by:NameFunctionSignature Laboratory TechnicianCalibrated by:Jeton KastratiLaboratory TechnicianJeton Kastrati	Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A SN: MY41092317 07-Oct-16 (No. 217-02223) In house check: Oct-18 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati	Power meter EPM-442A	SN: GB37480704	07-Oct-16 (No. 217-02222)	In house check: Oct-18
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-16) In house check: Oct-18 Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Jeton Kastrati	Power sensor HP 8481A	SN: US37292783	07-Oct-16 (No. 217-02222)	In house check: Oct-18
Network Analyzer HP 8753E SN: US37390585 18-Oct-01 (in house check Oct-17) In house check: Oct-18 Name Function Signature Jeton Kastrati Laboratory Technician Jeton Kastrati	Power sensor HP 8481A	SN: MY41092317	07-Oct-16 (No. 217-02223)	In house check: Oct-18
Calibrated by: Name Function Signature Jeton Kastrati Laboratory Technician	RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Calibrated by: Jeton Kastrati Laboratory Technician	Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
- Ch		Name	Function	Signature
Approved by: Katja Pokovic Technical Manager	Calibrated by:	Jeton Kastrati	Laboratory Technician	tola
A.K. UM		Katja Pokovic	Technical Manager	Mur-

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.77 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.74 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	49.0 Ω - 8.1 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.1 Ω - 1.8 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.7 Ω - 2.1 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.4 Ω - 7.4 jΩ	
Return Loss	- 22.7 dB	

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	57.9 Ω - 1.7 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.9 Ω - 2.2 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

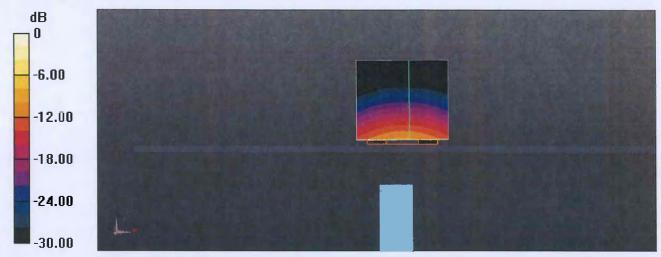
Manufactured by	SPEAG
Manufactured on	May 07, 2012

Date: 26.10.2017

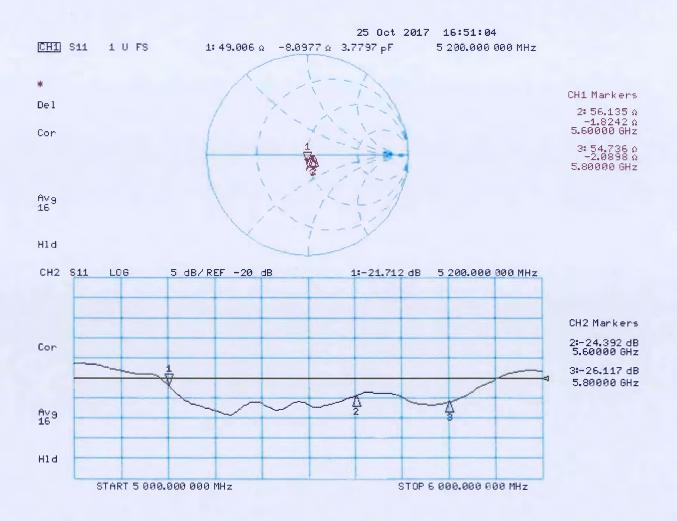
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ S/m; $\varepsilon_r = 36.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.9$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\varepsilon_r = 35.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.76, 5.76, 5.76); Calibrated: 31.12.2016, ConvF(5.09, 5.09, 5.09); Calibrated: 31.12.2016, ConvF(5.01, 5.01, 5.01); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.15 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 7.77 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.42 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.10 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 18.7 W/kg

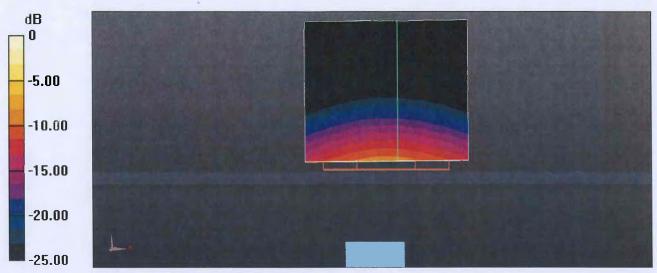
0 dB = 17.3 W/kg = 12.38 dBW/kg

Date: 25.10.2017

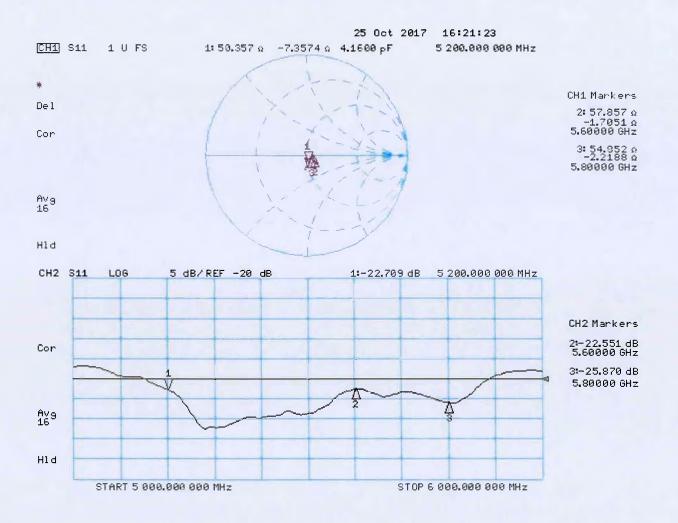
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.44 S/m; ϵ_r = 47.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.97 S/m; ϵ_r = 46.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.25 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29); Calibrated: 31.12.2016, ConvF(4.57, 4.57, 4.57); Calibrated: 31.12.2016, ConvF(4.48, 4.48, 4.48); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 28.03.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.83 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 7.4 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 16.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.58 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.86 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Evaluation Conditions (f=5200 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
Filantoin	SAM Head I Hallom	TOT USAGE WITT ODATIOD VETTE

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	88.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	5.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	54.0 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	1.85 W/kg

Evaluation Conditions (f=5600 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
T Hantoni	SAW Head Flanton	FOI USAGE WILL COARSDVZ-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	91.1 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.7 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	93.0 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	26.6 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	62.3 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 19.9 % (k=2)

Evaluation Conditions (f=5800 MHz)

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
		J

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.8 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	9.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	90.6 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.9 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	8.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR (average measured)	100 mW input power	5.81 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.7 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR (average measured)	100 mW input power	1.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.3 W/kg ± 19.9 % (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG

UL CCS USA

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

BCMRA BCMRA

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1003_Mar18

CALIBRATION CERTIFICATE			
Object	D5GHzV2 - SN:1	003	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betw	veen 3-6 GHz
Calibration date:	March 13, 2018		
The measurements and the uncer	tainties with confidence p ted in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-16 (No. 217-02222)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-16 (No. 217-02222)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-16 (No. 217-02223)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Soil Man

Approved by:

Issued: March 14, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

Technical Manager

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

S

С

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	5.10 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	51.5 Ω - 8.3 jΩ
Return Loss	- 21.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 1.4 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	56.4 Ω - 4.4 jΩ
Return Loss	- 22.7 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.6 Ω - 6.6 jΩ
Return Loss	- 22.9 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.3 Ω - 1.2 jΩ	
Return Loss	- 24.3 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	56.5 Ω - 4.7 jΩ
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	3 ns
----------------------------------	------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

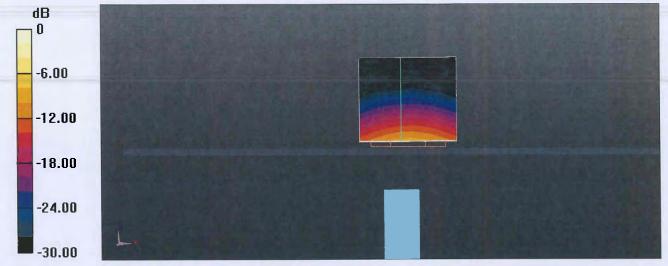
Manufactured by	SPEAG
Manufactured on	July 08, 2003

Date: 13.03.2018

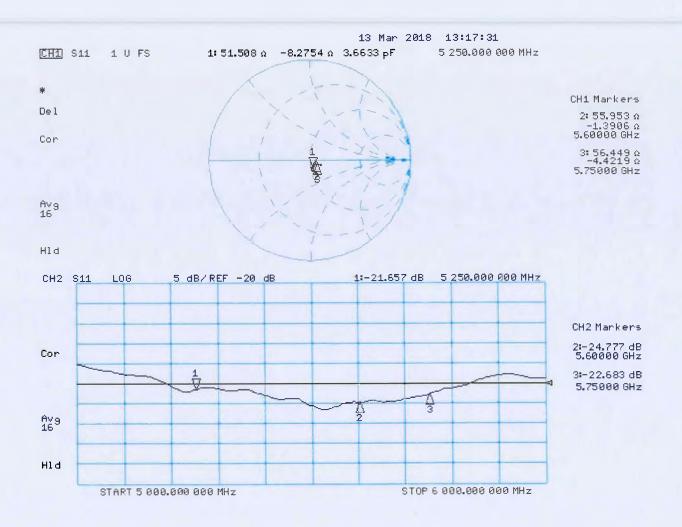
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\varepsilon_r = 36.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.94$ S/m; $\varepsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.1$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2017, ConvF(5.05, 5.05, 5.05); Calibrated: 30.12.2017, ConvF(4.98, 4.98, 4.98); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.49 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.01 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.2 W/kg SAR(1 g) = 8.45 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 19.5 W/kg

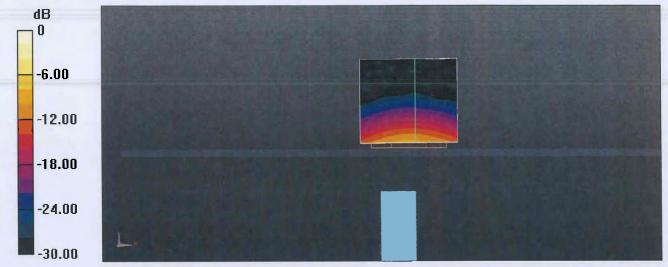
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.01 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.4 W/kg

0 dB = 18.4 W/kg = 12.65 dBW/kg

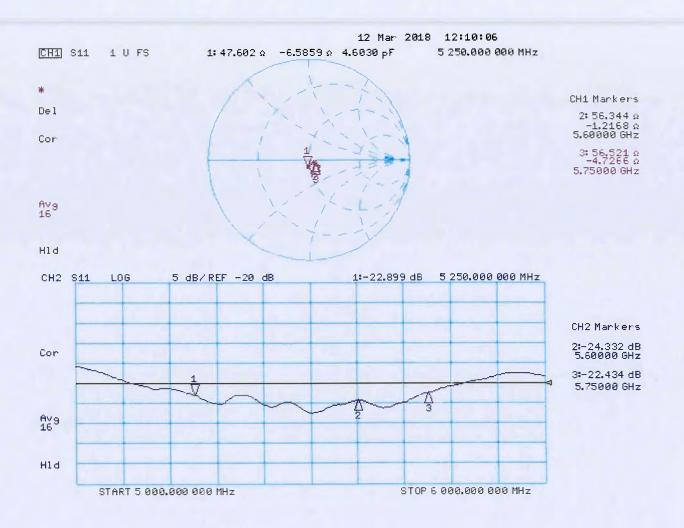
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1003

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.49 S/m; ϵ_r = 47.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.97 S/m; ϵ_r = 46.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.18 S/m; ϵ_r = 46.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26); Calibrated: 30.12.2017, ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2017, ConvF(4.57, 4.57, 4.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.11 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.20 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.19 W/kg Maximum value of SAR (measured) = 18.6 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.72 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

