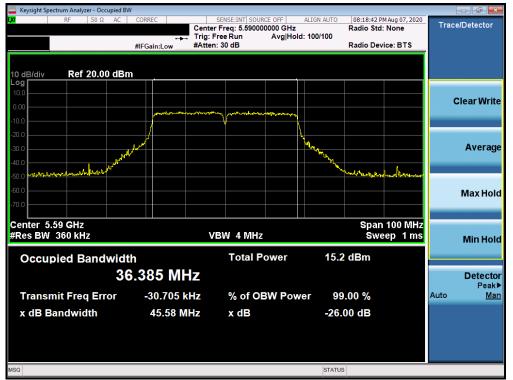
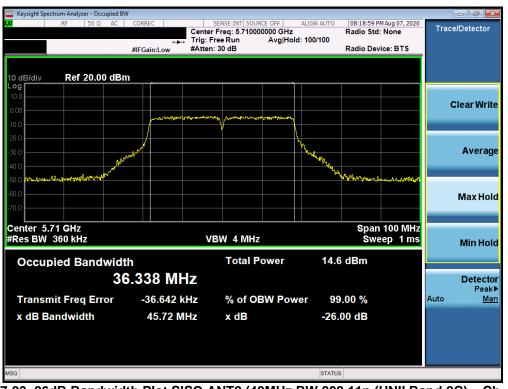
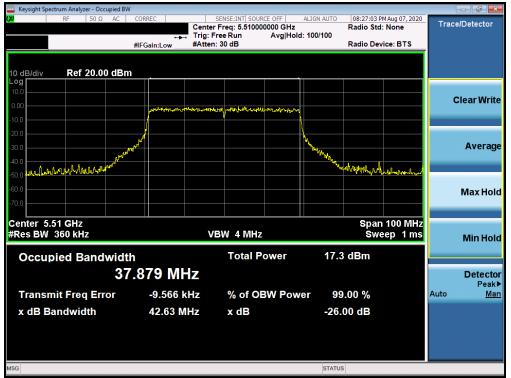


Keysight Spectrum Analyzer - Occupied BW						
LX RF 50 Ω AC CO		SENSE:INT SOURCE OFF		07:45:21 PM Aug 07, 202 Radio Std: None	Trac	e/Detector
#IF		Free Run Avg Ho n: 30 dB	old: 100/100 F	Radio Device: BTS		
10 dB/div Ref 20.00 dBm			-			
10.0						
0.00	An marghe and the and the assessment of	ma partilization of the many	m_			Clear Write
-10.0	1					
-20.0	f		₩.			Average
-30.0			Www.marylyn			Average
-50.0 managent margaret				hally when the manufactory		
-60.0				· · · · · · · · · · · · · · · · · · ·		Max Hold
-70.0						Muxitoiu
Center 5.72 GHz				Span 50 MH	7	
#Res BW 180 kHz	١	/BW 1.8 MHz	ş	Sweep 1.467 m		Min Hold
Occupied Bandwidth		Total Power	17.0 c	dBm		
	05 MHz					Detector
						Peak▶
Transmit Freq Error	-16.774 kHz	% of OBW Pov	wer 99.0	00 %	Auto	Man
x dB Bandwidth	21.34 MHz	x dB	-26.00) dB		
MSG			STATUS			


Plot 7-90. 26dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 144)

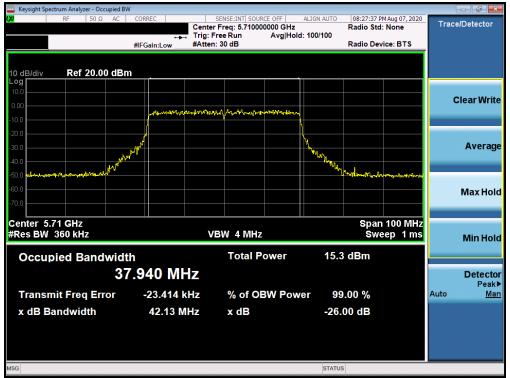

Plot 7-91. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

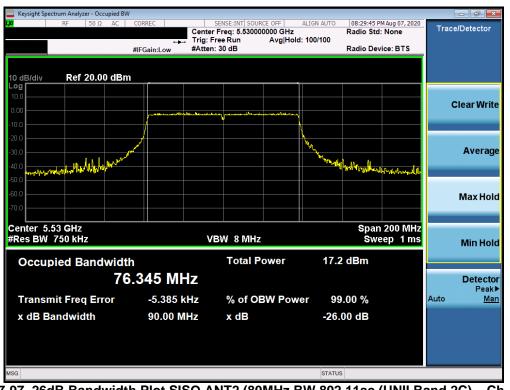
FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 62 of 228
© 2020 PCTEST V 9.0 02/01/201				


Plot 7-92. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

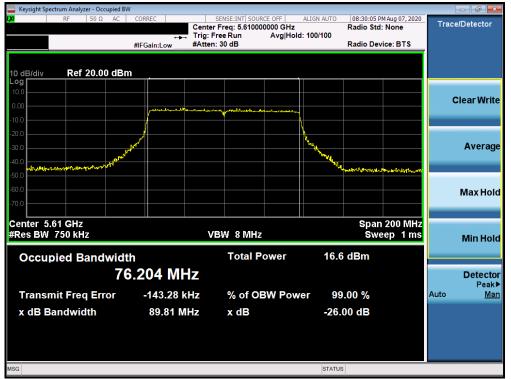
Plot 7-93. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

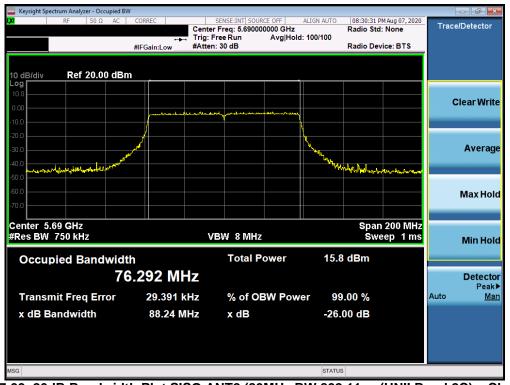
FCC ID: PY7-57441Y	Previd to be part of @ monored	MEASUREMENT REPORT (CERTIFICATION)	IY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 62 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 63 of 228
© 2020 PCTEST	© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-94. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 102)


Plot 7-95. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)

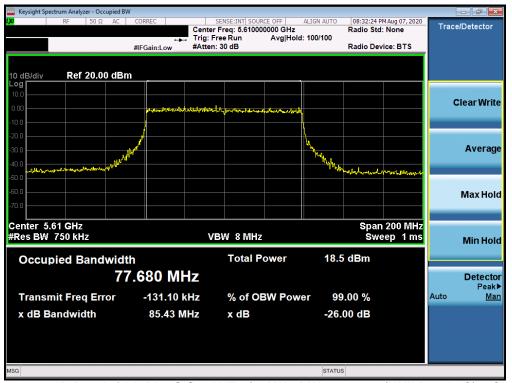
FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 64 of 228
© 2020 PCTEST V 9.0 02/01/201				


Plot 7-96. 26dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 142)


Plot 7-97. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 65 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 65 of 228
© 2020 PCTEST V 9.0 02/01/2019			

Plot 7-98. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)


Plot 7-99. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: PY7-57441Y	PCTEST Preved to be post of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 66 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-100. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 106)

Plot 7-101. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)

FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 67 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 67 of 228
© 2020 PCTEST V 9.0 02/01/2019			

Plot 7-102. 26dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 138)

FCC ID: PY7-57441Y	PCTEST Previd to be peat of @ monored	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 60 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 68 of 228
© 2020 PCTEST V 9.0 02/01/2019			

7.3 6dB Bandwidth Measurement – 802.11a/n/ac/ax

§15.407 (e); RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

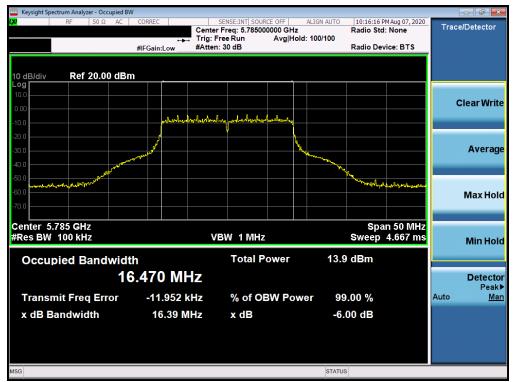
Test Notes

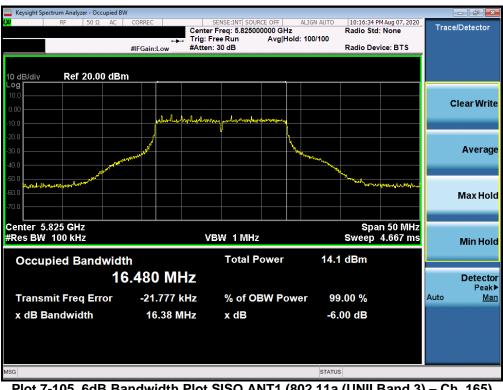
None.

FCC ID: PY7-57441Y	PCTEST Previd to be peet of @ monored	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 69 of 228
© 2020 PCTEST V 9.0 02/01/2019			

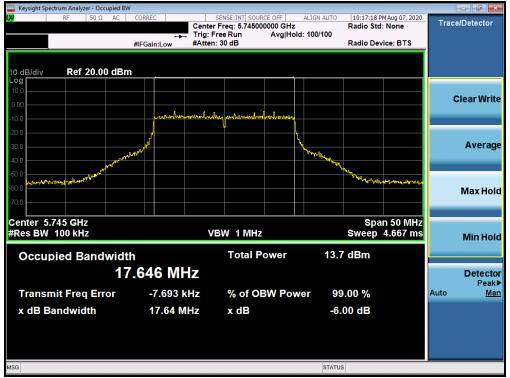
SISO Antenna-1 6 dB Bandwidth Measurements

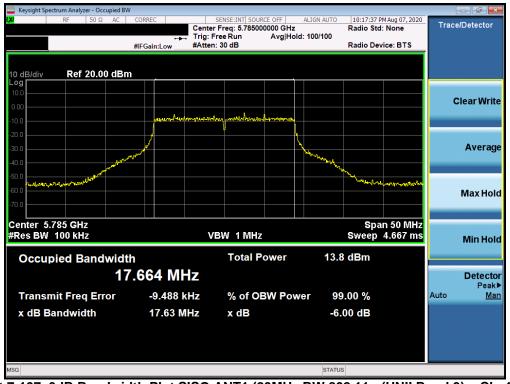
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.38
	5785	157	а	6	16.39
	5825	165	а	6	16.38
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.64
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.63
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.63
e	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	19.04
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	18.99
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	18.98
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.43
	5795	159	n (40MHz)	13.5/15 (MCS0)	36.49
	5755	151	ax (40MHz)	13.5/15 (MCS0)	38.19
	5795	159	ax (40MHz)	13.5/15 (MCS0)	38.06
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	76.53
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	78.21


Table 7-4. Conducted Bandwidth Measurements SISO ANT1

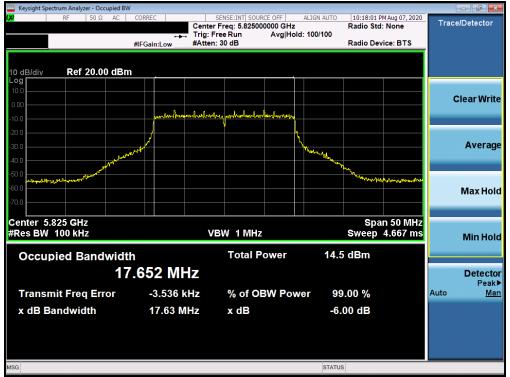

Plot 7-103. 6dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 149)

FCC ID: PY7-57441Y		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 70 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 70 of 228
© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-104. 6dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 157)

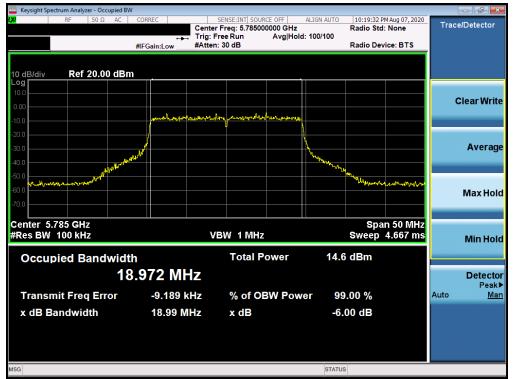

Plot 7-105. 6dB Bandwidth Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 165)

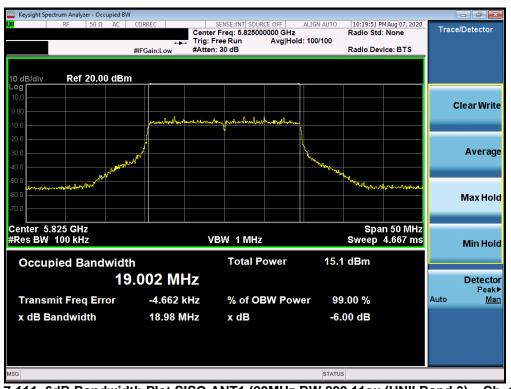
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 71 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 71 of 228
© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-106. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

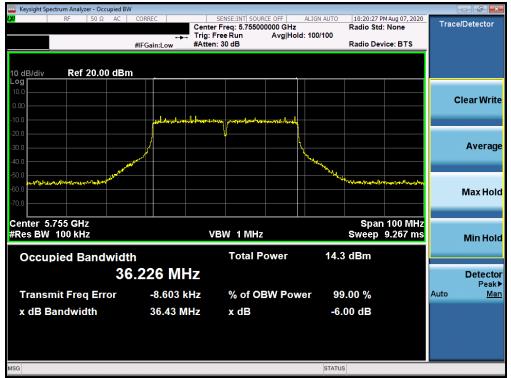

Plot 7-107. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

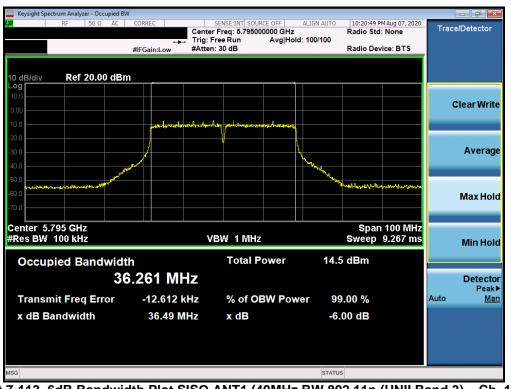
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 72 of 229	
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 72 of 228	
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-108. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

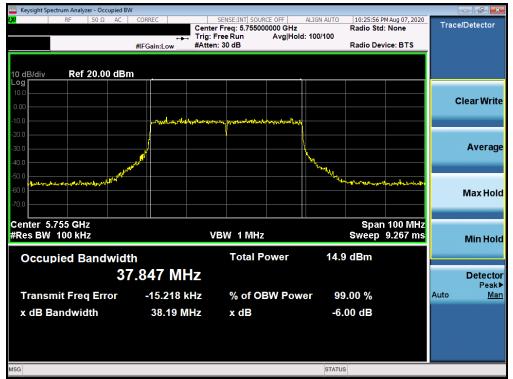

Plot 7-109. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

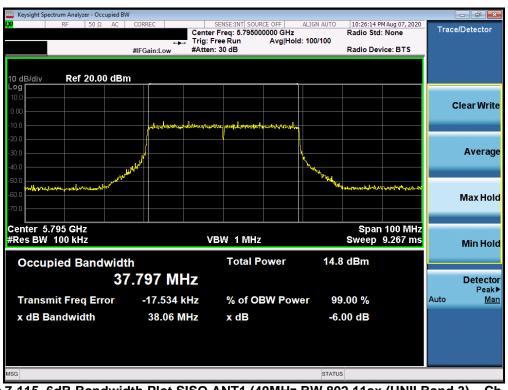
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monor	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 72 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 73 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-110. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)


Plot 7-111. 6dB Bandwidth Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monor	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 74 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 74 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-112. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)


Plot 7-113. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: PY7-57441Y	PCTEST Preud to be pest of @ monored	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 75 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 75 of 228
© 2020 PCTEST V 9.0 02/01/2019				

Plot 7-114. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)

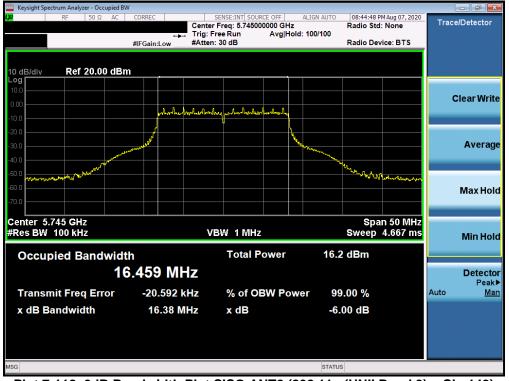
Plot 7-115. 6dB Bandwidth Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monor	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 70 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 76 of 228
© 2020 PCTEST				V 9.0 02/01/2019

Keysight Spectrum Analyzer - Occupied B	W				
LX RF 50 Ω AC	Center	Freq: 5.775000000 GHz	Radio Std	M Aug 07, 2020 : None	Trace/Detector
		reeRun Avg Hold: :: 30 dB	100/100 Radio Dev	vice: BTS	
	#PGall.Low #/ tabl		114410 201		
10 dB/div Ref 20.00 dB	m				
Log 10.0					
0.00					Clear Write
-10.0					
-20.0	Industriants to serve the	any radial-water-artic to the solution			
-30.0		U			Average
-40.0			h		Ű
-50.0	and the second sec		A where a state		
-60.0			was man man	-laturatera and	Max Hold
-70.0					maxmora
Center 5.775 GHz			Snan	200 MHz	
#Res BW 100 kHz	v	BW 1 MHz		18.47 ms	Min Hold
		Tetel Desses	44.6 JD		MITTOIL
Occupied Bandwid		Total Power	14.6 dBm		
7	5.814 MHz				Detector Peak▶
Transmit Freq Error	-6.489 kHz	% of OBW Powe	r 99.00 %		Auto <u>Man</u>
x dB Bandwidth	76.53 MHz	x dB	-6.00 dB		
MSG			STATUS		

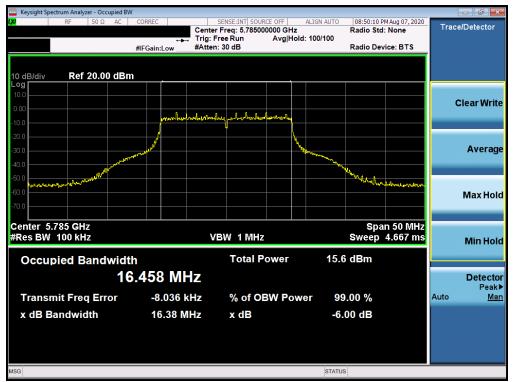
Plot 7-116. 6dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

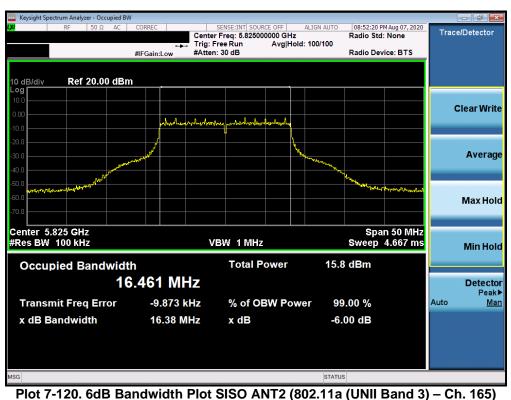
Plot 7-117. 6dB Bandwidth Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)


FCC ID: PY7-57441Y	PCTEST Previd to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 77 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 77 of 228
© 2020 PCTEST V 9.0 02/01/2019				

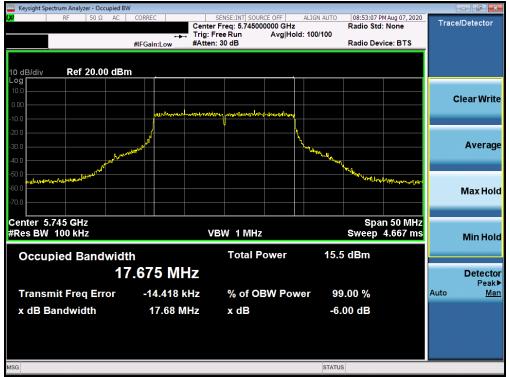
SISO Antenna-2 6dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	16.38
	5785	157	а	6	16.38
	5825	165	а	6	16.38
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	17.68
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	17.63
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	17.64
ო	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	19.04
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	19.03
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	18.94
	5755	151	n (40MHz)	13.5/15 (MCS0)	36.43
	5795	159	n (40MHz)	13.5/15 (MCS0)	36.43
	5755	151	ax (40MHz)	13.5/15 (MCS0)	38.16
	5795	159	ax (40MHz)	13.5/15 (MCS0)	38.20
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	76.53
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	78.05

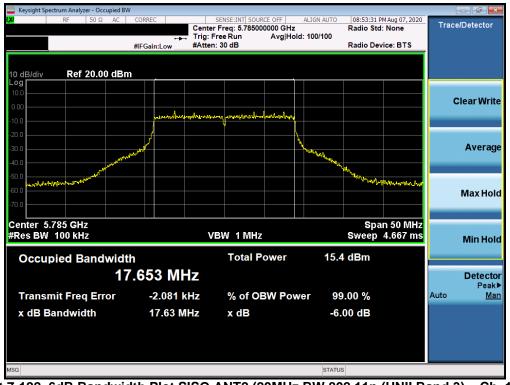

Table 7-5. Conducted Bandwidth Measurements SISO ANT2


Plot 7-118. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 149)

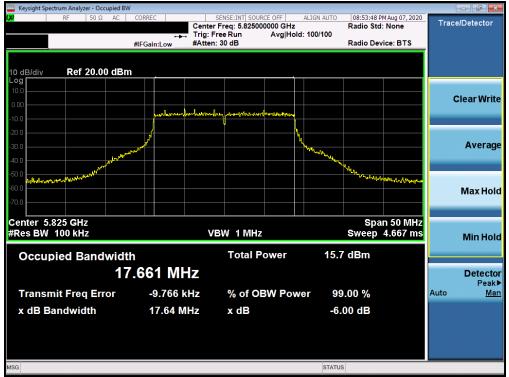
FCC ID: PY7-57441Y		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 79 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 78 of 228
© 2020 PCTEST V 9.0 02/01/2019			

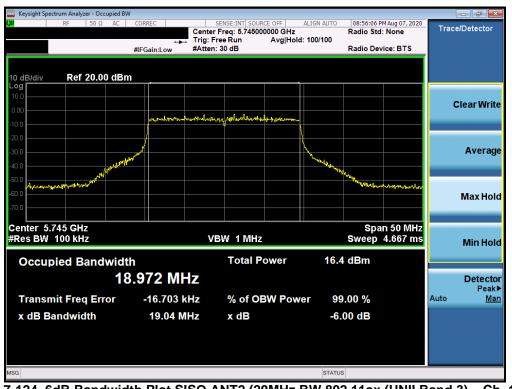


Plot 7-119. 6dB Bandwidth Plot SISO ANT2 (802.11a (UNII Band 3) - Ch. 157)



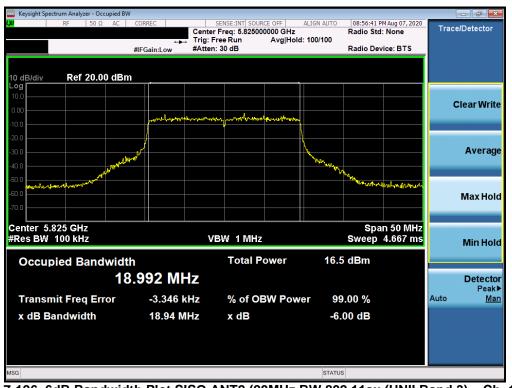
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monor	MEASUREMENT REPORT (CERTIFICATION)	NY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 70 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 79 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-121. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-122. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

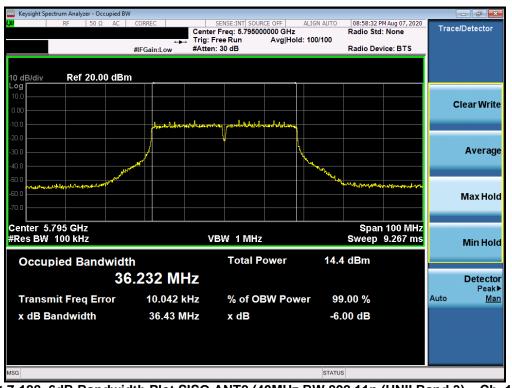
FCC ID: PY7-57441Y	PCTEST Previd to be prost of @ monored	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Da
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 80 of 228
© 2020 PCTEST V 9.0.02/01/2019				

Plot 7-123. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-124. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

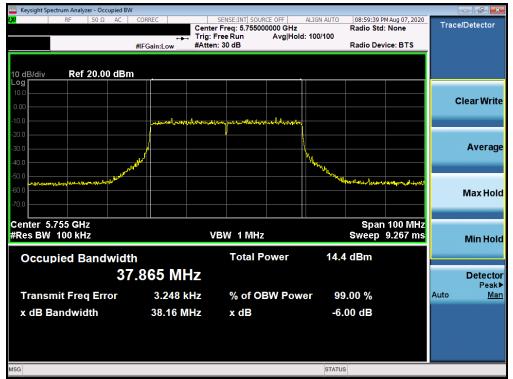
FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 01 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 81 of 228
© 2020 PCTEST V 9.0 02/01/2019				

Plot 7-125. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)


Plot 7-126. 6dB Bandwidth Plot SISO ANT2 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 02 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 82 of 228
© 2020 PCTEST				V 9.0 02/01/2019

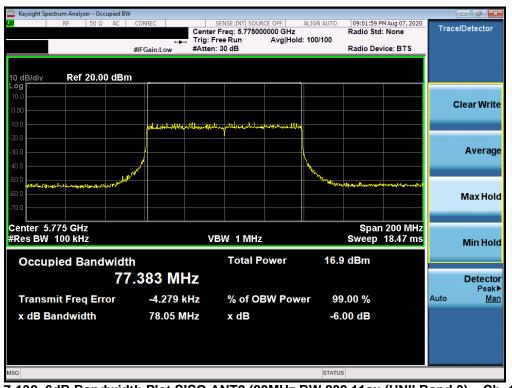
Keysight Spectrum Analyzer - Occupied BW						-	
LXU RF 50Ω AC CC	ORREC	SENSE:INT SOURCE OFF	ALIGN AUTO	08:58:10 PM A Radio Std: N		Trace/I	Detector
	Trig: F	Free Run Avg Hold	d: 100/100				
#1	FGain:Low #Atter	n: 30 dB		Radio Devic	e: BTS		
10 dB/div Ref 20.00 dBm							
Log 10.0							
0.00						CI	ear Write
-10.0		A					
-20.0	a be be the top of the two top of the party						
-30.0							Average
			N				Average
-40.0			www.				
-50.0			And the second s	mahamu	mahar		
-60.0						1	Max Hold
-70.0							
Center 5.755 GHz				Span 1	00 MHz		
#Res BW 100 kHz	v	/BW 1 MHz		Sweep 9			Min Hold
							MITTIOIG
Occupied Bandwidth		Total Power	14.4	dBm			
36.2	217 MHz						Detector
							Peak▶
Transmit Freq Error	-6.780 kHz	% of OBW Pow	ver 99.	00 %		Auto	Man
x dB Bandwidth	36.43 MHz	x dB	-6.0	0 dB			
MSG			STATUS				


Plot 7-127. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

Plot 7-128. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: PY7-57441Y	PCTEST Previd to be prost of @ monored	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 82 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 83 of 228
© 2020 PCTEST				V 9.0 02/01/2019

Plot 7-129. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 151)


Plot 7-130. 6dB Bandwidth Plot SISO ANT2 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159

FCC ID: PY7-57441Y	Previd to be part of @ monored	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 84 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 84 of 228
© 2020 PCTEST				V 9.0 02/01/2019

🔤 Keysight Spectrum Analyzer - Occupied BW						-	
LXI RF 50 Ω AC	CORREC	SENSE:INT SOURCE OFF	ALIGN AUTO	09:01:28 PM Radio Std:	Aug 07, 2020	Tracel	Detector
	🛶 Trig	: Free Run Avg Ho	d: 100/100				
	#IFGain:Low #Atte	en: 30 dB		Radio Devi	ce: BTS		
10 dB/div Ref 20.00 dBm							
Log							
0.00						CI	ear Write
-10.0							
	And an All and All and All and a	haber mounter and the second					
-20.0							A
-30.0	/		N.				Average
-40.0	AMA I I I I I I I I I I I I I I I I I I		North Contraction of the second				
-50.0 martine and the second and the			AN-CARA	Leffannan an a	the mark of the way		
-60.0						1	Max Hold
-70.0							
Center 5.775 GHz				Chan	200 MHz		
#Res BW 100 kHz		VBW 1 MHz			200 Min2 18.47 ms		
				enroop			Min Hold
Occupied Bandwidt	h	Total Power	16.4	dBm			
	.836 MHz						Detector
13	.000 MITZ						Peak►
Transmit Freq Error	36.795 kHz	% of OBW Pov	wer 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth	76.53 MHz	x dB	-6.0	00 dB			
	1 0100 IIIIIL						
MSG			STATUS				

Plot 7-131. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

Plot 7-132. 6dB Bandwidth Plot SISO ANT2 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

FCC ID: PY7-57441Y	PCTEST Previd to Be post of @ moved	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 05 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 85 of 228
© 2020 PCTEST				V 9.0 02/01/2019

7.4 UNII Output Power Measurement – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm). The maximum e.i.r.p. shall not exceed the lesser of 200 mW or 10 + 10 log10B, dBm.

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(20.54) = 24.13dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) or 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(21.03) = 24.23dBm$. The maximum e.i.r.p. shall not exceed the lesser of 1.0 W or 17 + 10 log10B, dBm.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm). The maximum e.i.r.p. is 36 dBm.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

Per RSS-247 Section 6.2.3, transmission on channels which overlap the 5600-5650 MHz is prohibited. This device operates under these frequencies only under the control of a certified master device and does not support active scanning on these channels. This device does not transmit any beacons or initiate any transmissions in UNII Bands 2A or 2C.

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 86 of 228
© 2020 PCTEST	•		V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector		IEEE Transm	Conducted Power Limit	Conducted Power		
~				802.11a	802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
÷	5180	36	AVG	8.84	8.62	8.63	8.74	23.98	-15.14
i,	5200	40	AVG	8.91	8.97	8.92	8.71	23.98	-15.01
	5220	44	AVG	8.95	8.82	8.66	8.90	23.98	-15.03
Bandwidth)	5240	48	AVG	8.99	8.99	8.64	8.70	23.98	-14.99
a Ma	5260	52	AVG	8.99	8.99	8.47	8.74	23.98	-14.99
	5280	56	AVG	8.89	8.93	8.91	8.98	23.98	-15.05
Î	5300	60	AVG	8.99	8.96	8.75	8.97	23.98	-14.99
(20MHz	5320	64	AVG	8.99	8.99	8.99	8.48	23.98	-14.99
50	5500	100	AVG	8.99	8.98	8.99	8.99	23.98	-14.99
	5600	120	AVG	8.66	8.50	8.99	8.67	23.98	-14.99
Hz	5620	124	AVG	8.99	8.88	8.86	8.99	23.98	-14.99
5G	5720	144	AVG	8.99	8.99	8.94	8.99	23.98	-14.99
LO LO	5745	149	AVG	8.66	8.99	8.88	8.75	30.00	-21.01
	5785	157	AVG	8.97	8.98	8.87	8.96	30.00	-21.02
	5825	165	AVG	8.98	8.99	8.98	8.99	30.00	-21.01

SISO Antenna-1 Conducted Output Power Measurements

Table 7-6. SISO ANT1 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	IEEE	Transmission	Mode	Conducted Power Limit	Conducted Power
				802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
P C	5190	38	AVG	8.92	8.92	8.54	23.98	-15.06
0MH; idth)	5230	46	AVG	8.90	8.87	8.92	23.98	-15.08
(40MI width	5270	54	AVG	8.60	8.62	8.74	23.98	-15.36
<u>4</u> ¥	5310	62	AVG	8.92	8.92	8.57	23.98	-15.06
Hz (and	5510	102	AVG	8.70	8.66	8.78	23.98	-15.28
Ва Ва	5590	118	AVG	8.82	8.81	8.92	23.98	-15.16
5C	5630	126	AVG	8.83	8.80	8.90	23.98	-15.15
	5710	142	AVG	8.72	8.71	8.82	23.98	-15.26
	5755	151	AVG	8.92	8.92	8.46	30.00	-21.08
	5795	159	AVG	8.89	8.69	8.86	30.00	-21.11

Table 7-7. SISO ANT1 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Preud to be peet of @ monet	MEASUREMENT REPORT (CERTIFICATION) SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 87 01 228
© 2020 PCTEST	•		V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	Power		Conducted Power Limit	Conducted Power
Hz (c						[dBm]	Margin [dB]
GHz (80MHz Bandwidth)	5210	42	AVG	8.61	8.50	23.98	-15.37
	5290	58	AVG	8.66	8.56	23.98	-15.32
5GHz Band	5530	106	AVG	8.65	8.49	23.98	-15.33
5G B	5610	122	AVG	8.68	8.44	23.98	-15.30
	5690	138	AVG	8.71	8.56	23.98	-15.27
	5775	155	AVG	8.60	8.35	30.00	-21.40

Table 7-8. SISO ANT1 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 80 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 88 of 228
© 2020 PCTEST				V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector		IEEE Transm	nission Mode		Conducted Power Limit	Conducted Power
2				802.11a	802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
Bandwidth)	5180	36	AVG	8.99	8.87	8.99	8.76	23.98	-14.99
i,	5200	40	AVG	8.99	8.78	8.94	8.94	23.98	-14.99
	5220	44	AVG	8.97	8.86	8.99	8.99	23.98	-14.99
Ĕ	5240	48	AVG	8.99	8.87	8.82	8.82	23.98	-14.99
a Ma	5260	52	AVG	8.99	8.90	8.99	8.77	23.98	-14.99
	5280	56	AVG	8.99	8.99	8.95	8.99	23.98	-14.99
Î	5300	60	AVG	8.65	8.94	8.93	8.88	23.98	-15.04
(20MHz	5320	64	AVG	8.70	8.99	8.99	8.78	23.98	-14.99
50	5500	100	AVG	8.84	8.98	8.95	8.99	23.98	-15.00
	5600	120	AVG	8.63	8.80	8.79	8.85	23.98	-15.18
Hz	5620	124	AVG	8.63	8.91	8.86	8.89	23.98	-15.07
5G	5720	144	AVG	8.81	8.80	8.94	8.88	23.98	-15.04
LO LO	5745	149	AVG	8.71	8.92	8.89	8.94	30.00	-21.08
	5785	157	AVG	8.94	8.99	8.99	8.99	30.00	-21.01
	5825	165	AVG	8.86	8.92	8.88	8.96	30.00	-21.08

SISO Antenna-2 Conducted Output Power Measurements

Table 7-9. SISO ANT2 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	IEEE	Transmission	Conducted Power Limit	Conducted Power	
				802.11n	802.11ac	802.11ax	[dBm]	Margin [dB]
P C	5190	38	AVG	8.92	8.92	8.92	23.98	-15.06
0MH; idth)	5230	46	AVG	8.92	8.92	8.92	23.98	-15.06
(40MI width	5270	54	AVG	8.74	8.74	8.80	23.98	-15.24
4)	5310	62	AVG	8.79	8.77	8.82	23.98	-15.19
lz nd	5510	102	AVG	8.92	8.92	8.92	23.98	-15.06
Ва Ва	5590	118	AVG	8.92	8.92	8.48	23.98	-15.06
5C	5630	126	AVG	8.92	8.92	8.92	23.98	-15.06
	5710	142	AVG	8.92	8.92	8.56	23.98	-15.06
	5755	151	AVG	8.77	8.69	8.81	30.00	-21.23
	5795	159	AVG	8.65	8.65	8.75	30.00	-21.35

Table 7-10. SISO ANT2 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 89 of 228
© 2020 PCTEST		·	V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	IEEE Transm	nission Mode	Conducted Power Limit	Conducted Power
(80MHz width)				802.11ac	802.11ax	[dBm]	Margin [dB]
GHz (80MH Bandwidth)	5210	42	AVG	8.43	8.47	23.98	-15.55
(8) Avi	5290	58	AVG	8.67	8.59	23.98	-15.31
5GHz Band	5530	106	AVG	8.50	8.52	23.98	-15.48
5G B:	5610	122	AVG	8.68	8.59	23.98	-15.30
	5690	138	AVG	8.34	8.66	23.98	-15.64
	5775	155	AVG	8.44	8.36	30.00	-21.57

Table 7-11. SISO ANT2 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 00 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 90 of 228
© 2020 PCTEST				V 9.0 02/01/2019

MIMO Maximum Conducted Output Power Measurements

	Freq [MHz] Channel		Detector	Conc	lucted Power [Conducted Power Limit	Conducted Power	
Ē				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
Ì	5180	36	AVG	8.62	8.87	11.76	23.98	-12.22
j.	5200	40	AVG	8.97	8.78	11.89	23.98	-12.09
5	5220	44	AVG	8.82	8.86	11.85	23.98	-12.13
Bandwidth)	5240	48	AVG	8.99	8.87	11.94	23.98	-12.04
a B B	5260	52	AVG	8.99	8.90	11.96	23.98	-12.02
N	5280	56	AVG	8.93	8.99	11.97	23.98	-12.01
Î	5300	60	AVG	8.96	8.94	11.96	23.98	-12.02
(20MH;	5320	64	AVG	8.99	8.99	12.00	23.98	-11.98
50	5500	100	AVG	8.98	8.98	11.99	23.98	-11.99
	5600	120	AVG	8.50	8.80	11.66	23.98	-12.32
ΗZ	5620	124	AVG	8.88	8.91	11.91	23.98	-12.07
5G	5720	144	AVG	8.99	8.80	11.91	23.98	-12.07
5	5745	149	AVG	8.99	8.92	11.97	30.00	-18.03
	5785	157	AVG	8.98	8.99	12.00	30.00	-18.00
	5825	165	AVG	8.99	8.92	11.97	30.00	-18.03

Table 7-12. MIMO 20MHz BW 802.11n (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conc	lucted Power [Conducted Power Limit	Conducted Power	
~				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
÷	5180	36	AVG	8.63	8.99	11.82	23.98	-12.16
, i	5200	40	AVG	8.92	8.94	11.94	23.98	-12.04
5	5220	44	AVG	8.66	8.99	11.84	23.98	-12.14
Bandwidth)	5240	48	AVG	8.64	8.82	11.74	23.98	-12.24
a Ba	5260	52	AVG	8.47	8.99	11.75	23.98	-12.23
N	5280	56	AVG	8.91	8.95	11.94	23.98	-12.04
T	5300	60	AVG	8.75	8.93	11.85	23.98	-12.13
(20MI	5320	64	AVG	8.99	8.99	12.00	23.98	-11.98
20	5500	100	AVG	8.99	8.95	11.98	23.98	-12.00
	5600	120	AVG	8.99	8.79	11.90	23.98	-12.08
Hz	5620	124	AVG	8.86	8.86	11.87	23.98	-12.11
Ċ	5720	144	AVG	8.94	8.94	11.95	23.98	-12.03
2	5745	149	AVG	8.88	8.89	11.90	30.00	-18.10
	5785	157	AVG	8.87	8.99	11.94	30.00	-18.06
	5825	165	AVG	8.98	8.88	11.94	30.00	-18.06

Table 7-13. MIMO 20MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Preved to be post of @ more	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 91 of 228	
© 2020 PCTEST	•	·		V 9.0 02/01/2019

	Freq [MHz]	Channel	Detector	Detector Conducted Power [dBm]			Conducted Power Limit	Conducted Power
~				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
ま し	5180	36	AVG	8.84	8.99	11.93	23.98	-12.05
, i	5200	40	AVG	8.91	8.99	11.96	23.98	-12.02
5 D	5220	44	AVG	8.95	8.97	11.97	23.98	-12.01
andwidth)	5240	48	AVG	8.99	8.99	12.00	23.98	-11.98
Ba	5260	52	AVG	8.99	8.99	12.00	23.98	-11.98
	5280	56	AVG	8.89	8.99	11.95	23.98	-12.03
Hz	5300	60	AVG	8.99	8.65	11.83	23.98	-12.15
(20MI	5320	64	AVG	8.99	8.70	11.86	23.98	-12.12
20	5500	100	AVG	8.99	8.84	11.93	23.98	-12.05
	5600	120	AVG	8.66	8.63	11.66	23.98	-12.32
Hz	5620	124	AVG	8.99	8.63	11.82	23.98	-12.16
5G	5720	144	AVG	8.99	8.81	11.91	23.98	-12.07
	5745	149	AVG	8.66	8.71	11.70	30.00	-18.30
	5785	157	AVG	8.97	8.94	11.97	30.00	-18.03
	5825	165	AVG	8.98	8.86	11.93	30.00	-18.07

Table 7-14. MIMO 20MHz BW 802.11ax (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel	Detector	Conc	lucted Power [Conducted Power Limit	Conducted Power	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
P C	5190	38	AVG	8.92	8.92	11.93	23.98	-12.05
(40MHz width)	5230	46	AVG	8.90	8.92	11.92	23.98	-12.06
lo pi	5270	54	AVG	8.60	8.74	11.68	23.98	-12.30
4) ¥	5310	62	AVG	8.92	8.79	11.87	23.98	-12.11
Hz	5510	102	AVG	8.70	8.92	11.82	23.98	-12.16
Ва Ва	5590	118	AVG	8.82	8.92	11.88	23.98	-12.10
50 E	5630	126	AVG	8.83	8.92	11.89	23.98	-12.09
	5710	142	AVG	8.72	8.92	11.83	23.98	-12.15
	5755	151	AVG	8.92	8.77	11.86	30.00	-18.14
	5795	159	AVG	8.89	8.65	11.78	30.00	-18.22

Table 7-15. MIMO 40MHz BW 802.11n (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 92 of 228
© 2020 PCTEST	•			V 9.0 02/01/2019

	Freq [MHz]	req [MHz] Channel		Conc	lucted Power [Conducted Power Limit	Conducted Power	
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
P C	5190	38	AVG	8.92	8.92	11.93	23.98	-12.05
0MH; idth)	5230	46	AVG	8.87	8.92	11.91	23.98	-12.07
idt	5270	54	AVG	8.62	8.74	11.69	23.98	-12.29
(4) dw	5310	62	AVG	8.92	8.77	11.86	23.98	-12.12
	5510	102	AVG	8.66	8.92	11.80	23.98	-12.18
G Ва	5590	118	AVG	8.81	8.92	11.88	23.98	-12.10
50 E	5630	126	AVG	8.80	8.92	11.87	23.98	-12.11
	5710	142	AVG	8.71	8.92	11.83	23.98	-12.15
	5755	151	AVG	8.92	8.69	11.82	30.00	-18.18
	5795	159	AVG	8.69	8.65	11.68	30.00	-18.32

Table 7-16. MIMO 40MHz BW 802.11ac (UNII) Maximum Conducted Output Power

	Freq [MHz]	req [MHz] Channel		Conducted Power [dBm]			Conducted Power Limit	Conducted Power
				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
	5190	38	AVG	8.54	8.92	11.74	23.98	-12.24
0MH: idth)	5230	46	AVG	8.92	8.92	11.93	23.98	-12.05
(40MH width)	5270	54	AVG	8.74	8.80	11.78	23.98	-12.20
4 dw	5310	62	AVG	8.57	8.82	11.71	23.98	-12.27
	5510	102	AVG	8.78	8.92	11.86	23.98	-12.12
G Ba	5590	118	AVG	8.92	8.48	11.72	23.98	-12.26
50 E	5630	126	AVG	8.90	8.92	11.92	23.98	-12.06
	5710	142	AVG	8.82	8.56	11.70	23.98	-12.28
	5755	151	AVG	8.46	8.81	11.65	30.00	-18.35
	5795	159	AVG	8.86	8.75	11.82	30.00	-18.18

Table 7-17. MIMO 40MHz BW 802.11ax (UNII) Maximum Conducted Output Power

	Freq [MHz] Channel		Channel Detector		Conducted Power [dBm]			Conducted Power
HZ HZ				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
(80MHz width)	5210	42	AVG	8.61	8.43	11.53	23.98	-12.45
8) 1 vi	5290	58	AVG	8.66	8.67	11.67	23.98	-12.31
GHz (80MH Bandwidth)	5530	106	AVG	8.65	8.50	11.58	23.98	-12.40
5GH Ban	5610	122	AVG	8.68	8.68	11.69	23.98	-12.29
	5690	138	AVG	8.71	8.34	11.53	23.98	-12.45
	5775	155	AVG	8.47	8.44	11.46	30.00	-18.54

Table 7-18. MIMO 80MHz BW 802.11ac (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PECTEST Previd to Bel post of @ monored	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:	Dage 02 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 93 of 228
© 2020 PCTEST	•	•	V 9.0 02/01/2019

	Freq [MHz]		Channel Detector		Conducted Power [dBm]			Conducted Power
Ξ H ^Z				ANT1	ANT2	MIMO	[dBm]	Margin [dB]
(80MHz width)	5210	42	AVG	8.50	8.47	11.49	23.98	-12.49
	5290	58	AVG	8.56	8.59	11.58	23.98	-12.40
5GHz Band	5530	106	AVG	8.49	8.52	11.51	23.98	-12.47
B 2G	5610	122	AVG	8.44	8.59	11.52	23.98	-12.46
	5690	138	AVG	8.56	8.66	11.62	23.98	-12.36
	5775	155	AVG	8.35	8.36	11.36	30.00	-18.64

Table 7-19. MIMO 80MHz BW 802.11ax (UNII) Maximum Conducted Output Power

FCC ID: PY7-57441Y	PCTEST Preud to be post of @ more	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 04 of 220			
1M2007070106-06-R2.PY7 7/29 - 9/18-2020		Portable Handset		Page 94 of 228			
© 2020 PCTEST V 9.0 02/01/2019							

Note:

Per ANSI C63.10-2013 and KDB 662911 v02r01 Section E)1), the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted output power was measured to be 8.62 dBm for Antenna-1 and 8.87 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(8.62 dBm + 8.87 dBm) = (7.28 mW + 7.71 mW) = 14.99 mW = 11.76 dBm

FCC ID: PY7-57441Y	PCTEST Previd to be peet of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 222			
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 95 of 228			
© 2020 PCTEST V 9.0 02/01/2019						

7.5 Maximum Power Spectral Density – 802.11a/n/ac/ax §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique KDB 662911 v02r01 – Section E)2) Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

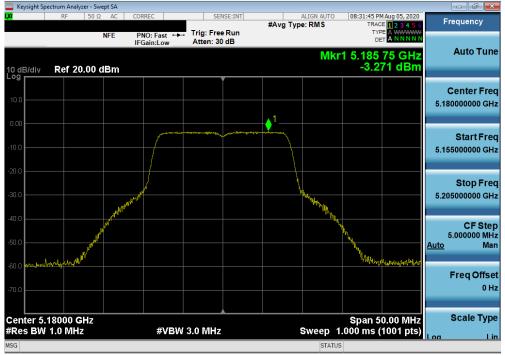
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

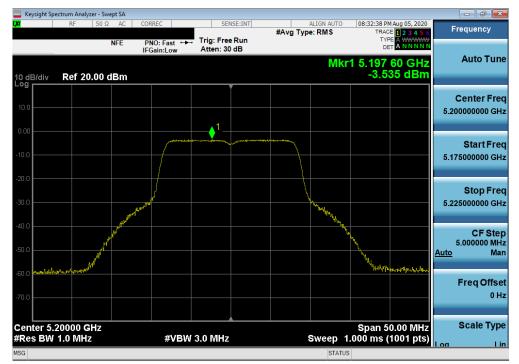
Test Notes

None

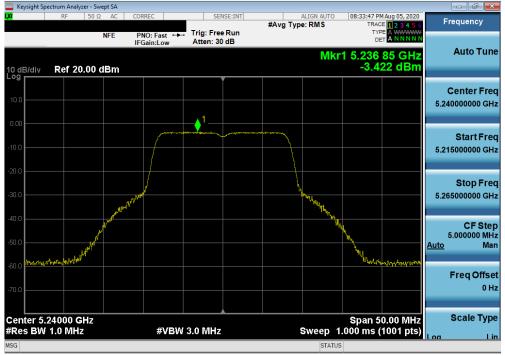
FCC ID: PY7-57441Y	PCTEST Preud to be peet of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N: Test Dates:		EUT Type:		
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 96 of 228
© 2020 PCTEST	•			V 9.0 02/01/2019

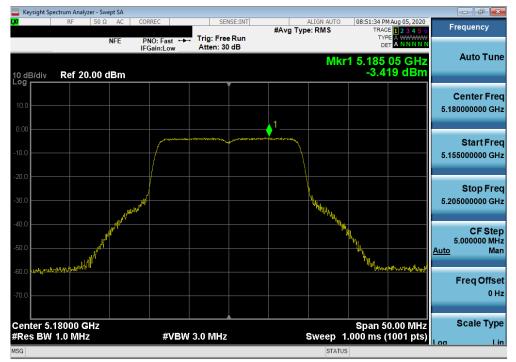

SISO Antenna-1 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	-3.27	11.0	-14.27
	5200	40	а	6	-3.54	11.0	-14.54
	5240	48	а	6	-3.42	11.0	-14.42
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	-3.42	11.0	-14.42
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	-3.60	11.0	-14.60
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	-3.57	11.0	-14.57
	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	-3.79	11.0	-14.79
Band 1	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	-3.78	11.0	-14.78
Ba	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	-3.66	11.0	-14.66
	5190	38	n (40MHz)	13.5/15 (MCS0)	-6.23	11.0	-17.23
	5230	46	n (40MHz)	13.5/15 (MCS0)	-6.41	11.0	-17.41
	5190	38	ax (40MHz)	13.5/15 (MCS0)	-6.88	11.0	-17.88
	5230	46	ax (40MHz)	13.5/15 (MCS0)	-6.60	11.0	-17.60
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-9.98	11.0	-20.98
	5210	42	ax (80MHz)	29.3/32.5 (MCS0)	-10.10	11.0	-21.10
	5260	52	a	6	-3.42	11.0	-14.42
	5280	56	а	6	-3.91	11.0	-14.91
	5320	64	a	6	-4.30	11.0	-15.30
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	-3.81	11.0	-14.81
	5280	56	n (20MHz)	6.5/7.2 (MCS0)	-4.22	11.0	-15.22
	5320	64	n (20MHz)	6.5/7.2 (MCS0)	-4.08	11.0	-15.08
A	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	-3.93	11.0	-14.93
Band 2A	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	-4.42	11.0	-15.42
Ban	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	-4.69	11.0	-15.69
_	5270	54	n (40MHz)	13.5/15 (MCS0)	-6.75	11.0	-17.75
	5310	62	n (40MHz)	13.5/15 (MCS0)	-6.79	11.0	-17.79
	5270	54	ax (40MHz)	13.5/15 (MCS0)	-6.96	11.0	-17.96
	5310	62	ax (40MHz)	13.5/15 (MCS0)	-7.81	11.0	-18.81
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-9.99	11.0	-20.99
	5290	58	ax (80MHz)	29.3/32.5 (MCS0)	-10.23	11.0	-21.23
	5500	100	a(co)	6	-5.57	11.0	-16.57
	5600	120	a	6	-5.62	11.0	-16.62
	5720	144	a	6	-4.36	11.0	-15.36
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	-6.06	11.0	-17.06
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	-6.01	11.0	-17.01
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	-4.93	11.0	-15.93
	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	-6.31	11.0	-17.31
	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	-6.10	11.0	-17.10
	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	-4.97	11.0	-15.97
U U	5510	102	n (40MHz)	13.5/15 (MCS0)	-9.08	11.0	-20.08
Band 2C	5590	118	n (40MHz)	13.5/15 (MCS0)	-9.05	11.0	-20.05
Ban	5710	142	n (40MHz)	13.5/15 (MCS0)	-8.07	11.0	-19.07
	5510	102	ax (40MHz)	13.5/15 (MCS0)	-9.00	11.0	-20.00
	5590	118	ax (40MHz)	13.5/15 (MCS0)	-9.22	11.0	-20.22
	5710	142	ax (40MHz)	13.5/15 (MCS0)	-8.29	11.0	-19.29
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-12.48	11.0	-23.48
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-12.30	11.0	-23.30
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-11.05	11.0	-22.05
	5530	106	ax (80MHz)	29.3/32.5 (MCS0)	-12.74	11.0	-23.74
	5610	100	ax (80MHz)	29.3/32.5 (MCS0)	-12.50	11.0	-23.50
	5690	138	ax (80MHz)	29.3/32.5 (MCS0)	-11.28	11.0	-23.30
7 20 5	0000			29.3/32.3 (MC30)	tral Danaity		-22.20


Table 7-20. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements SISO ANT1

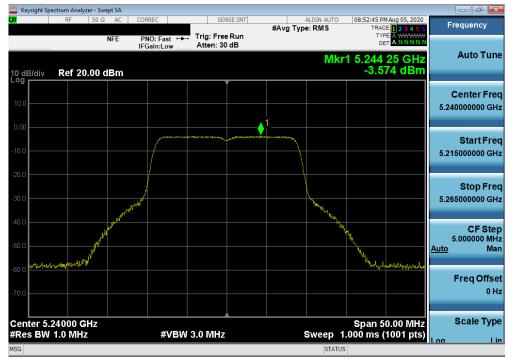
FCC ID: PY7-57441Y	PCTEST Preved to be prest at @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 97 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-133. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) – Ch. 36)

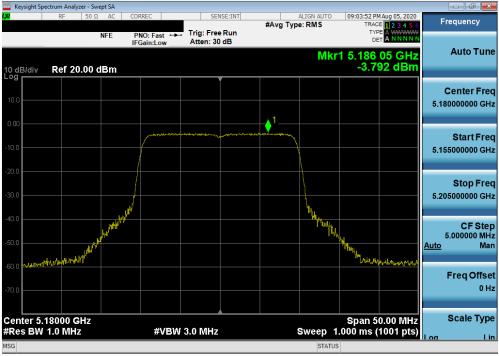

Plot 7-134. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) – Ch. 40)

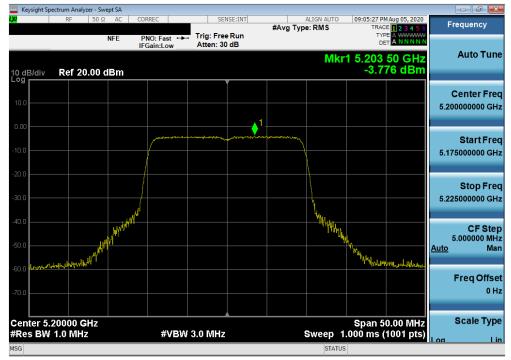
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	ONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 00 of 222
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 98 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-135. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 1) – Ch. 48)

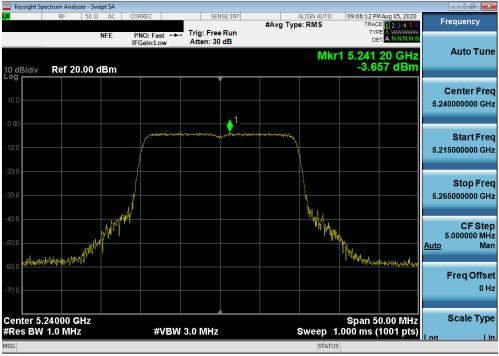

Plot 7-136. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

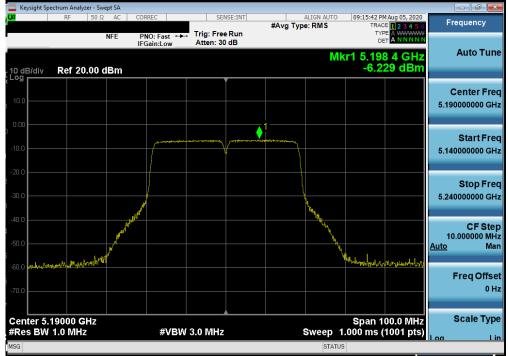
FCC ID: PY7-57441Y	PCTEST Preud to be peet of @ monet	MEASUREMENT REPORT (CERTIFICATION)	ONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 00 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 99 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-137. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 40)

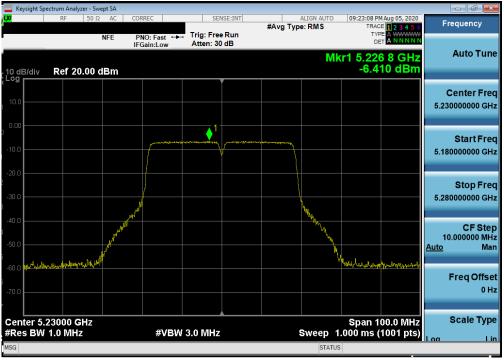

Plot 7-138. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

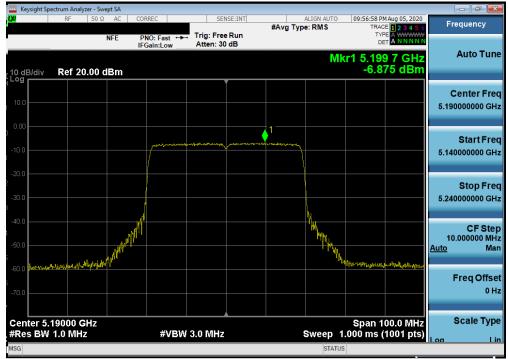
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 100 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-139. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 36)

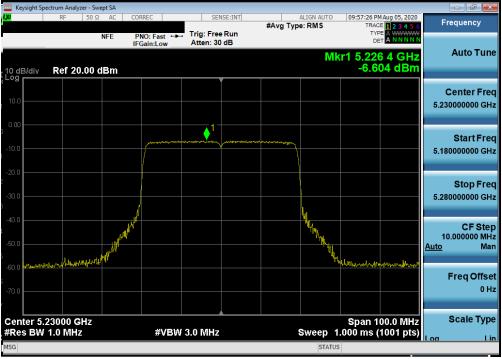

Plot 7-140. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) – Ch. 40)

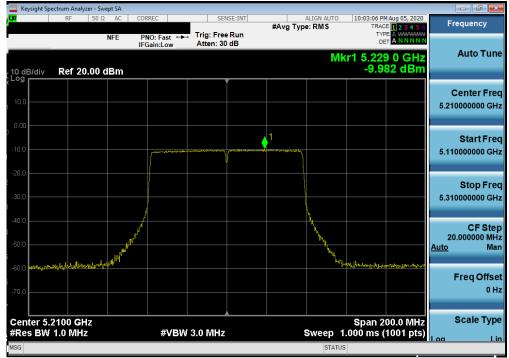
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 101 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 101 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-141. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 1) - Ch. 48)

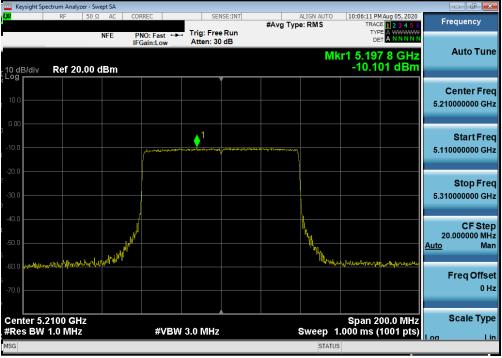

Plot 7-142. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 38)

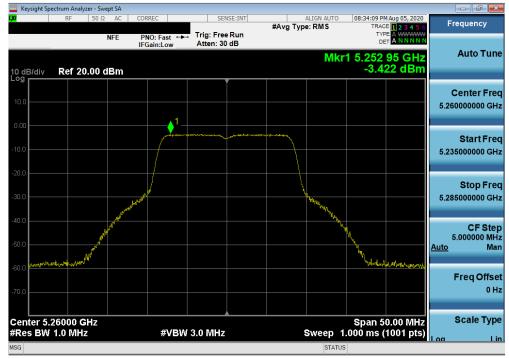
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 222
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 102 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-143. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

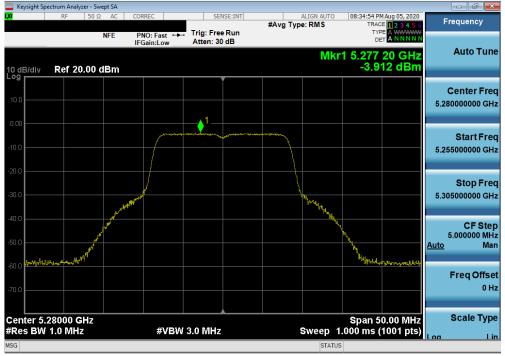

Plot 7-144. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 38)

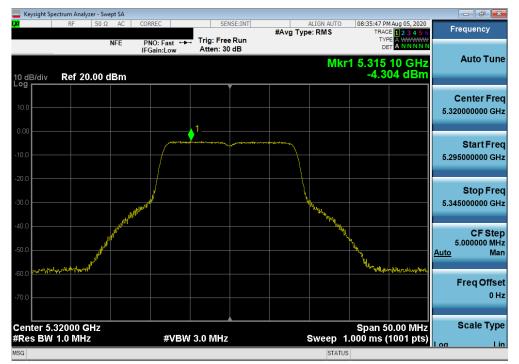
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 222
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 103 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-145. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 1) - Ch. 46)

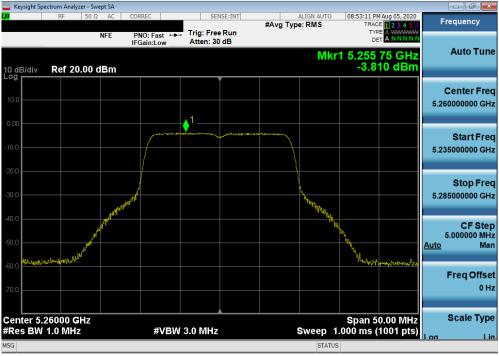

Plot 7-146. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

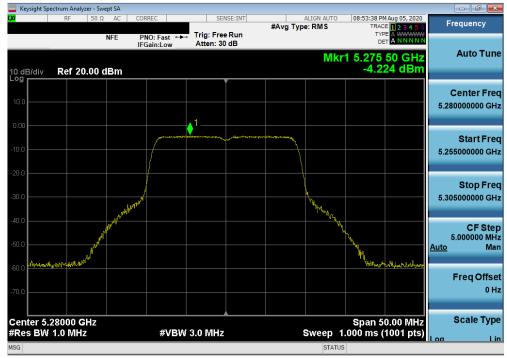
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	YNC	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 101 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 104 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-147. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 1) – Ch. 42)


Plot 7-148. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) - Ch. 52)

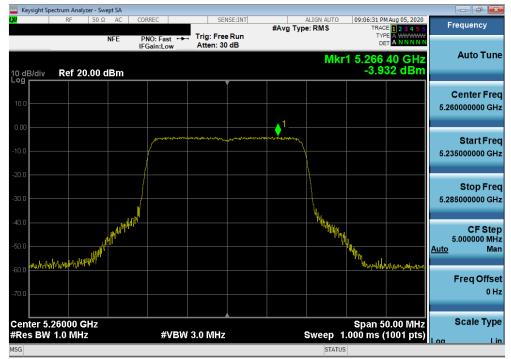
FCC ID: PY7-57441Y	PCTEST Previd to bia post of @ manual	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 105 of 228
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 105 of 228
© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-149. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) – Ch. 56)

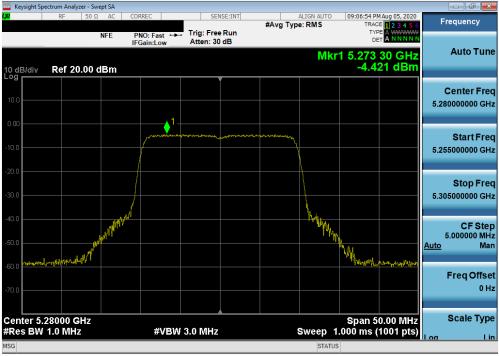

Plot 7-150. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2A) – Ch. 64)

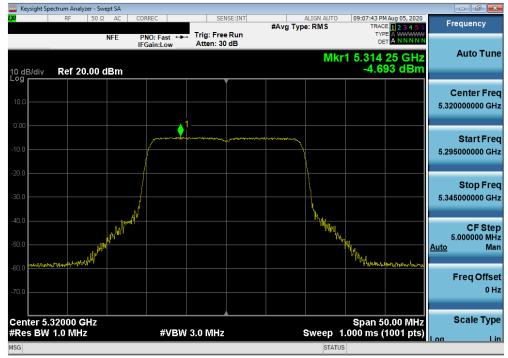
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	NY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 106 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 106 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-151. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

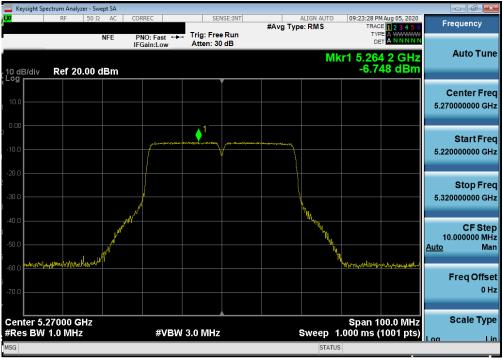

Plot 7-152. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

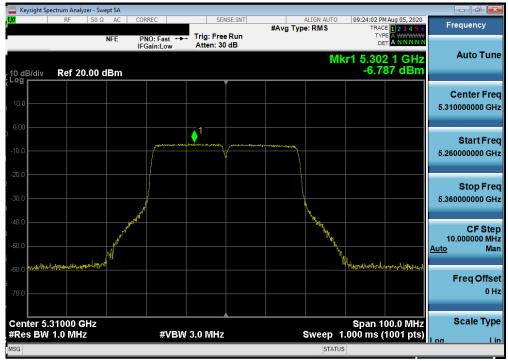
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 107 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 107 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-153. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

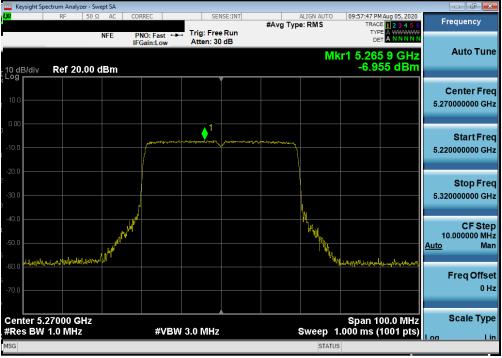

Plot 7-154. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 52)

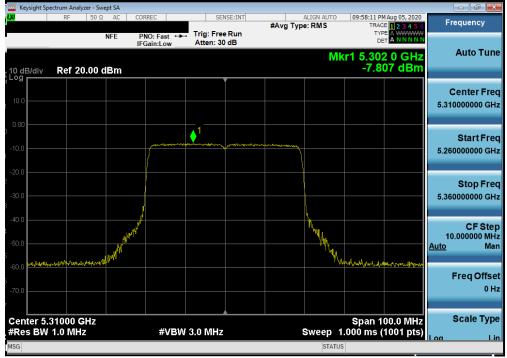
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 100 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 108 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-155. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 56)

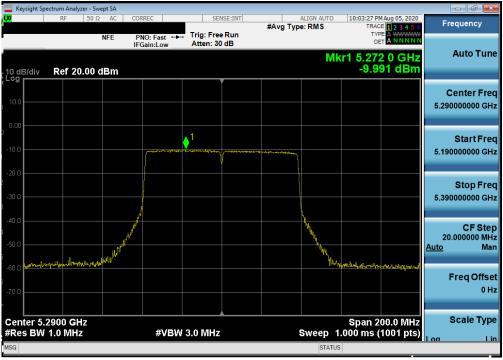

Plot 7-156. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2A) - Ch. 64)

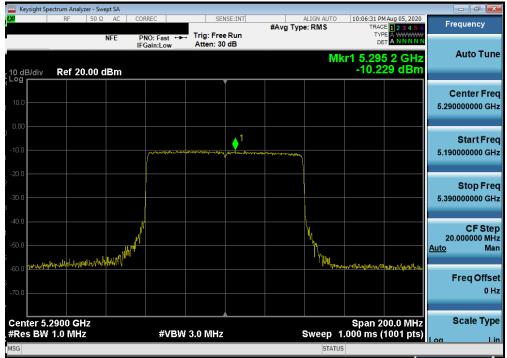
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Y	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 109 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-157. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

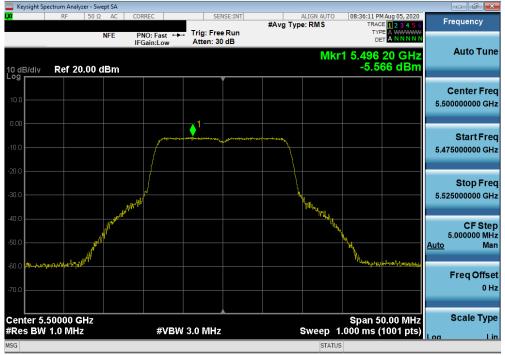

Plot 7-158. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monor	MEASUREMENT REPORT (CERTIFICATION)	DNY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 110 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-159. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) – Ch. 54)

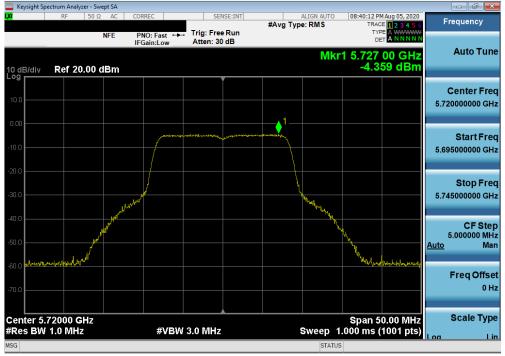

Plot 7-160. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2A) - Ch. 62)

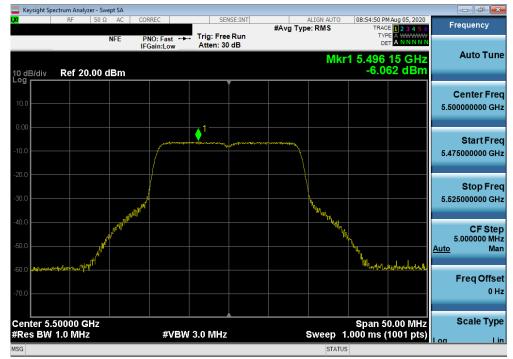
FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	NY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Degs 111 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 111 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-161. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

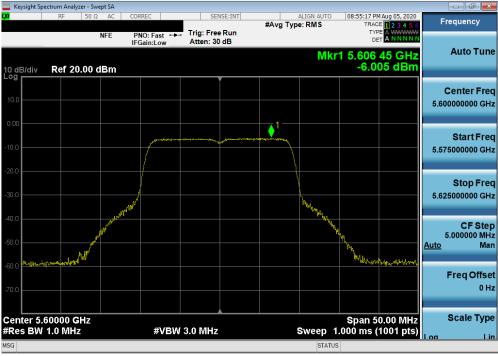

Plot 7-162. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2A) – Ch. 58)

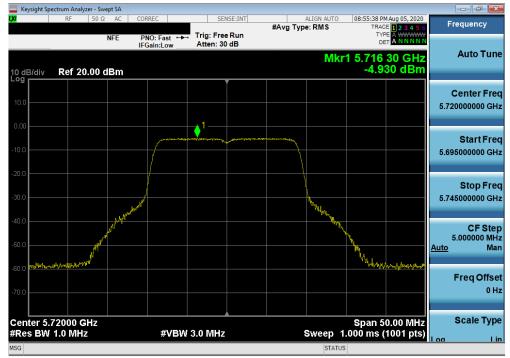
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 112 of 222
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 112 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-163. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) – Ch. 100)

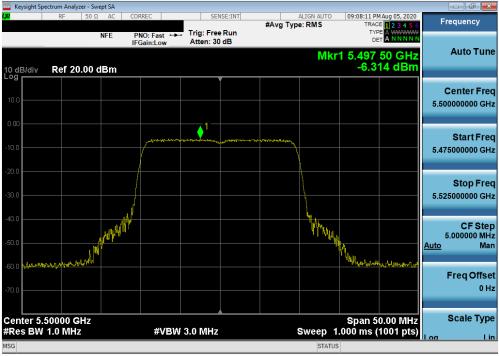

Plot 7-164. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) – Ch. 120)

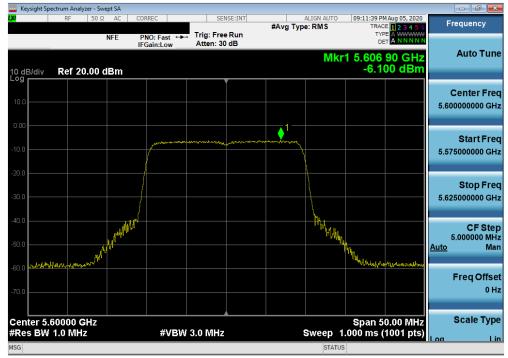
FCC ID: PY7-57441Y	PCTEST Previd to be peet of @ monored	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 113 of 228
© 2020 PCTEST V 9.0 02/01/2019			


Plot 7-165. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 2C) – Ch. 144)

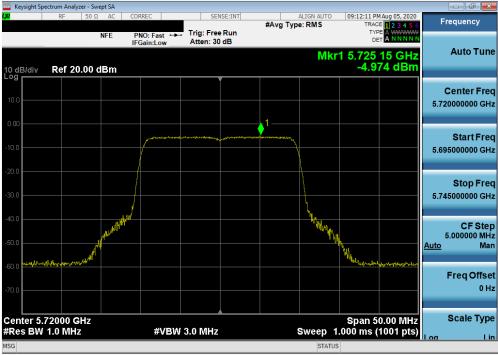

Plot 7-166. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

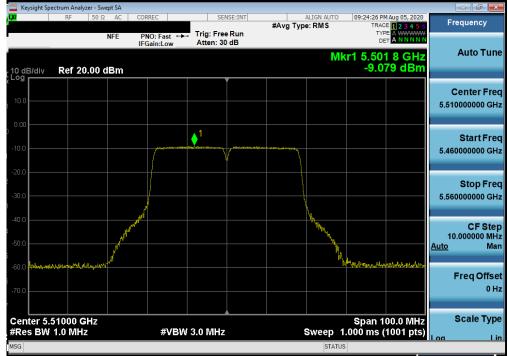
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 111 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 114 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-167. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)

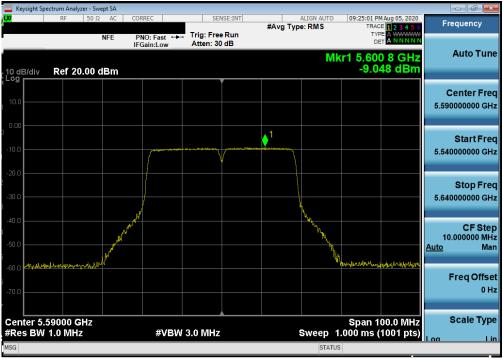

Plot 7-168. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

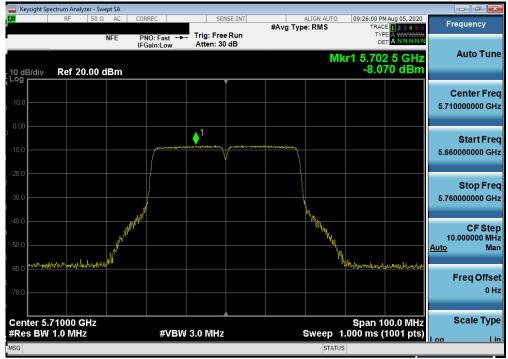
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 115 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 115 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-169. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 100)

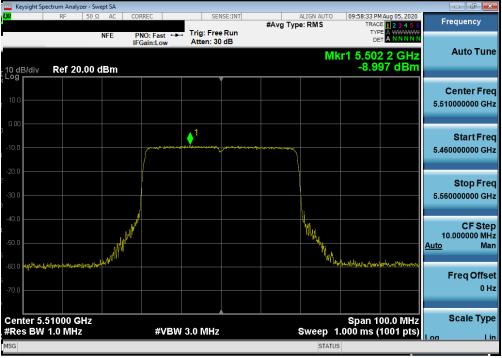

Plot 7-170. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 120)

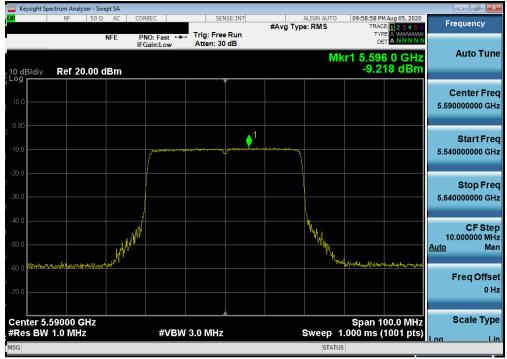
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 110 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 116 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-171. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 2C) - Ch. 144)

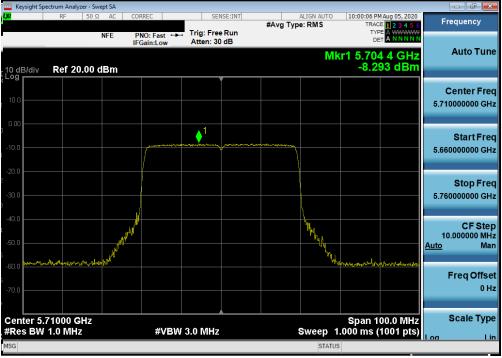

Plot 7-172. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)

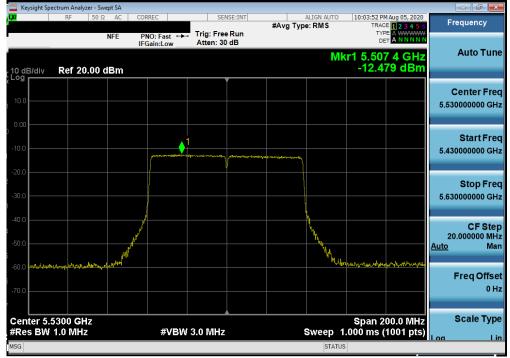
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 117 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 117 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-173. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

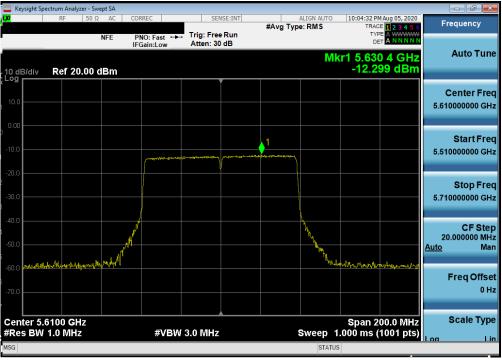

Plot 7-174. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

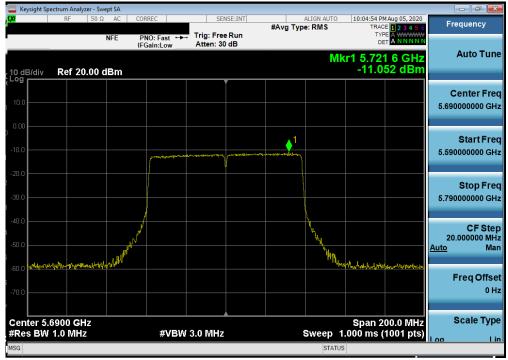
FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 119 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 118 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-175. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) – Ch. 102)

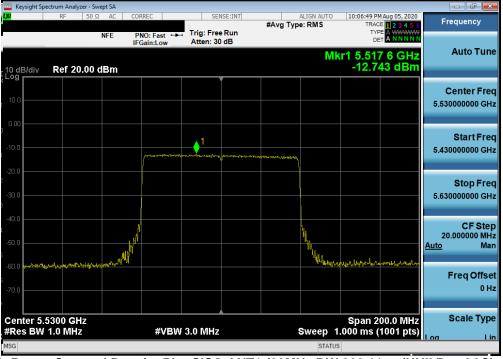

Plot 7-176. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) - Ch. 118)

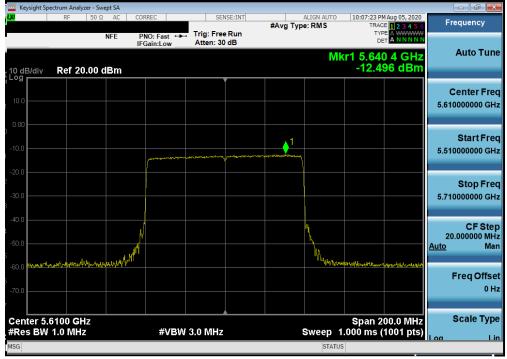
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 110 of 229
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 119 of 228
© 2020 PCTEST		·	V 9.0 02/01/2019


Plot 7-177. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 2C) – Ch. 142)

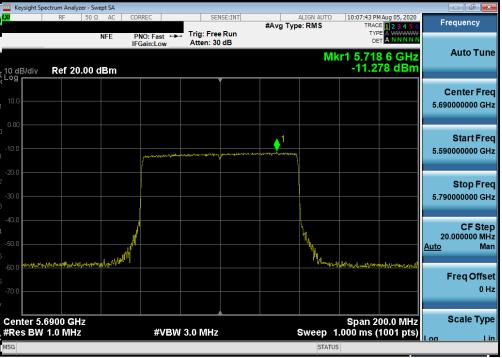

Plot 7-178. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 106)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 200
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 120 of 228
© 2020 PCTEST V 9.0 02/01/2019				


Plot 7-179. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)

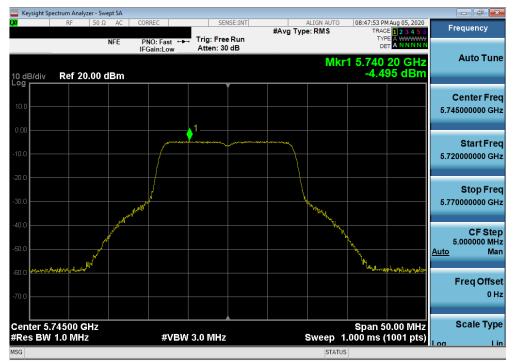

Plot 7-180. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION) SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 101 of 200
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 121 of 228
© 2020 PCTEST		·	V 9.0 02/01/2019


Plot 7-181. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) – Ch. 106)

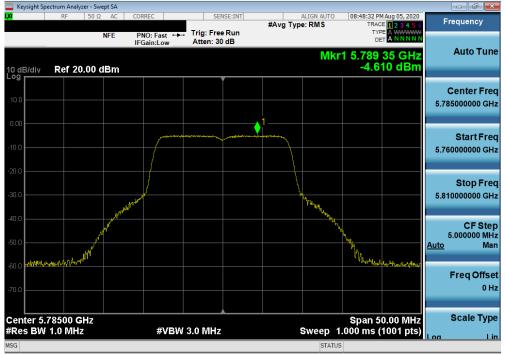
Plot 7-182. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) - Ch. 122)

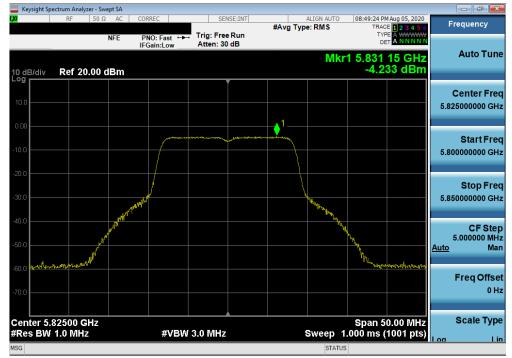
FCC ID: PY7-57441Y	PCTEST Pretid to be peet of @ moved	MEASUREMENT REPORT (CERTIFICATION)	ONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 122 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-183. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 2C) – Ch. 138)

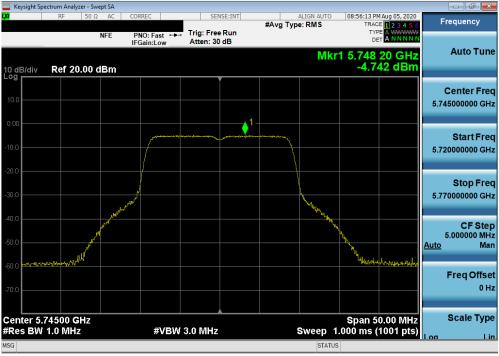
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 102 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 123 of 228
© 2020 PCTEST				V 9.0 02/01/2019

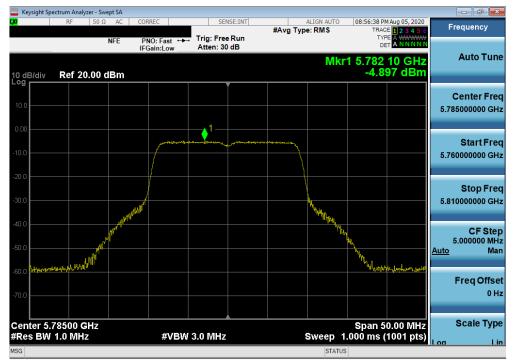
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	-4.50	30.0	-34.50
	5785	157	а	6	-4.61	30.0	-34.61
	5825	165	а	6	-4.27	30.0	-34.27
	5745	149	n (20MHz)	6.5/7.2 (MCS0)	-4.74	30.0	-34.74
	5785	157	n (20MHz)	6.5/7.2 (MCS0)	-4.90	30.0	-34.90
	5825	165	n (20MHz)	6.5/7.2 (MCS0)	-4.43	30.0	-34.43
e	5745	149	ax (20MHz)	6.5/7.2 (MCS0)	-5.03	30.0	-35.03
Band	5785	157	ax (20MHz)	6.5/7.2 (MCS0)	-5.12	30.0	-35.12
ä	5825	165	ax (20MHz)	6.5/7.2 (MCS0)	-4.75	30.0	-34.75
	5755	151	n (40MHz)	13.5/15 (MCS0)	-7.85	30.0	-37.85
	5795	159	n (40MHz)	13.5/15 (MCS0)	-7.79	30.0	-37.79
	5755	151	ax (40MHz)	13.5/15 (MCS0)	-7.89	30.0	-37.89
	5795	159	ax (40MHz)	13.5/15 (MCS0)	-7.81	30.0	-37.81
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-11.23	30.0	-41.23
	5775	155	ax (80MHz)	29.3/32.5 (MCS0)	-11.20	30.0	-41.20


Table 7-21. Band 3 Conducted Power Spectral Density Measurements SISO ANT1

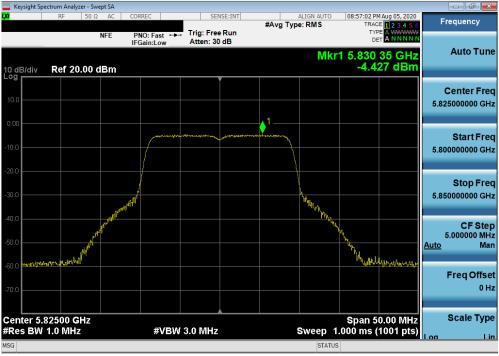

Plot 7-184. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) – Ch. 149)

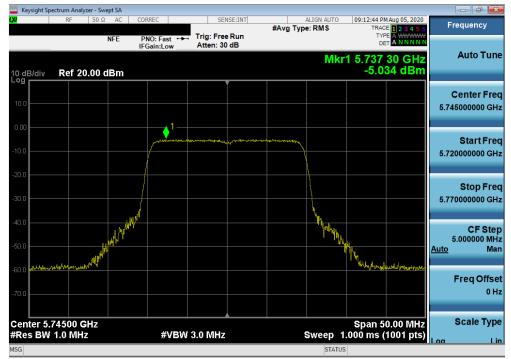
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 104 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 124 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-185. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) – Ch. 157)

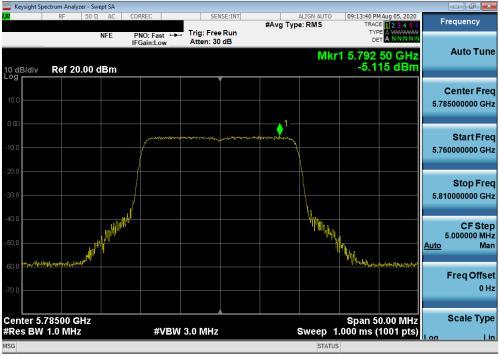

Plot 7-186. Power Spectral Density Plot SISO ANT1 (802.11a (UNII Band 3) - Ch. 165)

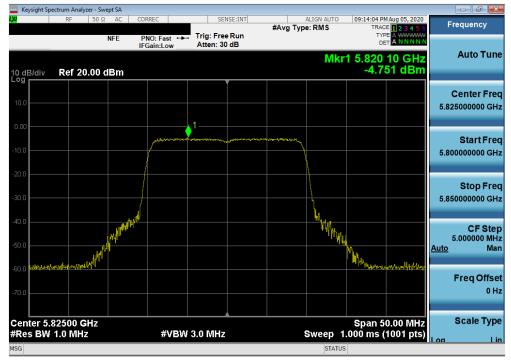
FCC ID: PY7-57441Y	PCTEST Previd to bia post of @ manual	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 125 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset	Page 125 of 228
© 2020 PCTEST			V 9.0 02/01/2019


Plot 7-187. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 149)

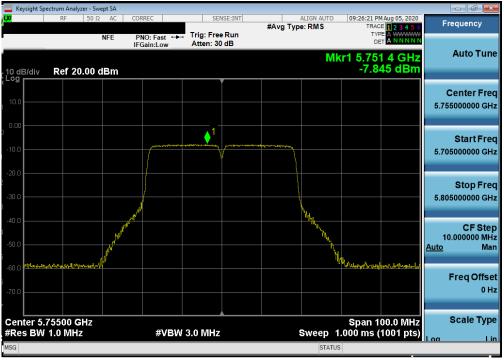

Plot 7-188. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) – Ch. 157)

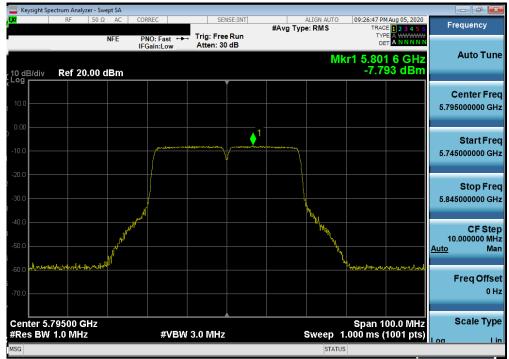
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 000	
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 126 of 228	
© 2020 PCTEST V 9.0 02/01/2019					


Plot 7-189. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11n (UNII Band 3) - Ch. 165)

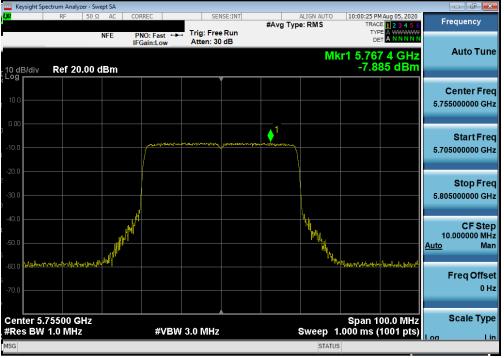

Plot 7-190. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 149)

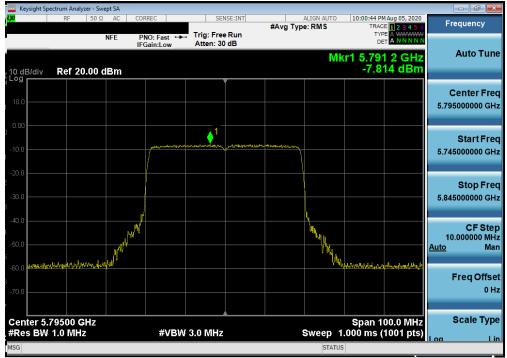
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 107 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 127 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-191. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 157)

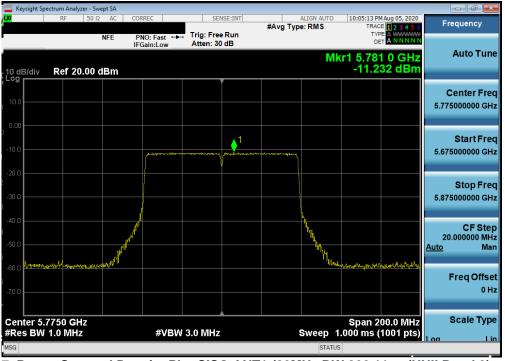

Plot 7-192. Power Spectral Density Plot SISO ANT1 (20MHz BW 802.11ax (UNII Band 3) - Ch. 165)

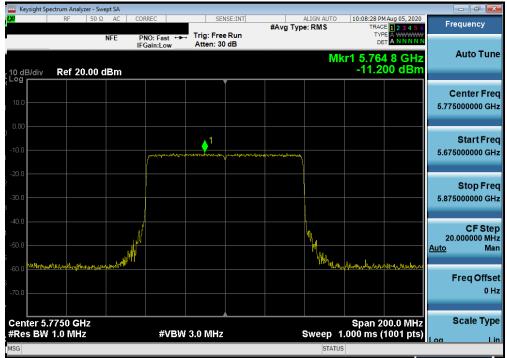
FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 128 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-193. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 151)


Plot 7-194. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 100 of 000
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 129 of 228
© 2020 PCTEST				V 9.0 02/01/2019


Plot 7-195. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) – Ch. 151)


Plot 7-196. Power Spectral Density Plot SISO ANT1 (40MHz BW 802.11ax (UNII Band 3) - Ch. 159)

FCC ID: PY7-57441Y	PCTEST Previd to be post of @ monet	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 120 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 130 of 228
© 2020 PCTEST				V 9.0 02/01/2019

Plot 7-197. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

Plot 7-198. Power Spectral Density Plot SISO ANT1 (80MHz BW 802.11ax (UNII Band 3) - Ch. 155)

FCC ID: PY7-57441Y	PCTEST Preved to be prest of @ monent	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 220
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset		Page 131 of 228
© 2020 PCTEST				V 9.0 02/01/2019

SISO Antenna-2 Power Spectral Density Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	-1.12	11.0	-12.12
	5200	40	а	6	-1.34	11.0	-12.34
	5240	48	а	6	-0.86	11.0	-11.86
	5180	36	n (20MHz)	6.5/7.2 (MCS0)	-1.40	11.0	-12.40
	5200	40	n (20MHz)	6.5/7.2 (MCS0)	-1.52	11.0	-12.52
	5240	48	n (20MHz)	6.5/7.2 (MCS0)	-1.19	11.0	-12.19
-	5180	36	ax (20MHz)	6.5/7.2 (MCS0)	-1.56	11.0	-12.56
Band 1	5200	40	ax (20MHz)	6.5/7.2 (MCS0)	-0.52	11.0	-11.52
ä	5240	48	ax (20MHz)	6.5/7.2 (MCS0)	-1.08	11.0	-12.08
	5190	38	n (40MHz)	13.5/15 (MCS0)	-5.53	11.0	-16.53
	5230	46	n (40MHz)	13.5/15 (MCS0)	-6.13	11.0	-17.13
	5190	38	ax (40MHz)	13.5/15 (MCS0)	-5.63	11.0	-16.63
	5230	46	ax (40MHz)	13.5/15 (MCS0)	-6.11	11.0	-17.11
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-7.52	11.0	-18.52
	5210	42	ax (80MHz)	29.3/32.5 (MCS0)	-7.90	11.0	-18.90
	5260	52	а	6	-0.75	11.0	-11.75
	5280	56	а	6	-1.16	11.0	-12.16
	5320	64	а	6	-1.32	11.0	-12.32
	5260	52	n (20MHz)	6.5/7.2 (MCS0)	-1.15	11.0	-12.15
	5280	56	n (20MHz)	6.5/7.2 (MCS0)	-1.62	11.0	-12.62
	5320	64	n (20MHz)	6.5/7.2 (MCS0)	-1.68	11.0	-12.68
2A	5260	52	ax (20MHz)	6.5/7.2 (MCS0)	-0.97	11.0	-11.97
Band 2A	5280	56	ax (20MHz)	6.5/7.2 (MCS0)	-1.19	11.0	-12.19
Ba	5320	64	ax (20MHz)	6.5/7.2 (MCS0)	-1.41	11.0	-12.41
	5270	54	n (40MHz)	13.5/15 (MCS0)	-5.43	11.0	-16.43
	5310	62	n (40MHz)	13.5/15 (MCS0)	-5.86	11.0	-16.86
	5270	54	ax (40MHz)	13.5/15 (MCS0)	-5.58	11.0	-16.58
	5310	62	ax (40MHz)	13.5/15 (MCS0)	-5.73	11.0	-16.73
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-7.84	11.0	-18.84
	5290	58	ax (80MHz)	29.3/32.5 (MCS0)	-7.99	11.0	-18.99
	5500	100	а	6	-1.50	11.0	-12.50
	5600	120	а	6	-1.55	11.0	-12.55
	5720	144	а	6	-1.70	11.0	-12.70
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	-1.77	11.0	-12.77
	5600	120	n (20MHz)	6.5/7.2 (MCS0)	-1.54	11.0	-12.54
	5720	144	n (20MHz)	6.5/7.2 (MCS0)	-2.04	11.0	-13.04
	5500	100	ax (20MHz)	6.5/7.2 (MCS0)	-1.99	11.0	-12.99
	5600	120	ax (20MHz)	6.5/7.2 (MCS0)	-1.90	11.0	-12.90
	5720	144	ax (20MHz)	6.5/7.2 (MCS0)	-2.13	11.0	-13.13
20	5510	102	n (40MHz)	13.5/15 (MCS0)	-5.82	11.0	-16.82
Band 2C	5590	118	n (40MHz)	13.5/15 (MCS0)	-6.38	11.0	-17.38
ä	5710	142	n (40MHz)	13.5/15 (MCS0)	-6.76	11.0	-17.76
	5510	102	ax (40MHz)	13.5/15 (MCS0)	-5.97	11.0	-16.97
	5590	118	ax (40MHz)	13.5/15 (MCS0)	-6.89	11.0	-17.89
	5710	142	ax (40MHz)	13.5/15 (MCS0)	-7.39	11.0	-18.39
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-8.18	11.0	-19.18
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-8.45	11.0	-19.45
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-9.42	11.0	-20.42
	5530	106	ax (80MHz)	29.3/32.5 (MCS0)	-7.84	11.0	-18.84
	5610	122	ax (80MHz)	29.3/32.5 (MCS0)	-7.65	11.0	-18.65
	5690	138	ax (80MHz)	29.3/32.5 (MCS0) Spectral Dens	-8.36	11.0	-19.36

Table 7-22. Conducted Power Spectral Density Measurements SISO ANT2

FCC ID: PY7-57441Y	PCTEST Previd to be peet of @ monored	MEASUREMENT REPORT (CERTIFICATION)	SONY	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 132 of 228	
1M2007070106-06-R2.PY7	7/29 - 9/18-2020	Portable Handset			
© 2020 PCTEST	•			V 9.0 02/01/2019	