

# SAR EVALUATION REPORT

## IEEE STD 1528-2013

*For* GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac/ax, GPS, WPT & NFC

FCC ID: PY7-62883W

Report Number: 14177661-S1V3 Issue Date: 4/15/2022

> Prepared for Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0076, Japan

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888



### **Revision History**

| Rev. | Date      | Revisions                             | Revised By      |
|------|-----------|---------------------------------------|-----------------|
| V1   | 4/7/2022  | Initial Issue                         |                 |
| V2   | 4/15/2022 | Section 9: Added note for LTE Band 17 | Coltyce Sanders |
| V3   | 4/15/2022 | Updated section 2.                    | Devin Chang     |
|      |           |                                       |                 |

## **Table of Contents**

| 1.   | Attestation of Test Results                                            | . 5 |
|------|------------------------------------------------------------------------|-----|
| 2.   | Test Specification, Methods and Procedures                             | . 6 |
| 3.   | Facilities and Accreditation                                           | . 6 |
| 4.   | SAR Measurement System & Test Equipment                                | . 7 |
| 4.1. | SAR Measurement System                                                 | . 7 |
| 4.2. | SAR Scan Procedures                                                    | . 8 |
| 4.3. | Test Equipment                                                         | 10  |
| 5.   | Measurement Uncertainty                                                | 10  |
| 6.   | Device Under Test (DUT) Information                                    | 11  |
| 6.1. | DUT Description                                                        | 11  |
| 6.2. | Wireless Technologies                                                  | 12  |
| 6.3. | General LTE SAR Test and Reporting Considerations                      | 13  |
| 6.4. | Power Back-off Operation                                               | 14  |
| 7.   | RF Exposure Conditions (Test Configurations)                           | 14  |
| 8.   | Dielectric Property Measurements & System Check                        | 15  |
| 8.1. | Dielectric Property Measurements                                       | 15  |
| 8.2. | System Check                                                           | 16  |
| 9.   | Conducted Output Power Measurements                                    |     |
| 9.1. | LTE                                                                    | 17  |
| 10.  | Measured and Reported (Scaled) SAR Results                             | 23  |
| 10.  | 1. LTE Band 2 (20MHz Bandwidth)                                        | 24  |
| 10.2 | 2. LTE Band 12 (10MHz Bandwidth)                                       | 24  |
| 11.  | SAR Measurement Variability                                            | 25  |
| 12.  | Simultaneous Transmission Conditions                                   | 26  |
| 12.  | 1. Simultaneous transmission SAR test exclusion considerations         | 26  |
| 12.2 | 2. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Normal State & BT        | 26  |
| 12.  | 3. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Simultaneous 2G_5G State | 27  |
| 12.  | 4. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Normal State & BT        | 27  |
| 12.  | 5. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Simultaneous 2G_5G State | 27  |
| Appe | ndixes                                                                 | 28  |
| App  | endix A: SAR Setup Photos                                              | 28  |
| App  | endix B: SAR System Check Plots                                        | 28  |

Page 3 of 28

This report shall not be reproduced without the written approval of UL Verification Services Inc.

| Appendix C: SAR Highest Test Plots  | 28 |
|-------------------------------------|----|
| Appendix D: SAR Tissue Ingredients  |    |
| Appendix E: SAR Probe Certificates  | 28 |
| Appendix F: SAR Dipole Certificates | 28 |

Page 4 of 28

# 1. Attestation of Test Results

| Applicant Name                                | Sony Corporation                              | Sony Corporation                                           |               |                                                              |  |  |
|-----------------------------------------------|-----------------------------------------------|------------------------------------------------------------|---------------|--------------------------------------------------------------|--|--|
| FCC ID                                        | PY7-62883W                                    |                                                            |               |                                                              |  |  |
| Applicable Standards                          | Published RF exposure<br>IEEE STD 1528-2013   | Published RF exposure KDB procedures<br>IEEE STD 1528-2013 |               |                                                              |  |  |
|                                               |                                               | SAR L                                                      | .imits (W/Kg) |                                                              |  |  |
| Exposure Category                             | · · · · ·                                     | Peak spatial-average<br>(1g of tissue)                     |               | Extremities (hands, wrists, ankles, etc.)<br>(10g of tissue) |  |  |
| General population /<br>Uncontrolled exposure | 1.6                                           | 1.6 4                                                      |               |                                                              |  |  |
| DE Eveneyure Conditions                       | Equipment Class - Highest Reported SAR (W/kg) |                                                            |               |                                                              |  |  |
| RF Exposure Conditions                        | PCE                                           | DTS                                                        | NII           | DSS                                                          |  |  |
| Head                                          | 0.050                                         | N/A                                                        | N/A           | N/A                                                          |  |  |
| Body-worn*                                    | 0.314                                         | N/A                                                        | N/A           | N/A                                                          |  |  |
| Hotspot/BT Tethering                          | 0.376                                         | N/A                                                        | N/A           | N/A                                                          |  |  |
| Extremity (10g)                               | N/A                                           | N/A                                                        | N/A           | N/A                                                          |  |  |
| Simultaneous TX                               | 0.871                                         | N/A                                                        | N/A           | N/A                                                          |  |  |
| Date Tested                                   | 3/14/2022 to 3/17/2022                        |                                                            |               |                                                              |  |  |
| Test Results                                  | Pass                                          |                                                            |               |                                                              |  |  |

**Note:** The proposed Permissive Change requires SAR testing for enabled LTE Bands 2 and 12. This report only contains the SAR values for the enabled LTE Bands 2 and 12. WLAN and Bluetooth SAR results from the original filling (lead model) have been used in this report for Simultaneous Transmission analysis only. Refer to §12 for Simultaneous SAR Analysis. Please refer to original filling (UL report 14176139-S1) for SAR measurement results and the highest SAR values for WLAN and Bluetooth.

\**Note:* The Body-worn minimum separation distance is 10 mm. To cover both body-worn and hotspot RF exposure conditions testing was performed at a separation distance of 10 mm.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. Government, or any agency of the U.S. government.

| Approved & Released By:       | Prepared By                   |
|-------------------------------|-------------------------------|
| JenCary                       | Ju fr                         |
| Devin Chang                   | Remi Rodberg                  |
| Senior Test Engineer          | Laboratory Technician         |
| UL Verification Services Inc. | UL Verification Services Inc. |

Page 5 of 28

# 2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, ANSI C63.26-2015, the following FCC Published RF exposure <u>KDB</u> procedures:

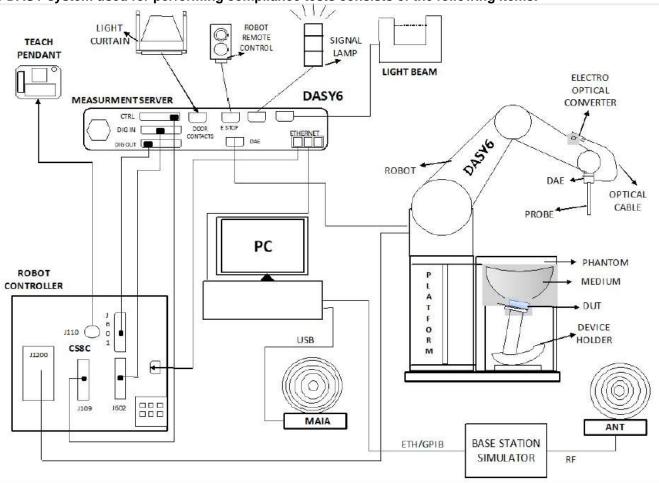
- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D04 Interim General RF Exposure Guidance v01
- 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

In addition to the above, the following information was used:

- o <u>TCB Workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- o <u>TCB Workshop</u> April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- o <u>TCB Workshop</u> October 2015; RF Exposure Procedures (KDB 941225 D05A)
- <u>TCB Workshop</u> October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- <u>TCB Workshop</u> May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- <u>TCB Workshop</u> April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))
- <u>TCB Workshop</u> April 2021; RF Exposure Procedures (Extension of Frequency Range down to 4 MHz and up to 10 GHz)

# 3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at


| 47173 Benicia Street | 47266 Benicia Street |            |  |
|----------------------|----------------------|------------|--|
| SAR Lab A            | SAR Lab 1            | SAR Lab 9  |  |
| SAR Lab B            | SAR Lab 2            | SAR Lab 10 |  |
| SAR Lab C            | SAR Lab 3            | SAR Lab 11 |  |
| SAR Lab D            | SAR Lab 4            | SAR Lab 12 |  |
| SAR Lab E            | SAR Lab 5            | SAR Lab 13 |  |
| SAR Lab F            | SAR Lab 6            |            |  |
| SAR Lab G            | SAR Lab 7            |            |  |
| SAR Lab H            | SAR Lab 8            |            |  |

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05

# 4. SAR Measurement System & Test Equipment

# 4.1. SAR Measurement System

### The DASY system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7, Win10 and the DASY52<sup>1</sup> and DASY6<sup>2</sup> software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 7 of 28

 $<sup>^1</sup>$  DASY52 software used: DASY52.10.4.1527 & S 14.6.14 and older generations.

 $<sup>^2</sup>$  DASY6 software used: DASY6 V16.0.0.116 & S 14.6.14 and older generations.

## 4.2. SAR Scan Procedures

### **Step 1: Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

### Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE STD 1528-2013, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

### Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

|                                                                                                           | $\leq$ 3 GHz                                                                                                                                                       | > 3 GHz                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                                              |
| Maximum probe angle from probe axis to phantom<br>surface normal at the measurement location              | $30^{\circ} \pm 1^{\circ}$                                                                                                                                         | $20^{\alpha}\pm1^{\circ}$                                                                                               |
|                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 - 3 GHz: $\leq$ 12 mm                                                                                                              | $\begin{array}{l} 3-4 \ \mathrm{GHz} : \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz} : \leq 10 \ \mathrm{mm} \end{array}$ |
| Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension of<br>measurement plane orientation<br>the measurement resolution of<br>x or y dimension of the test of<br>measurement point on the test | on, is smaller than the above,<br>must be $\leq$ the corresponding<br>levice with at least one                          |

Page 8 of 28

#### Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

| Zoom Scan Parameters extracted from | KDB 865664 D01 SAR | Measurement 100 MHz to 6 GHz |
|-------------------------------------|--------------------|------------------------------|
|-------------------------------------|--------------------|------------------------------|

|                                                                             |                                    |                                                                                      | $\leq$ 3 GHz                                                                                                                                                                   | > 3 GHz                                                                            |
|-----------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |                                    |                                                                                      | $\leq 2$ GHz: $\leq 8$ mm<br>2 - 3 GHz: $\leq 5$ mm <sup>*</sup>                                                                                                               | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$ |
|                                                                             | uniform grid: $\Delta z_{Zoom}(n)$ |                                                                                      | $\leq$ 5 mm                                                                                                                                                                    | $3 - 4$ GHz: $\leq 4$ mm<br>$4 - 5$ GHz: $\leq 3$ mm<br>$5 - 6$ GHz: $\leq 2$ mm   |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface    | graded                             | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | $\leq$ 4 mm                                                                                                                                                                    | $3 - 4$ GHz: $\leq 3$ mm<br>$4 - 5$ GHz: $\leq 2.5$ mm<br>$5 - 6$ GHz: $\leq 2$ mm |
|                                                                             | grid                               | ∆z <sub>Zoom</sub> (n>1):<br>between subsequent<br>points                            | $\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$                                                                                                                                          |                                                                                    |
| Minimum zoom scan<br>volume                                                 | x, y, z                            |                                                                                      | $ \ge 30 \text{ mm} \qquad \begin{array}{c} 3 - 4 \text{ GHz:} \ge 28 \text{ mm} \\ 4 - 5 \text{ GHz:} \ge 25 \text{ mm} \\ 5 - 6 \text{ GHz:} \ge 22 \text{ mm} \end{array} $ |                                                                                    |
| Note: δ is the penetrati                                                    | on depth o                         | f a plane-wave at norma                                                              | l incidence to the tissue mediu                                                                                                                                                | m; see draft standard IEEE                                                         |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq$  1.4 W/kg,  $\leq$  8 mm,  $\leq$  7 mm and  $\leq$  5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

# 4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

### **Dielectric Property Measurements**

| Name of Equipment            | Manufacturer      | Type/Model    | Serial No.    | Cal. Due Date |
|------------------------------|-------------------|---------------|---------------|---------------|
| S-Parameter Network Analyzer | R & S             | ZNLE6         | 101274-mn     | 2/15/2023     |
| Dielectric Probe kit         | SPEAG             | DAK-3.5       | 1059          | 9/19/2022     |
| Shorting Block               | SPEAG             | DAK-3.5 Short | SM DAK 200 DA | 9/19/2022     |
| Thermometer                  | Fisher Scientific | Traceable     | 170064398     | 9/1/2022      |

### System Check

| Name of Equipment         | Manufacturer    | Type/Model | Serial No. | Cal. Due Date |
|---------------------------|-----------------|------------|------------|---------------|
| Signal Generator          | Rohde & Schwarz | SMB100A03  | 180969     | 2/17/2023     |
| 3-Path Diode Power Sensor | Rohde & Schwarz | NRP18A     | 100992     | 2/17/2023     |

### Lab Equipment

| Name of Equipment                        | Manufacturer | Type/Model | Serial No. | Cal. Due Date |
|------------------------------------------|--------------|------------|------------|---------------|
| E-Field Probe (SAR Lab 3)                | SPEAG        | EX3DV4     | 7585       | 4/27/2022     |
| Data Acquisition Electronics (SAR Lab 3) | SPEAG        | DAE4       | 1540       | 1/11/2023     |
| Thermometer (SAR Lab 3)                  | TRACEABLE    | 6530CC     | 7603       | 3/30/2022     |
| System Validation Dipole                 | SPEAG        | D750V3     | 1024       | 5/11/2022     |
| System Validation Dipole                 | SPEAG        | D1900V2    | 5d140      | 4/13/2022     |

#### **Other**

| Name of Equipment         | Manufacturer    | Type/Model | Serial No. | Cal. Due Date |
|---------------------------|-----------------|------------|------------|---------------|
| 3-Path Diode Power Sensor | Rohde & Schwarz | NRP18A     | 100994     | 2/16/2023     |
| Base Station Simulator    | R & S           | CMW 500    | 125236     | 2/18/2023     |
| DC Power Supply           | Sorensen        | TX-15 4    | 1802A01877 | N/A           |

# 5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq$  30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE STD 1528-2013 is not required in SAR reports submitted for equipment approval. These conditions have been met, therefore the measurement uncertainty is not required.

# 6. Device Under Test (DUT) Information

# 6.1. DUT Description

| Device Dimension                 | Overall Diagonal: 175.4<br>Display Diagonal: 162 r | Overall (Length x Width): 164.8 mm x 70.9 mm<br>Overall Diagonal: 175.4 mm<br>Display Diagonal: 162 mm<br>This is a Phablet Device (display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm) |                                                   |  |  |  |  |  |  |
|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| Back Cover                       | The Back Cover is not                              | e Back Cover is not removable                                                                                                                                                                                        |                                                   |  |  |  |  |  |  |
| Battery Options                  | The rechargeable batte                             | e rechargeable battery is not user accessible.                                                                                                                                                                       |                                                   |  |  |  |  |  |  |
| Accessory                        | Headset & Wireless Ch                              | eadset & Wireless Charger                                                                                                                                                                                            |                                                   |  |  |  |  |  |  |
| Wireless Router<br>(Hotspot)     | ⊠ Mobile Hotspot (Wi-F                             | /i-Fi Hotspot mode permits the device to share its cellular data connection with other Wi-Fi-enabled devices.<br>Mobile Hotspot (Wi-Fi 2.4 GHz)<br>Mobile Hotspot (Wi-Fi 5.2GHz & 5.8GHz Only)                       |                                                   |  |  |  |  |  |  |
| Wi-Fi Direct                     |                                                    | vices transfer data directly betwee<br>UT support only as a group client                                                                                                                                             | n each other<br>and not support as a group owner. |  |  |  |  |  |  |
| Bluetooth Tethering<br>(Hotspot) | BT Tethering mode perr<br>⊠ BT Tethering (Bluetor  |                                                                                                                                                                                                                      | data connection with other devices.               |  |  |  |  |  |  |
|                                  | S/N                                                | IMEI                                                                                                                                                                                                                 | Notes                                             |  |  |  |  |  |  |
| Test sample information          | QV77002CAQ                                         | 004402543018844                                                                                                                                                                                                      | (Conducted) Cell Low Band                         |  |  |  |  |  |  |
|                                  | QV7700BUBB                                         | 004402543243368                                                                                                                                                                                                      | (Conducted) Cell Mid Band                         |  |  |  |  |  |  |
|                                  | QV77009JBX                                         | 004402543515104                                                                                                                                                                                                      | (Radiated) Cell Low/Mid Band                      |  |  |  |  |  |  |
| Software Version                 |                                                    | (WWAN) 64.0.C.0.493 & 64.0.C.0.363<br>(WLAN) 64.0.C.0.428 & 64.0.C.0.354                                                                                                                                             |                                                   |  |  |  |  |  |  |

#### **Wireless Technologies** 6.2.

| Wireless<br>technologies | Frequency bands                                                                       | Opera                                                                                                                                                                                                                         | ting mode                                                     | Duty Cycle used for SAR testing <sup>1</sup>                                                                                                           |
|--------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| GSM                      | 850<br>1900                                                                           | Voice (GMSK)<br>GPRS (GMSK)<br>EDGE (8PSK)                                                                                                                                                                                    | GSM Class : A<br>Multi-Slot Class:<br>Class 33 - 4 Up, 5 Down | GSM Voice: 12.5%<br>(E)GPRS: 1 Slot: 12.5%<br>2 Slots: 25%<br>3 Slots: 37.5%<br>4 Slots: 50%                                                           |
|                          | Does this device support DT                                                           | M (Dual Transfer Mode)? 🛛                                                                                                                                                                                                     | 🛛 Yes 🗆 No                                                    |                                                                                                                                                        |
| W-CDMA<br>(UMTS)         | Band II<br>Band IV                                                                    | UMTS Rel. 99 (Voice & D<br>HSDPA (Rel. 5)<br>HSUPA (Rel. 6)                                                                                                                                                                   | Data)                                                         | 100%                                                                                                                                                   |
| LTE                      | FDD Band 2<br>FDD Band 4<br>FDD Band 12<br>FDD Band 17<br>Does this device support SV |                                                                                                                                                                                                                               | Carrier Aggregation (CA)                                      | 100% (FDD)<br>63.3% (TDD) 1Power Class 3                                                                                                               |
|                          | 2.4 GHz                                                                               | 802.11b<br>802.11g<br>802.11n (HT20)<br>802.11ax (HE20)                                                                                                                                                                       |                                                               | 99.92% (802.11b Chain 0)<br>99.92% (802.11b Chain 1)                                                                                                   |
| Wi-Fi                    | 5 GHz                                                                                 | 802.11a<br>802.11n (HT20)<br>802.11n (HT40)<br>802.11ac (VHT20)<br>802.11ac (VHT40)<br>802.11ac (VHT40)<br>802.11ac (VHT60)<br>802.11ac (VHT160)<br>802.11ax (HE20)<br>802.11ax (HE40)<br>802.11ax (HE80)<br>802.11ax (HE160) |                                                               | 99.67% (802.11ac 80MHz BW Chain 0)<br>99.72% (802.11ac 160MHz BW Chain 0)<br>99.67% (802.11ac 80MHz BW Chain 1)<br>99.63% (802.11ac 160MHz BW Chain 1) |
|                          | Does this device support bar                                                          |                                                                                                                                                                                                                               |                                                               |                                                                                                                                                        |
|                          | Does this device support Ba                                                           | nd gap channel(s)? 🛛 Yes                                                                                                                                                                                                      | □ No                                                          |                                                                                                                                                        |
| Bluetooth                | 2.4 GHz                                                                               | BR, EDR, LE                                                                                                                                                                                                                   |                                                               | 76.8% (GFSK Chain 0)<br>77.2% (GFSK Chain 1)                                                                                                           |
| NFC                      | 13.56 MHz                                                                             | Type A/B/F/V                                                                                                                                                                                                                  |                                                               | N/A                                                                                                                                                    |

 Notes:

 1.
 This permissive change only requires testing for the enabled LTE bands 2 and 12. Refer to Note in §1.

#### **General LTE SAR Test and Reporting Considerations** 6.3.

|                                                                                | Description                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Frequency range, Channel Bandwidth,                                            |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency                                                                                                                                                                                                             | range: 1850                                                                                                                                                                                                                                                                                                              | - 1910 MHz (B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W = 60 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |
| Numbers and Frequencies                                                        | Band 2                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | Channe                                                                                                                                                                                                                                                                                                                   | l Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |
|                                                                                |                                                                                                                                                                                             | 20 MHz <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 MHz                                                                                                                                                                                                                | 10 MHz                                                                                                                                                                                                                                                                                                                   | 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4 MHz                                                                                                     |
|                                                                                | Low                                                                                                                                                                                         | 18700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18675/                                                                                                                                                                                                                | 18650/                                                                                                                                                                                                                                                                                                                   | 18625/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18615/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18607/                                                                                                      |
|                                                                                | Low                                                                                                                                                                                         | /1860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1857.5                                                                                                                                                                                                                | 1855                                                                                                                                                                                                                                                                                                                     | 1852.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1851.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850.7                                                                                                      |
|                                                                                | Mid                                                                                                                                                                                         | 18900/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18900/                                                                                                                                                                                                                | 18900/                                                                                                                                                                                                                                                                                                                   | 18900/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18900/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18900/                                                                                                      |
|                                                                                | IVIIU                                                                                                                                                                                       | 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1880                                                                                                                                                                                                                  | 1880                                                                                                                                                                                                                                                                                                                     | 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1880                                                                                                        |
|                                                                                | High                                                                                                                                                                                        | 19100/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19125/                                                                                                                                                                                                                | 19150/                                                                                                                                                                                                                                                                                                                   | 19175/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19185/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19193/                                                                                                      |
|                                                                                | riigit                                                                                                                                                                                      | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1902.5                                                                                                                                                                                                                | 1905                                                                                                                                                                                                                                                                                                                     | 1907.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1908.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.3                                                                                                      |
|                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Frequency                                                                                                                                                                                                             | / range: 699                                                                                                                                                                                                                                                                                                             | – 716 MHz (BV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V = 17 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                             |
|                                                                                | Band 12                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | Channe                                                                                                                                                                                                                                                                                                                   | l Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |
|                                                                                |                                                                                                                                                                                             | 20 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 MHz                                                                                                                                                                                                                | 10 MHz <sup>1</sup>                                                                                                                                                                                                                                                                                                      | 5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4 MHz                                                                                                     |
|                                                                                | Law                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 23060/                                                                                                                                                                                                                                                                                                                   | 23035/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23025/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23017/                                                                                                      |
|                                                                                | Low                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 704                                                                                                                                                                                                                                                                                                                      | 701.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 700.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 699.7                                                                                                       |
|                                                                                | Mid                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 23095/                                                                                                                                                                                                                                                                                                                   | 23095/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23095/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23095/                                                                                                      |
|                                                                                | IVIIG                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 707.5                                                                                                                                                                                                                                                                                                                    | 707.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 707.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 707.5                                                                                                       |
|                                                                                | Llink                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 23130/                                                                                                                                                                                                                                                                                                                   | 23155/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23165/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23173/                                                                                                      |
|                                                                                |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 744                                                                                                                                                                                                                                                                                                                      | 713.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 714.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 715.3                                                                                                       |
| mplementation                                                                  | High<br>Refer to Appe                                                                                                                                                                       | 555-555 (S. 16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                       | 711                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4525                                                                                                      |
| mplementation                                                                  | Refer to Appe                                                                                                                                                                               | 6.2.3-1: Maxii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       | Reduction (                                                                                                                                                                                                                                                                                                              | MPR) for Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er Class 1, 2 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and 3                                                                                                       |
| mplementation                                                                  | Refer to Appe                                                                                                                                                                               | 6.2.3-1: Maxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nannel bandwi                                                                                                                                                                                                         | Reduction (                                                                                                                                                                                                                                                                                                              | MPR) for Powe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er Class 1, 2 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4525                                                                                                      |
| mplementation                                                                  | Refer to Appe                                                                                                                                                                               | 6.2.3-1: Maxii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                       | Reduction (<br>dth / Transm<br>5                                                                                                                                                                                                                                                                                         | MPR) for Pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er Class 1, 2 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and 3                                                                                                       |
| mplementation                                                                  | Refer to Appe                                                                                                                                                                               | 6.2.3-1: Maxim<br>on Cl<br>1.4<br>MHz<br>> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | annel bandw<br>3.0                                                                                                                                                                                                    | Reduction (<br>idth / Transm<br>5<br>MHz N<br>> 8 >                                                                                                                                                                                                                                                                      | MPR) for Power<br>ission bandwid<br>10 15<br>IHz MHz<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>> 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3                                                                                                       |
| mplementation                                                                  | Refer to Appe<br>Table 1<br>Modulatio                                                                                                                                                       | 6.2.3-1: Maxim<br>on Cl<br>1.4<br>MHz<br>≥ 5<br>I ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nannel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4                                                                                                                                                                             | Reduction (<br>idth / Transm<br>5<br>MHz N<br>≥ 8 ≥<br>≤ 8 ≤                                                                                                                                                                                                                                                             | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 ≥ 16<br>12 ≤ 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er Class 1, 2 a<br>th (NR8)<br>20<br>MHz<br>> 18<br>≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and 3<br>MPR (dB)<br>≤ 1<br>≤ 1                                                                             |
| mplementation                                                                  | Refer to Appe<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM                                                                                                                          | 6.2.3-1: Maxin<br>on Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4                                                                                                                                                                       | Reduction (<br>idth / Transm<br>5<br>MHz M<br>> 8 ><br>≤ 8 ≤<br>> 8 >                                                                                                                                                                                                                                                    | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 ≤ 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Class 1, 2 a<br>th (N <sub>RB</sub> )<br>20<br>MHz<br>> 18<br>≤ 18<br>> 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and 3<br>MPR (dB)<br>≤ 1<br>≤ 1<br>≤ 2                                                                      |
| mplementation                                                                  | Refer to Apper<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM<br>64 QAM                                                                                                               | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 > 5<br>1 ≤ 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>> 4<br>≤ 4<br>> 4                                                                                                                                                  | Reduction (<br>idth / Transm<br>5<br>MHz M<br>> 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤                                                                                                                                                                                                                  | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≤ 18<br>≥ 18<br>≤ 18<br>≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 1<br>≤ 2<br>≤ 2                                                               |
| mplementation                                                                  | Refer to Appe<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM                                                                                                                          | 6.2.3-1: Maxin<br>Dn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4                                                                                                                                                                       | Reduction (<br>idth / Transm<br>5<br>MHz M<br>> 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤ 8<br>≤                                                                                                                                                                                                                  | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 ≤ 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er Class 1, 2 a<br>th (N <sub>RB</sub> )<br>20<br>MHz<br>> 18<br>≤ 18<br>> 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and 3<br>MPR (dB)<br>≤ 1<br>≤ 1<br>≤ 2                                                                      |
| mplementation                                                                  | Refer to Apper<br>Table (<br>Modulation<br>OPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>256 QAM                                                                                                    | 6.2.3-1: Maxin<br>Dn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>> 4<br>≤ 4<br>> 4                                                                                                                                                  | Reduction (i           idth / Transm           5           MHz         N           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         > | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≤ 18<br>≥ 18<br>≤ 18<br>≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3                                                               |
| mplementation                                                                  | Refer to Apper<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM<br>64 QAM                                                                                                               | 6.2.3-1: Maxin<br>Dn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>> 4<br>≤ 4<br>> 4                                                                                                                                                  | Reduction (i           idth / Transm           5           MHz         N           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         >           > 8         > | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≤ 18<br>≥ 18<br>≤ 18<br>≤ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3                                                               |
| mplementation                                                                  | Refer to Apper<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>256 QAM                                                                                                    | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annel bandw<br>3.0<br>MHz<br>≤ 4<br>≤ 4<br>≥ 4<br>≤ 4<br>≤ 4<br>> 4                                                                                                                                                   | Reduction (I         6th / Transm         5         MHz       N         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 1       ≥                                                  | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3<br>≤ 5                                                        |
| mplementation                                                                  | Refer to Apper<br>Table 1<br>Modulation<br>OPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>64 QAM<br>256 QAM<br>MPR Built-in<br>The manufac                                                           | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annel bandwi<br>3.0<br>MHz<br>> 4<br>< 4<br>> 4<br>< 4<br>< 4<br>< 4<br>< 4<br>< 4<br>< 4<br>< 4<br>< | Reduction (I         6th / Transm         5         MHz       N         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 1       ≥                                                  | MPR) for Power<br>ission bandwid<br>10 15<br>12 > 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3<br>≤ 5                                                        |
| mplementation                                                                  | Refer to Apper<br>Table 1<br>Modulation<br>OPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>64 QAM<br>256 QAM<br>MPR Built-in<br>The manufact<br>not follow the                                        | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≥ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annel bandw<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>≤ 4<br>> 4<br>> 4<br>values are alway<br>values.                                                                                                                    | Reduction (<br>idth / Transm<br>5<br>MHz M<br>> 8<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 1<br>/s within the                                                                                                                                                                                                                           | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 > 16<br>1 | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3<br>≤ 5                                                        |
| mplementation<br>Maximum power reduction (MPR)                                 | Refer to Apper<br>Table 1<br>Modulation<br>OPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>64 QAM<br>256 QAM<br>MPR Built-in<br>The manufact<br>not follow the                                        | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>≤ 5<br>≤ 5<br>≤ 5<br>≤ 5<br>≤ 5<br>by design<br>eturer MPR val<br>e default MPR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annel bandw<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>≤ 4<br>> 4<br>> 4<br>values are alway<br>values.                                                                                                                    | Reduction (<br>idth / Transm<br>5<br>MHz M<br>> 8<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 1<br>/s within the                                                                                                                                                                                                                           | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 > 16<br>1 | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3<br>≤ 5                                                        |
| implementation<br>Maximum power reduction (MPR)<br>Power reduction             | Refer to Apper<br>Table 1<br>Modulation<br>OPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>256 QAM<br>MPR Built-in<br>The manufac<br>not follow the<br>A-MPR (addii<br>No                             | 6.2.3-1: Maxin<br>on Cl<br>1.4<br>MHz<br>> 5<br>$\leq 5$<br>$\leq 5$<br>$\leq 5$<br>$\leq 5$<br>$\leq 5$<br>$\leq 5$<br>$\leq 5$<br>$\leq 6$<br>$\leq $ | annel bandwi<br>3.0<br>MHz<br>> 4<br>≤ 4<br>> 4<br>≤ 4<br>> 4<br>ues are alway<br>values.<br>ras disabled d                                                                                                           | Reduction (i<br>idth / Transm<br>5<br>MHz N<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 1<br>/s within the<br>uring SAR te                                                                                                                                                                                                   | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 ≥ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≥ 16<br>12 ≥ 16<br>12 ≥ 16<br>3GPP maximus<br>sting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≤ 18<br>≤ 18<br>≤ 18<br>≤ 18<br>≥ 18<br>= 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and 3<br>MPR (dB)<br>≤ 1<br>≤ 2<br>≤ 2<br>≤ 3<br>≤ 5<br>nce but may                                         |
| mplementation<br>Maximum power reduction (MPR)                                 | Refer to Apper<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM<br>16 QAM<br>64 QAM<br>256 QAM<br>MPR Built-in<br>The manufac<br>not follow the<br>A-MPR (addiin<br>No<br>A properly co | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≤ 5<br>1 ≥ 5<br>1 ≤ 5<br>1 ≥ 5<br>4<br>by design<br>turer MPR val<br>e default MPR<br>tional MPR) w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annel bandw<br>3.0<br>MHz<br>> 4<br>< 4<br>> 4<br>< 4<br>> 4<br>> 4<br>> 4<br>> 4<br>as 4<br>as are alway<br>values.<br>as disabled d                                                                                 | Reduction (i<br>idth / Transm<br>5<br>MHz N<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 8<br>≥ 1<br>/s within the<br>uring SAR te<br>ator was use                                                                                                                                                                                          | MPR) for Power<br>ission bandwid<br>10 15<br>Hz MHz<br>12 > 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 > 16<br>1 | er Class 1, 2 a<br>th (NRB)<br>20<br>MHz<br>> 18<br>≤ 18<br>≤ 18<br>≤ 18<br>> 18<br>= 18 | and 3<br>MPR (dB)<br>$\leq 1$<br>$\leq 2$<br>$\leq 2$<br>$\leq 3$<br>$\leq 5$<br>nce but may<br>asurements; |
| LTE transmitter and antenna<br>implementation<br>Maximum power reduction (MPR) | Refer to Apper<br>Table 1<br>Modulation<br>QPSK<br>16 QAM<br>16 QAM<br>64 QAM<br>256 QAM                                                                                                    | 6.2.3-1: Maxin<br>pn Cl<br>1.4<br>MHz<br>> 5<br>1 ≤ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annel bandw<br>3.0<br>MHz<br>≤ 4<br>≤ 4<br>≥ 4<br>≤ 4<br>≤ 4<br>> 4                                                                                                                                                   | Reduction (I         6th / Transm         5         MHz       N         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 8       ≥         ≥ 1       ≥                                                  | MPR) for Power<br>ission bandwid<br>10 15<br>12 > 16<br>12 ≤ 16<br>12 ≤ 16<br>12 ≤ 16<br>12 > 16<br>12 > 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er Class 1,<br>th (NRB)<br>20<br>MHz<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18<br>≥ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , 2 e                                                                                                       |

Notes:

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be 1. selected for testing per KDB 941225 D05 SAR for LTE Devices. LTE band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

2.

3.

Page 13 of 28

#### 6.4. **Power Back-off Operation**

The DUT supports power reduction when Simultaneous WLAN transmission is active (i.e. WLAN Chain 0 and Chain 1 transmitting simultaneously).

| Power                | Technologies               | Exposure Conditions Active |           |              |                                |  |
|----------------------|----------------------------|----------------------------|-----------|--------------|--------------------------------|--|
| Back-off mode        | Supported                  | Head                       | Body-worn | Hotspot      | Phablet SAR<br>(Extremity 10g) |  |
| WLAN Simultaneous Tx | Wi-Fi 2.4GHz<br>Wi-Fi 5GHz | $\checkmark$               | ~         | $\checkmark$ | $\checkmark$                   |  |
| Note(s):             | WI-FI 3GHZ                 |                            |           |              |                                |  |

#### Note(s):

Tune-Up Limits for WLAN (Simultaneous 2G\_5G state) is Reduced Average Power. Please refer to §9 for all conducted power measurements.

### Phablet SAR (Extremity 10g):

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

# 7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

| Antenna                    | Band        | Head | Rear | Front | Edge 1     | Edge 2       | Edge 3        | Edge 4      | Extremity |
|----------------------------|-------------|------|------|-------|------------|--------------|---------------|-------------|-----------|
| Antenna                    | Banu        | neau | Real | TIOIR | (Top Edge) | (Right Edge) | (Bottom Edge) | (Left Edge) | (0 mm)    |
| Cellular Main<br>Antenna 1 | LTE Band 12 | Yes  | Yes  | Yes   | No         | No           | Yes           | Yes         | Yes       |
| Cellular Main<br>Antenna 2 | LTE Band 2  | Yes  | Yes  | Yes   | No         | Yes          | Yes           | No          | Yes       |

#### Notes:

SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR. 1.

The Body-worn minimum separation distance is 10 mm. To cover both body-worn and hotspot RF exposure conditions testing was 2. performed at a separation distance of 10 mm.

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 3. W/kg. When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

# 8. Dielectric Property Measurements & System Check

# 8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within  $18^{\circ}$ C to  $25^{\circ}$ C and within  $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant ( $\epsilon$ r) and conductivity ( $\sigma$ ) of typical tissue-equivalent media recipes are expected to

be within  $\pm$  5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE STD 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for  $\epsilon$ r and  $\sigma$  may be relaxed to  $\pm$  10%. This is limited to frequencies  $\leq$  3 GHz.

### **Tissue Dielectric Parameters**

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

| Target Frequency (MHz)   | Н              | ead     | Boo            | ły      |
|--------------------------|----------------|---------|----------------|---------|
| raiger Frequency (IVIHZ) | ε <sub>r</sub> | σ (S/m) | ε <sub>r</sub> | σ (S/m) |
| 150                      | 52.3           | 0.76    | 61.9           | 0.80    |
| 300                      | 45.3           | 0.87    | 58.2           | 0.92    |
| 450                      | 43.5           | 0.87    | 56.7           | 0.94    |
| 835                      | 41.5           | 0.90    | 55.2           | 0.97    |
| 900                      | 41.5           | 0.97    | 55.0           | 1.05    |
| 915                      | 41.5           | 0.98    | 55.0           | 1.06    |
| 1450                     | 40.5           | 1.20    | 54.0           | 1.30    |
| 1610                     | 40.3           | 1.29    | 53.8           | 1.40    |
| 1800 – 2000              | 40.0           | 1.40    | 53.3           | 1.52    |
| 2450                     | 39.2           | 1.80    | 52.7           | 1.95    |
| 3000                     | 38.5           | 2.40    | 52.0           | 2.73    |
| 5000                     | 36.2           | 4.45    | 49.3           | 5.07    |
| 5100                     | 36.1           | 4.55    | 49.1           | 5.18    |
| 5200                     | 36.0           | 4.66    | 49.0           | 5.30    |
| 5300                     | 35.9           | 4.76    | 48.9           | 5.42    |
| 5400                     | 35.8           | 4.86    | 48.7           | 5.53    |
| 5500                     | 35.6           | 4.96    | 48.6           | 5.65    |
| 5600                     | 35.5           | 5.07    | 48.5           | 5.77    |
| 5700                     | 35.4           | 5.17    | 48.3           | 5.88    |
| 5800                     | 35.3           | 5.27    | 48.2           | 6.00    |

### **Dielectric Property Measurements Results:**

| SAR |           | Band     | Tissue    | Frequency | Relati   | ve Permittivi | ty (ɛr)      | С        | onductivity ( | ד)           |       |      |      |       |
|-----|-----------|----------|-----------|-----------|----------|---------------|--------------|----------|---------------|--------------|-------|------|------|-------|
| Lab | Date      | (MHz)    | Туре      | (MHz)     | Measured | Target        | Delta<br>(%) | Measured | Target        | Delta<br>(%) |       |      |      |       |
|     |           |          | 750       | 43.71     | 41.96    | 4.17          | 0.88         | 0.89     | -1.35         |              |       |      |      |       |
| 3   | 3/14/2022 | 750      | 750       | 750 Head  | 660      | 43.85         | 42.42        | 3.36     | 0.85          | 0.89         | -3.87 |      |      |       |
|     |           |          |           | 800       | 43.45    | 41.71         | 4.18         | 0.89     | 0.90          | -0.24        |       |      |      |       |
|     |           | 022 1900 | 1900 Head |           |          |               |              | 1900     | 39.74         | 40.00        | -0.65 | 1.39 | 1.40 | -0.50 |
| 3   | 3/17/2022 |          |           | 1850      | 39.81    | 40.00         | -0.47        | 1.36     | 1.40          | -2.79        |       |      |      |       |
|     |           |          | 1920      | 39.68     | 40.00    | -0.80         | 1.40         | 1.40     | -0.07         |              |       |      |      |       |

Page 15 of 28

## 8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

### System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
   For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
- For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

### System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within  $\pm$ 10% of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

| SAR | Date      | Tissue | Dipole Type      | Dipole        | M                      | easured Resu        | Its for 1g SAR         |                | Me                     | asured Resul        | ts for 10g SAR         |                | Plot |
|-----|-----------|--------|------------------|---------------|------------------------|---------------------|------------------------|----------------|------------------------|---------------------|------------------------|----------------|------|
| Lab | Date      | Туре   |                  | Cal. Due Data | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | Zoom Scan to<br>100 mW | Normalize<br>to 1 W | Target<br>(Ref. Value) | Delta<br>±10 % | No.  |
| 3   | 3/14/2022 | Head   | D750V3 SN:1024   | 5/11/2022     | 0.840                  | 8.40                | 8.60                   | -2.33          | 0.552                  | 5.52                | 5.69                   | -2.99          | 1    |
| 3   | 3/17/2022 | Head   | D1900V2 SN:5d140 | 4/13/2022     | 4.180                  | 41.80               | 41.40                  | 0.97           | 2.160                  | 21.60               | 21.50                  | 0.47           | 2    |

Page 16 of 28

# 9. Conducted Output Power Measurements

Tune-Up Power Limits provided by the manufacturer are used to scale measured SAR values.

## 9.1. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

| Modulation                              | Cha        | nnel bandy | vidth / Tra | nsmission | bandwidth ( | NRB)      | MPR (dB) |  |
|-----------------------------------------|------------|------------|-------------|-----------|-------------|-----------|----------|--|
| 2000-000-000-000-000-000-000-000-000-00 | 1.4<br>MHz | 3.0<br>MHz | 5<br>MHz    | 10<br>MHz | 15<br>MHz   | 20<br>MHz |          |  |
| QPSK .                                  | > 5        | > 4        | > 8         | > 12      | > 16        | > 18      | ≲ 1      |  |
| 16 QAM                                  | ≤ 5        | ≤ 4        | ≤ 8         | ≤ 12      | ≤ 16        | ≤ 18      | ≤ 1      |  |
| 16 QAM                                  | > 5        | > 4        | > 8         | > 12      | > 16        | > 18      | ≤ 2      |  |
| 64 QAM                                  | ≤ 5        | ≤ 4        | ≤ 8         | ≤ 12      | ≤ 16        | ≤ 18      | ≤ 2      |  |
| 64 QAM                                  | > 5        | > 4        | > 8         | > 12      | > 16        | > 18      | ≤ 3      |  |
| 256 QAM                                 |            |            |             | 1         |             |           | ≤ 5      |  |

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS\_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

| Network<br>Signalling<br>value | Requirements<br>(subclause) | E-UTRA Band | Channel<br>bandwidth<br>(MHz) | Resources<br>Blocks (N <sub>RB</sub> ) | A-MPR (dB) |
|--------------------------------|-----------------------------|-------------|-------------------------------|----------------------------------------|------------|
| NS_01                          | 6.6.2.1.1                   | Table 5.5-1 | 1.4, 3, 5, 10,<br>15, 20      | Table 5.6-1                            | N/A        |

### Maximum Output Power (Tune-up Limit) for LTE

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
  - LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

For some LTE Bands, certain channel bandwidths do not support at least three non-overlapping channels. When a device supports overlapping channel assignments in a channel bandwidth configuration, the middle channel of the group of overlapping channels is selected for testing per KDB 941225 D05 SAR for LTE Devices.

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

Please refer to §6.3. for a detailed list of LTE test channels.

|                  |      | Tune-up PowerLimit (dBm) |            |  |
|------------------|------|--------------------------|------------|--|
| RF Air interface | Mode | Main Ant 1               | Main Ant 2 |  |
|                  |      | Maximum                  | Maximum    |  |
| LTE Band 2       | QPSK |                          | 20.0       |  |
| LTE Band 12      | QPSK | 22.0                     |            |  |

#### Notes:

When the highest maximum output power for 16QAM and 64QAM is  $\leq \frac{1}{2}$  dB higher than the QPSK or when the reported SAR for the QPSK configuration is  $\leq 1.45$  W/kg, SAR measurement is not required for 16QAM and 64QAM modes.

Page 17 of 28

## LTE Band 2 Main Ant 2 Measured Results

|             |               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erage Power (dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m)                                                                                                 |                                                                                     |
|-------------|---------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| BW<br>(MHz) | Mode          | RB<br>Allocation                                                                                    | RB<br>offset                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18700                                                                                                                                                                                                                                                                                                                                                                                                                           | 18900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | Tune-up                                                                             |
| (10112)     |               | Allocation                                                                                          | Unser                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1860 MHz                                                                                                                                                                                                                                                                                                                                                                                                                        | 1880 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1900 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPR                                                                                                | Limit                                                                               |
|             |               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 99                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             | QPSK          | 50                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 100                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 99                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
| 20 MHz      | 16QAM         | 50                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 100                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 49                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 1                                                                                                   | 99                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.9                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             | 64QAM         | 50                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 50                                                                                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               | 100                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                  | 20                                                                                  |
|             |               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                                                     |
| BW/         |               | RB                                                                                                  | RB                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | erage Power (dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m)                                                                                                 |                                                                                     |
| BW<br>(MHz) | Mode          | RB<br>Allocation                                                                                    | RB<br>offset                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18675                                                                                                                                                                                                                                                                                                                                                                                                                           | 18900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | Tune-up                                                                             |
|             | Mode          | Allocation                                                                                          | offset                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1857.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                      | 18900<br>1880 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19125<br>1902.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPR                                                                                                | Limit                                                                               |
|             | Mode          | Allocation<br>1                                                                                     | offset<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1857.5 MHz<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                              | 18900<br>1880 MHz<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19125<br>1902.5 MHz<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPR<br>0                                                                                           | Limit<br>20                                                                         |
|             | Mode          | Allocation<br>1<br>1                                                                                | 0<br>0<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1857.5 MHz<br>19.5<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                      | 18900<br>1880 MHz<br>19.6<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19125<br>1902.5 MHz<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPR<br>0<br>0                                                                                      | Limit<br>20<br>20                                                                   |
|             |               | Allocation<br>1<br>1<br>1                                                                           | 0<br>37<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1857.5 MHz<br>19.5<br>19.6<br>19.5                                                                                                                                                                                                                                                                                                                                                                                              | 18900<br>1880 MHz<br>19.6<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19125<br>1902.5 MHz<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPR<br>0<br>0<br>0                                                                                 | Limit<br>20<br>20<br>20                                                             |
|             | Mode          | Allocation 1 1 1 36                                                                                 | 0<br>37<br>74<br>0                                                                                                                                                                                                                                                                                                                                                                                                                               | 1857.5 MHz<br>19.5<br>19.6<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                      | 18900<br>1880 MHz<br>19.6<br>19.6<br>19.5<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19125<br>1902.5 MHz<br>19.5<br>19.5<br>19.4<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPR 0 0 0 0 0 0 0 0                                                                                | Limit<br>20<br>20<br>20<br>20                                                       |
|             |               | Allocation 1 1 1 36 36                                                                              | 0ffset<br>0<br>37<br>74<br>0<br>20                                                                                                                                                                                                                                                                                                                                                                                                               | 1857.5 MHz<br>19.5<br>19.6<br>19.5<br>19.5<br>19.6                                                                                                                                                                                                                                                                                                                                                                              | 18900<br>1880 MHz<br>19.6<br>19.6<br>19.5<br>19.6<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19125<br>1902.5 MHz<br>19.5<br>19.5<br>19.4<br>19.6<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPR<br>0<br>0<br>0<br>0<br>0                                                                       | Limit<br>20<br>20<br>20<br>20<br>20<br>20                                           |
|             |               | Allocation 1 1 1 36 36 36                                                                           | 0ffset<br>0<br>37<br>74<br>0<br>20<br>39                                                                                                                                                                                                                                                                                                                                                                                                         | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5                                                                                                                                                                                                                                                                               | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19125<br>1902.5 MHz<br>19.5<br>19.5<br>19.4<br>19.6<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                     |
|             |               | Allocation 1 1 1 36 36 36 36 75                                                                     | offset           0           37           74           0           20           39           0                                                                                                                                                                                                                                                                                                                                                   | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5                                                                                                                                                                                                                                                 | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5           19.6           19.5           19.5           19.5                                                                                                                                                                                                                                                                                                                                                                                                       | 19125<br>1902.5 MHz<br>19.5<br>19.5<br>19.4<br>19.6<br>19.5<br>19.5<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                         |
|             |               | Allocation 1 1 1 36 36 36 75 1                                                                      | offset           0           37           74           0           20           39           0           0                                                                                                                                                                                                                                                                                                                                       | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5                                                                                                                                                       | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5                                                                                                                                                                                                                                                                                                                                                                                        | 19125<br>1902.5 MHz<br>19.5<br>19.5<br>19.4<br>19.6<br>19.5<br>19.5<br>19.5<br>19.5<br>19.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
|             |               | Allocation 1 1 1 36 36 36 75 1 1                                                                    | offset           0           37           74           0           20           39           0           37                                                                                                                                                                                                                                                                                                                                      | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9                                                                                                                         | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.9           19.9                                                                                                                                                                                                                                                                                                             | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.8                                                                                                                                                                                                                                                                               | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20       |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                    | offset           0           37           74           0           20           39           0           37           74                                                                                                                                                                                                                                                                                                                         | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.8                                                                                                                                                                      | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.6           19.5           19.6           19.7                                                                                                                                                                                                                                                                                                                                                                                                                      | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.7                                                                                                                                                                                                                                                                                                                            | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
|             |               | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 75 1 36 36 75 1 1 1 36 36 36 75 1 1 1 1 1 36 36         | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           39           0           0           37           74           0                                                                                                                                                                   | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5                                                                                                                                        | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.7           19.6                                                                                                                                                                                                                                                                                                                                                                         | 19125           1902.5 MHz           19.5           19.5           19.4           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.7           19.6                                                                                                                                                                                                                                                                                              | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 1 36 36 36 36 36 36                                              | offset           0           37           74           0           20           39           0           37           74           0           20           39           0           0           37           74           0           20                                                                                                                                                                                                        | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5           19.6                                                                                                          | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.9           19.9           19.7           19.6           19.6                                                                                                                                                                                                                                                                               | 19125           1902.5 MHz           19.5           19.5           19.4           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.6           19.6           19.6                                                                                                                                                                                                                   | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 36 36 36 36                                       | offset           0           37           74           0           20           39           0           37           74           0           20           39           0           0           20           37           74           0           20           37           74           0           20           39                                                                                                                           | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5           19.6           19.6                                                                                                          | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.9           19.9           19.7           19.6           19.6           19.6                                                                                                                                                                                                                                                                | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.8           19.7           19.6           19.6           19.5                                                                                                                                                                                                                                                                | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 36 36 36 36 75                                    | offset           0           37           74           0           20           39           0           37           74           0           37           74           0           37           39           0           39           0           37           74           0           20           39           0           20           39           0           0           20           39           0                                    | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5           19.6           19.5                                                                                                                         | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.9           19.9           19.7           19.6           19.6           19.6           19.6           19.6           19.6                                                                                                                                                                                                                   | 19125           1902.5 MHz           19.5           19.5           19.4           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.6           19.7           19.6           19.5           19.5                                                                                                                                                                                                                                  | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 36 36 75 1                                        | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           37           74           0           39           0           37           74           0           20           39           0           20           39           0           0           0           0           0           0 | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5           19.6           19.5           19.8           19.5           19.6           19.5           19.6           19.5           19.6           19.5           19.8 | 18900           1880 MHz           19.6           19.5           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.9           19.9           19.6           19.6           19.6           19.6           19.6           19.6           19.6           20.0                                                                                                                                                                                                    | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.6           19.7           19.5           19.7                                                                                                                                                                                                                                                 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 36 36 36 36 36 36 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           39           0           37           74           0           20           37           0           0           39           0           0           37                                                                           | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.5           19.8           19.5           19.6           19.5           19.8           19.5           19.8           19.8           19.8           19.8           19.8                | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.9           19.9           19.7           19.6           19.6           19.6           19.6           20.0           20.0           20.0                                                                                                                                                                                                    | 19125           1902.5 MHz           19.5           19.5           19.4           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.6           19.5           19.6           19.7           19.7           19.7                                                                                                                                                                                                                   | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| (MHz)       | QPSK<br>16QAM | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 36 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         | offset           0           37           74           0           20           39           0           377           74           0           39           0           337           74           0           337           74           0           39           0           37           74           0           377           74                                                                                                           | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.5           19.6           19.5           19.8           19.5           19.6           19.5           19.6           19.7                                                             | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.9           19.9           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           20.0           20.0           19.9 | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.5           19.7           19.7           19.7           19.6                                                                                                                                                                                                                                  | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| (MHz)       | QPSK          | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 75 1 1 1 1 36 36 36 36 36 36 36 36 36 36 36 36 36 | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           37           74           0           39           0           39           0           39           0           39           0           37           74           0           377           74           0           377         | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.5           19.6           19.7           19.5                                                                                                                                                       | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.7           19.6           19.6           19.6           19.7           19.6           19.6           19.6           19.6           19.6           19.6           19.9           19.9           19.9           19.6           20.0           20.0           19.9           19.6                                                                                           | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.5           19.5           19.6           19.7           19.7           19.7           19.7           19.6           19.7           19.6           19.7           19.6           19.7           19.6           19.6                                                                                           | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| (MHz)       | QPSK<br>16QAM | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 75 1 1 1 1 36 36 36 36 36 36 36 36 36 36 36 36 36    | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           37           74           0           20           39           0           20           39           0           20           37           74           0           20           37           74           0           20         | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.9           19.8           19.5           19.6           19.7           19.8           19.5           19.6           19.5           19.6           19.7           19.5           19.6                | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.9           19.9           19.7           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.9           19.9           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6                               | 19125           1902.5 MHz           19.5           19.5           19.4           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.6           19.5           19.5           19.7           19.5           19.7           19.7           19.7           19.6           19.7           19.6           19.7           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6           19.6 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |
| (MHz)       | QPSK<br>16QAM | Allocation 1 1 1 36 36 36 75 1 1 1 36 36 36 36 36 75 1 1 1 1 36 36 36 36 36 36 36 36 36 36 36 36 36 | offset           0           37           74           0           20           39           0           37           74           0           39           0           37           74           0           37           74           0           39           0           39           0           39           0           39           0           37           74           0           377           74           0           377         | 1857.5 MHz           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.8           19.5           19.6           19.7           19.5                                                                                                                                                       | 18900           1880 MHz           19.6           19.6           19.5           19.6           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.7           19.6           19.6           19.6           19.7           19.6           19.6           19.6           19.6           19.6           19.6           19.9           19.9           19.9           19.6           20.0           20.0           19.9           19.6                                                                                           | 19125           1902.5 MHz           19.5           19.5           19.4           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.5           19.6           19.7           19.5           19.5           19.6           19.7           19.7           19.7           19.7           19.6           19.7           19.6           19.7           19.6           19.7           19.6           19.6                                                                                           | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                   |

Page 18 of 28

### LTE Band 2 Main Ant 2 Measured Results (continued)

|        |               |                                                                                              |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             | Maximum Av                                                                                                                                                                                                                                                                                                      | erage Power (dE                                                                                                                                                                                                                                                                                                 | lm)                                                                                         |                                                                                 |
|--------|---------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| BW     | Mode          | RB                                                                                           | RB<br>offset                                                                                  | 18650                                                                                                                                                                                                                                                                                                                                                                                       | 18900                                                                                                                                                                                                                                                                                                           | 19150                                                                                                                                                                                                                                                                                                           |                                                                                             | Tune-up                                                                         |
| (MHz)  |               | Allocation                                                                                   | onset                                                                                         | 1855 MHz                                                                                                                                                                                                                                                                                                                                                                                    | 1880 MHz                                                                                                                                                                                                                                                                                                        | 1905 MHz                                                                                                                                                                                                                                                                                                        | MPR                                                                                         | Limit                                                                           |
|        |               | 1                                                                                            | 0                                                                                             | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 25                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 49                                                                                            | 19.5                                                                                                                                                                                                                                                                                                                                                                                        | 19.6                                                                                                                                                                                                                                                                                                            | 19.5                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        | QPSK          | 25                                                                                           | 0                                                                                             | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 12                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 25                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.6                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 50                                                                                           | 0                                                                                             | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 0                                                                                             | 19.9                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 25                                                                                            | 20.0                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 49                                                                                            | 19.9                                                                                                                                                                                                                                                                                                                                                                                        | 19.9                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
| 10 MHz | 16QAM         | 25                                                                                           | 0                                                                                             | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 12                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 25                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 50                                                                                           | 0                                                                                             | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 0                                                                                             | 19.9                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 25                                                                                            | 19.8                                                                                                                                                                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 49                                                                                            | 19.8                                                                                                                                                                                                                                                                                                                                                                                        | 19.9                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        | 64QAM         | 25                                                                                           | 0                                                                                             | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 12                                                                                            | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 25                                                                                           | 25                                                                                            | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 50                                                                                           | 0                                                                                             | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
| BW     |               | RB                                                                                           | RB                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                             | Maximum Av                                                                                                                                                                                                                                                                                                      | erage Power (dB                                                                                                                                                                                                                                                                                                 | im)                                                                                         |                                                                                 |
| (MHz)  | Mode          | Allocation                                                                                   | offset                                                                                        | 18625                                                                                                                                                                                                                                                                                                                                                                                       | 18900                                                                                                                                                                                                                                                                                                           | 19175                                                                                                                                                                                                                                                                                                           | MPR                                                                                         | Tune-up                                                                         |
|        |               |                                                                                              |                                                                                               | 1852.5 MHz                                                                                                                                                                                                                                                                                                                                                                                  | 1880 MHz                                                                                                                                                                                                                                                                                                        | 1907.5 MHz                                                                                                                                                                                                                                                                                                      |                                                                                             | Limit                                                                           |
|        |               | 1                                                                                            | 0                                                                                             | 19.6                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               | 1                                                                                            | 12                                                                                            | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.8                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        |               |                                                                                              |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                 |
|        |               | 1                                                                                            | 24                                                                                            | 19.5                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.5                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        | QPSK          | 12                                                                                           | 0                                                                                             | 19.7                                                                                                                                                                                                                                                                                                                                                                                        | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|        | QPSK          | 12<br>12                                                                                     | 0<br>7                                                                                        | 19.7<br>19.7                                                                                                                                                                                                                                                                                                                                                                                | 19.7<br>19.7                                                                                                                                                                                                                                                                                                    | 19.7<br>19.6                                                                                                                                                                                                                                                                                                    | 0<br>0                                                                                      | 20<br>20                                                                        |
|        | QPSK          | 12<br>12<br>12                                                                               | 0<br>7<br>13                                                                                  | 19.7<br>19.7<br>19.6                                                                                                                                                                                                                                                                                                                                                                        | 19.7<br>19.7<br>19.7                                                                                                                                                                                                                                                                                            | 19.7<br>19.6<br>19.6                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20<br>20<br>20                                                                  |
|        | QPSK          | 12<br>12<br>12<br>25                                                                         | 0<br>7<br>13<br>0                                                                             | 19.7<br>19.7<br>19.6<br>19.6                                                                                                                                                                                                                                                                                                                                                                | 19.7<br>19.7<br>19.7<br>19.6                                                                                                                                                                                                                                                                                    | 19.7<br>19.6<br>19.6<br>19.6                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0                                                                            | 20<br>20<br>20<br>20                                                            |
|        | QPSK          | 12<br>12<br>12<br>25<br>1                                                                    | 0<br>7<br>13<br>0<br>0                                                                        | 19.7<br>19.7<br>19.6<br>19.6<br>20.0                                                                                                                                                                                                                                                                                                                                                        | 19.7<br>19.7<br>19.7<br>19.6<br>20.0                                                                                                                                                                                                                                                                            | 19.7<br>19.6<br>19.6<br>19.6<br>20.0                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0                                                                       | 20<br>20<br>20<br>20<br>20<br>20                                                |
|        | QPSK          | 12<br>12<br>12<br>25<br>1<br>1                                                               | 0<br>7<br>13<br>0<br>0<br>12                                                                  | 19.7<br>19.7<br>19.6<br>19.6<br>20.0<br>20.0                                                                                                                                                                                                                                                                                                                                                | 19.7<br>19.7<br>19.7<br>19.6<br>20.0<br>20.0                                                                                                                                                                                                                                                                    | 19.7         19.6         19.6         20.0         20.0                                                                                                                                                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |
|        |               | 12<br>12<br>12<br>25<br>1<br>1<br>1                                                          | 0<br>7<br>13<br>0<br>0<br>12<br>24                                                            | 19.7         19.7         19.6         20.0         20.0         20.0                                                                                                                                                                                                                                                                                                                       | 19.7           19.7           19.7           20.0           20.0           20.0                                                                                                                                                                                                                                 | 19.7         19.6         19.6         20.0         20.0         19.9                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                    |
| 5 MHz  | QPSK<br>16QAM | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>1<br>12                                               | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0                                                       | 19.7           19.7           19.6           20.0           20.0           20.0           19.7                                                                                                                                                                                                                                                                                              | 19.7           19.7           19.7           20.0           20.0           20.0           19.8                                                                                                                                                                                                                  | 19.7         19.6         19.6         20.0         20.0         19.9         19.7                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                        |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>1<br>12<br>12<br>12                                   | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7                                                  | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7                                                                                                                                                                                                                                                                               | 19.7           19.7           19.7           20.0           20.0           20.0           19.8           19.8                                                                                                                                                                                                   | 19.7           19.6           19.6           20.0           20.0           19.9           19.7                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                              | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                        |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>1<br>12<br>12<br>12<br>12                             | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13                                            | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.6                                                                                                                                                                                                                                                                               | 19.7           19.7           19.7           20.0           20.0           20.0           19.8           19.8           19.8                                                                                                                                                                                    | 19.7           19.6           19.6           20.0           20.0           19.9           19.7           19.7           19.7           19.6                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25                       | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0                                       | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.6           19.6           19.6           19.7           19.7           19.7           19.7           19.7           19.7           19.6           19.6                                                                                                                         | 19.7           19.7           19.7           19.6           20.0           20.0           20.0           19.8           19.8           19.8           19.7                                                                                                                                                      | 19.7           19.6           19.6           20.0           20.0           19.9           19.7           19.7           19.7           19.7           19.7                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20      |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>1                       | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>0                                  | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7           19.7           19.7           19.7           19.7           19.7           19.7           19.7           19.7                                                                                                                                                       | 19.7           19.7           19.7           19.6           20.0           20.0           20.0           19.8           19.8           19.7           20.0                                                                                                                                                      | 19.7         19.6         19.6         20.0         20.0         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7                                                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>1<br>1<br>1             | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>0<br>12                            | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7           19.7           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0                                                                            | 19.7           19.7           19.7           19.6           20.0           20.0           20.0           19.8           19.8           19.7           20.0           20.0                                                                                                                                       | 19.7         19.6         19.6         20.0         20.0         19.9         19.7         19.7         19.7         19.7         19.9         19.7         19.9         19.7         19.9         19.7         19.9         19.9         19.9                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 5 MHz  | 16QAM         | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>1<br>12<br>12<br>12<br>25<br>1<br>1<br>1<br>1         | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>7<br>13<br>0<br>0<br>12<br>24      | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7           19.7           19.7           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0           20.0                                              | 19.7         19.7         19.7         19.6         20.0         20.0         20.0         19.8         19.8         19.7         20.0         19.8         19.8         19.8         19.9                                                                                                                      | 19.7         19.6         19.6         20.0         20.0         19.9         19.7         19.7         19.6         19.7         19.7         19.7         19.7         19.7         19.7         19.9         19.9         19.9         19.9         19.9                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 5 MHz  |               | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12 | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>7<br>13<br>0<br>0<br>12<br>24<br>0 | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7           19.7           19.7           19.7           19.7           19.7           19.6           20.0           20.0           19.6           19.6           20.0           20.0           20.0           20.0           20.0           20.0           20.0           19.7 | 19.7         19.7         19.7         19.6         20.0         20.0         20.0         19.8         19.8         19.7         20.0         19.8         19.8         19.7         20.0         19.8         19.7         20.0         19.8         19.7         20.0         19.8                           | 19.7         19.6         19.6         20.0         20.0         19.9         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.9         19.9         19.9         19.9         19.9         19.6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 5 MHz  | 16QAM         | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12<br>12<br>25<br>1<br>1<br>1<br>1        | 0<br>7<br>13<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7                 | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.6           20.0           20.0           20.0           20.0           19.7           19.6           19.6           20.0           20.0           20.0           20.0           20.0           20.0           20.0           19.7           19.6                               | 19.7         19.7         19.7         19.6         20.0         20.0         20.0         19.8         19.8         19.7         20.0         19.8         19.7         20.0         19.8         19.7         20.0         19.8         19.9         19.8         19.8         19.8         19.8         19.8 | 19.7         19.6         19.6         20.0         20.0         19.9         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.9         19.9         19.9         19.9         19.9         19.6         19.6         19.6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 5 MHz  | 16QAM         | 12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12<br>25<br>1<br>1<br>1<br>12<br>12<br>12 | 0<br>7<br>13<br>0<br>0<br>12<br>24<br>0<br>7<br>13<br>0<br>7<br>13<br>0<br>0<br>12<br>24<br>0 | 19.7           19.7           19.6           20.0           20.0           20.0           19.7           19.7           19.7           19.7           19.7           19.7           19.7           19.6           20.0           20.0           19.6           19.6           20.0           20.0           20.0           20.0           20.0           20.0           20.0           19.7 | 19.7         19.7         19.7         19.6         20.0         20.0         20.0         19.8         19.8         19.7         20.0         19.8         19.8         19.7         20.0         19.8         19.7         20.0         19.8         19.7         20.0         19.8                           | 19.7         19.6         19.6         20.0         20.0         19.9         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.7         19.9         19.9         19.9         19.9         19.9         19.6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |

### LTE Band 2 Main Ant 2 Measured Results (continued)

|         | 2 Main A       |                                                                                   |                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                 | erage Power (dB                                                                                                                                                                                                                                                                                                 | m)                                                                                          |                                                                                 |
|---------|----------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| BW      | Mode           | RB                                                                                | RB                                                                                | 18615                                                                                                                                                                                                                                                                    | 18900                                                                                                                                                                                                                                                                                                           | 19185                                                                                                                                                                                                                                                                                                           |                                                                                             | Tune-up                                                                         |
| (MHz)   |                | Allocation                                                                        | offset                                                                            | 1851.5 MHz                                                                                                                                                                                                                                                               | 1880 MHz                                                                                                                                                                                                                                                                                                        | 1908.5 MHz                                                                                                                                                                                                                                                                                                      | MPR                                                                                         | Limit                                                                           |
|         |                | 1                                                                                 | 0                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.6                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 8                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 14                                                                                | 19.4                                                                                                                                                                                                                                                                     | 19.5                                                                                                                                                                                                                                                                                                            | 19.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         | QPSK           | 8                                                                                 | 0                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 4                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 7                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 15                                                                                | 0                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.6                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 0                                                                                 | 19.9                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 8                                                                                 | 19.9                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                            | 20.0                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 14                                                                                | 19.7                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
| 3 MHz   | 16QAM          | 8                                                                                 | 0                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 4                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 7                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.8                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 15                                                                                | 0                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.6                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 0                                                                                 | 19.8                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 8                                                                                 | 19.8                                                                                                                                                                                                                                                                     | 20.0                                                                                                                                                                                                                                                                                                            | 19.9                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 14                                                                                | 19.6                                                                                                                                                                                                                                                                     | 19.9                                                                                                                                                                                                                                                                                                            | 19.8                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         | 64QAM          | 8                                                                                 | 0                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 4                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 8                                                                                 | 7                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.8                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 15                                                                                | 0                                                                                 | 19.7                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
| BW      |                | RB                                                                                | RB                                                                                |                                                                                                                                                                                                                                                                          | Maximum Ave                                                                                                                                                                                                                                                                                                     | erage Power (dB                                                                                                                                                                                                                                                                                                 | m)                                                                                          |                                                                                 |
| (MHz)   | Mode           | Allocation                                                                        | offset                                                                            | 18607                                                                                                                                                                                                                                                                    | 18900                                                                                                                                                                                                                                                                                                           | 19193                                                                                                                                                                                                                                                                                                           | MPR                                                                                         | Tune-up                                                                         |
|         |                |                                                                                   |                                                                                   | 1850.7 MHz                                                                                                                                                                                                                                                               | 1880 MHz                                                                                                                                                                                                                                                                                                        | 1909.3 MHz                                                                                                                                                                                                                                                                                                      |                                                                                             | Limit                                                                           |
|         |                | 1                                                                                 | 0                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 3                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 1                                                                                 | 5                                                                                 | 19.5                                                                                                                                                                                                                                                                     | 19.6                                                                                                                                                                                                                                                                                                            | 19.5                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         | QPSK           | 3                                                                                 |                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                 |                                                                                             |                                                                                 |
|         |                |                                                                                   | 0                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7                                                                                                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20                                                                              |
|         |                | 3                                                                                 | 1                                                                                 | 19.6                                                                                                                                                                                                                                                                     | 19.7<br>19.7                                                                                                                                                                                                                                                                                                    | 19.6<br>19.5                                                                                                                                                                                                                                                                                                    | 0                                                                                           | 20                                                                              |
|         |                | 3<br>3                                                                            | 1<br>3                                                                            | 19.6<br>19.6                                                                                                                                                                                                                                                             | 19.7<br>19.7<br>19.7                                                                                                                                                                                                                                                                                            | 19.6<br>19.5<br>19.5                                                                                                                                                                                                                                                                                            | 0                                                                                           | 20<br>20                                                                        |
|         |                | 3<br>3<br>6                                                                       | 1<br>3<br>0                                                                       | 19.6<br>19.6<br>19.6                                                                                                                                                                                                                                                     | 19.7<br>19.7<br>19.7<br>19.7                                                                                                                                                                                                                                                                                    | 19.6<br>19.5<br>19.5<br>19.5                                                                                                                                                                                                                                                                                    | 0<br>0<br>0                                                                                 | 20<br>20<br>20                                                                  |
|         |                | 3<br>3<br>6<br>1                                                                  | 1<br>3<br>0<br>0                                                                  | 19.6<br>19.6<br>19.6<br>19.8                                                                                                                                                                                                                                             | 19.7<br>19.7<br>19.7<br>19.7<br>20.0                                                                                                                                                                                                                                                                            | 19.6<br>19.5<br>19.5<br>19.5<br>20.0                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0                                                                            | 20<br>20<br>20<br>20                                                            |
|         |                | 3<br>3<br>6<br>1<br>1                                                             | 1<br>3<br>0<br>0<br>3                                                             | 19.6<br>19.6<br>19.6<br>19.8<br>19.8                                                                                                                                                                                                                                     | 19.7<br>19.7<br>19.7<br>19.7<br>20.0<br>20.0                                                                                                                                                                                                                                                                    | 19.6<br>19.5<br>19.5<br>19.5<br>20.0<br>20.0                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0                                                                       | 20<br>20<br>20<br>20<br>20<br>20                                                |
|         |                | 3<br>3<br>6<br>1<br>1<br>1                                                        | 1<br>3<br>0<br>0<br>3<br>5                                                        | 19.6<br>19.6<br>19.8<br>19.8<br>19.8<br>19.7                                                                                                                                                                                                                             | 19.7           19.7           19.7           20.0           20.0           20.0                                                                                                                                                                                                                                 | 19.6         19.5         19.5         20.0         20.0         19.9                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0                                                                       | 20<br>20<br>20<br>20<br>20<br>20<br>20                                          |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3                                                   | 1<br>3<br>0<br>0<br>3<br>5<br>0                                                   | 19.6<br>19.6<br>19.8<br>19.8<br>19.8<br>19.7<br>19.7                                                                                                                                                                                                                     | 19.7           19.7           19.7           20.0           20.0           20.0           19.7                                                                                                                                                                                                                  | 19.6           19.5           19.5           20.0           20.0           19.9           19.7                                                                                                                                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                              |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3                                              | 1<br>3<br>0<br>0<br>3<br>5<br>0<br>1                                              | 19.6         19.6         19.8         19.8         19.7         19.8         19.8                                                                                                                                                                                       | 19.7           19.7           19.7           20.0           20.0           20.0           19.9                                                                                                                                                                                                                  | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                        |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>3                                         | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3                                              | 19.6         19.6         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8                                                                                                         | 19.7         19.7         19.7         20.0         20.0         20.0         19.9         19.9         19.9         19.9                                                                                                                                                                                       | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.8                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                  |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6                                         | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0                                         | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8                                                                  | 19.7           19.7           19.7           20.0           20.0           20.0           19.9           19.9           19.9           19.9           19.9           19.9           19.7                                                                                                                        | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         19.8         19.7                                                                                                                                                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20            |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1                                    | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0                               | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         20.0                                                                                                                                                | 19.7           19.7           19.7           19.7           20.0           20.0           20.0           19.9           19.9           19.9           19.9           19.9           19.9           19.9           19.9           19.9                                                                           | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.7         19.8         19.7         19.8         19.7                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20      |
| 1.4 MHz | 16QAM          | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1                          | 1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3                     | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         20.0         20.0                                                                                                                      | 19.7           19.7           19.7           19.7           20.0           20.0           20.0           19.9           19.9           19.9           19.9           19.9           19.9           19.9           19.9           20.0                                                                           | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.9         19.7         19.8         19.9         19.7         19.8         19.9                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 1.4 MHz |                | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1           | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5                     | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8              | 19.7         19.7         19.7         19.7         20.0         20.0         20.0         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         20.0         19.8 | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.8         19.9         19.9         19.8         19.9         19.9         19.9         19.9         19.9                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 1.4 MHz | 16QAM<br>64QAM | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>3<br>3           | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>0                | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.6         20.0         20.0         19.8         19.7 | 19.7         19.7         19.7         19.7         20.0         20.0         20.0         19.9         19.9         19.7         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         20.0         19.8         19.9                           | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.8         19.7         19.8         19.7         19.8         19.7         19.8         19.7         20.0         19.8         19.9         19.9         19.8              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 1.4 MHz |                | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>3<br>3<br>3<br>3 | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>0<br>0<br>3<br>5<br>0<br>1 | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.7         19.8         19.7         19.7                           | 19.7         19.7         19.7         19.7         20.0         20.0         19.9         19.9         19.7         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9 | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.8         19.7         20.0         19.8         19.9         19.9         19.9         19.9         19.9         19.9         19.8         19.8         19.8         19.8 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |
| 1.4 MHz |                | 3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>3<br>3           | 1<br>3<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>0                | 19.6         19.6         19.8         19.8         19.7         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.8         19.6         20.0         20.0         19.8         19.7 | 19.7         19.7         19.7         19.7         20.0         20.0         20.0         19.9         19.9         19.7         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         19.9         20.0         19.8         19.9                           | 19.6         19.5         19.5         20.0         20.0         19.9         19.7         19.8         19.7         20.0         19.8         19.7         19.8         19.7         19.8         19.7         19.8         19.7         20.0         19.8         19.9         19.9         19.8              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |

## LTE Band 12 Main Ant 1 Measured Results

| D14         |               |                                                                                                                                                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum Ave                                                                                                                                                                                                                | erage Power (dB                                                                                                                                                                                                                    | m)                                                                                                 |                                                                                     |
|-------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| BW<br>(MHz) | Mode          | RB<br>Allocation                                                                                                                                                                                                                                                                                                            | RB<br>offset                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23095                                                                                                                                                                                                                      |                                                                                                                                                                                                                                    | MPR                                                                                                | Tune-up                                                                             |
| (11112)     |               | 7 moodalon                                                                                                                                                                                                                                                                                                                  | 011000                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 707.5 MHz                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    | IVIPR                                                                                              | Limit                                                                               |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.4                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             | QPSK          | 25                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.4                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 50                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.7                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.6                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.7                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
| 10 MHz      | 16QAM         | 25                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 50                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.5                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.5                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 1                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.5                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             | 64QAM         | 25                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.2                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 25                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.3                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               | 50                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.2                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    | 0                                                                                                  | 22                                                                                  |
|             |               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum Ave                                                                                                                                                                                                                | rage Dewer (dD                                                                                                                                                                                                                     |                                                                                                    |                                                                                     |
| BW          |               | RB                                                                                                                                                                                                                                                                                                                          | RB                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            | erage Power (dB                                                                                                                                                                                                                    | m)                                                                                                 |                                                                                     |
| BW<br>(MHz) | Mode          | RB<br>Allocation                                                                                                                                                                                                                                                                                                            | RB<br>offset                                                                                                                                                                                                                                                                                                                                                                       | 23035                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23095                                                                                                                                                                                                                      | 23155                                                                                                                                                                                                                              | MPR                                                                                                | Tune-up                                                                             |
|             | Mode          | Allocation                                                                                                                                                                                                                                                                                                                  | offset                                                                                                                                                                                                                                                                                                                                                                             | 701.5 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23095<br>707.5 MHz                                                                                                                                                                                                         | 23155<br>713.5 MHz                                                                                                                                                                                                                 | MPR                                                                                                | Limit                                                                               |
|             | Mode          | Allocation<br>1                                                                                                                                                                                                                                                                                                             | offset<br>0                                                                                                                                                                                                                                                                                                                                                                        | 701.5 MHz<br>21.3                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23095<br>707.5 MHz<br>21.3                                                                                                                                                                                                 | 23155<br>713.5 MHz<br>21.4                                                                                                                                                                                                         | MPR<br>0                                                                                           | Limit<br>22                                                                         |
|             | Mode          | Allocation<br>1<br>1                                                                                                                                                                                                                                                                                                        | 0<br>0<br>12                                                                                                                                                                                                                                                                                                                                                                       | 701.5 MHz<br>21.3<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23095<br>707.5 MHz<br>21.3<br>21.4                                                                                                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4                                                                                                                                                                                                 | MPR<br>0<br>0                                                                                      | Limit<br>22<br>22                                                                   |
|             |               | Allocation<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                   | 0<br>0<br>12<br>24                                                                                                                                                                                                                                                                                                                                                                 | 701.5 MHz<br>21.3<br>21.4<br>21.3                                                                                                                                                                                                                                                                                                                                                                                                                            | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3                                                                                                                                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3                                                                                                                                                                                         | MPR<br>0<br>0<br>0                                                                                 | Limit<br>22<br>22<br>22<br>22                                                       |
|             | Mode<br>QPSK  | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | 0<br>0<br>12<br>24<br>0                                                                                                                                                                                                                                                                                                                                                            | 701.5 MHz<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3                                                                                                                                                                                                                                                                                                                                                                                                            | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3                                                                                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4                                                                                                                                                                                 | MPR<br>0<br>0<br>0<br>0                                                                            | Limit<br>22<br>22<br>22<br>22<br>22                                                 |
|             |               | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | 0ffset<br>0<br>12<br>24<br>0<br>7                                                                                                                                                                                                                                                                                                                                                  | 701.5 MHz<br>21.3<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4                                                                                                                                                                                                                                                                                                                                                                                                    | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4                                                                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4                                                                                                                                                                 | MPR<br>0<br>0<br>0<br>0<br>0                                                                       | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22                                     |
|             |               | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | 0ffset<br>0<br>12<br>24<br>0<br>7<br>13                                                                                                                                                                                                                                                                                                                                            | 701.5 MHz<br>21.3<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.3                                                                                                                                                                                                                                                                                                                                                                                            | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3                                                                                                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4                                                                                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                         |
|             |               | Allocation 1 1 1 1 1 1 1 1 1 1 2 1 2 5                                                                                                                                                                                                                                                                                      | 0ffset<br>0<br>12<br>24<br>0<br>7<br>13<br>0                                                                                                                                                                                                                                                                                                                                       | 701.5 MHz<br>21.3<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.3                                                                                                                                                                                                                                                                                                                                                                            | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.3                                                                                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3                                                                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22             |
|             |               | Allocation 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1                                                                                                                                                                                                                                                                                  | offset           0           12           24           0           7           13           0           0                                                                                                                                                                                                                                                                          | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.7                                                                                                                                                                                                                                                                                                             | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.3<br>21.6                                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8                                                                                                                                 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
|             |               | Allocation 1 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1                                                                                                                                                                                                                                                                          | offset           0           12           24           0           7           13           0           12                                                                                                                                                                                                                                                                         | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.7           21.7                                                                                                                                                                                                                                                                                              | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7                                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9                                                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1 1                                                                                                                                                                                                                                                                          | offset           0           12           24           0           7           13           0           12           24                                                                                                                                                                                                                                                            | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.7           21.7           21.7           21.7                                                                                                                                                                                                                                                                | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8                                                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
|             |               | Allocation 1 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                          | offset           0           12           24           0           7           13           0           0           12           24           0           7           13           0           0           12           24           0                                                                                                                                             | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.7           21.7           21.7           21.7           21.7           21.4                                                                                                                                                                                                                                  | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.3                                                                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.8<br>21.4                                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 2 1 2 5 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                          | offset           0           12           24           0           7           13           0           0           12           24           0           7           13           0           0           12           24           0           7           7                                                                                                                     | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7                                                                                                                                                                                     | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5                                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4                                                                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           7           13                                                                                                                                            | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.3                                                                                           | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4                                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4                                                                 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           12           24           0           7           13           0                                                                                          | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.4           21.7                                                                                                                                                                      | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3                                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           0           12           24           0           7           13           0           7           12           24           0           7           13           0           0           0           0           0           0                                            | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.4           21.7           21.7           21.4           21.4           21.4           21.4           21.4           21.4           21.4           21.4           21.3                                              | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.5<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3<br>21.5                                                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7                                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           13           0           13           0           13           0           13           0           13           0           13                           | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.7           21.4           21.4           21.4           21.4           21.3           21.4           21.6                               | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3<br>21.5<br>21.5<br>21.5                                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7<br>21.8                         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| (MHz)       | QPSK<br>16QAM | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           12           24           0           7           13           0           0           12           24           0           12           24              | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.4           21.5           21.6           21.6           21.6                                                                                                                                                       | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5                                         | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7<br>21.8<br>21.7                 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                    |
| (MHz)       | QPSK          | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           12           24           0           13           0           13           0           12           24           0           12           24           0 | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.4           21.7           21.7           21.4           21.4           21.6           21.6           21.3                                                                                                          | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3<br>21.5<br>21.5<br>21.5<br>21.5<br>21.2                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7<br>21.8<br>21.7<br>21.2         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                    |
| (MHz)       | QPSK<br>16QAM | Allocation          1         1         12         12         12         12         12         12         12         12         1         1         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12 | offset           0           12           24           0           7           13           0           0           12           24           0           7           13           0           12           24           0           7           13           0           13           0           12           24           0           12           24           0           7   | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.4           21.7           21.7           21.7           21.4           21.4           21.4           21.4           21.4           21.3           21.4           21.3           21.4           21.3           21.3 | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3<br>21.5<br>21.5<br>21.5<br>21.5<br>21.2<br>21.3 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7<br>21.8<br>21.7<br>21.2<br>21.2 | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                    |
| (MHz)       | QPSK<br>16QAM | Allocation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                            | offset           0           12           24           0           7           13           0           12           24           0           7           13           0           12           24           0           12           24           0           13           0           13           0           12           24           0           12           24           0 | 701.5 MHz           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.4           21.3           21.7           21.7           21.7           21.7           21.7           21.4           21.7           21.7           21.4           21.4           21.6           21.6           21.3                                                                                                          | 23095<br>707.5 MHz<br>21.3<br>21.4<br>21.3<br>21.3<br>21.3<br>21.4<br>21.3<br>21.4<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.3<br>21.5<br>21.4<br>21.3<br>21.5<br>21.5<br>21.5<br>21.5<br>21.2                 | 23155<br>713.5 MHz<br>21.4<br>21.4<br>21.3<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.8<br>21.9<br>21.8<br>21.9<br>21.8<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.4<br>21.3<br>21.7<br>21.8<br>21.7<br>21.2         | MPR<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Limit<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>2                    |

Page 21 of 28

### LTE Band 12 Main Ant 1 Measured Results (continued)

|             |               |                                                                                                                                                                                                                                                                                      |                                                                                                                                     |                                                                                                                                                                      | Maximum Ave                                                                                                                                                                                                  | erage Power (dB                                                                                                                                                                                                                                                                                                 | m)                                                                                          |                                                                            |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| BW<br>(MHz) | Mode          | RB<br>Allocation                                                                                                                                                                                                                                                                     | RB<br>offset                                                                                                                        | 23025                                                                                                                                                                | 23095                                                                                                                                                                                                        | 23165                                                                                                                                                                                                                                                                                                           |                                                                                             | Tune-up                                                                    |
|             |               | Allocation                                                                                                                                                                                                                                                                           | Unset                                                                                                                               | 700.5 MHz                                                                                                                                                            | 707.5 MHz                                                                                                                                                                                                    | 714.5 MHz                                                                                                                                                                                                                                                                                                       | MPR                                                                                         | Limit                                                                      |
|             |               | 1                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.2                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 8                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 14                                                                                                                                  | 21.1                                                                                                                                                                 | 21.2                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             | QPSK          | 8                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 4                                                                                                                                   | 21.3                                                                                                                                                                 | 21.4                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 7                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 15                                                                                                                                                                                                                                                                                   | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.6                                                                                                                                                                 | 21.6                                                                                                                                                                                                         | 21.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 8                                                                                                                                   | 21.6                                                                                                                                                                 | 21.7                                                                                                                                                                                                         | 21.7                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 14                                                                                                                                  | 21.5                                                                                                                                                                 | 21.6                                                                                                                                                                                                         | 21.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
| 3 MHz       | 16QAM         | 8                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.4                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 4                                                                                                                                   | 21.4                                                                                                                                                                 | 21.4                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 7                                                                                                                                   | 21.4                                                                                                                                                                 | 21.4                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 15                                                                                                                                                                                                                                                                                   | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.6                                                                                                                                                                 | 21.5                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 8                                                                                                                                   | 21.6                                                                                                                                                                 | 21.6                                                                                                                                                                                                         | 21.6                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 14                                                                                                                                  | 21.5                                                                                                                                                                 | 21.5                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             | 64QAM         | 8                                                                                                                                                                                                                                                                                    | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.2                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 4                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.3                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 8                                                                                                                                                                                                                                                                                    | 7                                                                                                                                   | 21.2                                                                                                                                                                 | 21.2                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 15                                                                                                                                                                                                                                                                                   | 0                                                                                                                                   | 21.2                                                                                                                                                                 | 21.2                                                                                                                                                                                                         | 21.2                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
| BW          |               | RB                                                                                                                                                                                                                                                                                   | RB                                                                                                                                  |                                                                                                                                                                      | Maximum Ave                                                                                                                                                                                                  | erage Power (dB                                                                                                                                                                                                                                                                                                 | m)                                                                                          |                                                                            |
| (MHz)       | Mode          | Allocation                                                                                                                                                                                                                                                                           | offset                                                                                                                              | 23017                                                                                                                                                                | 23095                                                                                                                                                                                                        | 23173                                                                                                                                                                                                                                                                                                           | MPR                                                                                         | Tune-up                                                                    |
|             |               |                                                                                                                                                                                                                                                                                      |                                                                                                                                     | 699.7 MHz                                                                                                                                                            | 707.5 MHz                                                                                                                                                                                                    | 715.3 MHz                                                                                                                                                                                                                                                                                                       |                                                                                             | Limit                                                                      |
|             |               | 1                                                                                                                                                                                                                                                                                    |                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                 |                                                                                             | 22                                                                         |
|             |               |                                                                                                                                                                                                                                                                                      | 0                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           |                                                                            |
|             |               | 1                                                                                                                                                                                                                                                                                    | 3                                                                                                                                   | 21.3                                                                                                                                                                 | 21.3                                                                                                                                                                                                         | 21.4                                                                                                                                                                                                                                                                                                            | 0                                                                                           | 22                                                                         |
|             |               | 1                                                                                                                                                                                                                                                                                    | 3<br>5                                                                                                                              | 21.3<br>21.2                                                                                                                                                         | 21.3<br>21.3                                                                                                                                                                                                 | 21.4<br>21.3                                                                                                                                                                                                                                                                                                    | 0<br>0                                                                                      | 22<br>22                                                                   |
|             | QPSK          | 1<br>1<br>3                                                                                                                                                                                                                                                                          | 3<br>5<br>0                                                                                                                         | 21.3<br>21.2<br>21.3                                                                                                                                                 | 21.3<br>21.3<br>21.3                                                                                                                                                                                         | 21.4<br>21.3<br>21.3                                                                                                                                                                                                                                                                                            | 0<br>0<br>0                                                                                 | 22<br>22<br>22                                                             |
|             | QPSK          | 1<br>1<br>3<br>3                                                                                                                                                                                                                                                                     | 3<br>5<br>0<br>1                                                                                                                    | 21.3<br>21.2<br>21.3<br>21.3                                                                                                                                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                         | 21.4<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0                                                                            | 22<br>22<br>22<br>22<br>22                                                 |
|             | QPSK          | 1<br>1<br>3<br>3<br>3                                                                                                                                                                                                                                                                | 3<br>5<br>0<br>1<br>3                                                                                                               | 21.3<br>21.2<br>21.3<br>21.3<br>21.3                                                                                                                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0                                                                       | 22<br>22<br>22<br>22<br>22<br>22<br>22                                     |
|             | QPSK          | 1<br>1<br>3<br>3<br>3<br>6                                                                                                                                                                                                                                                           | 3<br>5<br>0<br>1<br>3<br>0                                                                                                          | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0                                                                       | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                               |
|             | QPSK          | 1<br>1<br>3<br>3<br>3<br>6<br>1                                                                                                                                                                                                                                                      | 3<br>5<br>0<br>1<br>3<br>0<br>0                                                                                                     | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5                                                                                                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6                                                                                                                                                 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0                                                                  | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22                   |
|             | QPSK          | 1<br>1<br>3<br>3<br>6<br>1<br>1                                                                                                                                                                                                                                                      | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3                                                                                                | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5                                                                                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7                                                                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22       |
|             |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1                                                                                                                                                                                                                                                 | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5                                                                                      | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4                                                                                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6                                                                                                                                 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     | QPSK<br>16QAM | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3                                                                                                                                                                                                                                            | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0                                                                                      | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.4<br>21.4                                                                                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5                                                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6<br>21.5                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>3                                                                                                                                                                                                                                  | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1                                                                                 | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5                                                                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5                                                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6<br>21.5<br>21.5                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>3<br>3                                                                                                                                                                                                                             | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3                                                                            | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4                                                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.4                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>6                                                                                                                                                                                                                             | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>1<br>3<br>0                                                        | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.4<br>21.3                                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4<br>21.3                                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                      | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>0                                                        | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.4<br>21.3<br>21.5                                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4<br>21.3<br>21.5                                                                                 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.5<br>21.4<br>21.7                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                 | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3                                                        | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5                         | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4<br>21.3<br>21.5<br>21.5<br>21.6                                                                         | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     | 16QAM         | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                 | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>5                                              | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5                 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.4<br>21.3<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5                                                 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     |               | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>0<br>0<br>3<br>5<br>0<br>0 | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4<br>21.3<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.4                         | 21.4         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.5         21.5         21.5         21.5         21.4         21.7         21.8         21.6         21.4 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     | 16QAM         | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>3<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>3<br>5<br>6<br>1<br>1<br>1<br>1<br>3<br>3<br>5<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>0<br>0<br>3<br>5<br>0<br>0<br>1                | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.4<br>21.5<br>21.4<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.4<br>21.4 | 21.4<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.8<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.4<br>21.7<br>21.8<br>21.6<br>21.4<br>21.4<br>21.4                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |
| 1.4 MHz     | 16QAM         | 1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>6<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 3<br>5<br>0<br>1<br>3<br>0<br>0<br>3<br>5<br>0<br>1<br>3<br>0<br>0<br>1<br>3<br>0<br>0<br>0<br>3<br>5<br>0<br>0<br>3<br>5<br>0<br>0 | 21.3<br>21.2<br>21.3<br>21.3<br>21.3<br>21.3<br>21.5<br>21.5<br>21.4<br>21.4<br>21.5<br>21.4<br>21.5<br>21.4<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5 | 21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.3<br>21.6<br>21.7<br>21.6<br>21.5<br>21.5<br>21.5<br>21.4<br>21.3<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.6<br>21.5<br>21.4                         | 21.4         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.3         21.5         21.5         21.5         21.5         21.4         21.7         21.8         21.6         21.4 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22<br>22 |

# 10. Measured and Reported (Scaled) SAR Results

### SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR \*Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi = Measured SAR \* Tune-up scaling factor \* Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

### KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\leq 0.8$  W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is  $\leq 100$  MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

### KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

### KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at  $\leq$  25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

### KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

# 10.1. LTE Band 2 (20MHz Bandwidth)

| RF Exposure |       |            | Dist. | Test Position Ch #. Freq. (MH |       | RB RB       | Power (dBm) |        | 1-g SAR (W/kg)   |       | Plot  |        |     |
|-------------|-------|------------|-------|-------------------------------|-------|-------------|-------------|--------|------------------|-------|-------|--------|-----|
| Conditions  | Mode  | Antenna    | (mm)  | Test Position                 | Ch #. | Freq. (MHz) | Allocation  | offest | Tune-up<br>Limit | Meas. | Meas. | Scaled | No. |
|             |       |            |       | Left Touch                    | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.046 | 0.050  | 1   |
|             |       |            |       | Leit Touch                    | 18900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.046 | 0.050  |     |
|             |       |            |       | Left Tilt                     | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.025 | 0.028  |     |
| Head        | QPSK  | Main Ant 2 | 0     | Leit IIIt                     | 18900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.025 | 0.028  |     |
| Heau        | QFOR  | Main Ant 2 | 0     | Right Touch                   | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.041 | 0.045  |     |
|             |       |            |       | Right Touch                   | 18900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.040 | 0.044  |     |
|             |       |            |       | Right Tilt                    | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.039 | 0.042  |     |
|             |       |            |       | Right filt                    | 18900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.037 | 0.041  |     |
|             |       |            |       | Rear                          | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.286 | 0.314  | 2   |
| Body-worn & | QPSK  | Main Ant 2 | 10    | Redi                          | 18900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.283 | 0.310  |     |
| Hotspot     | QFOR  | Main Ant 2 | 10    | Front                         | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.260 | 0.285  |     |
|             |       |            |       | FION                          | 18900 | 1880.0      | 50          | 0      | 20.0             | 19.6  | 0.253 | 0.277  |     |
|             |       |            |       | Edge 2                        | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.110 | 0.121  |     |
| Hotspot     | QPSK  | Main Ant 2 | 10    | Luge 2                        | 10300 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.107 | 0.117  |     |
| Ποιδροι     | QF ON | main Ant 2 | 10    | Edge 3                        | 18900 | 1880.0      | 1           | 0      | 20.0             | 19.6  | 0.343 | 0.376  | 3   |
|             |       |            |       | Euge 3                        | 10900 | 1000.0      | 50          | 0      | 20.0             | 19.6  | 0.343 | 0.376  |     |

#### Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

# 10.2. LTE Band 12 (10MHz Bandwidth)

| RF Exposure |       |            | Dist. | Test Position |       |             | RB          | RB     | Power            | (dBm) | 1-g SAF | R (W/kg) | Plot  |       |       |
|-------------|-------|------------|-------|---------------|-------|-------------|-------------|--------|------------------|-------|---------|----------|-------|-------|-------|
| Conditions  | Mode  | Antenna    | (mm)  | Test Position | Ch #. | Freq. (MHz) | Allocation  | offest | Tune-up<br>Limit | Meas. | Meas.   | Scaled   | No.   |       |       |
|             |       |            |       | Left Touch    | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.013   | 0.015    |       |       |       |
|             |       |            |       | Leit Touch    | 23095 | 707.5       | 25          | 12     | 22.0             | 21.4  | 0.012   | 0.014    |       |       |       |
|             |       |            |       | Left Tilt     | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.005   | 0.006    |       |       |       |
| Head        | QPSK  | Main Ant 1 |       | 0             | 0     |             | 23095       | 707.5  | 25               | 12    | 22.0    | 21.4     | 0.005 | 0.006 |       |
| Tieau       | QFOR  |            |       |               |       | 0           | Right Touch | 23095  | 707.5            | 1     | 49      | 22.0     | 21.4  | 0.015 | 0.017 |
|             |       |            |       | Right Touch   | 23095 | 707.5       | 25          | 12     | 22.0             | 21.4  | 0.013   | 0.015    |       |       |       |
|             |       |            |       | Right Tilt    | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.005   | 0.005    |       |       |       |
|             |       |            |       | Kight hit     | 23095 | 707.5       | 25          | 12     | 22.0             | 21.4  | 0.004   | 0.005    |       |       |       |
|             |       |            |       | Rear          | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.120   | 0.138    | 5     |       |       |
| Body-worn & | QPSK  | Main Ant 1 | 10    | Real          | 23093 | 101.5       | 25          | 12     | 22.0             | 21.4  | 0.110   | 0.126    |       |       |       |
| Hotspot     | QFOR  |            | 10    | Front         | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.093   | 0.107    |       |       |       |
|             |       |            |       | TION          | 23093 | 101.5       | 25          | 12     | 22.0             | 21.4  | 0.085   | 0.098    |       |       |       |
|             |       |            |       | Edge 3        | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.062   | 0.071    |       |       |       |
| Hotspot     | QPSK  | Main Ant 1 | 10    | Euge 3        | 23095 | 101.5       | 25          | 12     | 22.0             | 21.4  | 0.056   | 0.064    |       |       |       |
| Ποτοροι     | Qr ON | Main Ant 1 | 10    | Edge 4        | 23095 | 707.5       | 1           | 49     | 22.0             | 21.4  | 0.046   | 0.053    |       |       |       |
|             |       |            |       | Luge 4        | 20090 | 101.5       | 25          | 12     | 22.0             | 21.4  | 0.041   | 0.047    |       |       |       |

#### Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

# 11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

### SAR Measurement Variability

Repeated measurement is not required since the original highest measured SAR is <0.8 W/kg (1-g) or 2 W/kg (10-g).

# 12. Simultaneous Transmission Conditions

| RF Exposure | Tx   | WWAN           | W       | LAN/BT Chain | 0  | W       | 'LAN/BT Chain | 1  |
|-------------|------|----------------|---------|--------------|----|---------|---------------|----|
| Conditions  | Mode | ain Ant 1/ Ant | 2.4 GHz | 5 GHz        | BT | 2.4 GHz | 5 GHz         | BT |
|             | 1    | х              | Х       |              |    | х       |               |    |
| Head &      | 2    | х              |         | Х            |    |         | х             |    |
| Body-worn & | 3    | х              |         | х            | х  |         | х             |    |
| Hotspot     | 4    | х              |         | х            |    |         | х             | х  |
|             | 5    | х              | х       | Х            |    | х       | Х             |    |
|             | 6    | х              | Х       |              |    | х       |               |    |
|             | 7    | х              |         | х            |    |         | х             |    |
| Extremity   | 8    | х              |         | х            | х  |         | х             |    |
|             | 9    | х              |         | Х            |    |         | х             | х  |
|             | 10   | х              | х       | х            |    | х       | х             |    |

Note(s):

- Cellular Main Antenna 1 and Cellular Main Antenna 2 can not transmit simultaneously

- WLAN 2.4GHz and Bluetooth radio can not transmit simultaneously

- WLAN 2.4GHz and WLAN 5GHz radio can transmit simultaneously

- 10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg for all bands that supports hotspot

## **12.1.** Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

### Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

|                           |               |                 |              | Star         | ndalone SAR (W | //kg)        |              |              | ∑ 1-g SAR (W/kg) |              |                  |                  |  |
|---------------------------|---------------|-----------------|--------------|--------------|----------------|--------------|--------------|--------------|------------------|--------------|------------------|------------------|--|
| RF Exposure<br>conditions | Test Position | WWAN            | D            | rs           | U-             | NII          | E            | т            | WWAN + DTS       | WWAN + U-NII | WWAN + UNII + BT | WWAN + UNII + BT |  |
| Conditions                |               | Main Ant 1<br>① | Chain 0<br>② | Chain 1<br>③ | Chain 0<br>④   | Chain 1<br>⑤ | Chain 0<br>6 | Chain 1<br>⑦ | 1+2+3            | 1+4+5        | 1+4+5+6          | 1+4+5+7          |  |
|                           | Left Touch    | 0.015           | 0.122        | 0.010        | 0.353          | 0.010        | 0.084        | 0.010        | 0.147            | 0.378        | 0.462            | 0.388            |  |
|                           | Left Tilt     | 0.006           | 0.122        | 0.010        | 0.353          | 0.010        | 0.016        | 0.010        | 0.138            | 0.369        | 0.385            | 0.379            |  |
| Head                      | Right Touch   | 0.017           | 0.816        | 0.010        | 0.353          | 0.010        | 0.333        | 0.010        | 0.843            | 0.380        | 0.713            | 0.390            |  |
|                           | Right Tilt    | 0.005           | 0.122        | 0.010        | 0.353          | 0.010        | 0.066        | 0.010        | 0.137            | 0.368        | 0.434            | 0.378            |  |
| Body-worn &               | Rear          | 0.138           | 0.139        | 0.082        | 0.026          | 0.155        | 0.061        | 0.015        | 0.359            | 0.319        | 0.380            | 0.334            |  |
| Hotspot                   | Front         | 0.107           | 0.139        | 0.004        | 0.017          | 0.155        | 0.047        | 0.010        | 0.250            | 0.279        | 0.326            | 0.289            |  |
|                           | Edge 1        |                 | 0.139        |              | 0.106          |              | 0.002        |              | 0.139            | 0.106        | 0.108            | 0.106            |  |
| Hotspot                   | Edge 3        | 0.071           |              | 0.004        |                | 0.155        |              | 0.010        | 0.075            | 0.226        | 0.226            | 0.236            |  |
|                           | Edge 4        | 0.053           | 0.232        | 0.004        | 0.106          | 0.155        | 0.109        | 0.010        | 0.289            | 0.314        | 0.423            | 0.324            |  |
|                           |               |                 |              |              |                |              |              |              |                  |              |                  |                  |  |

# 12.2. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Normal State & BT

Notes:

 WLAN and Bluetooth SAR results from UL report # 14176139-S1 have been used in this report for Simultaneous Transmission analysis. Refer to note in §1

• Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg.

## 12.3. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Simultaneous 2G\_5G State

|                           |               |            | Star         | ndalone SAR (W | //kg)        |              | ∑ 1-g SAR (W/kg)  |
|---------------------------|---------------|------------|--------------|----------------|--------------|--------------|-------------------|
| RF Exposure<br>conditions | Test Position | WWAN       | D            | TS             | U-           | NII          | WWAN + DTS + UNII |
| Conditions                |               | Main Ant 1 | Chain 0<br>② | Chain 1<br>③   | Chain 0<br>④ | Chain 1<br>⑤ | 1+2+3+4+5         |
|                           | Left Touch    | 0.015      | 0.330        | 0.010          | 0.171        | 0.010        | 0.536             |
| Head                      | Left Tilt     | 0.006      | 0.330        | 0.010          | 0.171        | 0.010        | 0.527             |
| neau                      | Right Touch   | 0.017      | 0.330        | 0.010          | 0.171        | 0.010        | 0.538             |
|                           | Right Tilt    | 0.005      | 0.330        | 0.010          | 0.171        | 0.010        | 0.526             |
| Body-worn &               | Rear          | 0.138      | 0.052        | 0.048          | 0.019        | 0.108        | 0.365             |
| Hotspot                   | Front         | 0.107      | 0.052        | 0.048          | 0.065        | 0.108        | 0.380             |
|                           | Edge 1        |            | 0.103        |                | 0.065        |              | 0.168             |
| Hotspot                   | Edge 3        | 0.071      |              | 0.010          |              | 0.108        | 0.189             |
|                           | Edge 4        | 0.053      | 0.103        | 0.010          | 0.065        | 0.108        | 0.339             |

#### Notes:

 WLAN and Bluetooth SAR results from UL report # 14176139-S1 have been used in this report for Simultaneous Transmission analysis. Refer to note in §1

• Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg.

# 12.4. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Normal State & BT

|                           |               |            |         | Star         | ndalone SAR (W | //kg)          |              |              | ∑ 1-g SAR (W/kg) |              |                  |                 |  |
|---------------------------|---------------|------------|---------|--------------|----------------|----------------|--------------|--------------|------------------|--------------|------------------|-----------------|--|
| RF Exposure<br>conditions | Test Position | WWAN       | D.      | rs           | U-             | NII            | E            | т            | WWAN + DTS       | WWAN + U-NII | WWAN + UNII + BT | WWAN + UNII + B |  |
| conditions                |               | Main Ant 2 | Chain 0 | Chain 1<br>③ | Chain 0<br>④   | Chain 1<br>(5) | Chain 0<br>6 | Chain 1<br>⑦ | 1+2+3            | 1+4+5        | 1+4+5+6          | 1+4+5+7         |  |
|                           | Left Touch    | 0.050      | 0.122   | 0.010        | 0.353          | 0.010          | 0.084        | 0.010        | 0.182            | 0.413        | 0.497            | 0.423           |  |
| Used                      | Left Tilt     | 0.028      | 0.122   | 0.010        | 0.353          | 0.010          | 0.016        | 0.010        | 0.160            | 0.391        | 0.407            | 0.401           |  |
| Head                      | Right Touch   | 0.045      | 0.816   | 0.010        | 0.353          | 0.010          | 0.333        | 0.010        | 0.871            | 0.408        | 0.741            | 0.418           |  |
|                           | Right Tilt    | 0.042      | 0.122   | 0.010        | 0.353          | 0.010          | 0.066        | 0.010        | 0.174            | 0.405        | 0.471            | 0.415           |  |
| Body-worn &               | Rear          | 0.314      | 0.139   | 0.082        | 0.026          | 0.155          | 0.061        | 0.015        | 0.535            | 0.495        | 0.556            | 0.510           |  |
| Hotspot                   | Front         | 0.285      | 0.139   | 0.004        | 0.017          | 0.155          | 0.047        | 0.010        | 0.428            | 0.457        | 0.504            | 0.467           |  |
|                           | Edge 1        |            | 0.139   |              | 0.106          |                | 0.002        |              | 0.139            | 0.106        | 0.108            | 0.106           |  |
| Hotspot                   | Edge 3        | 0.376      |         | 0.004        |                | 0.155          |              | 0.010        | 0.380            | 0.531        | 0.531            | 0.541           |  |
|                           | Edge 4        |            | 0.232   | 0.004        | 0.106          | 0.155          | 0.109        | 0.010        | 0.236            | 0.261        | 0.370            | 0.271           |  |

#### Notes:

 WLAN and Bluetooth SAR results from UL report # 14176139-S1 have been used in this report for Simultaneous Transmission analysis. Refer to note in §1

• Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg.

# 12.5. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Simultaneous 2G\_5G State

|                           |               |            | Star         | ndalone SAR (W | //kg)        |              | ∑ 1-g SAR (W/kg)  |
|---------------------------|---------------|------------|--------------|----------------|--------------|--------------|-------------------|
| RF Exposure<br>conditions | Test Position | WWAN       | D            | TS             | U-           | NII          | WWAN + DTS + UNII |
| Conditions                |               | Main Ant 2 | Chain 0<br>② | Chain 1<br>③   | Chain 0<br>④ | Chain 1<br>⑤ | 1+2+3+4+5         |
|                           | Left Touch    | 0.050      | 0.330        | 0.010          | 0.171        | 0.010        | 0.571             |
| Head                      | Left Tilt     | 0.028      | 0.330        | 0.010          | 0.171        | 0.010        | 0.549             |
| neau                      | Right Touch   | 0.045      | 0.330        | 0.010          | 0.171        | 0.010        | 0.566             |
|                           | Right Tilt    | 0.042      | 0.330        | 0.010          | 0.171        | 0.010        | 0.563             |
| Body-worn &               | Rear          | 0.314      | 0.052        | 0.048          | 0.019        | 0.108        | 0.541             |
| Hotspot                   | Front         | 0.285      | 0.052        | 0.048          | 0.065        | 0.108        | 0.558             |
|                           | Edge 1        |            | 0.103        |                | 0.065        |              | 0.168             |
| Hotspot                   | Edge 3        | 0.376      |              | 0.010          |              | 0.108        | 0.494             |
|                           | Edge 4        |            | 0.103        | 0.010          | 0.065        | 0.108        | 0.286             |

#### Notes:

 WLAN and Bluetooth SAR results from UL report # 14176139-S1 have been used in this report for Simultaneous Transmission analysis. Refer to note in §1

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg.</li>

Page 27 of 28

## Appendixes

Refer to separated files for the following appendixes.

- Appendix A: SAR Setup Photos
- Appendix B: SAR System Check Plots
- **Appendix C: SAR Highest Test Plots**
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

## END OF REPORT