

TEST REPORT

Report Number: R15103618-E4

- Applicant : Sony Corporation 1-7-1 Konan Minato-Ku Tokyo, 108-0075, Japan
 - FCC ID : PY7-46195Y
- **EUT Description :** LTE/5G Portable Data Transmitter with BT, DTS/UNII a/b/g/n/ac/ax and GPS
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C: 2024

Date Of Issue: 2024-02-27

Prepared by:

UL LLC 12 Laboratory Dr. Research Triangle Park, NC 27709 U.S.A. TEL: (919) 549-1400

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	2024-02-27	Initial Issue	Charles Moody

Page 2 of 113

TABLE OF CONTENTS

REF	PORT	REVISION HISTORY	.2
TAE	BLE O	F CONTENTS	.3
1.	ATTE	STATION OF TEST RESULTS	.5
2.	TEST	RESULTS SUMMARY	.6
3.	TEST	METHODOLOGY	.6
4.	FACII	LITIES AND ACCREDITATION	.6
5.	DECI	SION RULES AND MEASUREMENT UNCERTAINTY	7
5.	.1. N	IETROLOGICAL TRACEABILITY	.7
5.	.2. D	DECISION RULES	.7
5.	.3. N	IEASUREMENT UNCERTAINTY	.7
5.	.4. S	AMPLE CALCULATION	7
6.	EQUI	PMENT UNDER TEST	.8
6.	.1. E	UT DESCRIPTION	8
6.	.2. N	IAXIMUM OUTPUT POWER	8
6.	.3. D	DESCRIPTION OF AVAILABLE ANTENNAS	8
6.	. <i>4.</i> S	OFTWARE AND FIRMWARE	8
6.	.5. V	VORST-CASE CONFIGURATION AND MODE	9
6.	.6. D	DESCRIPTION OF TEST SETUP1	0
7.	TEST	AND MEASUREMENT EQUIPMENT1	1
8.	MEAS	SUREMENT METHODS1	5
9.	ANTE	INNA PORT TEST RESULTS1	6
9.	.1. C	ON TIME AND DUTY CYCLE1	6
9.		0 dB BANDWIDTH1	
	9.2.1. 9.2.2.		
9.	.3. H	OPPING FREQUENCY SEPARATION2	
	9.3.1. 9.3.2.		-
9.	.4. N	IUMBER OF HOPPING CHANNELS2	
	9.4.1.		
~	9.4.2.		-
9.	. <i>5. A</i> 9.5.1.	VERAGE TIME OF OCCUPANCY	3

Page 3 of 113

UL LLC

9.5.2.	BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	37
9.6. OL 9.6.1. 9.6.2. 9.6.3.	JTPUT POWER BLUETOOTH BASIC DATA RATE GFSK MODULATION BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION BLUETOOTH ENHANCED DATA RATE DQPSK MODULATION	42 43
9.7. AV 9.7.1. 9.7.2. 9.7.3.	<i>ERAGE POWER</i> BLUETOOTH BASIC DATA RATE GFSK MODULATION BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION BLUETOOTH ENHANCED DATA RATE DQPSK MODULATION	45 45
9.8.1. 9.8.2.		48 52
10. RAD	IATED TEST RESULTS	56
<i>10.1.</i> 10.1.1. 10.1.2.		
10.2. I	WORST CASE BELOW 30MHz	
10.3. I	WORST CASE 30-1000MHz	
<i>10.4.</i> I	WORST CASE 18-26 GHz	
11. AC P	POWER LINE CONDUCTED EMISSIONS	
11.1.1. 11.1.2.	AC POWER LINE NORM – CHAIN 0 AC POWER LINE NORM – CHAIN 1	
12. SETU	UP PHOTOS	113
END OF TE	ST REPORT	113

Page 4 of 113

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075, Japan
EUT DESCRIPTION:	LTE/5G Portable Data Transmitter with BT, DTS/UNII a/b/g/n/ac/ax and GPS
SERIAL NUMBER:	QV77000LJP, QV77006NLY, QV77009KLY
SAMPLE RECEIPT DATE:	2023-12-01 TO 2023-12-26
DATE TESTED:	2024-01-25 TO 2024-02-22

	APPLICABLE STANDARDS				
STANDARD TEST RESULTS					
4	7 CFR Part 15 Subpart C: 2024	See Section 2			

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document.

Approved & Released For UL LLC By:

'ou

Jeffrey Moser Operations Manager Consumer, Medical and IT Segment UL LLC

Prepared By:

Charles Moody Engineer Consumer, Medical and IT Segment UL LLC

Page 5 of 113

2. TEST RESULTS SUMMARY

This report contains data provided by the applicant which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

Below is a list of the data provided by the customer:

- 1) Antenna gain and type (see section 6.3)
- 2) Cable loss (see sections 9.6 and 9.7)

FCC Clause	Requirement	Result	Comment	
See Comment	Duty Cycle	Reporting	Per ANSI C63.10,	
See Comment		purposes only	Section 11.6.	
See Comment	20dB BW	Reporting	ANSI C63.10 Sections	
See Comment		purposes only	6.9.2.	
15.247 (a)(1)	Hopping Frequency Separation		None	
15.247 (a)(1)(iii)	Number of Hopping Channels	Compliant		
15.247 (a)(1)(iii)	Average Time of Occupancy	Compliant		
15.247 (b)(1)	Output Power			
See Comment	Average Power	Reporting	Per ANSI C63.10,	
See Comment	Average Fower	purposes only	Section 11.9.2.3.2.	
15.247 (d)	Conducted Spurious Emissions			
15.209, 15.205	Radiated Emissions	Compliant	None	
15.207	AC Mains Conducted Emissions	-		

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, KDB 558074 D01 15.247 Meas Guidance v05r02, and KDB 414788 D01 Radiated Test Site v01r01.

4. FACILITIES AND ACCREDITATION

UL LLC is accredited by A2LA, certification # 0751.06, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	825374
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	030007	27265	023374

Page 6 of 113

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Radio Frequency (Spectrum Analyzer)	141.2 Hz
Occupied Channel Bandwidth	1.22%
RF output power, conducted	1.3 dB (PK) 0.45 dB (AV)
Power Spectral Density, conducted	2.47 dB
Unwanted Emissions, conducted	1.94 dB
All emissions, radiated	6.01 dB
Conducted Emissions (0.150-30MHz) - LISN	3.40 dB
Temperature	0.57°C
Humidity	3.39%
DC Supply voltages	1.70%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

Page 7 of 113

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a LTE/5G Portable Data Transmitter with BT, DTS/UNII a/b/g/n/ac/ax and GPS. This report covers the full emissions testing of the Bluetooth radio.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power		
(MHz)		(dBm)	(mW)		
Chain 0					
2402 - 2480	Basic GFSK	11.42	13.87		
2402 - 2480	Enhanced DQPSK	13.75	23.71		
2402 - 2480	Enhanced 8PSK	14.15	26.00		
Chain 1	Chain 1				
2402 - 2480	Basic GFSK	10.99	12.56		
2402 - 2480	Enhanced DQPSK	13.57	22.75		
2402 - 2480	Enhanced 8PSK	14.16	26.06		

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows: The radio utilizes two antennas for diversity, with the following types and maximum gains:

Chain	Designation in Documentation	Туре	Frequency Range (MHz)	Maximum Gain (dBi)
0	WLAN Main/Bluetooth#1	Monopole	2402-2480	-1.58
1	WLAN Sub/Bluetooth#2	Monopole	2402-2480	-3.32

6.4. SOFTWARE AND FIRMWARE

The software version used during testing was 0.162.

6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest average output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low and high channels, with mid channel added for radiated emissions. Bandedge and spurious emissions were run at GFSK and 8PSK to cover DQPSK.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Y orientation was worst-case orientation for chain 0 and chain 1. Therefore, all final radiated testing was performed with the EUT in Y orientation for both chains.

Worst-case data rates as provided by the client were:

GFSK mode: DH5 8PSK mode: 3-DH5

Page 9 of 113

6.6. DESCRIPTION OF TEST SETUP

Support Equipment List						
Description	Manufacturer	Model	Serial Number	FCC ID		
Support Laptop	Lenovo	T14 Gen3	PF4FKVWW	N/A		
Support Laptop	Lenovo	T14 Gen3	PF4FKVZE	N/A		
Support Laptop	Lenovo	Yoga 7	PF49WDF9	PD9AX211NG		
Support Laptop	Dell	Inspiron 15	2SFMJP3	N/A		
AC Adapter	Sony	XQZ-UC1	3223W09206247	N/A		
AC Adapter	Sony	XQZ-UC1	1821W34209802	N/A		
Laptop AC Adapter	Lenovo	ADLX65YDC2D	8SSA10R16970D1SG35A13LV	N/A		
Laptop AC Adapter	Dell	DA65NM191	CN-0KPVMF-DES00-22N- A4N0-A00	N/A		
RJ45 Adapter	Best Buy	BE-PA3U6E	N/A	N/A		

SUPPORT EQUIPMENT

I/O CABLES

I/O Cable List							
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	USB-C	1	USB	Shielded	<1m	Used to Connect EUT to AC Mains.	
2	RJ-45	1	RJ-45	Shielded	<3m	Connected from EUT to support laptop	
3	HDMI	1	HDMI	Shielded	<3m	Connected from EUT to support laptop	
4	USB-C	1	USB-C	Shielded	<3m	Connected from EUT to support laptop	

TEST SETUP

The EUT is connected to a support laptop during testing. Test software exercised the radio card.

SETUP DIAGRAMS

Please refer to R15103618-EP3 for setup diagrams

Page 10 of 113

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Equipment ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Common Equipment				
	Conducted Room 2				
		Keysight			
90410	Spectrum Analyzer	Technologies	N9030A	2023-06-14	2024-06-14
		Fisher			
238710	Environmental Meter	Scientific	15-077-963	2023-06-27	2024-06-27
	Real-Time Peak Power Sensor				
211056	50MHz to 8GHz	Boonton	RTP5000	2023-08-01	2024-08-01
	Real-Time Peak Power Sensor				
211057	50MHz to 8GHz	Boonton	RTP5000	2023-08-01	2024-08-01
SOFTEMI	Antenna Port Software	UL	Version 2023.2.16	NA	NA
Power Software	Boonton Power Analyzer	Boonton	Version 3.0.13.0	NA	NA
	Attenuators				
	SMA Coaxial 10dB Attenuator				
**226561	25MHz-18GHz	CentricRF	C18S2-10	2023-02-16	2024-02-16
	SMA Coaxial 10dB Attenuator				
**226563	25MHz-18GHz	CentricRF	C18S2-10	2023-02-16	2024-02-16
	Cables				
		Carlisle			
	Micro-Coax UTiFLEX Cable	Interconnect	UFA147A-2-0360-		
**CBL091	Assembly, Low Loss,40Ghz	Technologies	200200	2023-02-17	2024-02-17
		Carlisle			
	Micro-Coax UTiFLEX Cable	Interconnect	UFA147A-2-0360-		
**CBL092	Assembly, Low Loss,40Ghz	Technologies	200200	2023-02-17	2024-02-17

Test Equipment Used - Wireless Conducted Measurement Equipment

**NOTE: Testing on this equipment was performed prior to the calibration expiration date. Therefore, at the time of testing, all equipment was in calibration.

Page 11 of 113

Equipment					
ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	Coax cable, RG223, N-male				
CBL087	to BNC-male, 20-ft.	Pasternack	PE3W06143-240	2023-04-04	2024-04-04
179892	Environmental Meter	Fisher Scientific			2024-06-31
	LISN, 50-ohm/50-uH, 250uH	Fischer Custom	FCC-LISN-50/250-25-		
80391	2-conductor, 25A	Com.	2-01	2023-07-31	2024-07-31
75141	EMI Test Receiver 9kHz- 7GHz	Rohde & Schwarz	ESCI 7	2023-08-01	2024-08-01
52859	Transient Limiter, 0.009- 100MHz	Electro-Metrics	EM-7600	2023-04-04	2024-04-04
PS214	AC Power Source	Elgar	CW2501M	NA	NA
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 202	1)
	Miscellaneous (if needed)				
	ANSI C63.4 1m extension		Per Annex B of ANSI		
84681	cable.	UL	C63.4	2023-09-18	2024-09-18

Test Equipment Used - Line-Conducted Emissions – Voltage (Morrisville – Conducted 1)

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville – Chamber 4)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
89509	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2023-05-23	2025-05-23
	18-40 GHz				
204704	Horn Antenna, 18- 26.5GHz	Com-Power	AH-826	2023-07-20	2025-07-20
	Gain-Loss Chains				
207640	Gain-loss string: 1- 18GHz	Various	Various	2023-05-17	2024-05-17
225795	Gain-loss string: 18-40GHz	Various	Various	2023-05-17	2024-05-17
	Receiver & Software				
197955	Spectrum Analyzer	Rohde & Schwarz	ESW44	2023-04-10	2024-04-10
81018	Spectrum Analyzer	Agilent	E4446A	2023-08-01	2024-08-01
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 2021))21)
	Additional Equipment used				
241204	Environmental Meter	Fisher Scientific	15-077-963	2023-09-05	2025-09-05

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville – Chamber 1)

Equip. ID	Description	Manufacturer	Model Number	Last Cal.	Next Cal.
	1-18 GHz				
206211	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2023-04-06	2024-04-06
	Gain-Loss Chains				
91979	Gain-loss string: 1- 18GHz	Various	Various	2023-05-16	2024-05-16
	Receiver & Software				
206496	Spectrum Analyzer	Rohde & Schwarz	ESW44	2023-03-24	2024-03-24
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 2021)		21)
	Additional Equipment used				
241205	Environmental Meter	Fisher Scientific	15-077-963	2023-09-05	2025-09-05

Page 13 of 113

Test Equipment Used - Radiated Disturbance Emissions Test Equipment (Morrisville – Chamber 2)

Equip. ID	Description	Manufacturer/Brand	Model Number	Last Cal.	Next Cal.
	0.009-30MHz				
65682	Active Loop Antenna	ETS-Lindgren	6502	2023-10-03	2024-10-03
	30-1000 MHz				
85717	Hybrid Broadband Antenna	Sunol Sciences Corp.	JB1	2023-03-01	2024-03-01
	1-18 GHz				
86408	Double-Ridged Waveguide Horn Antenna, 1 to 18 GHz	ETS Lindgren	3117	2023-06-19	2025-06-19
	Gain-Loss Chains				
91975	Gain-loss string: 0.009-30MHz	Various	Various	2023-06-06	2024-06-06
91978	Gain-loss string: 25-1000MHz	Various	Various	2023-06-06	2024-06-06
91977	Gain-loss string: 1- 18GHz	Various	Various	2023-06-06	2024-06-06
	Receiver & Software				
**197954	Spectrum Analyzer	Rohde & Schwarz	ESW44	2023-02-02	2024-02-02
SOFTEMI	EMI Software	UL	Version 9.5 (18 Oct 2021)		21)
	Additional Equipment used				
239540	Environmental Meter	Fisher Scientific	15-077-963	2023-07-19	2025-07-19

**NOTE: Testing on this equipment was performed prior to the calibration expiration date. Therefore, at the time of testing, all equipment was in calibration.

Page 14 of 113

8. MEASUREMENT METHODS

On Time and Duty Cycle: ANSI C63.10-2013 Section 11.6

Occupied BW (20dB): ANSI C63.10-2013 Section 6.9.2

Carrier Frequency Separation: ANSI C63.10-2013 Section 7.8.2

Number of Hopping Frequencies: ANSI C63.10-2013 Section 7.8.3

Time of Occupancy (Dwell Time): ANSI C63.10-2013 Section 7.8.4

Peak Output Power: ANSI C63.10-2013 Section 7.8.5

Conducted Spurious Emissions: ANSI C63.10-2013 Section 7.8.8

Conducted Band-Edge: ANSI C63.10-2013 Section 6.10.4

General Radiated Spurious Emissions: ANSI C63.10-2013 Section 6.3 to 6.6

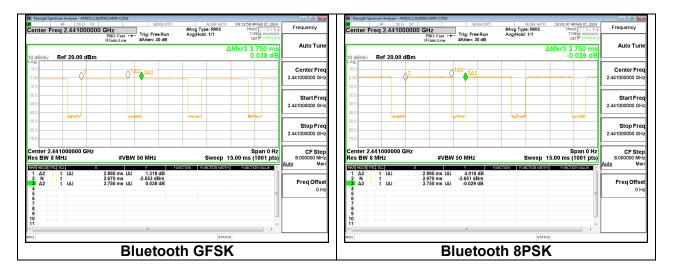
Radiated Band-edge: ANSI C63.10-2013 Section 6.10.5

AC Power-line conducted emissions: ANSI C63.10-2013, Section 6.2

Page 15 of 113

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE


<u>LIMITS</u>

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6 : Zero-Span Spectrum Analyzer Method.

Mode	ON Time	Period	Duty Cycle	Duty	1/T
	В		x	Cycle	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(kHz)
Bluetooth GFSK	2.895	3.750	0.772	77.20	0.345
Bluetooth 8PSK	2.895	3.750	0.772	77.20	0.345

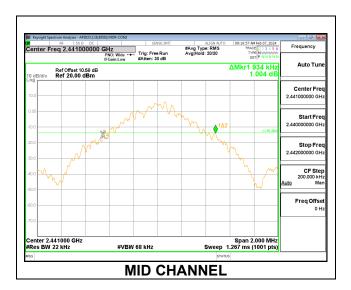
Note: The DCCF used was calculated based on the worst case on-time when the device transmits DH5 packets and operates on 20 channels (5/1600 s per hop = 3.125 ms per channel). In this mode, the device will have a maximum of 2 hops on a channel in 100ms or 2x 3.125 ms = 6.25 ms on any channel. Therefore, $20\log(6.25 / 100) = -24$ dB.

Page 16 of 113

9.2. 20 dB BANDWIDTH

LIMITS

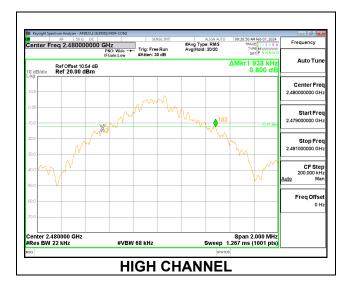
None; for reporting purposes only.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

9.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

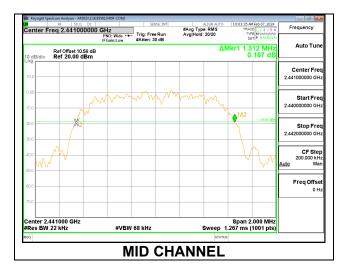
Chain 0


Channel	Frequency	20dB Bandwidth
	(MHz)	(MHz)
Low	2402	0.938
Mid	2441	0.934
High	2480	0.950

Page 17 of 113

<u>Chain 1</u>

Channel	Frequency	20dB Bandwidth
	(MHz)	(MHz)
Low	2402	0.946
Mid	2441	0.950
High	2480	0.938



Page 18 of 113

9.2.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION


Chain 0

Channel	Frequency	20dB Bandwidth
	(MHz)	(MHz)
Low	2402	1.348
Mid	2441	1.312
High	2480	1.344

<u>Chain 1</u>

Channel	Frequency	20dB Bandwidth
	(MHz)	(MHz)
Low	2402	1.352
Mid	2441	1.332
High	2480	1.328

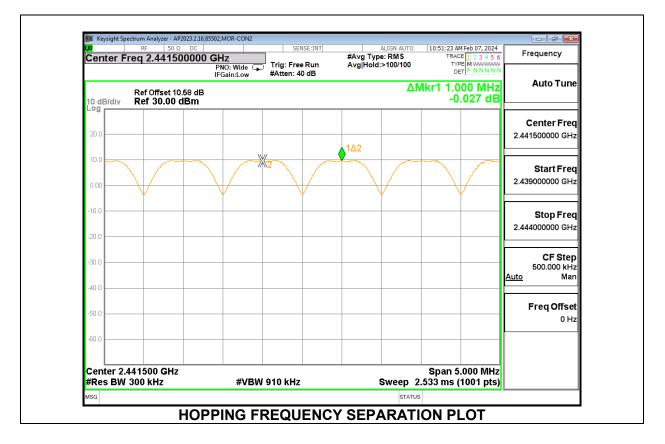
Page 19 of 113

9.3. HOPPING FREQUENCY SEPARATION

LIMITS

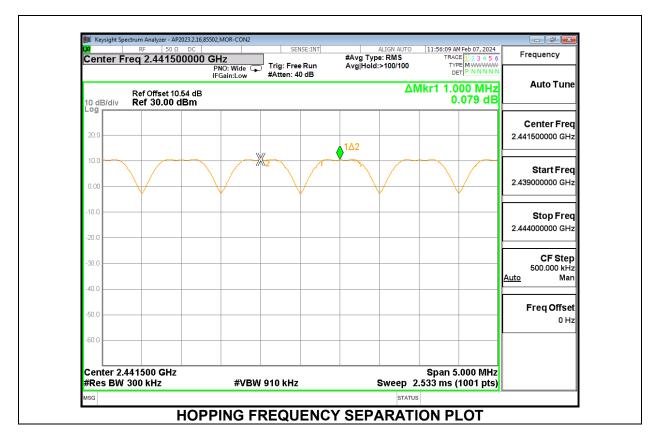
FCC §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.


Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

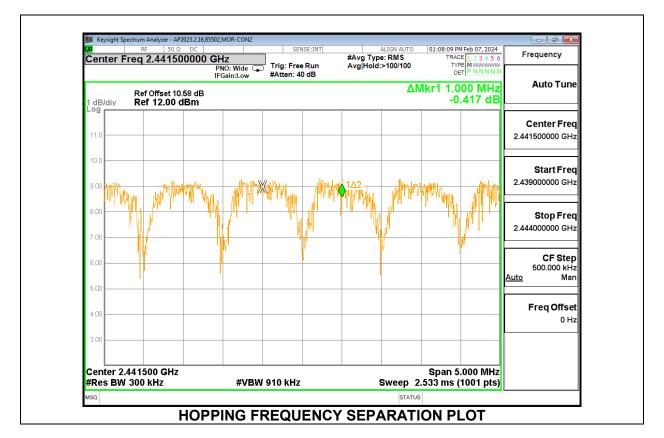
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to VBW >= RBW. The sweep time is coupled.


9.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

CHAIN 0

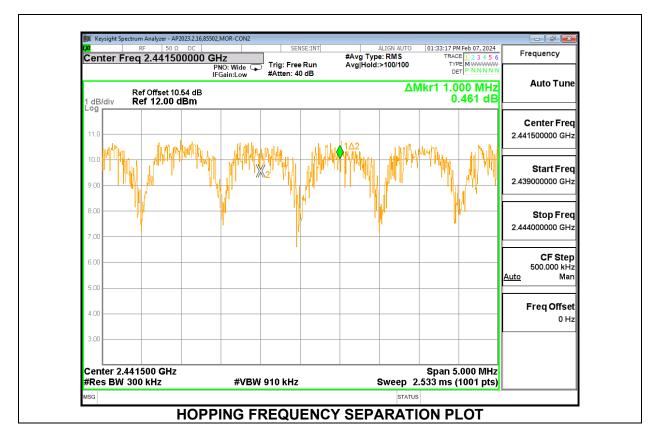
Page 20 of 113


CHAIN 1

Page 21 of 113

9.3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

CHAIN 0



Since output power is <125mW (21dBm), Separation can be > 2/3 20dB BW

Output	Separation	20dB BW	2/3 dB BW	Margin
Power (dBm)	(MHz)	(MHz)	(MHz)	(MHz)
13.61	1.000	1.312	0.875	-0.125

Page 22 of 113

CHAIN 1

Since output power is <125mW (21dBm), Separation can be > 2/3 20dB BW

Output	Separation	20dB BW	2/3 dB BW	Margin
Power (dBm)	(MHz)	(MHz)	(MHz)	(MHz)
13.74	1.000	1.332	0.888	-0.112

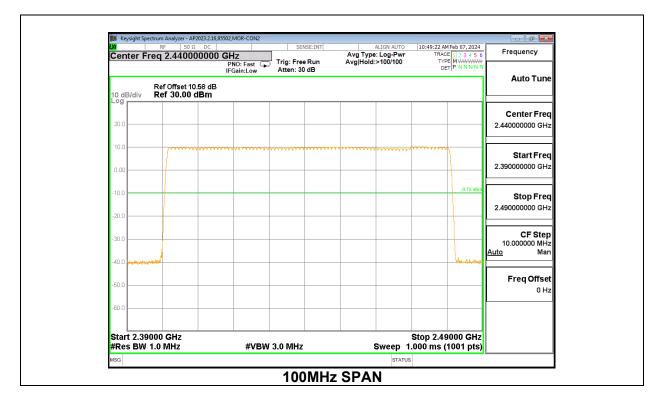
Page 23 of 113

9.4. NUMBER OF HOPPING CHANNELS

LIMITS

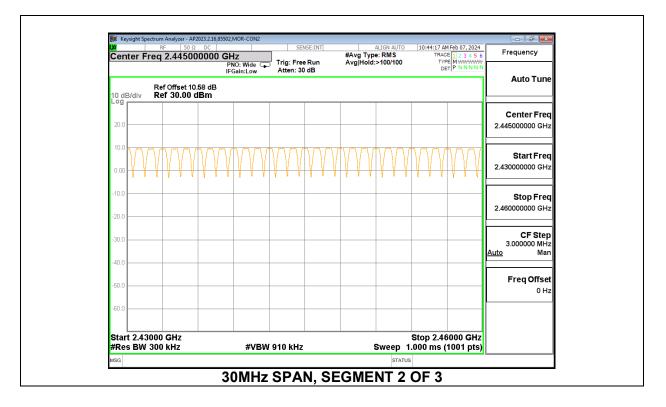
FCC §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

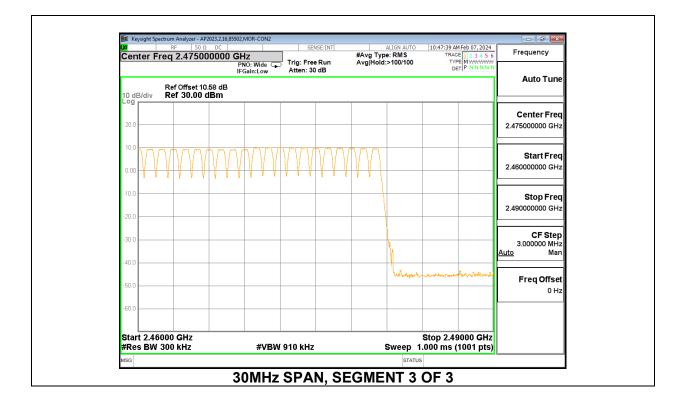

TEST PROCEDURE

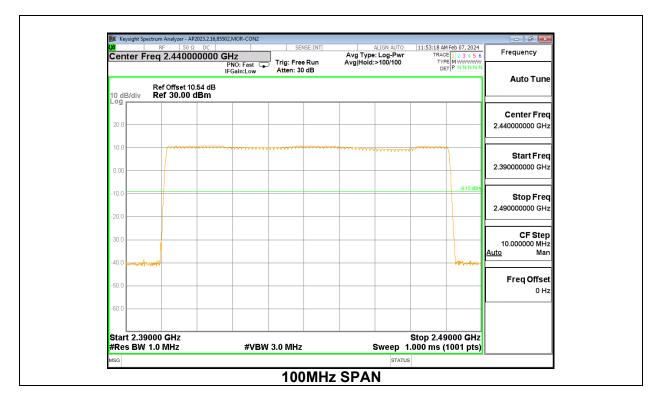
The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

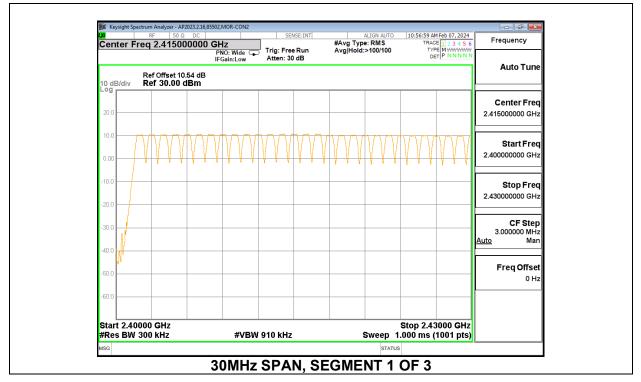
Normal Mode: 79 Channels Observed


9.4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

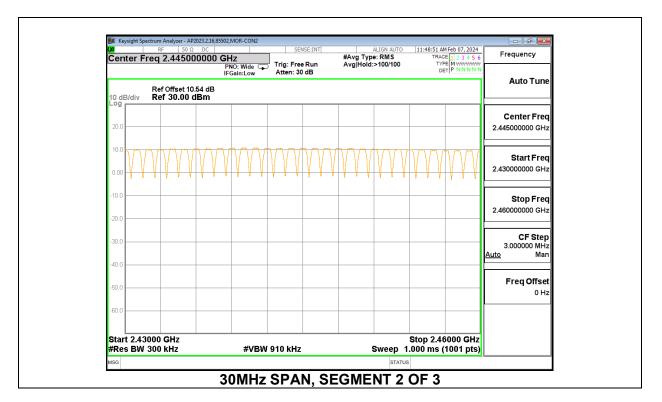
CHAIN 0

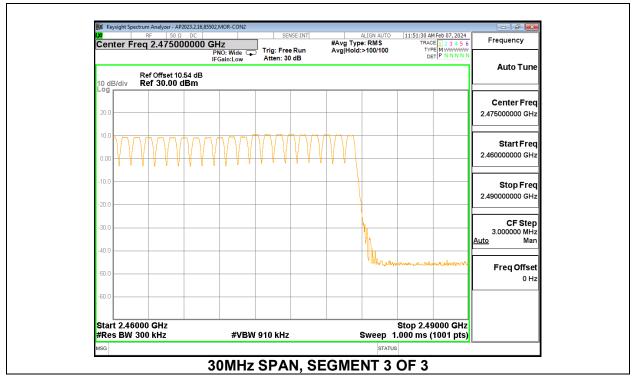

Page 24 of 113


UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709, USA This report shall not be reproduced except in full, without the written approval of UL LLC


Page 25 of 113

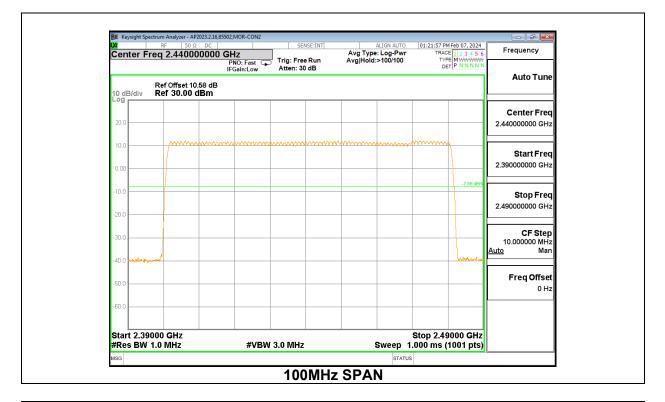
Page 26 of 113

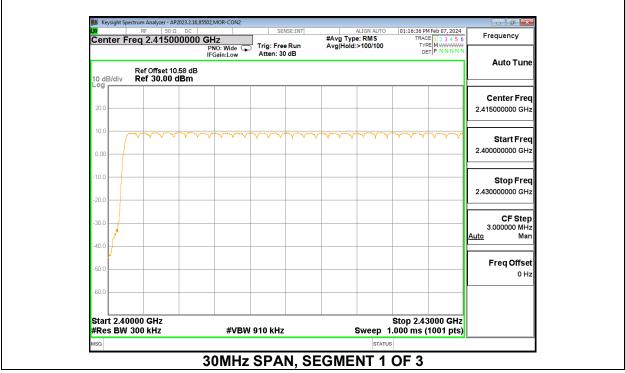

CHAIN 1



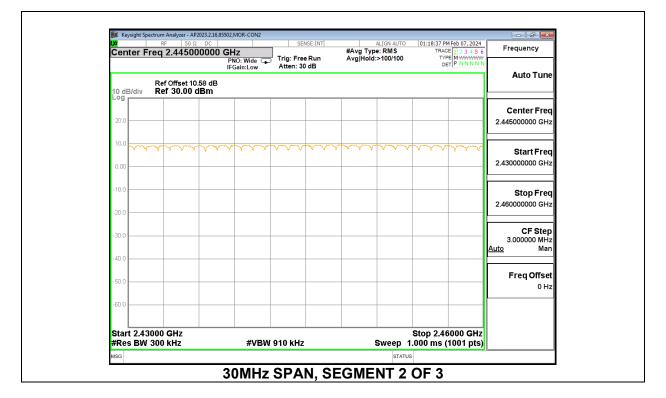
UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709, USA This report shall not be reproduced except in full, without the written approval of UL LLC

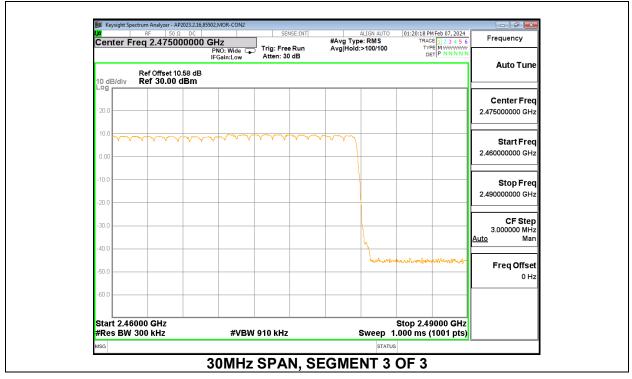
Page 27 of 113

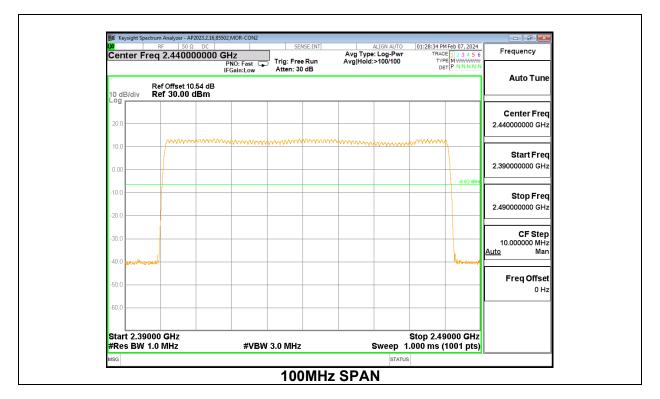


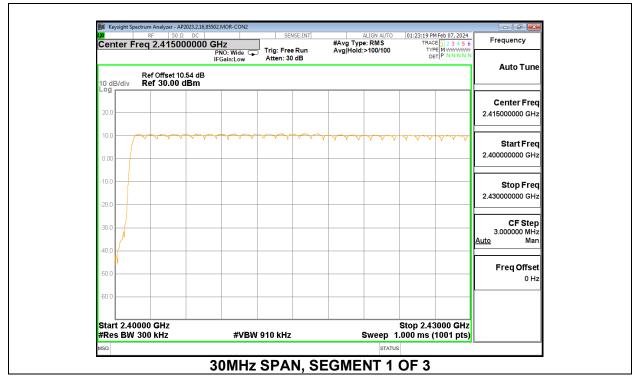


Page 28 of 113

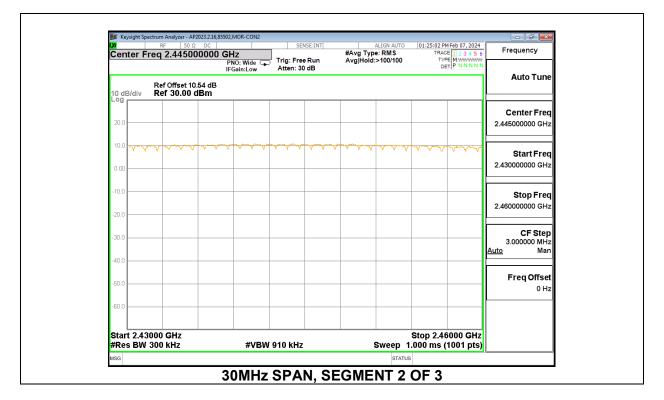

9.4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

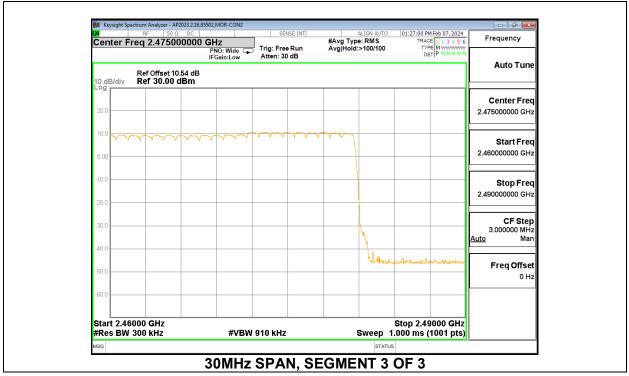

CHAIN 0


Page 29 of 113



Page 30 of 113


CHAIN 1



UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709, USA This report shall not be reproduced except in full, without the written approval of UL LLC

Page 31 of 113

Page 32 of 113

9.5. AVERAGE TIME OF OCCUPANCY

<u>LIMITS</u>

FCC §15.247 (a) (1) (iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.


For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.

9.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

CHAIN 0

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)			
GFSK Normal Mode								
DH1	0.379	31	0.1175	0.4	-0.2825			
DH3	1.630	18	0.2934	0.4	-0.1066			
DH5	2.876	12	0.3451	0.4	-0.0549			
DH Packet	Pulse Width (msec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)			
GFSK AFH Mode								
DH1	0.379	7.75	0.02937	0.4	-0.3706			
DH3	1.630	4.5	0.07335	0.4	-0.3267			
DH5	2.876	3	0.08628	0.4	-0.3137			

Page 33 of 113

CHAIN 1

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)				
GFSK Normal Mode									
DH1	0.379	31	0.1175	0.4	-0.2825				
DH3	1.632	18	0.2938	0.4	-0.1062				
DH5	2.876	13	0.3739	0.4	-0.0261				
DH Packet	Pulse Width (msec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)				
GFSK AFH Mode									
DH1	0.379	7.75	0.02937	0.4	-0.3706				
DH3	1.632	4.5	0.07344	0.4	-0.3266				
DH5	2.876	3.25	0.09347	0.4	-0.3065				

Page 35 of 113

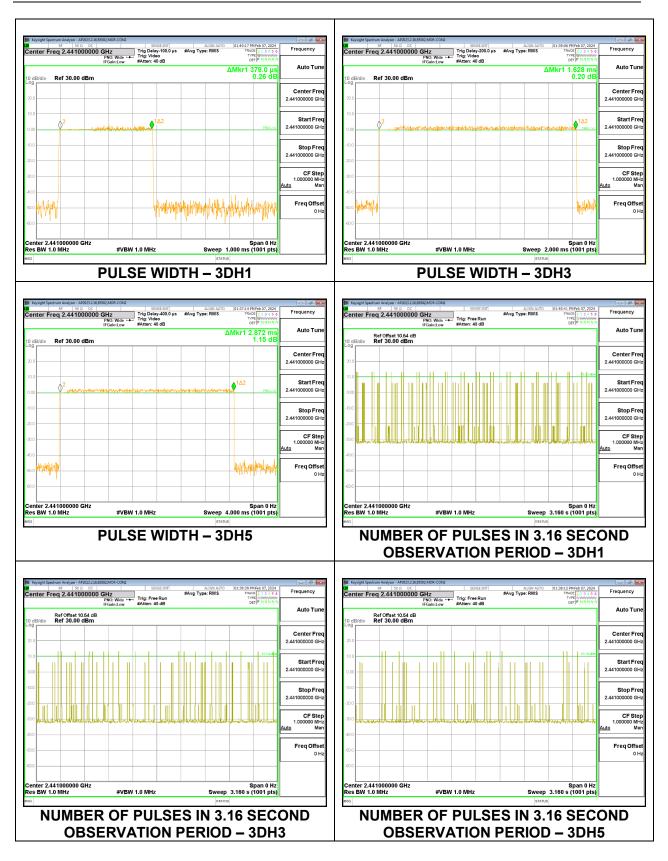


9.5.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

CHAIN 0

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
8PSK Norma	Mode					
DH1	0.378	31	0.1172	0.4	-0.2828	
DH3	1.628	18	0.2930	0.4	-0.1070	
DH5	2.872	11	0.3159	0.4	-0.0841	
DH Packet	Pulse Width (msec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
8PSK AFH M	8PSK AFH Mode					
DH1	0.378	7.75	0.02930	0.4	-0.3707	
DH3	1.628	4.5	0.07326	0.4	-0.3267	
DH5	2.872	2.75	0.07898	0.4	-0.3210	

Page 37 of 113



Page 38 of 113

CHAIN 1

DH Packet	Pulse Width (msec)	Number of Pulses in 3.16 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
8PSK Norma	Mode					
DH1	0.379	32	0.1213	0.4	-0.2787	
DH3	1.628	18	0.2930	0.4	-0.1070	
DH5	2.872	13	0.3734	0.4	-0.0266	
DH Packet	Pulse Width (msec)	Number of Pulses in 0.8 seconds	Average Time of Occupancy (sec)	Limit (sec)	Margin (sec)	
8PSK AFH M	8PSK AFH Mode					
DH1	0.379	8	0.03032	0.4	-0.3697	
DH3	1.628	4.5	0.07326	0.4	-0.3267	
DH5	2.872	3.25	0.09334	0.4	-0.3067	

Page 39 of 113

Page 40 of 113

9.6. OUTPUT POWER

<u>LIMITS</u>

§15.247 (b) (1)

The maximum antenna gain is less than 6 dBi, therefore the limit is 30 dBm. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.58 (including 9.71 dB pad, 0.30 dB EUT cable and 0.57 dB test cable) was entered as an offset for chain 0 and 10.54dB (9.68 dB pad, 0.30 dB EUT cable, and 0.56 dB test cable) was entered as an offset for chain 1, in the power meter to allow for a peak reading of power.

Page 41 of 113

9.6.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

CHAIN 0

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	11.03	30	-18.97
Middle	2441	11.12	30	-18.88
High	2480	11.42	30	-18.58

CHAIN 1

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	10.32	30	-19.68
Middle	2441	10.88	30	-19.12
High	2480	10.99	30	-19.01

Page 42 of 113

9.6.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

CHAIN 0

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	13.55	21	-7.45
Middle	2441	13.61	21	-7.39
High	2480	14.15	21	-6.85

CHAIN 1

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	13.51	21	-7.49
Middle	2441	13.74	21	-7.26
High	2480	14.16	21	-6.84

Page 43 of 113

9.6.3. BLUETOOTH ENHANCED DATA RATE DQPSK MODULATION

CHAIN 0

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2402	13.04	30	-16.96
Middle	2441	13.07	30	-16.93
High	2480	13.75	30	-16.25

CHAIN 1

Tested By:	85502
Date:	2024-02-07

Channel	Frequency	Output Power	Limit	Margin		
	(MHz)	(dBm)	(dBm)	(dB)		
Low	2402	12.73	30	-17.27		
Middle	2441	13.14	30	-16.86		
High	2480	13.57	30	-16.43		

Page 44 of 113

9.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.58 (including 9.71 dB pad, 0.30 dB EUT cable and 0.57 dB test cable) was entered as an offset for chain 0 and 10.54dB (9.68 dB pad, 0.30 dB EUT cable, and 0.56 dB test cable) was entered as an offset for chain 1, in the power meter to allow for a gated average reading of power.

9.7.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Tested By:	85502
Date	2024-02-07

Channel	Frequency	Average Power	Average Power		
		Chain 0	Chain 1		
	(MHz)	(dBm)	(dBm)		
Low	2402	10.71	10.04		
Middle	2441	10.76	10.58		
High	2480	10.83	10.73		

9.7.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

Tested By:	85502
Date	2024-02-07

Channel	Frequency	Average Power	Average Power
		Chain 0	Chain 1
	(MHz)	(dBm)	(dBm)
Low	2402	10.29	10.10
Middle	2441	10.31	10.37
High	2480	10.90	10.81

Page 45 of 113

9.7.3. BLUETOOTH ENHANCED DATA RATE DQPSK MODULATION

Tested By:	85502
Date	2024-02-07

Channel	Frequency	Average Power	Average Power
		Chain 0	Chain 1
	(MHz)	(dBm)	(dBm)
Low	2402	10.28	10.01
Middle	2441	10.31	10.37
High	2480	10.89	10.80

Page 46 of 113

9.8. CONDUCTED SPURIOUS EMISSIONS

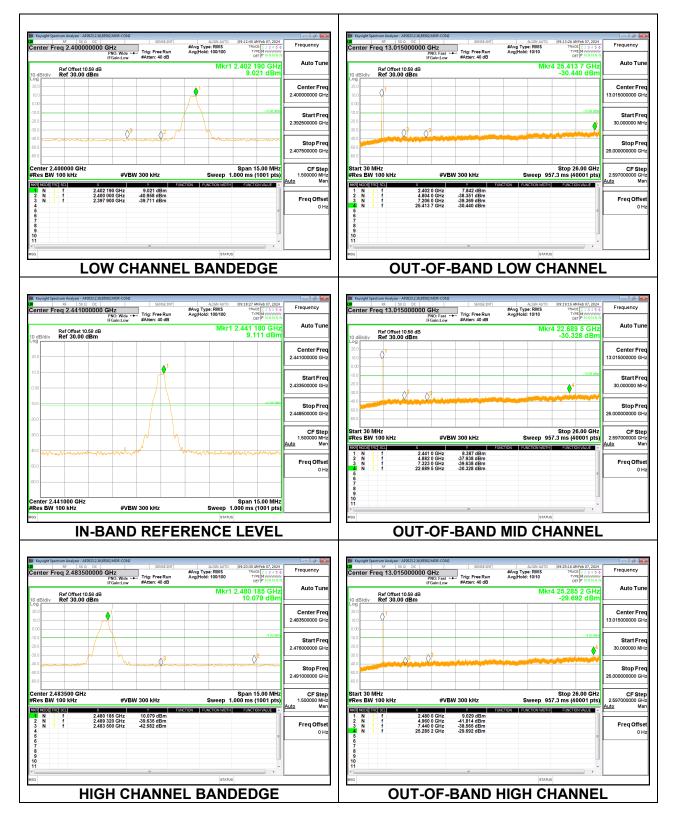
LIMITS

FCC §15.247 (d)

Limit = -20 dBc

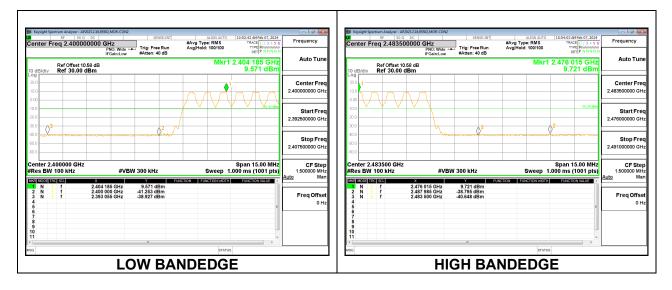
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

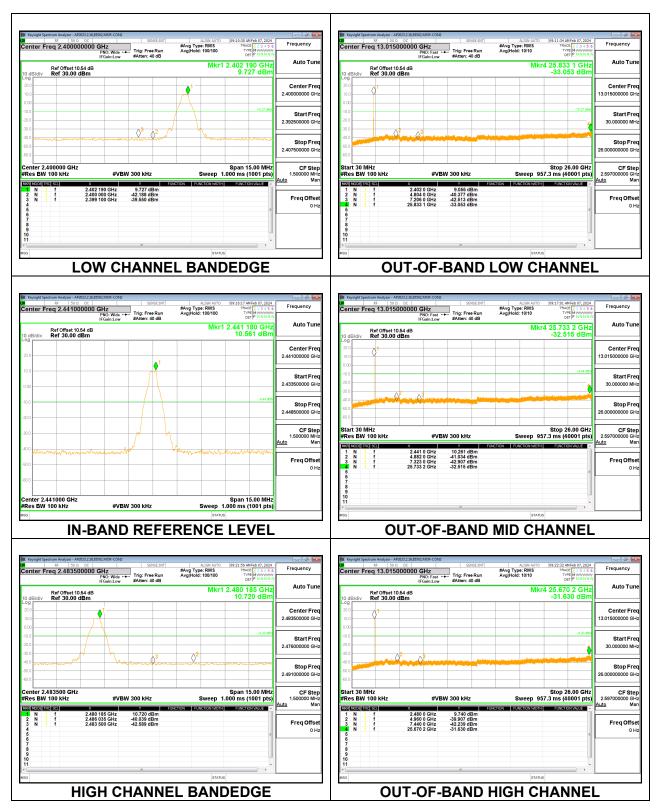

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 47 of 113


9.8.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

CHAIN 0 SPURIOUS EMISSIONS, NON-HOPPING

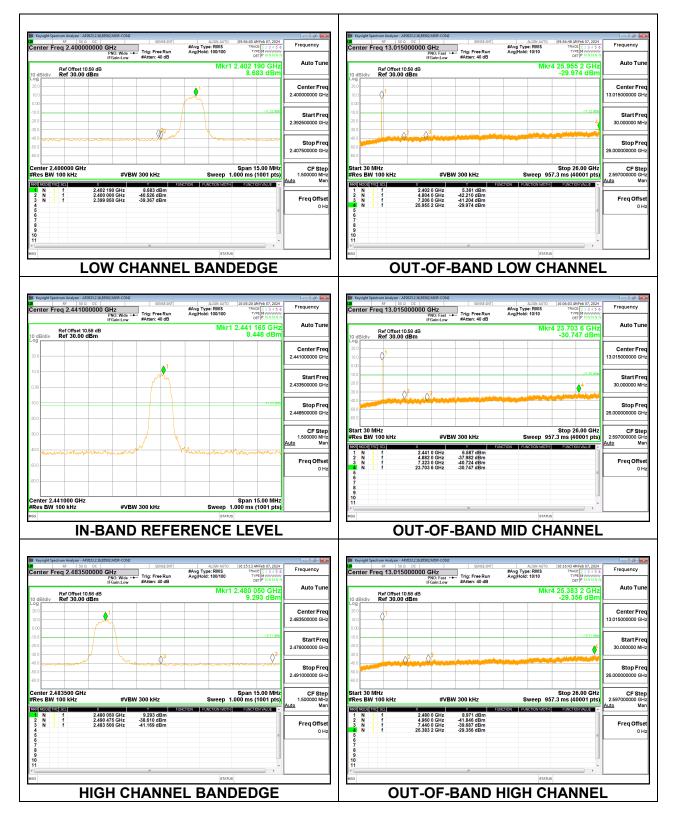

Page 48 of 113

CHAIN 0 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

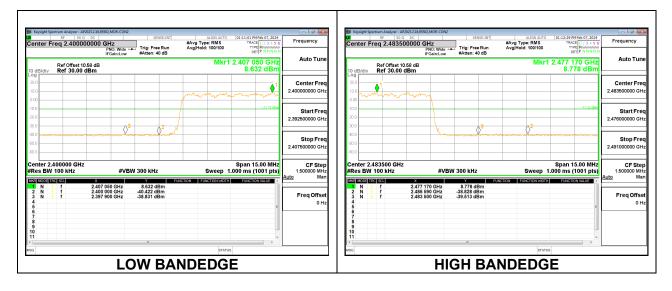

Page 49 of 113

CHAIN 1 SPURIOUS EMISSIONS, NON-HOPPING

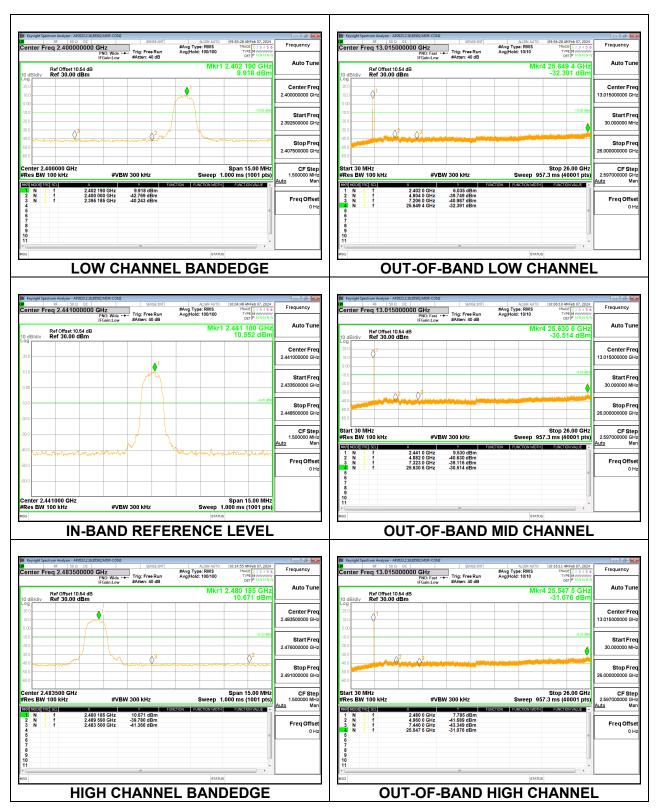
Page 50 of 113


CHAIN 1 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

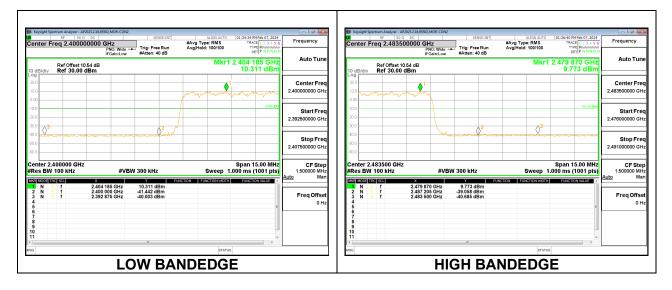
Page 51 of 113


9.8.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

CHAIN 0 SPURIOUS EMISSIONS, NON-HOPPING


Page 52 of 113

CHAIN 0 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON



Page 53 of 113

CHAIN 1 SPURIOUS EMISSIONS, NON-HOPPING

CHAIN 1 SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

Page 55 of 113

10. RADIATED TEST RESULTS

LIMITS

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements in the 30-1000MHz range, 9kHz for peak and/or quasi-peak detection measurements in the 0.15-30MHz range and 200Hz for peak and/or quasi-peak detection measurements in the 9 to 150kHz range. Peak detection is used unless otherwise noted as quasi-peak or average (9-90kHz and 110-490kHz).

For pre-scans above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3MHz for peak measurements.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements.

The spectrum from 1 GHz to 18 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. Below 1GHz and above 18GHz emissions, the channel with the highest average output power was tested.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

3D antenna use - For below 30MHz testing, investigation was done on three antenna orientations (parallel, perpendicular, and ground-parallel).

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

KDB 414788 Open Field Site(OFS) and Chamber Correlation Justification

OFS and chamber correlation testing had been performed and chamber measured test result is the worstcase test result.

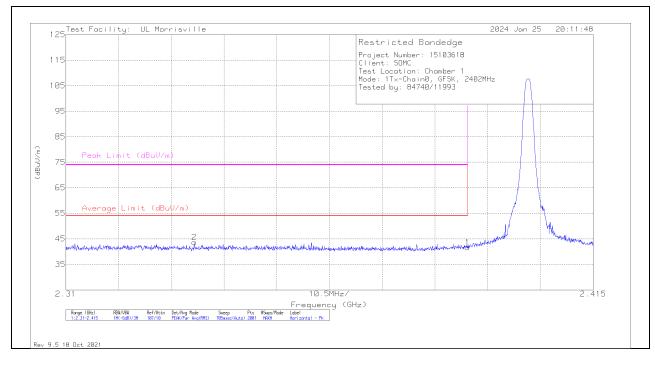
Page 56 of 113

KDB 558074 D01 15.247 Meas Guidance v05r02

Use of a duty cycle correction factor (DCCF) is permitted for calculating average radiated field strength emission levels for an FHSS device in 15.247. This DCCF can be applied when the field strength limit (e.g., within a Government Restricted band) and the conditions specified in Section 15.35(c) can be satisfied. The average radiated field strength is calculated by subtracting the DCCF from the maximum radiated field strength level as determined through measurement. The maximum radiated field strength level represents the worst-case (maximum amplitude) RMS measurement of the emission(s) during continuous transmission (i.e., not including any time intervals during which the transmitter is off or is transmitting at a reduced power level). It is also acceptable to apply the DCCF to a measurement performed with a peak detector instead of the specified RMS power averaging detector. Note that Section 15.35(c) specifies that the DCCF shall represent the worst-case (greatest duty cycle) over any 100 msec transmission period.

Note: The DCCF used was calculated based on the worst case on-time when the device transmits DH5 packets and operates on 20 channels (5/1600 s per hop = 3.125 ms per channel). In this mode, the device will have a maximum of 2 hops on a channel in 100ms or 2x 3.125 ms = 6.25 ms on any channel. Therefore, $20\log(6.25 / 100) = -24$ dB. This value was subtracted from the peak measurement to obtain a calculated Voltage Average value.

Page 57 of 113

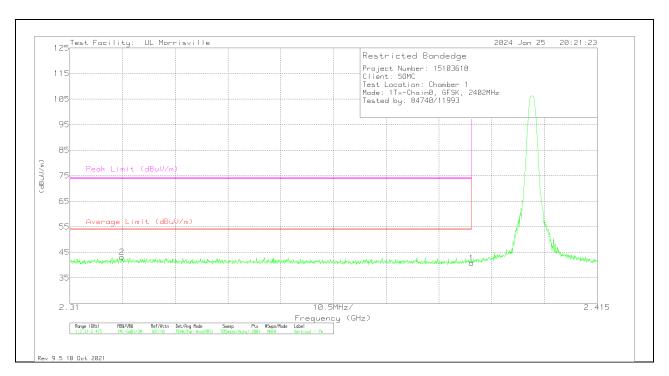

10.1. TRANSMITTER ABOVE 1 GHz

10.1.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

CHAIN 0

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.38996	33.72	Pk	32.1	-24.2	0	41.62	-	-	74	-32.38	138	236	Н
	* ** 2.38996	33.72	Pk	32.1	-24.2	-24	17.62	54	-36.38	-	-	138	236	Н
2	* ** 2.33557	35.69	Pk	32	-24.1	0	43.59	-	-	74	-30.41	138	236	Н
	* ** 2.33557	35.69	Pk	32	-24.1	-24	19.59	54	-34.41	-	-	138	236	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

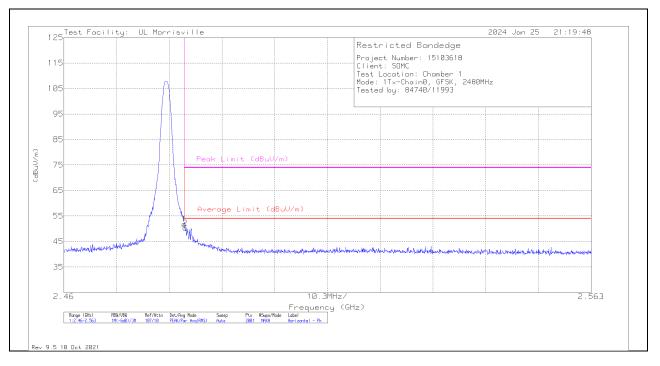
** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Page 58 of 113

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.38996	32.87	Pk	32.1	-24.2	0	40.77	-	-	74	-33.23	238	167	V
	* ** 2.38996	32.87	Pk	32.1	-24.2	-24	16.77	54	-37.23	-	-	238	167	V
2	* ** 2.32034	35.14	Pk	31.9	-23.9	0	43.14	-	-	74	-30.86	238	167	V
	* ** 2.32034	35.14	Pk	31.9	-23.9	-24	19.14	54	-34.86	-	-	238	167	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

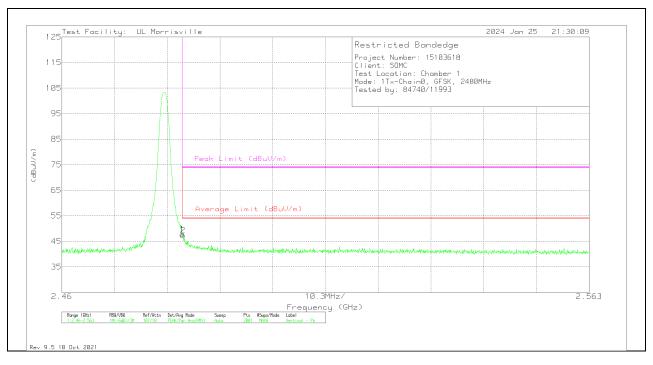
** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Page 59 of 113

BANDEDGE (HIGH CHANNEL)

HORIZONTAL RESULT


Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Average Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.48354	43.98	Pk	32.3	-24.5	0	51.78	-	-	74	-22.22	139	352	Н
	* ** 2.48354	43.98	Pk	32.3	-24.5	-24	27.78	54	-26.22	-	-	139	352	Н
2	* ** 2.48374	42.39	Pk	32.3	-24.5	0	50.19	-	-	74	-23.81	139	352	Н
	* ** 2.48374	42.39	Pk	32.3	-24.5	-24	26.19	54	-27.81	-	-	139	352	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

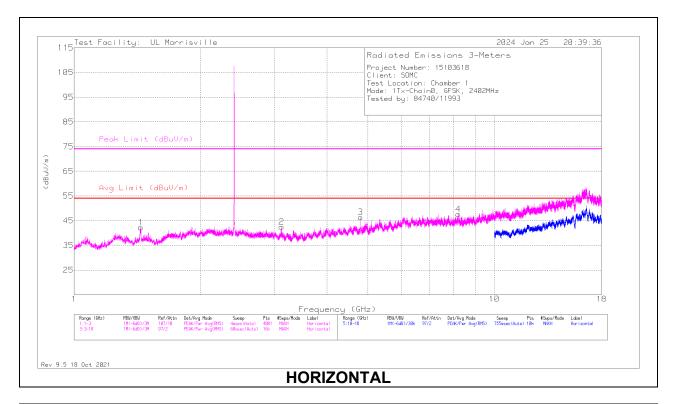
** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

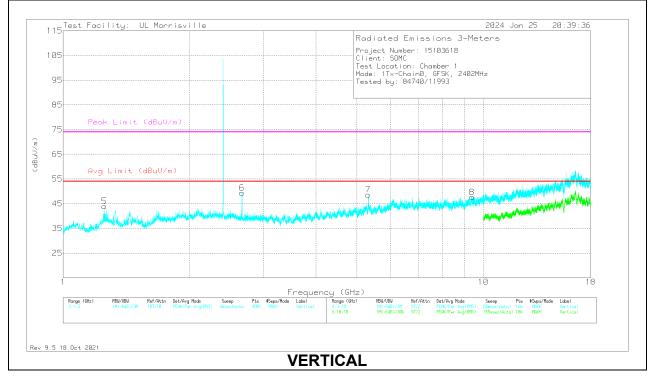
Page 60 of 113

VERTICAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Limit	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.48354	40.02	Pk	32.3	-24.5	0	47.82	-	-	74	-26.18	69	386	V
	* ** 2.48354	40.02	Pk	32.3	-24.5	-24	23.82	54	-30.18	-	-	69	386	V
2	* ** 2.48369	39.44	Pk	32.3	-24.5	0	47.24	-	-	74	-26.76	69	386	V
	* ** 2.48369	39.44	Pk	32.3	-24.5	-24	23.24	54	-30.76	-	-	69	386	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

Page 61 of 113

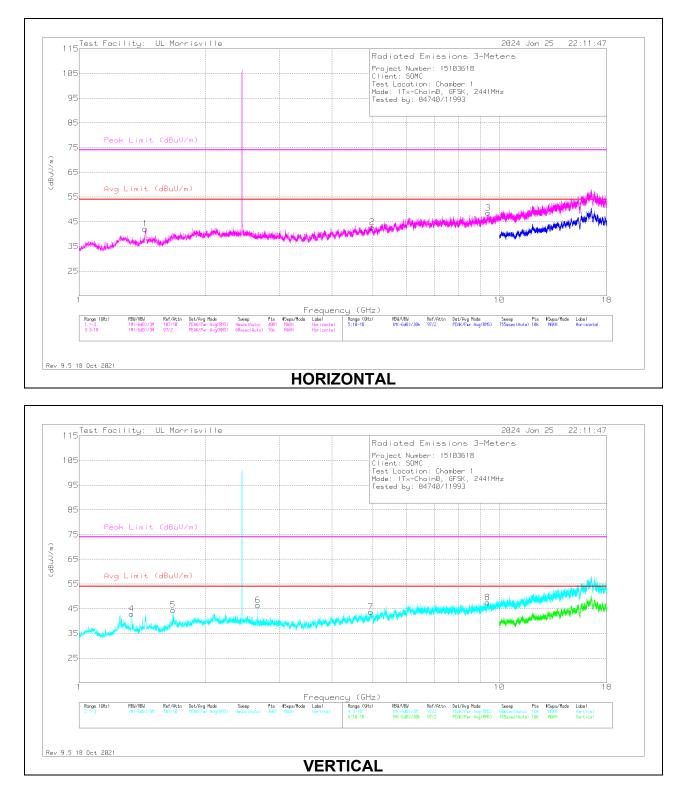
HARMONICS AND SPURIOUS EMISSIONS

LOW CHANNEL RESULTS

Page 62 of 113

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	Corr	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 1.4415	37.15	Pk	28.2	-23.1	0	42.25	54	-11.75	74	-31.75	0-360	101	Н
5	* 1.2535	39.02	Pk	28.8	-23.9	0	43.92	54	-10.08	74	-30.08	0-360	200	V
6	* ** 2.66548	49.07	PK2	32	-25.6	0	55.47	-	-	74	-18.53	247	175	V
	* ** 2.66548	49.07	PK2	32	-25.6	-24	31.47	54	-22.53	-	-	247	175	V
3	* ** 4.80375	42.35	Pk	34	-30	0	46.35	54	-7.65	74	-27.65	0-360	101	Н
4	* ** 8.20246	39.05	PK2	35.9	-26.7	0	48.25	-	-	74	-25.75	248	260	Н
	* ** 8.20246	39.05	PK2	35.9	-26.7	-24	24.25	54	-29.75	-	-	248	260	Н
8	* ** 9.39469	36.88	Pk	36.4	-25.7	0	47.58	54	-6.42	74	-26.42	0-360	200	V
2	3.11719	41.88	Pk	33	-32.4	0	42.48	-	-	-	-	0-360	200	Н
7	5.3175	43.08	Pk	34.5	-28.9	0	48.68	-	-	-	-	0-360	101	V

RADIATED EMISSIONS


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

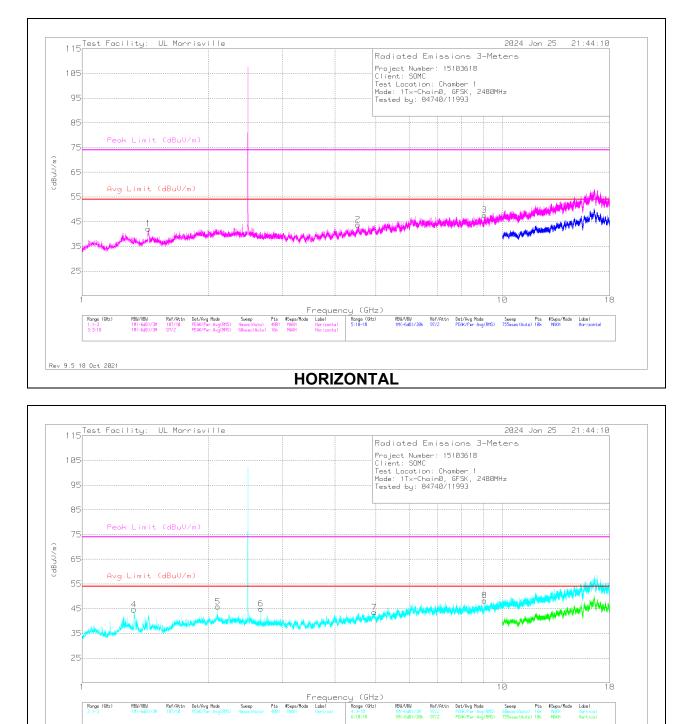
Page 63 of 113

MID CHANNEL RESULTS

Page 64 of 113

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 1.4365	36.99	Pk	28.2	-23.1	0	42.09	54	-11.91	74	-31.91	0-360	101	Н
4	* ** 1.3325	37.65	Pk	28.9	-23.6	0	42.95	54	-11.05	74	-31.05	0-360	200	V
5	* ** 1.673	38.08	Pk	28.9	-22.5	0	44.48	54	-9.52	74	-29.52	0-360	200	V
6	* ** 2.6625	40.01	Pk	32	-25.6	0	46.41	54	-7.59	74	-27.59	0-360	200	V
2	* ** 4.97813	39.12	Pk	34.1	-30.4	0	42.82	54	-11.18	74	-31.18	0-360	101	Н
3	* ** 9.40505	38.34	PK2	36.4	-25.2	0	49.54	-	-	74	-24.46	101	186	Н
	* ** 9.40505	38.34	PK2	36.4	-25.2	-24	25.54	54	-28.46	-	-	101	186	Н
7	* ** 4.94438	40.04	Pk	34	-30.4	0	43.64	54	-10.36	74	-30.36	0-360	101	V
8	* ** 9.37594	36.4	Pk	36.4	-25.3	0	47.5	54	-6.5	74	-26.5	0-360	200	V


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

PK2 - Maximum Peak

Page 65 of 113

Rev 9.5 18 Oct 2021

HIGH CHANNEL RESULTS

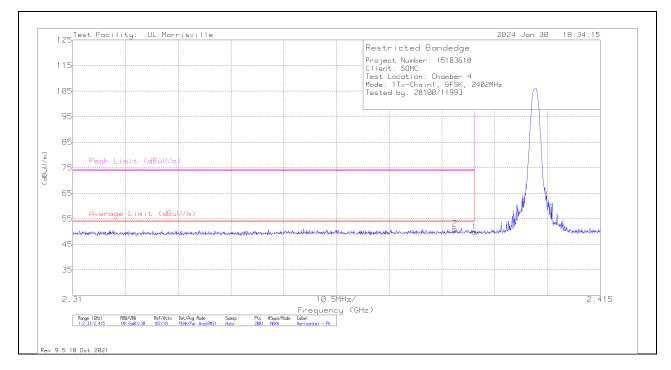
VERTICAL

UL LLC 12 Laboratory Drive, Research Triangle Park, NC 27709, USA This report shall not be reproduced except in full, without the written approval of UL LLC

RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	206211 (dB/m)	Gain/Loss (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 1.437	37.07	Pk	28.2	-23.1	0	42.17	54	-11.83	74	-31.83	0-360	99	Н
4	* ** 1.329	39.34	Pk	28.9	-23.6	0	44.64	54	-9.36	74	-29.36	0-360	101	V
6	* ** 2.661	38.49	Pk	32	-25.5	0	44.99	54	-9.01	74	-29.01	0-360	101	V
2	* ** 4.53094	40.62	Pk	34	-30.8	0	43.82	54	-10.18	74	-30.18	0-360	101	Н
3	* ** 9.07594	36.76	Pk	36	-25.1	0	47.66	54	-6.34	74	-26.34	0-360	200	Н
7	* ** 4.9575	39.7	Pk	34	-30.2	0	43.5	54	-10.5	74	-30.5	0-360	200	V
8	* ** 9.06715	37.82	PK2	35.9	-25.2	0	48.52	-	-	74	-25.48	157	299	V
	* ** 9.06715	37.82	PK2	35.9	-25.2	-24	24.52	54	-29.48	-	-	157	299	V
5	2.10275	37.5	Pk	31.6	-23.3	0	45.8	-	-	-	-	0-360	101	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band ** - indicates frequency in Taiwan NCC LP0002 Restricted Band


Pk - Peak detector

PK2 - Maximum Peak

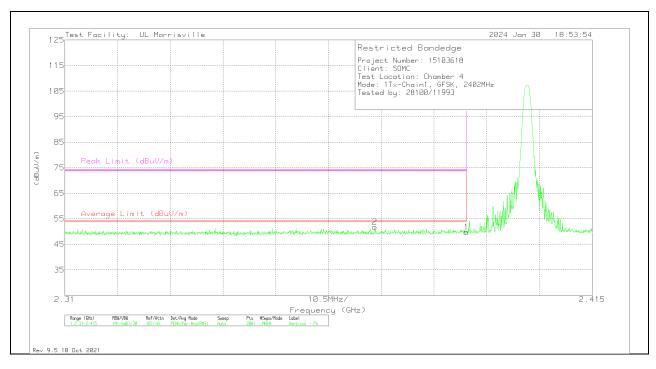
Page 67 of 113

CHAIN 1

BANDEDGE (LOW CHANNEL)

HORIZONTAL RESULT

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	89509 ACF (dB/m)	Gain/Loss (dB)	Corr	Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.38996	31.13	Pk	32	-13.2	0	49.93	-	-	74	-24.07	60	338	Н
	* ** 2.38996	31.13	Pk	32	-13.2	-24	25.93	54	-28.07	-	-	60	338	Н
2	* ** 2.38607	32.26	Pk	32	-13.1	0	51.16	-	-	74	-22.84	60	338	Н
	* ** 2.38607	32.26	Pk	32	-13.1	-24	27.16	54	-26.84	-	-	60	338	Н


* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Page 68 of 113

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	89509 ACF (dB/m)	Gain/Loss (dB)	Corr	Reading	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* ** 2.38996	31	Pk	32	-13.2	0	49.8	-	-	74	-24.2	219	157	V
	* ** 2.38996	31	Pk	32	-13.2	-24	25.8	54	-28.2	-	-	219	157	V
2	* ** 2.37169	33.1	Pk	31.9	-13.2	0	51.8	-	-	74	-22.2	219	157	V
	* ** 2.37169	33.1	Pk	31.9	-13.2	-24	27.8	54	-26.2	-	-	219	157	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

** - indicates frequency in Taiwan NCC LP0002 Restricted Band

Pk - Peak detector

Page 69 of 113