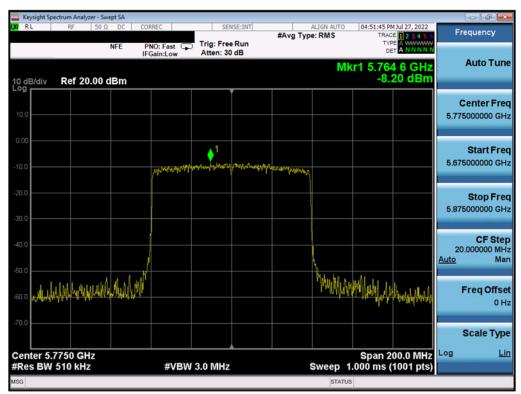

Plot 7-277. Power Spectral Density Plot MIMO ANT2 (802.11ax – 40MHz BW (UNII Band 3) – Ch. 151)


Plot 7-278. Power Spectral Density Plot MIMO ANT2 (802.11ax – 40MHz BW (UNII Band 3) – Ch. 159)

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 170 of 209
1M2207200079-10.PY7	M2207200079-10.PY7 6/3/2022-7/29/2022 Portable Handset		
© 2022 ELEMENT	•		V9.0 02/01/2019

Plot 7-279. Power Spectral Density Plot MIMO ANT2 (802.11ac - 80MHz BW (UNII Band 3) - Ch. 155)

Plot 7-280. Power Spectral Density Plot MIMO ANT2 (802.11ax – 80MHz BW (UNII Band 3) – Ch. 155)

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 474 af 200
1M2207200079-10.PY7 6/3/2022-7/29/2022		Portable Handset	Page 171 of 209
© 2022 ELEMENT	•		V9.0.02/01/2019

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 v02r01 Section E)2), the power spectral density at Antenna-1 and Antenna-2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average conducted power spectral density was measured to be N/A dBm for Antenna 1 and N/A dBm for Antenna 2.

Antenna 1 + Antenna 2 = MIMO

(N/A dBm + N/A dBm) = (N/A mW + N/A mW) = N/A mW = N/A dBm

Sample e.i.r.p Power Spectral Density Calculation:

At 5180MHz in 802.11n (20MHz BW) mode, the average MIMO power density was calculated to be N/A dBm with directional gain of -1.70 dBi.

e.i.r.p. Power Spectral Density(dBm) = Power Spectral Density (dBm) + Ant gain (dBi)

N/A dBm + (-1.70 dBi) = 1.23 dBm

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 170 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 172 of 209
© 2022 ELEMENT	-	-	V9.0 02/01/2019

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-19 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-19. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

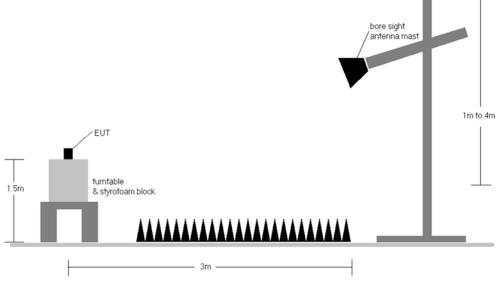
Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be \geq 2 x span/RBW)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION		
Test Report S/N:	Test Dates:	EUT Type:	Dega 172 of 200	
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 173 of 209	
© 2022 ELEMENT			V9.0 02/01/2019	

8. Trace was averaged over 100 sweeps

Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 174 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 174 of 209
© 2022 ELEMENT			V9.0 02/01/2019

Test Notes

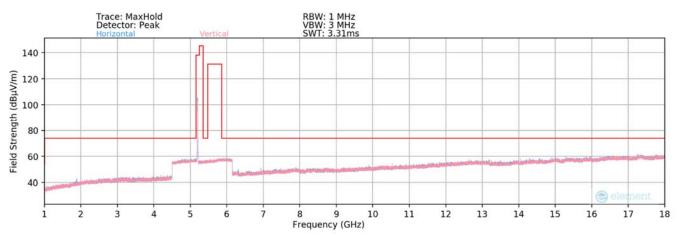
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-19.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-19. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. Radiated spurious emissions were investigated while operating in MIMO mode, however, it was determined that single antenna operation produced the worst case emissions. Since the emissions produced from MIMO operation were found to be more than 20dB below the limit, the MIMO emissions are not reported.
- 8. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

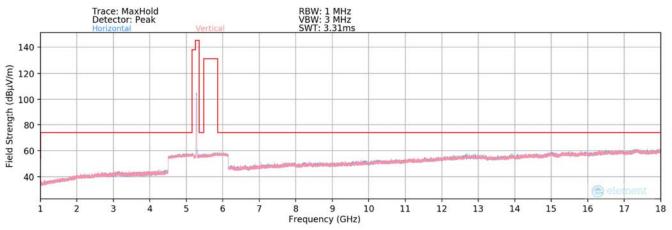
Determining Spurious Emissions Levels

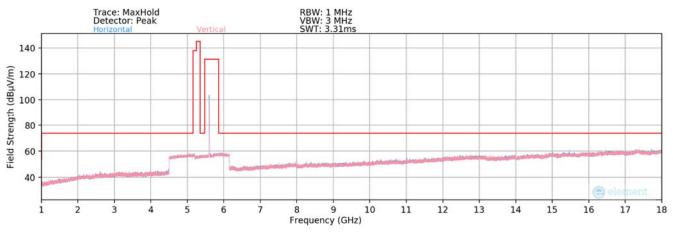
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

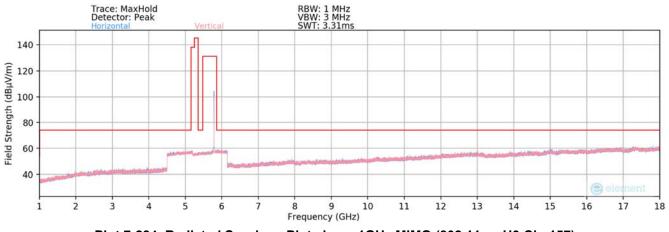
Radiated Band Edge Measurement Offset


The amplitude offset shown in the radiated restricted band edge plots was calculated using the formula:
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

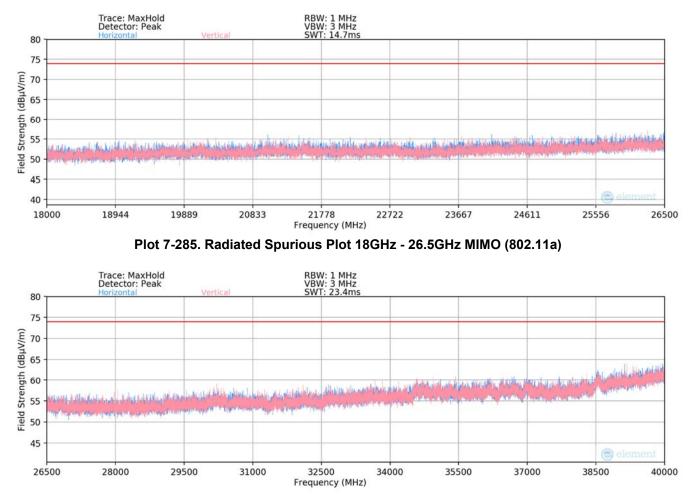
FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 175 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 175 of 209
© 2022 ELEMENT		·	V9.0 02/01/2019


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.


7.6.1 MIMO Radiated Spurious Emission Measurements



FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 176 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 176 of 209
© 2022 ELEMENT	·	·	V9.0 02/01/2019



Plot 7-284. Radiated Spurious Plot above 1GHz MIMO (802.11a - U3 Ch. 157)

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 177 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 177 of 209
© 2022 ELEMENT	<u>.</u>		V9.0 02/01/2019

MIMO Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-286. Radiated Spurious Plot 26.5GHz - 40GHz MIMO (802.11a)

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 179 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 178 of 209
© 2022 ELEMENT			V9.0 02/01/2019

MIMO Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5180MHz
Channel:	36

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Strength	Limit [dBµV/m]	Margin [dB]
10360.00	Peak	V	-	-	-70.80	16.24	0.00	52.44	68.20	-15.76
15540.00	Average	V	-	-	-82.24	23.23	0.00	47.99	53.98	-5.99
15540.00	Peak	V	-	-	-72.32	23.23	0.00	57.91	73.98	-16.07
20720.00	Average	V	-	-	-67.73	3.16	-9.54	32.89	53.98	-21.09
20720.00	Peak	V	-	-	-57.75	3.16	-9.54	42.86	73.98	-31.11
25900.00	Peak	V	-	-	-57.36	4.77	-9.54	44.87	68.20	-23.33

Table 7-20. Radiated Measurements MIMO

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a	
6Mbps	
1 & 3 Meters	
5200MHz	
40	

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
6933.40	Peak	V	108	281	-65.75	11.53	0.00	52.78	68.20	-15.42
10400.00	Peak	V	-	-	-70.99	16.36	0.00	52.37	68.20	-15.83
15600.00	Average	V	-	-	-82.36	23.44	0.00	48.08	53.98	-5.90
15600.00	Peak	V	-	-	-71.78	23.44	0.00	58.66	73.98	-15.32
20800.00	Average	V	-	-	-66.79	3.48	-9.54	34.14	53.98	-19.84
20800.00	Peak	V	-	-	-56.13	3.48	-9.54	44.81	73.98	-29.17
26000.00	Peak	V	-	-	-57.17	5.16	-9.54	45.45	68.20	-22.75

Table 7-21. Radiated Measurements MIMO

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION				
Test Report S/N:	Test Dates:	EUT Type:	Dega 170 of 200			
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 179 of 209			
© 2022 ELEMENT	-		V9.0 02/01/2019			

802.11a
6Mbps
1 & 3 Meters
5240MHz
48

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
6986.90	Peak	V	112	274	-66.97	11.62	0.00	51.65	68.20	-16.55
10480.00	Peak	V	-	-	-71.82	16.30	0.00	51.48	68.20	-16.72
15720.00	Average	V	-	-	-82.05	23.38	0.00	48.33	53.98	-5.65
15720.00	Peak	V	-	-	-72.35	23.38	0.00	58.03	73.98	-15.95
20960.00	Average	V	-	-	-67.95	3.47	-9.54	32.99	53.98	-20.99
20960.00	Peak	V	-	-	-57.66	3.47	-9.54	43.27	73.98	-30.71
26200.00	Peak	V	-	-	-56.57	4.78	-9.54	45.67	68.20	-22.53

Table 7-22. Radiated Measurements MIMO

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5260MHz
52

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
10520.00	Peak	V	-	-	-70.90	16.30	0.00	52.40	68.20	-15.80
15780.00	Average	V	-	-	-82.22	23.72	0.00	48.50	53.98	-5.48
15780.00	Peak	V	-	-	-70.73	23.72	0.00	59.99	73.98	-13.99
21040.00	Average	V	-	-	-67.88	3.53	-9.54	33.11	53.98	-20.87
21040.00	Peak	V	-	-	-58.20	3.53	-9.54	42.79	73.98	-31.19
26300.00	Peak	V	-	-	-57.94	4.64	-9.54	44.16	68.20	-24.04

Table 7-23. Radiated Measurements MIMO

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION			
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 of 000		
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 180 of 209		
© 2022 ELEMENT	•		V9.0 02/01/2019		

Worst Case Mode: 802.11a Worst Case Transfer Rate: 6Mbps Distance of Measurements: 1 & 3 Meters **Operating Frequency:** 5280MHz Channel: 56

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
10560.00	Peak	V	-	-	-71.53	16.64	0.00	52.11	68.20	-16.09
15840.00	Average	V	-	-	-82.35	23.70	0.00	48.35	53.98	-5.63
15840.00	Peak	V	-	-	-72.58	23.70	0.00	58.12	73.98	-15.86
21120.00	Average	V	-	-	-67.49	3.68	-9.54	33.64	53.98	-20.34
21120.00	Peak	V	-	-	-57.33	3.68	-9.54	43.81	73.98	-30.17
26400.00	Peak	V	-	-	-57.95	4.78	-9.54	44.29	68.20	-23.91

Table 7-24. Radiated Measurements MIMO

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a
6Mbps
1 & 3 Meters
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	V	-	-	-81.54	16.76	0.00	42.22	53.98	-11.76
*	10640.00	Peak	V	-	-	-71.02	16.76	0.00	52.74	73.98	-21.24
*	15960.00	Average	V	-	-	-82.53	24.33	0.00	48.80	53.98	-5.18
*	15960.00	Peak	V	-	-	-72.23	24.33	0.00	59.10	73.98	-14.88
*	21280.00	Average	V	-	-	-67.38	3.72	-9.54	33.80	53.98	-20.18
*	21280.00	Peak	V	-	-	-56.81	3.72	-9.54	44.37	73.98	-29.61
	26600.00	Peak	V	-	-	-58.37	4.72	-9.54	43.81	68.20	-24.39

Table 7-25. Radiated Measurements MIMO

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 181 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 181 of 209
© 2022 ELEMENT	•	-	\/0.0.02/01/2010

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5500MHz			
Channel:	100			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	V	-	-	-81.97	17.47	0.00	42.50	53.98	-11.48
*	11000.00	Peak	V	-	-	-71.61	17.47	0.00	52.86	73.98	-21.12
	16500.00	Peak	V	-	-	-72.76	25.25	0.00	59.49	68.20	-8.71
	22000.00	Peak	V	-	-	-57.54	3.83	-9.54	43.75	68.20	-24.45
	27500.00	Peak	V	-	-	-57.64	4.97	-9.54	44.79	68.20	-23.41

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5600MHz 120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	V	-	-	-81.67	17.38	0.00	42.71	53.98	-11.27
*	11200.00	Peak	V	-	-	-70.82	17.38	0.00	53.56	73.98	-20.42
	16800.00	Peak	V	-	-	-72.10	24.94	0.00	59.84	68.20	-8.36
*	22400.00	Average	V	-	-	-67.04	3.79	-9.54	34.21	53.98	-19.77
*	22400.00	Peak	V	-	-	-56.44	3.79	-9.54	44.80	73.98	-29.18
	28000.00	Peak	V	-	-	-57.45	4.94	-9.54	44.94	68.20	-23.26

Table 7-27. Radiated Measurements MIMO

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION				
Test Report S/N:	Test Dates:	EUT Type:	Dega 192 of 200			
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 182 of 209			
© 2022 ELEMENT	•	-	V9.0 02/01/2019			

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	V	-	-	-82.01	17.81	0.00	42.80	53.98	-11.17
*	11440.00	Peak	V	-	-	-71.19	17.81	0.00	53.62	73.98	-20.35
	17160.00	Peak	V	-	-	-72.09	25.10	0.00	60.01	68.20	-8.19
*	22880.00	Average	V	-	-	-67.37	3.79	-9.54	33.88	53.98	-20.10
*	22880.00	Peak	V	-	-	-57.00	3.79	-9.54	44.25	73.98	-29.73
	28600.00	Peak	V	-	-	-57.60	5.28	-9.54	45.14	68.20	-23.06

Table 7-28. Radiated Measurements MIMO

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	V	-	-	-82.03	18.15	0.00	43.12	53.98	-10.86
*	11490.00	Peak	V	-	-	-72.31	18.15	0.00	52.84	73.98	-21.14
	17235.00	Peak	V	-	-	-72.58	25.47	0.00	59.89	68.20	-8.31
*	22980.00	Average	V	-	-	-67.90	3.79	-9.54	33.35	53.98	-20.63
*	22980.00	Peak	V	-	-	-57.72	3.79	-9.54	43.53	73.98	-30.45
	28725.00	Peak	V	-	-	-57.91	5.41	-9.54	44.96	69.20	-24.24
				Table 7	7 20 Dadie	atod Moas	uromonte				

Table 7-29. Radiated Measurements MIMO

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION				
Test Report S/N:	Test Dates:	EUT Type:	Dego 192 of 200			
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 183 of 209			
© 2022 ELEMENT			V9.0 02/01/2019			

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5785MHz			
Channel:	157			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Factor	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	V	-	-	-81.81	17.88	0.00	43.07	53.98	-10.91
*	11570.00	Peak	V	-	-	-70.89	17.88	0.00	53.99	73.98	-19.99
	17355.00	Peak	V	-	-	-72.18	26.69	0.00	61.51	68.20	-6.69
	23140.00	Peak	V	-	-	-57.72	3.75	-9.54	43.49	68.20	-24.71
	28925.00	Peak	V	-	-	-57.89	5.46	-9.54	45.04	68.20	-23.16

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

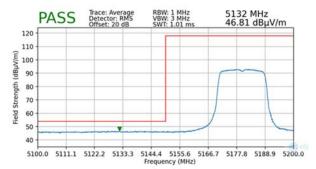
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	V	-	-	-81.76	18.01	0.00	43.25	53.98	-10.73
*	11650.00	Peak	V	-	-	-71.62	18.01	0.00	53.39	73.98	-20.59
	17475.00	Peak	V	-	-	-73.36	26.08	0.00	59.72	68.20	-8.48
	23300.00	Peak	V	-	-	-58.25	3.76	-9.54	42.97	68.20	-25.23
	29125.00	Peak	V	-	-	-57.03	5.54	-9.54	45.97	68.20	-22.23

Table 7-31. Radiated Measurements MIMO

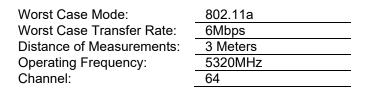
FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 194 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 184 of 209
© 2022 ELEMENT			V9.0 02/01/2019

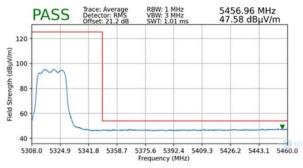
Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5200MHz		
Channel:	40		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correctio n Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	6933.40	Peak	V	115	0	-67.15	11.53	0.00	51.38	68.20	-16.82
	10400.00	Peak	V	-	-	-70.79	16.36	0.00	52.57	68.20	-15.63
*	15600.00	Average	V	-	-	-82.10	23.44	0.00	48.34	53.98	-5.64
*	15600.00	Peak	V	-	-	-71.57	23.44	0.00	58.87	73.98	-15.11
*	20800.00	Average	V	-	-	-66.67	3.48	-9.54	34.27	53.98	-19.71
*	20800.00	Peak	V	-	-	-57.01	3.48	-9.54	43.93	73.98	-30.05
	26000.00	Peak	V	-	-	-57.56	5.16	-9.54	45.06	68.20	-23.14

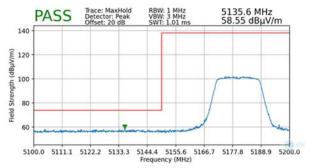

Table 7-32. Radiated Measurements MIMO - WCP

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 195 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 185 of 209
© 2022 ELEMENT			V9.0 02/01/2019

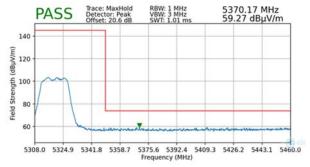



7.6.2 MIMO Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

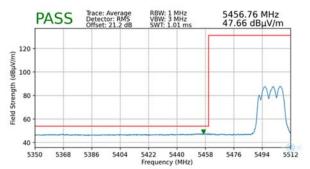
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36



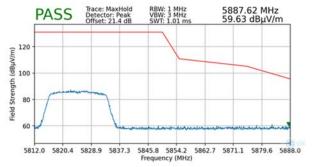
Plot 7-287. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

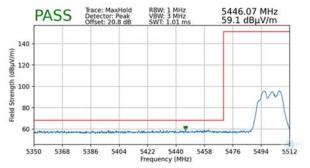


Plot 7-289. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)


Plot 7-288. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

Plot 7-290. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

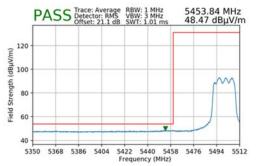

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 186 of 209
© 2022 ELEMENT			V9.0 02/01/2019



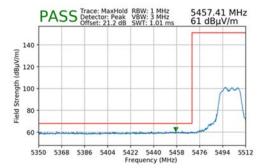
Plot 7-291. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

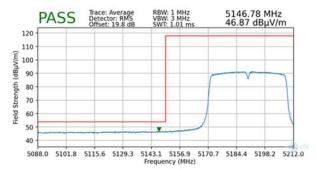
Plot 7-293. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)



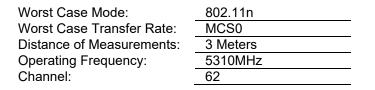
Plot 7-292. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)

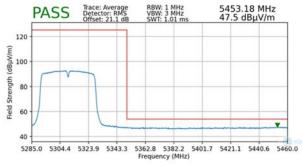

FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 197 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 187 of 209
© 2022 ELEMENT	-		V9.0 02/01/2019

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



FCC ID: PY7-58692W		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 199 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 188 of 209
© 2022 ELEMENT		·	V9.0 02/01/2019

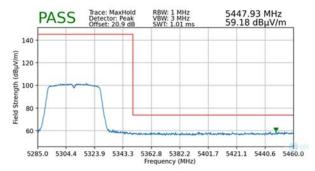



7.6.3 MIMO Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5190MHz
Channel:	38

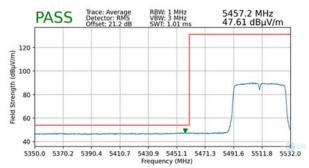


Plot 7-296. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)



Plot 7-298. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

Plot 7-297. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)



Plot 7-299. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 189 of 209
© 2022 ELEMENT			V9.0 02/01/2019



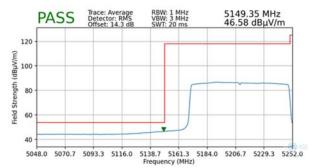
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102
Operating Frequency:	5510MHz



Plot 7-300. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5795MHz
Channel:	159
-	

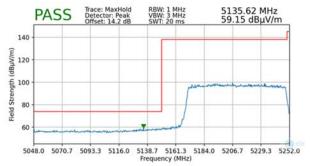
Plot 7-302. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)


Plot 7-301. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)

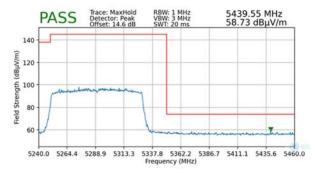
FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 190 of 209
© 2022 ELEMENT	<u>.</u>		V9.0 02/01/2019

7.6.4 MIMO Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11ax SU
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5210MHz
Channel:	42



Plot 7-303. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)


Worst Case Mode:	802.11ax SU
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5290MHz
Channel:	58

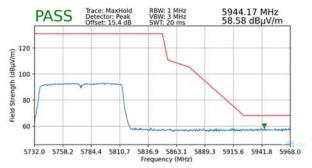
Plot 7-305. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

Plot 7-304. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

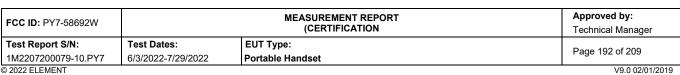


Plot 7-306. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

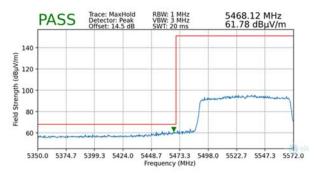
FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 af 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 191 of 209
© 2022 ELEMENT	-		V9.0 02/01/2019



Worst Case Mode:	802.11ax SU
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106

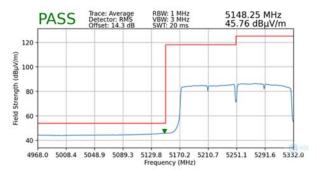


Plot 7-307. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

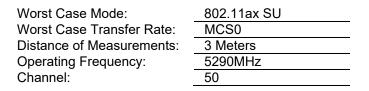

Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5775MHz
Channel:	155

Plot 7-309. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

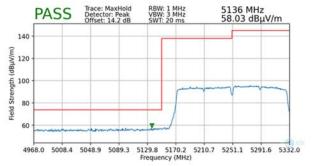


Plot 7-308. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)

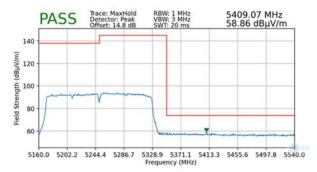


7.6.5 MIMO Radiated Band Edge Measurements (160MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11ax SU
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5250MHz
Channel:	50

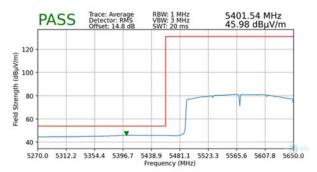


Plot 7-310. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

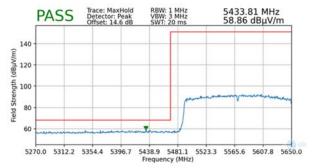


Plot 7-312. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

Plot 7-311. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)



Plot 7-313. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)


FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 402 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 193 of 209
© 2022 ELEMENT	·		V9.0 02/01/2019

Worst Case Mode:	802.11ax SU
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5570MHz
Channel:	114

Plot 7-314. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 104 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 194 of 209
© 2022 ELEMENT			V9.0 02/01/2019

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-33 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-33. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 105 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 195 of 209
© 2022 ELEMENT	-		V9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

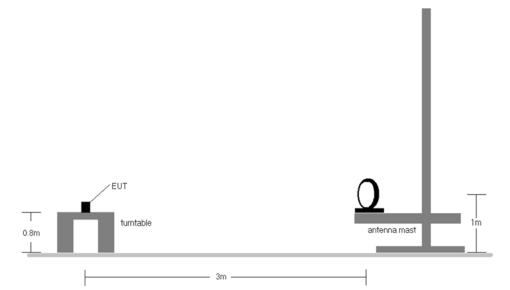
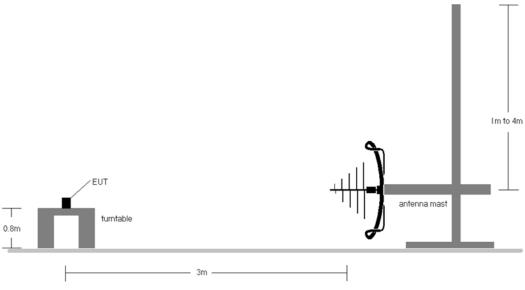
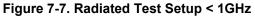
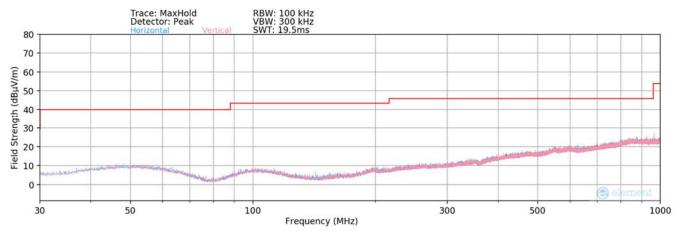




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 400 af 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 196 of 209
© 2022 ELEMENT	-		V9.0 02/01/2019


Test Notes

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-33.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 107 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 197 of 209
© 2022 ELEMENT			V9.0 02/01/2019

MIMO Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-316. Radiated Spurious Plot below 1GHz MIMO (802.11a - U1 CH. 40)

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
150.00	Quasi-Peak	Н	-	-	-62.36	-19.85	24.79	43.52	-18.73

Table 7-34. Radiated Spurious Emissions below 1GHz MIMO

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 109 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 198 of 209
© 2022 ELEMENT			V9.0 02/01/2019

7.8 Line-Conducted Test Data

§15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted Limit (dBμV)	
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-35. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

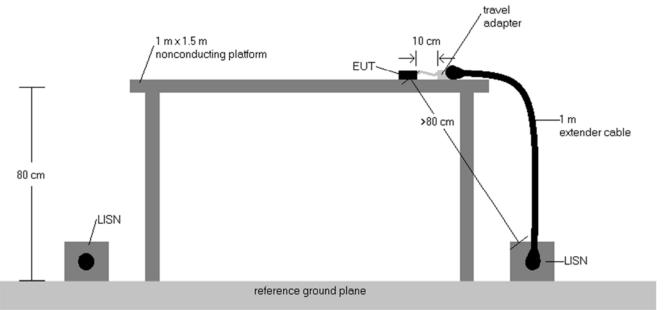
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

Average Field Strength Measurements

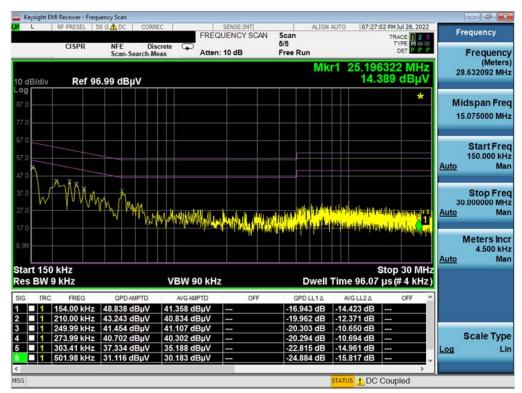

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 199 of 209
© 2022 ELEMENT	-		V9.0 02/01/2019

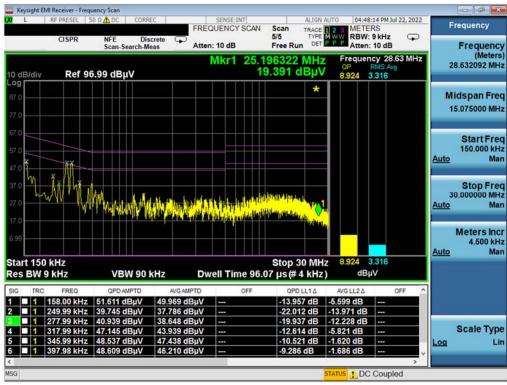
Test Setup

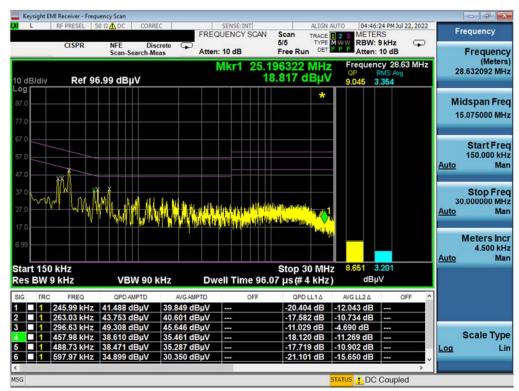
The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

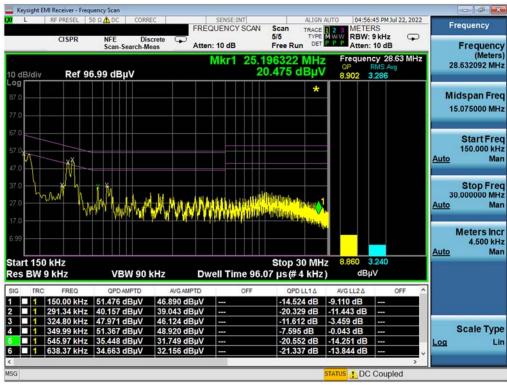

- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

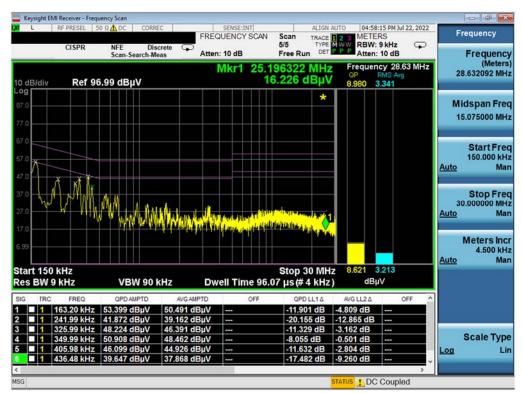
FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 of 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 200 of 209
© 2022 ELEMENT	÷		V9.0 02/01/2019




Plot 7-318. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: PY7-58692W	MEASUREMENT REPORT (CERTIFICATION		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 201 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 201 of 209
© 2022 ELEMENT	*		V9.0 02/01/2019

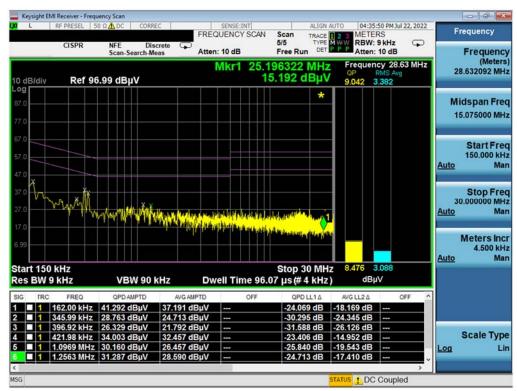



Plot 7-320. Line Conducted Plot with 802.11a UNII Band 2A (N)

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 of 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 202 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019

Plot 7-322. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 202 of 202
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 203 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019


Plot 7-324. Line Conducted Plot with 802.11a UNII Band 3 (N)

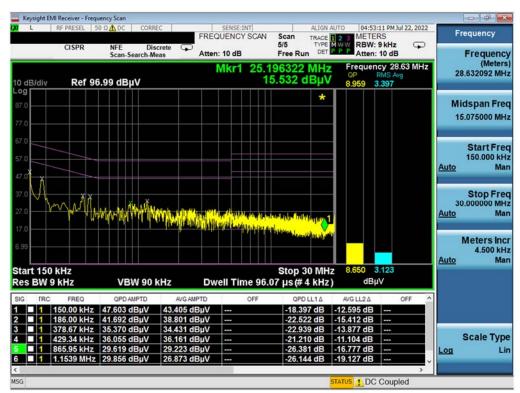
FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 004 of 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 204 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019

L	RF PRESEL S	50 Q 🛕 DC 🕴 CORR		SENSE:II		ALIGN A		04 PM Jul RS	22, 2022	Frequency
	CISPR	NFE Dis Scan-Search-M	screte	en: 10 dB	5/5 Free	TYPE	RBW:	9 kHz	P	Frequence
dB/div	Ref 9	6.99 dBµV		Mkr1	25.19632 16.248	22 MHz 3 dBµV	Frequen OP 8.945 3	RMS Avg	3 MHz	(Meter 28.632092 Mi
99 7.0 7.0						*				Midspan Fre
									A	Start Fre 150.000 ki uto Ma
~ Y										
10 Am	www	Ť.V. Marry (W.Marrycha)		eirne reela	an a	Internation 1			A	30.00000 M
	∿w∕t)	Ť.ňm/Withmhy	hadiriyyi	ing a basa ba	de <mark>del kan bie</mark> den de en det <mark>WE hopflangel de bie gebeur</mark>	the loss of the second se				Meters In 4.500 ki
NNN		VBW 90			aliyan da s _{ilin} ,	ինկություն ինչուների p 30 MHz #4 kHz)				30.000000 M <u>uto</u> M Meters In 4.500 k
art 150 l					Stop 96.07 µs (V		30.000000 M <u>uto</u> M Meters In 4.500 k
art 150 les BW 9	kHz	VBW 90	kHz D		Сіф Політа в село Stop ne 96.07 µs (OFF с	(#4 kHz)	dΒμ	V	A	30.000000 M <u>uto</u> M Meters In 4.500 k
art 150 art 150 s BW 9 3 TRC 1 1 1 3	FREQ 170.00 kHz 378.38 kHz	VBW 90 QPD AMPTD 43.353 dBµV 35.946 dBµV	kHz Dv А/GAMPTD 39.848 dBµV 35.580 dBµV	well Tim	Stop ne 96.07 µs 0FF 0 -21 -22	(# 4 kHz) DPD LL1A 1.608 dB 2.369 dB	dBµ AVG LL2A -15.113 dB -12.734 dB	•	A	30.000000 M <u>uto</u> M Meters In 4.500 k
art 150 les BW 9	KHZ FREQ 170.00 kHz 378.38 kHz 433.58 kHz	VBW 90 QPD AMPTD 43.353 dBµV 35.946 dBµV 34.719 dBµV	kHz D1 AVG AMPTD 39.848 dBpV 35.580 dBpV 34.104 dBpV	well Tim	Stop 96.07 µS(0FF C -21 -22 -22	(# 4 kHz) DPD LL1A 1.608 dB 2.369 dB 2.465 dB	dBµ AVG LL2A -15.113 dB -12.734 dB -13.080 dB	V 	A	30.000000 M uto M Meters In 4.500 k uto M
art 150 es BW 9 3 IRC 1 1 3 1 3 1 4	KHZ FREQ 170.00 kHz 378.38 kHz 433.58 kHz 497.98 kHz	VBW 90 QPD AMPTD 43.353 dBµV 35.946 dBµV 34.719 dBµV 32.081 dBµV	KHz DA AVG AMPTD 39.848 dBµV 35.580 dBµV 34.104 dBµV 30.822 dBµV	well Tim	Stop ne 96.07 µs (0FF C -21 -22 -22 -23 -23	(# 4 kHz) 2PD LL1A 1.608 dB 2.369 dB 2.465 dB 3.952 dB	AVG LL2A -15.113 dB -12.734 dB -13.080 dB -15.212 dB	••••	FF ^	30.000000 M uto M Meters In 4.500 k uto M Scale Tyj
art 150 es BW 9 6 ICC 1 1 1 1 3 1 4 1 4 1 5	KHZ FREQ 170.00 kHz 378.38 kHz 433.58 kHz 497.98 kHz 562.89 kHz	VBW 90 <u>OPDAMPTD</u> 43.353 dBµV 35.946 dBµV 34.719 dBµV 32.081 dBµV 29.266 dBµV	KHz Dy 39.848 dBµV 35.580 dBµV 34.104 dBµV 30.822 dBµV 27.282 dBµV	well Tim	CFF C -22 -22 -22 -23 -26	(# 4 kHz) DPD LL1A 1.608 dB 2.369 dB 2.465 dB 3.952 dB 5.734 dB	dBµ -15.113 dB -12.734 dB -13.080 dB -15.212 dB -18.718 dB	• ••• •••	FF ^	30.000000 M uto M Meters In 4.500 k uto M
art 150 es BW 9 3 IRC 1 1 1 1 4 1 4 1 5	KHZ FREQ 170.00 kHz 378.38 kHz 433.58 kHz 497.98 kHz 562.89 kHz	VBW 90 QPD AMPTD 43.353 dBµV 35.946 dBµV 34.719 dBµV 32.081 dBµV	KHz DA AVG AMPTD 39.848 dBµV 35.580 dBµV 34.104 dBµV 30.822 dBµV	well Tim	CFF C -22 -22 -22 -23 -26	(# 4 kHz) DPD LL1A 1.608 dB 2.369 dB 2.465 dB 3.952 dB 5.734 dB	AVG LL2A -15.113 dB -12.734 dB -13.080 dB -15.212 dB	••••	FF ^	30.000000 M uto M Meters In 4.500 k uto M Scale Ty


Plot 7-326. Line Conducted Plot with 802.11a UNII Band 1 (N) - WCP

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 205 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 205 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019

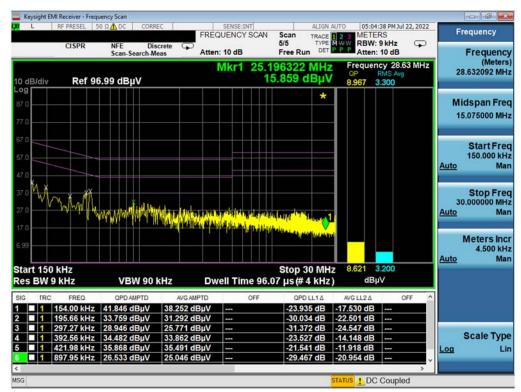
	RF PRESEL	50 Ω 🛕 DC COR	RREC	SENSE		ALIGN		:48 PM Jul	22, 2022	Frequency
	CISPR	NFE D Scan-Search-)iscrete	FREQUENC		5/5 TYPE		9 kHz	Ģ	Frequence
dB/div	Ref 9	6.99 dBµV	meas		25.19	6322 MHz .989 dBµV	Frequer	ncy 28.6 RMS Avg	3 MHz	(Meter 28.632092 Mi
7 .0						*				Midspan Fre 15.075000 Mi
^{1,0}									Aut	Start Fre 150.000 ki
									a second	
° . Tra	1K-VAN	l-meneritriteren	Ahaan Ahaa	, distribution of the		() and the local data of the l			Aut	30.000000 M
10 10 10	1×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	linterphylocop	/hisson /thig	n dial da mai ada Natifica (n. 1997) Natifica (n. 1997)	den bertikten Anteskrigensere	dia distanti dala secondo None Constanti di Secondo			Aut	Meters In 4.500 k
art 150		VBW 90				Stop 30 MH 7 µs (# 4 kHz				30.000000 M 0 M Meters In 4.500 k
art 150				Dwell Ti			-	νı		30.000000 M 10 M Meters In 4.500 k
0 1 0 1111111111111	9 kHz	VBW 90) kHz	Dwell Ti	me 96.07	7μs(#4kHz) dBj	νı	Aut	30.000000 M 0 M Meters In 4.500 k
x0 x0 39 40 40 40 40 40 40 40 40 40 40 40 40 40	9 kHz FREQ 170.00 kHz 245.99 kHz	VBW 90 QPD AMPTD 42.496 dBµV 33.550 dBµV	0 kHz AVG AMP 39.364 dB 29.942 dB	Dwell Ti PTD BµV BµV	me 96.07	22.464 dB -28.342 dB	AVG LL2A -15.596 dB -21.949 dB	µV ⊶	Aut	30.000000 M 0 M Meters In 4.500 k
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 kHz FREQ 170.00 kHz 245.99 kHz 325.99 kHz	VBW 90 OPDAMPTD 42.496 dBµV 33.550 dBµV 35.386 dBµV	0 kHz 39.364 dB 29.942 dB 34.230 dB	Dwell Ti виV вµV вµV	me 96.07	7 µs (# 4 kHz OPD LL1A -22.464 dB -28.342 dB -24.167 dB	AVG LL2A -15.596 dB -21.949 dB -15.323 dB	↓V 	Aut	30.000000 M <u>o</u> M Meters In 4.500 k <u>o</u> M
	9 kHz FREQ 170.00 kHz 245.99 kHz 325.99 kHz 381.98 kHz	VBW 90 <u>OPD AMPTD</u> 42.496 dBµV 33.550 dBµV 35.386 dBµV 37.188 dBµV	0 kHz 39.364 dB 29.942 dB 34.230 dB 36.661 dB	Dwell Ti вру вру вру вру	me 96.07	7 μs (# 4 kHz	AVG LL2A -15.596 dB -21.949 dB -15.323 dB -11.575 dB	ب∨ 	FF A	30.000000 M Scale Ty
art 150 es BW 9 3 TRC 1 1 1 1 1 1	9 kHz FREQ 170.00 kHz 245.99 kHz 325.99 kHz 381.98 kHz 421.98 kHz	VBW 90 OPDAMPTD 42.496 dBµV 33.550 dBµV 35.386 dBµV	0 kHz 39.364 dB 29.942 dB 34.230 dB	Dwell Ti врV врV врV врV врV врV	me 96.07	7 µs (# 4 kHz OPD LL1A -22.464 dB -28.342 dB -24.167 dB	AVG LL2A -15.596 dB -21.949 dB -15.323 dB	↓V 	Aut	30.000000 M Scale Ty


Plot 7-328. Line Conducted Plot with 802.11a UNII Band 2A (N) - WCP

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 000 of 000
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 206 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019

	RF PRESEL 5	50 Ω 🛕 DC CORP		SENSE:I	SCAN S	can TRACE	1 2 3 METE		22,2022	Frequency
	CISPR	NFE Dis Scan-Search-M	screte 🗭 Atte	en: 10 dB	5/ Fi		MWW RBW:		P	Frequence
) dB/div	Ref 9	6.99 dBµV		Mkr1		6322 MHz 331 dBµV		RMS Avg	3 MHz	(Meter 28.632092 MF
7 .0						*				Midspan Fre 15.075000 MH
7.0									Au	Start Fre 150.000 kH to Ma
7.0 M	XMMA	NAMANA	id, and the local states	14 APT 14 AL	u lasal inginati	1 مدر ابند ابندان ^{اناند} در			Au	30.00000 M
7.0 Å	X MM	eran yang berge			s siste for front sources					30.000000 Mi to Mi Meters In 4.500 ki
7.0 X 7.0 X 7.0 Y 7.0 Y 99 Hart 150 I		VBW 90			s	Stop 30 MH			<u>Au</u>	30.000000 Mi to M Meters In 4.500 ki
7.0 7.0 99 tart 150 I es BW 9					s		-	١V		30.000000 Mi to Mi Meters In 4.500 ki
7.0 7.0 99 tart 150 l es BW 9	kHz	VBW 90	kHz D		S ne 96.07	µs(#4 kHz) dBj	١V	Au	30.000000 Mi to Mi Meters In 4.500 ki
	FREQ 150.00 kHz 186.31 kHz	VBW 90 QPD AMPTD 47.087 dBµV 41.337 dBµV	kHz D AVG AMPTD 45.025 dBµV 37.900 dBµV	well Tin	S ne 96.07	us (# 4 kHz QPD LL1A -18.913 dB -22.863 dB	AVG LL2A -10.975 dB -16.300 dB	۰۷ ۰۰۰	Au	30.000000 Mi to Mi Meters In 4.500 ki
7.0 7.0 99 tart 150 l es BW 9 G IRC 1 1 1 ■ 1 1 2 1 1 2	KHZ FREQ 150.00 kHz 186.31 kHz 251.53 kHz	VBW 90 QPDAMPTD 47.087 dBµV 41.337 dBµV 35.545 dBµV	kHz D AVG AMPTD 45.025 dBµV 37.900 dBµV 33.249 dBµV	well Tin	S ne 96.07	us (# 4 kHz <u>QPD LL1A</u> -18.913 dB -22.863 dB -26.161 dB	AVG LL2A -10.975 dB -16.300 dB -18.458 dB	···	Au	30.000000 Mi to Mi Meters In 4.500 ki to Mi
art 150 l es BW 9 G IRC 1 1 1 1 2 1 2 1 2	FREQ 150.00 kHz 186.31 kHz 251.53 kHz 297.99 kHz	VBW 90 QPDAMPTD 47.087 dBµV 41.337 dBµV 35.545 dBµV 33.198 dBµV	kHz D AVG AMPTD 45.025 dBµV 37.900 dBµV 33.249 dBµV 32.147 dBµV	well Tin	S ne 96.07	CPD LL1A -18.913 dB -22.863 dB -26.161 dB -27.100 dB	AVG LL2A -10.975 dB -16.300 dB -18.458 dB -18.151 dB	.V. 	FF A	Meters in 4.500 ki to Mi Scale Typ
G IRC 1 1 1 1 2 1 2 1 3 1 3	KHZ FREQ 150.00 kHz 186.31 kHz 251.53 kHz 297.99 kHz 375.00 kHz	VBW 90 QPDAMPTD 47.087 dBµV 41.337 dBµV 35.545 dBµV	kHz D AVG AMPTD 45.025 dBµV 37.900 dBµV 33.249 dBµV	well Tin	S ne 96.07	CPD LL1A -18.913 dB -22.863 dB -26.161 dB -27.100 dB	AVG LL2A -10.975 dB -16.300 dB -18.458 dB	···	Au	30.000000 MM to M Meters In 4.500 ki to M Scale Tyj

Plot 7-329. Line Conducted Plot with 802.11a UNII Band 2C (L1) - WCP


Plot 7-330. Line Conducted Plot with 802.11a UNII Band 2C (N) - WCP

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 207 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 207 of 209
© 2022 ELEMENT	•		V9.0 02/01/2019

L	RF PRESEL	50 Q 🛕 DC COR		SENSE: REQUENC		ALIGN Scan TRACE	AUTO 05:03	29 PM Jul 2	22,2022	Frequency
	CISPR	NFE Di Scan-Search-M	iscrete	Atten: 10 dB		5/5 TYPE	MWW PPPP Atten:	9 kHz	Ŧ	Frequen
) dB/div	Ref 9	6.99 dBµV		Mkr1		6322 MHz .811 dBµ∖		RMS Avg	3 MHz	(Meter 28.632092 M
og 7.0 7.0						*				Midspan Fro 15.075000 Mi
7.0									A	Start Fro 150.000 ki uto M
7.0 Å	^ĸ ŊħſĬĮ	Whowall	المرابعة المرابع	niya prinale		A section of the section of			A	Stop Fro 30.000000 M uto M
7.0	^ĸ ŊħŗĮĮį	Www.dy	k dag di nadi pilaka kaja			test free product				30.000000 M uto M Meters In 4.500 k
7.0 Å		/////////////////////////////////////		did. Intility of		Stop 30 MH 7 µs (# 4 kHz				30.000000 M <u>uto</u> M Meters In 4.500 k
7.0 7.0 7.0 99 tart 150				Dwell Ti			-	١V		30.000000 M uto M Meters In 4.500 k
7.0 7.0 99 tart 150 es BW 9	FREQ 185.98 kHz	QPD AMPTD 40.163 dBµV	KHZ AVG AMPT 36.142 dBJ	Dwell Tin	me 96.07	QPD LL1Δ -24.051 dB) dBµ AVG LL2∆ -18.072 dB	١V	A	30.000000 M uto M Meters In 4.500 k
7.0 7.0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FREQ 185.98 kHz 229.99 kHz	оррамртр 40.163 dBµV 34.898 dBµV	KHZ 36.142 dBj 35.108 dBj		me 96.07	7 μs (# 4 kHz	AVG LL2A -18.072 dB -17.342 dB	OI	A	30.000000 M uto M Meters In 4.500 k
7.0 7.0 99 tart 150 es BW 9 1 1 1	FREQ 185.98 kHz 229.99 kHz 305.99 kHz	QPD AMPTD 40.163 dBµV 34.898 dBµV 33.198 dBµV	KHz 36.142 dBµ 35.108 dBµ 32.398 dBµ		me 96.07	7 μs (# 4 kHz	AVG LL2A -18.072 dB -17.342 dB -17.680 dB	OI	A	30.000000 M uto M Meters In 4.500 k uto M
7.0 7.0 7.0 7.0 99 1 6 TRC 1 1 1 1	FREQ 185.98 kHz 229.99 kHz 305.99 kHz 385.98 kHz	<u>QPD AMPTD</u> 40.163 dBµV 34.898 dBµV 33.198 dBµV 38.627 dBµV	KHz 36.142 dBµ 35.108 dBµ 32.398 dBµ 38.449 dBµ		me 96.07	7 µs (# 4 kHz QPD LL1A -24.051 dB -27.552 dB -26.881 dB -19.522 dB	AVG LL2A -18.072 dB -17.342 dB -17.680 dB -9.701 dB	OI	FF A	30.000000 M uto M Meters In 4.500 k uto M Scale Tyj
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FREQ 185.98 kHz 229.99 kHz 305.99 kHz 385.98 kHz 429.98 kHz	<u>QPD AMPTD</u> 40.163 dBµV 34.898 dBµV 33.198 dBµV 38.627 dBµV	KHz 36.142 dBµ 35.108 dBµ 32.398 dBµ		me 96.07	7 µs (# 4 kHz QPD LL1A -24.051 dB -27.552 dB -26.881 dB -19.522 dB	AVG LL2A -18.072 dB -17.342 dB -17.680 dB	OI	A	30.000000 M uto M Meters In 4.500 k uto M Scale Ty

Plot 7-332. Line Conducted Plot with 802.11a UNII Band 3 (N) - WCP

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	
Test Report S/N:	Test Dates:	EUT Type:	Dama 200 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 208 of 209
© 2022 ELEMENT	*		V9.0 02/01/2019

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Sony Corporation Portable Handset FCC ID: PY7-58692W** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: PY7-58692W		MEASUREMENT REPORT (CERTIFICATION	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 200 of 200
1M2207200079-10.PY7	6/3/2022-7/29/2022	Portable Handset	Page 209 of 209
© 2022 ELEMENT	•	· ·	V9.0 02/01/2019