Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218

E-mail: cttl@chinattl.com

Http://www.chinattl.cn



Client:

Auden

Certificate No: Z17-97216

#### CALIBRATION CERTIFICATE

Object

DAE3 - SN: 360

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

November 02, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards      | ID#     | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|------------------------|---------|------------------------------------------|-----------------------|
| Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859)           | June-18               |
|                        |         |                                          |                       |

Calibrated by:

Name

**Function** 

Signature

Yu Zongying

**SAR Test Engineer** 

Reviewed by:

Lin Hao

**SAR Test Engineer** 

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: November 03, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

#### Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z17-97216 Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range:  $1LSB = 6.1\mu V$ , full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 404.126 ± 0.15% (k=2) | 404.022 ± 0.15% (k=2) | 404.038 ± 0.15% (k=2) |
| Low Range           | 3.93561 ± 0.7% (k=2)  | 3.93754 ± 0.7% (k=2)  | 3.97322 ± 0.7% (k=2)  |

#### **Connector Angle**

| Connector Angle to be used in DASY system | 38.5° ± 1 ° |
|-------------------------------------------|-------------|
|-------------------------------------------|-------------|

Certificate No: Z17-97216 Page 3 of 3

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

S

C

S

Client

Sporton (Auden)

Certificate No: DAE4-1399 Nov17

#### CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1399

Calibration procedure(s)

QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

November 16, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards             | ID#                | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|--------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278        | 31-Aug-17 (No:21092)       | Aug-18                 |
| Secondary Standards           | ID#                | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001 | 05-Jan-17 (in house check) | In house check: Jan-18 |
| Calibrator Box V2.1           | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) | In house check: Jan-18 |

Calibrated by:

Name Eric Hainfeld Function

Signature

Approved by:

Sven Kühn

Deputy Manager

Laboratory Technician

Issued: November 16, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1399\_Nov17

Page 1 of 5

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

#### Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

## **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range: 1LSB =

 $1 LSB = \qquad \quad 6.1 \mu V \; ,$ 

full range = -100...+300 mV

Low Range:

1LSB =

61nV ,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | Х                     | Y                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 403.616 ± 0.02% (k=2) | 403.878 ± 0.02% (k=2) | 403.731 ± 0.02% (k=2) |
| Low Range           | 3.98253 ± 1.50% (k=2) | 3.99240 ± 1.50% (k=2) | 3.98011 ± 1.50% (k=2) |

#### **Connector Angle**

| Connector Angle to be used in DASY system | 302.5°±1° |
|-------------------------------------------|-----------|

## Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (μV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 199995.38    | -0.81           | -0.00     |
| Channel X  | + Input | 20002.59     | 1.03            | 0.01      |
| Channel X  | - Input | -19999.55    | 1.56            | -0.01     |
| Channel Y  | + Input | 199997.72    | 1.07            | 0.00      |
| Channel Y  | + Input | 20001.63     | 0.09            | 0.00      |
| Channel Y  | - Input | -20001.66    | -0.35           | 0.00      |
| Channel Z  | + Input | 199996.58    | 0.25            | 0.00      |
| Channel Z  | + Input | 20000.07     | -1.37           | -0.01     |
| Channel Z  | - Input | -20002.08    | -0.76           | 0.00      |

| Low Range |         | Reading (μV) | Difference (μV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2001.34      | 0.08            | 0.00      |
| Channel X | + Input | 201.95       | 0.34            | 0.17      |
| Channel X | - Input | -197.68      | 0.52            | -0.26     |
| Channel Y | + Input | 2001.23      | -0.06           | -0.00     |
| Channel Y | + Input | 200.70       | -0.80           | -0.40     |
| Channel Y | - Input | -199.59      | -1.22           | 0.61      |
| Channel Z | + Input | 2000.48      | -0.77           | -0.04     |
| Channel Z | + Input | 201.18       | -0.44           | -0.22     |
| Channel Z | - Input | -199.12      | -0.75           | 0.38      |

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode<br>Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|-----------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                               | -4.95                              | -6.69                             |
|           | - 200                             | 7.96                               | 6.46                              |
| Channel Y | 200                               | -5.86                              | -6.48                             |
|           | - 200                             | 3.87                               | 4.22                              |
| Channel Z | 200                               | -6.57                              | -6.68                             |
|           | - 200                             | 4.63                               | 5.11                              |

#### 3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 4.42           | -1.43          |
| Channel Y | 200                | 9.72           | -              | 6.53           |
| Channel Z | 200                | 9.36           | 6.83           | -              |

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 15822            | 15613           |
| Channel Y | 16118            | 16551           |
| Channel Z | 15882            | 15377           |

#### 5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input  $10M\Omega$ 

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | 0.46         | -0.33            | 1.37             | 0.33                   |
| Channel Y | -0.17        | -0.96            | 0.63             | 0.33                   |
| Channel Z | -0.35        | -1.65            | 1.85             | 0.45                   |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | -9                |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 0108

C

Certificate No: DAE4-853 Jul17

#### CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BM - SN: 853

Calibration procedure(s) QA CAL-06.v29

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: July 19, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards             | ID#                 | Cal Date (Certificate No.) | Scheduled Calibration  |
|-------------------------------|---------------------|----------------------------|------------------------|
| Keithley Multimeter Type 2001 | SN: 0810278         | 09-Sep-16 (No:19065)       | Sep-17                 |
| Secondary Standards           | ID#                 | Check Date (in house)      | Scheduled Check        |
| Auto DAE Calibration Unit     | SE UWS 053 AA 1001  | 05-Jan-17 (in house check) | In house check: Jan-18 |
| Calibrator Box V2.1           | SE LIMS 006 AA 1000 | 05-Jan-17 (in house check) | In house check: Jan-18 |

Name

Function

Calibrated by:

Eric Hainfeld

Laboratory Technician

Signature

Approved by:

Sven Kühn

Deputy Manager

Issued: July 19, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-853\_Jul17

Page 1 of 5

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

#### Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

#### **Methods Applied and Interpretation of Parameters**

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
  - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
  - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
  - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
  - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
  - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
  - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
  - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
  - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
  - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-853\_Jul17

Page 2 of 5

#### **DC Voltage Measurement**

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV ,

full range = -100...+300 mV full range = -1.....+3mV

Low Range:

1LSB =

61nV,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

| Calibration Factors | X                     | Υ                     | Z                     |
|---------------------|-----------------------|-----------------------|-----------------------|
| High Range          | 402.602 ± 0.02% (k=2) | 403.267 ± 0.02% (k=2) | 403.445 ± 0.02% (k=2) |
| Low Range           | 3.95476 ± 1.50% (k=2) | 3.96544 ± 1.50% (k=2) | 3.96662 ± 1.50% (k=2) |

#### **Connector Angle**

| Connector Angle to be used in DASY system | 134.5 ° ± 1 ° |
|-------------------------------------------|---------------|
|                                           |               |

Certificate No: DAE4-853\_Jul17

## Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

| High Range |         | Reading (μV) | Difference (μV) | Error (%) |
|------------|---------|--------------|-----------------|-----------|
| Channel X  | + Input | 200032.34    | -1.72           | -0.00     |
| Channel X  | + Input | 20007.23     | 2.14            | 0.01      |
| Channel X  | - Input | -20002.92    | 1.88            | -0.01     |
| Channel Y  | + Input | 200032,83    | -1.31           | -0,00     |
| Channel Y  | + Input | 20004.73     | -0.35           | -0.00     |
| Channel Y  | - Input | -20006,55    | -1.74           | 0.01      |
| Channel Z  | + Input | 200040.33    | 6.37            | 0,00      |
| Channel Z  | + Input | 20004.71     | -0.33           | -0.00     |
| Channel Z  | - Input | -20008.02    | -3.12           | 0.02      |

| Low Range |         | Reading (μV) | Difference (μV) | Error (%) |
|-----------|---------|--------------|-----------------|-----------|
| Channel X | + Input | 2001.66      | 0.35            | 0.02      |
| Channel X | + Input | 201.67       | 0.28            | 0.14      |
| Channel X | - Input | -198.01      | 0.61            | -0.31     |
| Channel Y | + Input | 2001.27      | 0.05            | 0.00      |
| Channel Y | + Input | 200.65       | -0.72           | -0.36     |
| Channel Y | - Input | -199.27      | -0.58           | 0.29      |
| Channel Z | + Input | 2000.81      | -0.40           | -0.02     |
| Channel Z | + input | 199.74       | -1.51           | -0.75     |
| Channel Z | - Input | -200.02      | -1.26           | 0.63      |

#### 2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Common mode Input Voltage (mV) | High Range<br>Average Reading (μV) | Low Range<br>Average Reading (μV) |
|-----------|--------------------------------|------------------------------------|-----------------------------------|
| Channel X | 200                            | -6.81                              | -8.25                             |
|           | - 200                          | 10.16                              | 8.50                              |
| Channel Y | 200                            | 4.33                               | 4.41                              |
|           | - 200                          | -5.81                              | -6.18                             |
| Channel Z | 200                            | 2.40                               | 2.38                              |
|           | - 200                          | -4.45                              | -4.60                             |

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) |
|-----------|--------------------|----------------|----------------|----------------|
| Channel X | 200                | -              | 1.24           | -2.01          |
| Channel Y | 200                | 7.20           | -              | 2.53           |
| Channel Z | 200                | 10.31          | 4.71           | -              |

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

|           | High Range (LSB) | Low Range (LSB) |
|-----------|------------------|-----------------|
| Channel X | 16247            | 16895           |
| Channel Y | 16088            | 16351           |
| Channel Z | 16248            | 17044           |

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

|           | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation<br>(μV) |
|-----------|--------------|------------------|------------------|------------------------|
| Channel X | -0.70        | -1.52            | 0.31             | 0.39                   |
| Channel Y | -0.77        | -1.78            | 0.39             | 0.37                   |
| Channel Z | 0.22         | -1.06            | 1.36             | 0.47                   |

#### 6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

|           | Zeroing (kOhm) | Measuring (MOhm) |
|-----------|----------------|------------------|
| Channel X | 200            | 200              |
| Channel Y | 200            | 200              |
| Channel Z | 200            | 200              |

8. Low Battery Alarm Voltage (Typical values for information)

| Typical values | Alarm Level (VDC) |  |
|----------------|-------------------|--|
| Supply (+ Vcc) | +7.9              |  |
| Supply (- Vcc) | -7.6              |  |

9. Power Consumption (Typical values for information)

| Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) |
|----------------|-------------------|---------------|-------------------|
| Supply (+ Vcc) | +0.01             | +6            | +14               |
| Supply (- Vcc) | -0.01             | -8            | <del>-</del> 9    |

Page 5 of 5

Certificate No: DAE4-853\_Jul17

中国认可国际互认 校准 CALIBRATION CNAS L0570

Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Certificate No: Z17-97143

#### CALIBRATION CERTIFICATE

Sporton

Object

ES3DV3 - SN:3270

Fax: +86-10-62304633-2209

Calibration Procedure(s)

Client

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 25, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#         | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|-------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 101919      | 27-Jun-17 (CTTL, No.J17X05857)           | Jun-18                |
| Power sensor NRP-Z91    | 101547      | 27-Jun-17 (CTTL, No.J17X05857)           | Jun-18                |
| Power sensor NRP-Z91    | 101548      | 27-Jun-17 (CTTL, No.J17X05857)           | Jun-18                |
| Reference10dBAttenuator | 18N50W-10dB | 13-Mar-16(CTTL,No.J16X01547)             | Mar-18                |
| Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548)            | Mar-18                |
| Reference Probe EX3DV4  | SN 7433     | 26-Sep-16(SPEAG,No.EX3-7433_Sep16)       | Sep-17                |
| DAE4                    | SN 549      | 13-Dec-16(SPEAG, No.DAE4-549_Dec16)      | Dec -17               |
| Secondary Standards     | ID#         | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| SignalGeneratorMG3700A  | 6201052605  | 27-Jun-17 (CTTL, No.J17X05858)           | Jun-18                |
| Network Analyzer E5071C | MY46110673  | 13-Jan-17 (CTTL, No.J17X00285)           | Jan -18               |
|                         | Name        | Function                                 | Signature             |
| Calibrated by:          | Yu Zongying | SAR Test Engineer                        | A ROOM                |
| Reviewed by:            | Zhao Jing   | SAR Test Engineer                        | · 是为一                 |
| Approved by:            | Qi Dianyuan | SAR Project Leader                       | 30                    |
|                         |             |                                          |                       |

Issued: September 27, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization  $\Phi$   $\Phi$  rotation around probe axis

Polarization  $\theta$  or rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 $\theta$ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization  $\theta$ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the  $E^2$ -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
  frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
  data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
  media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx
  (no uncertainty required).

Certificate No: Z17-97143 Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

# Probe ES3DV3

SN: 3270

Calibrated: September 25, 2017

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z17-97143 Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

#### **Basic Calibration Parameters**

|                              | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|------------------------------|----------|----------|----------|-----------|
| Norm(μV/(V/m)²) <sup>A</sup> | 1.12     | 1.22     | 1.21     | ±10.0%    |
| DCP(mV) <sup>B</sup>         | 101.7    | 105.3    | 103.1    |           |

#### **Modulation Calibration Parameters**

| UID | Communication |   | Α   | В    | С   | D    | VR    | Unc <sup>E</sup> |
|-----|---------------|---|-----|------|-----|------|-------|------------------|
|     | System Name   |   | dB  | dBõV |     | dB   | mV    | (k=2)            |
| 0   | CW            | Х | 0.0 | 0.0  | 1.0 | 0.00 | 262.1 | ±2.5%            |
|     |               | Υ | 0.0 | 0.0  | 1.0 |      | 281.1 |                  |
|     |               | Z | 0.0 | 0.0  | 1.0 |      | 275.2 |                  |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

Certificate No: Z17-97143 Page 4 of 11

A The uncertainties of Norm X, Y, Z do not affect the  $E^2$ -field uncertainty inside TSL (see Page 5 and Page 6).

<sup>&</sup>lt;sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

#### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative                  | Conductivity       | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup> | Unct.  |
|----------------------|---------------------------|--------------------|---------|---------|---------|--------------------|--------------------|--------|
| . [200.12]           | Permittivity <sup>F</sup> | (S/m) <sup>F</sup> | CONT. X | CONVI   | OCHVI Z | Aiplia             | (mm)               | (k=2)  |
| 750                  | 41.9                      | 0.89               | 6.34    | 6.34    | 6.34    | 0.60               | 1.20               | ±12.1% |
| 835                  | 41.5                      | 0.90               | 6.18    | 6.18    | 6.18    | 0.32               | 1.70               | ±12.1% |
| 900                  | 41.5                      | 0.97               | 6.21    | 6.21    | 6.21    | 0.39               | 1.59               | ±12.1% |
| 1750                 | 40.1                      | 1.37               | 5.24    | 5.24    | 5.24    | 0.65               | 1.26               | ±12.1% |
| 1900                 | 40.0                      | 1.40               | 5.20    | 5.20    | 5.20    | 0.71               | 1.21               | ±12.1% |
| 2000                 | 40.0                      | 1.40               | 4.93    | 4.93    | 4.93    | 0.67               | 1.26               | ±12.1% |
| 2100                 | 39.8                      | 1.49               | 5.02    | 5.02    | 5.02    | 0.71               | 1.22               | ±12.1% |
| 2450                 | 39.2                      | 1.80               | 4.75    | 4.75    | 4.75    | 0.90               | 1.15               | ±12.1% |
| 2600                 | 39.0                      | 1.96               | 4.45    | 4.45    | 4.45    | 0.90               | 1.18               | ±12.1% |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z17-97143 Page 5 of 11

<sup>&</sup>lt;sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>G</sup>Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

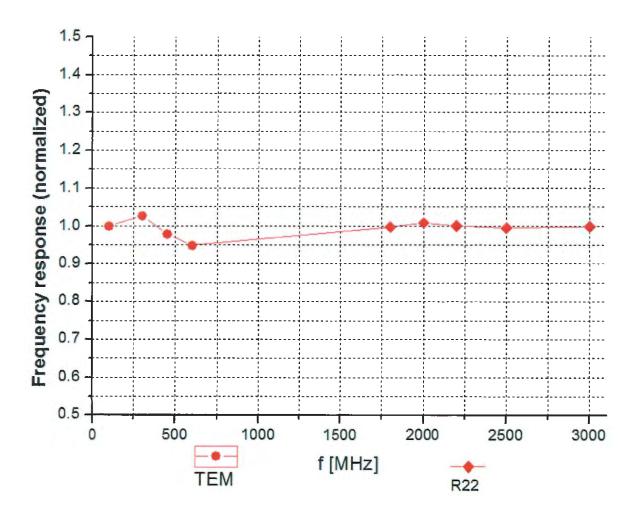
### DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative                  | Conductivity       | ConvF X | ConvF Y           | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup> | Unct.  |
|----------------------|---------------------------|--------------------|---------|-------------------|---------|--------------------|--------------------|--------|
| ı İmilizi            | Permittivity <sup>F</sup> | (S/m) <sup>F</sup> | CONVEX  | DITUTE A COUNTY I |         | Aipiia             | (mm)               | (k=2)  |
| 750                  | 55.5                      | 0.96               | 6.31    | 6.31              | 6.31    | 0.50               | 1.35               | ±12.1% |
| 835                  | 55.2                      | 0.97               | 6.09    | 6.09              | 6.09    | 0.43               | 1.56               | ±12.1% |
| 1750                 | 53.4                      | 1.49               | 5.00    | 5.00              | 5.00    | 0.66               | 1.29               | ±12.1% |
| 1900                 | 53.3                      | 1.52               | 4.90    | 4.90              | 4.90    | 0.72               | 1.21               | ±12.1% |
| 2450                 | 52.7                      | 1.95               | 4.39    | 4.39              | 4.39    | 0.71               | 1.36               | ±12.1% |
| 2600                 | 52.5                      | 2.16               | 4.19    | 4.19              | 4.19    | 0.90               | 1.15               | ±12.1% |

Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>&</sup>lt;sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


<sup>&</sup>lt;sup>G</sup>Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

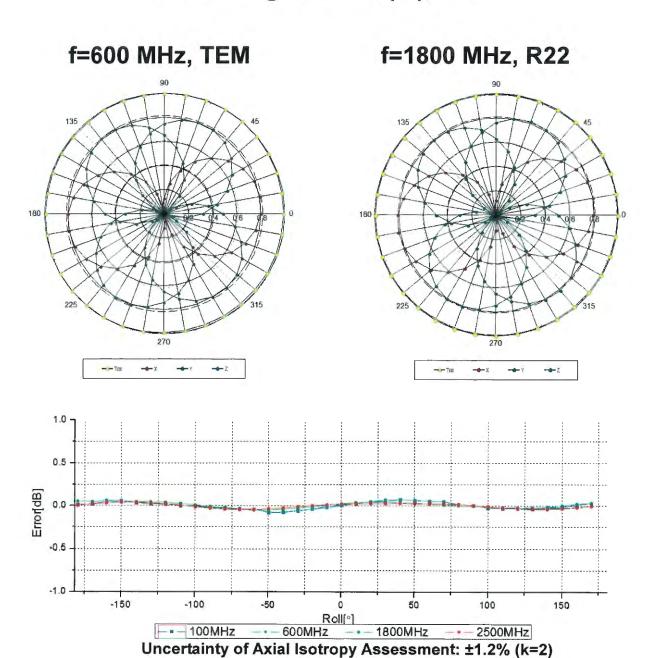


Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

## Frequency Response of E-Field

(TEM-Cell: ifi110 EXX, Waveguide: R22)



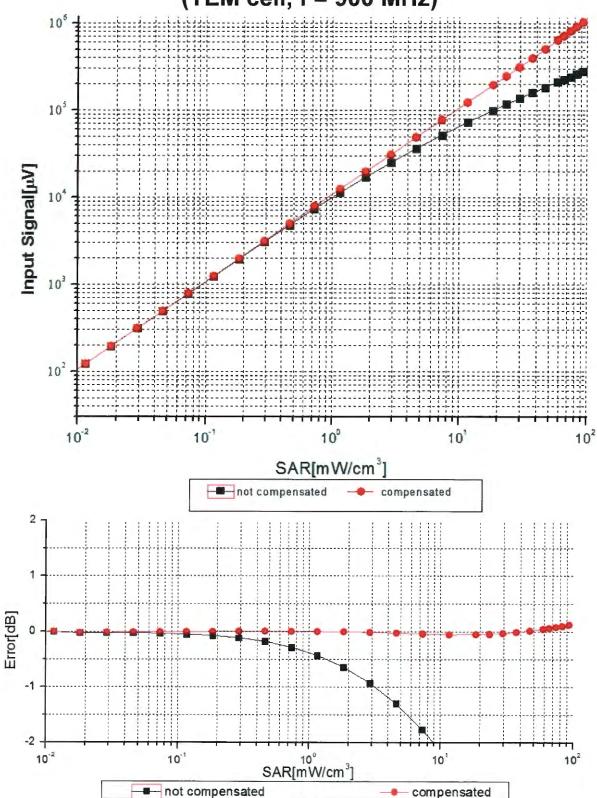

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z17-97143 Page 7 of 11



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

## Receiving Pattern (Φ), θ=0°




Certificate No: Z17-97143 Page 8 of 11

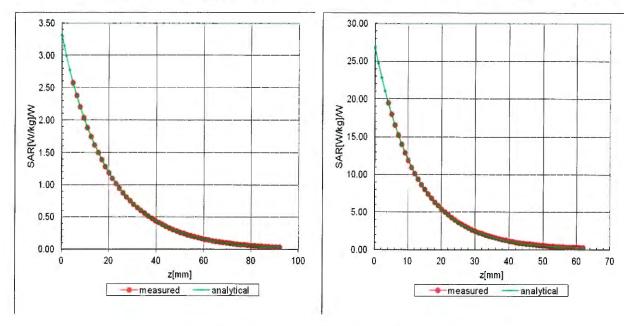


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn

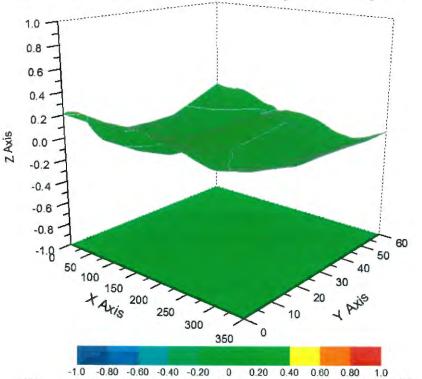
## Dynamic Range f(SAR<sub>head</sub>) (TEM cell, f = 900 MHz)



Uncertainty of Linearity Assessment: ±0.9% (k=2)




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn


### **Conversion Factor Assessment**

#### f=835 MHz, WGLS R9(H\_convF)

#### f=1750 MHz, WGLS R22(H\_convF)



## **Deviation from Isotropy in Liquid**



Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Certificate No: Z17-97143 Page 10 of 11



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn

## DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3270

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 166.5      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 10mm       |
| Tip Diameter                                  | 4mm        |
| Probe Tip to Sensor X Calibration Point       | 2mm        |
| Probe Tip to Sensor Y Calibration Point       | 2mm        |
| Probe Tip to Sensor Z Calibration Point       | 2mm        |
| Recommended Measurement Distance from Surface | 3mm        |

Certificate No: Z17-97143 Page 11 of 11

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3931\_Sep17

Client Sporton (Auden)

#### CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3931

Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: September 29, 2017

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | 1D               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-17 (No. 217-02525)         | Apr-18                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-16 (No. ES3-3013_Dec16)    | Dec-17                 |
| DAE4                       | SN: 660          | 7-Dec-16 (No. DAE4-660_Dec16)     | Dec-17                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 |
| Network Analyzer HP 8753E  | SN: US37390585   | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 |

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: October 2, 2017

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3931\_Sep17 Page 1 of 38

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3931\_Sep17 Page 2 of 38

## Probe EX3DV4

SN:3931

Manufactured:

July 24, 2013

Calibrated:

September 29, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

EX3DV4-SN:3931

#### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

#### **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.52     | 0.56     | 0.47     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 99.3     | 95.7     | 101.5    |           |

**Modulation Calibration Parameters** 

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 135.8    | ±3.5 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 139.3    |                           |
|     |                           | Ż | 0.0     | 0.0        | 1.0 |         | 135.2    |                           |

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

|   | C1<br>fF | C2<br>fF | α′<br>V⁻¹ | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V⁻¹ | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | T6    |
|---|----------|----------|-----------|--------------------------|--------------|----------|-----------------------|-----------------------|-------|
| X | 42.04    | 322.0    | 37.82     | 14.14                    | 0.502        | 5.100    | 0.000                 | 0.378                 | 1.016 |
| Υ | 58.44    | 440.2    | 36.37     | 26.92                    | 0.702        | 5.100    | 0.085                 | 0.612                 | 1.012 |
| Z | 57.74    | 437.1    | 36.65     | 22.79                    | 0.943        | 5.100    | 0.430                 | 0.567                 | 1.013 |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3931 September 29, 2017

#### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative                  | Conductivity<br>(S/m) F | CFV     | CFV     | C       | Alpha <sup>G</sup> | Depth <sup>G</sup> | Unc      |
|----------------------|---------------------------|-------------------------|---------|---------|---------|--------------------|--------------------|----------|
| F (IVITZ)            | Permittivity <sup>F</sup> | (Sim)                   | ConvF X | ConvF Y | ConvF Z | Alpha              | (mm)               | (k=2)    |
| 750                  | 41.9                      | 0.89                    | 10.56   | 10.56   | 10.56   | 0.48               | 0.84               | ± 12.0 % |
| 835                  | 41.5                      | 0.90                    | 10.15   | 10.15   | 10.15   | 0.51               | 0.80               | ± 12.0 % |
| 900                  | 41.5                      | 0.97                    | 9.96    | 9.96    | 9.96    | 0.36               | 0.95               | ± 12.0 % |
| 1450                 | 40.5                      | 1.20                    | 8.83    | 8.83    | 8.83    | 0.35               | 0.80               | ± 12.0 % |
| 1750                 | 40.1                      | 1.37                    | 8.80    | 8.80    | 8.80    | 0.37               | 0.82               | ± 12.0 % |
| 1900                 | 40.0                      | 1.40                    | 8.45    | 8.45    | 8.45    | 0.38               | 0.80               | ± 12.0 % |
| 2000                 | 40.0                      | 1.40                    | 8.39    | 8.39    | 8.39    | 0.33               | 0.84               | ± 12.0 % |
| 2300                 | 39.5                      | 1.67                    | 7.94    | 7.94    | 7.94    | 0.32               | 0.80               | ± 12.0 % |
| 2450                 | 39.2                      | 1.80                    | 7.62    | 7.62    | 7.62    | 0.37               | 0.85               | ± 12.0 % |
| 2600                 | 39.0                      | 1.96                    | 7.38    | 7.38    | 7.38    | 0.30               | 0.98               | ± 12.0 % |
| 5250                 | 35.9                      | 4.71                    | 5.34    | 5.34    | 5.34    | 0.35               | 1.80               | ± 13.1 % |
| 5600                 | 35.5                      | 5.07                    | 4.47    | 4.47    | 4.47    | 0.40               | 1.80               | ± 13.1 % |
| 5750                 | 35.4                      | 5.22                    | 4.95    | 4.95    | 4.95    | 0.40               | 1.80               | ± 13.1 % |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: EX3-3931\_Sep17 Page 5 of 38

validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

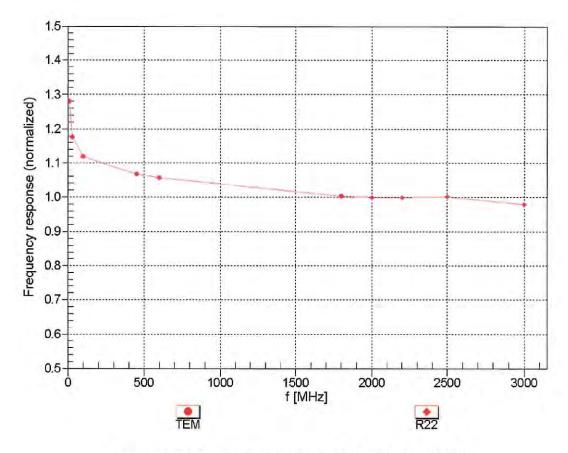
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 55.5                                  | 0.96                               | 10.34   | 10.34   | 10.34   | 0.46               | 0.80                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                               | 10.09   | 10.09   | 10.09   | 0.46               | 0.80                       | ± 12.0 %     |
| 1450                 | 54.0                                  | 1.30                               | 8.53    | 8.53    | 8.53    | 0.40               | 0.80                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                               | 8.43    | 8.43    | 8.43    | 0.45               | 0.80                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                               | 8.12    | 8.12    | 8.12    | 0.47               | 0.84                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                               | 7.89    | 7.89    | 7.89    | 0.48               | 0.85                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 7.69    | 7.69    | 7.69    | 0.45               | 0.80                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                               | 7.45    | 7.45    | 7.45    | 0.32               | 0.99                       | ± 12.0 %     |
| 5250                 | 48.9                                  | 5.36                               | 4.70    | 4.70    | 4.70    | 0.40               | 1.90                       | ± 13.1 %     |
| 5600                 | 48.5                                  | 5.77                               | 3.99    | 3.99    | 3.99    | 0.45               | 1.90                       | ± 13.1 %     |
| 5750                 | 48.3                                  | 5.94                               | 4.32    | 4.32    | 4.32    | 0.45               | 1.90                       | ± 13.1 %     |

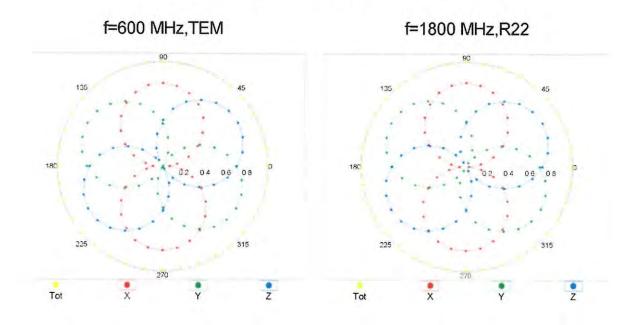
<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

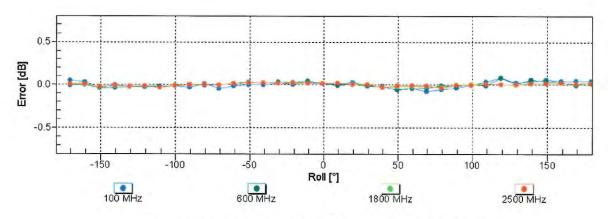

<sup>&</sup>lt;sup>c</sup> At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

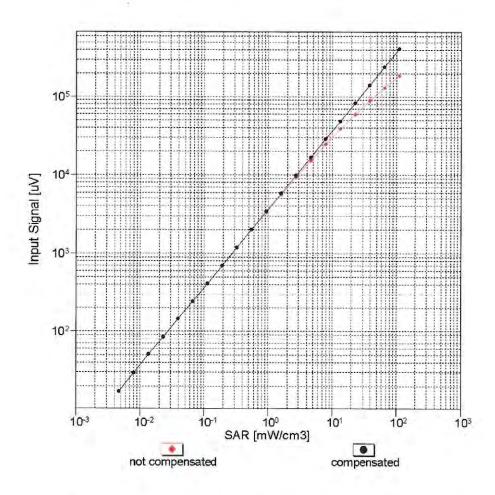
EX3DV4-SN:3931 September 29, 2017

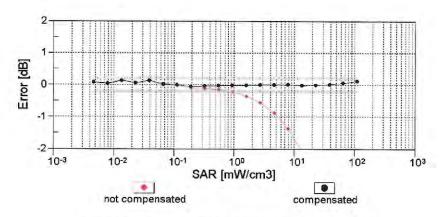

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)




Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4- SN:3931 September 29, 2017

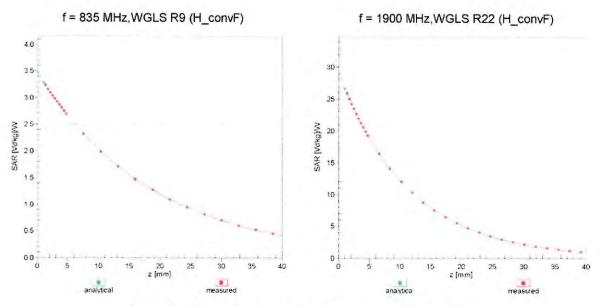

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$





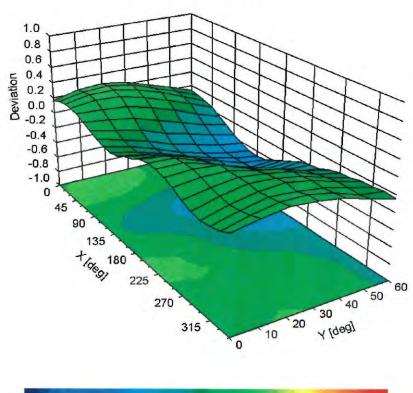

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)


EX3DV4- SN:3931 September 29, 2017

## **Conversion Factor Assessment**



## **Deviation from Isotropy in Liquid**

Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



EX3DV4-SN:3931

## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3931

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 129.3      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | .9 mm      |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Certificate No: EX3-7346\_Feb18

S

C

S

#### **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:7346

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

February 28, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN: 104778       | 04-Apr-17 (No. 217-02521/02522)   | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-17 (No. 217-02521)         | Apr-18                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-17 (No. 217-02525)         | Apr-18                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 07-Apr-17 (No. 217-02528)         | Apr-18                 |
| Reference Probe ES3DV2     | SN: 3013         | 30-Dec-17 (No. ES3-3013_Dec17)    | Dec-18                 |
| DAE4                       | SN: 660          | 21-Dec-17 (No. DAE4-660_Dec17)    | Dec-18                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 |
| Network Analyzer HP 8753E  | SN: US37390585   | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 |

Name Function Signature

Calibrated by: Michael Weber Laboratory Technician

Approved by:

Technical Manager

Issued: March 1, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Katja Pokovic

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF A, B, C, D

crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Anale

information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

 NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.

 PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics

 Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.

• Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

 Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

# Probe EX3DV4

SN:7346

Manufactured:

October 13, 2014

Repaired:

February 19, 2018

Calibrated:

February 28, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.46     | 0.47     | 0.48     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 100.0    | 102.9    | 99.7     |           |

**Modulation Calibration Parameters** 

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 148.2    | ±3.0 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 139.8    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 139.3    |                           |

Note: For details on UID parameters see Appendix.

#### **Sensor Model Parameters**

|   | C1<br>fF | C2<br>fF | α<br>V⁻¹ | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | Т6    |
|---|----------|----------|----------|--------------------------|--------------------------|----------|-----------------------|-----------------------|-------|
| X | 35.30    | 261.2    | 35.06    | 7.248                    | 0.016                    | 5.034    | 1.798                 | 0.079                 | 1.006 |
| Y | 34.75    | 261.4    | 35.94    | 6.021                    | 0.263                    | 5.073    | 0.000                 | 0.421                 | 1.007 |
| Z | 48.88    | 364.7    | 35.56    | 12.29                    | 0.261                    | 5.100    | 0.367                 | 0.451                 | 1.005 |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 41.9                                  | 0.89                    | 10.36   | 10.36   | 10.36   | 0.55               | 0.80                       | ± 12.0 %     |
| 835                  | 41.5                                  | 0.90                    | 10.02   | 10.02   | 10.02   | 0.46               | 0.80                       | ± 12.0 %     |
| 900                  | 41.5                                  | 0.97                    | 9.79    | 9.79    | 9.79    | 0.34               | 1.04                       | ± 12.0 %     |
| 1450                 | 40.5                                  | 1.20                    | 8.83    | 8.83    | 8.83    | 0.33               | 0.80                       | ± 12.0 %     |
| 1750                 | 40.1                                  | 1.37                    | 8.81    | 8.81    | 8.81    | 0.45               | 0.81                       | ± 12.0 %     |
| 1900                 | 40.0                                  | 1.40                    | 8.46    | 8.46    | 8.46    | 0.38               | 0.85                       | ± 12.0 %     |
| 2000                 | 40.0                                  | 1.40                    | 8.33    | 8.33    | 8.33    | 0.37               | 0.85                       | ± 12.0 %     |
| 2300                 | 39.5                                  | 1.67                    | 7.87    | 7.87    | 7.87    | 0.30               | 0.89                       | ± 12.0 %     |
| 2450                 | 39.2                                  | 1.80                    | 7.49    | 7.49    | 7.49    | 0.34               | 0.91                       | ± 12.0 %     |
| 2600                 | 39.0                                  | 1.96                    | 7.35    | 7.35    | 7.35    | 0.42               | 0.87                       | ± 12.0 %     |
| 3500                 | 37.9                                  | 2.91                    | 7.40    | 7.40    | 7.40    | 0.20               | 1.20                       | ± 13.1 %     |
| 5250                 | 35.9                                  | 4.71                    | 5.49    | 5.49    | 5.49    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                                  | 5.07                    | 4.97    | 4.97    | 4.97    | 0.40               | 1.80                       | ± 13.1 %     |
| 5750                 | 35.4                                  | 5.22                    | 5.12    | 5.12    | 5.12    | 0.40               | 1.80                       | ± 13.1 %     |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

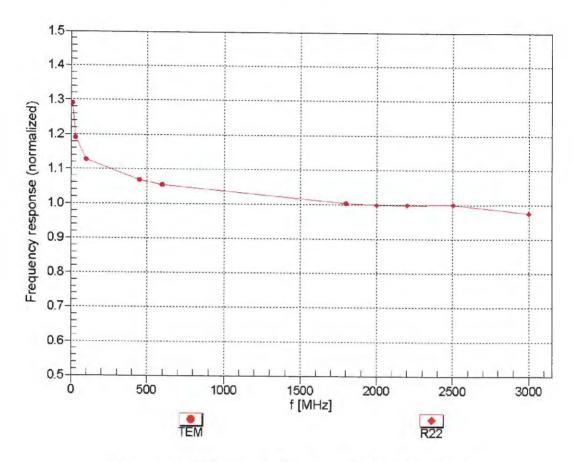
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Calibration Parameter Determined in Body Tissue Simulating Media

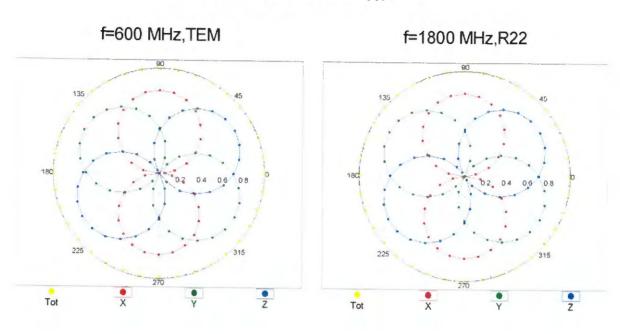
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 750                  | 55.5                                  | 0.96                               | 10.16   | 10.16   | 10.16   | 0.69               | 0.80                       | ± 12.0 %     |
| 835                  | 55.2                                  | 0.97                               | 9.95    | 9.95    | 9.95    | 0.65               | 0.80                       | ± 12.0 %     |
| 900                  | 55.0                                  | 1.05                               | 9.79    | 9.79    | 9.79    | 0.58               | 0.80                       | ± 12.0 %     |
| 1450                 | 54.0                                  | 1.30                               | 8.95    | 8.95    | 8.95    | 0.30               | 0.80                       | ± 12.0 %     |
| 1750                 | 53.4                                  | 1.49                               | 8.45    | 8.45    | 8.45    | 0.40               | 0.80                       | ± 12.0 %     |
| 1900                 | 53.3                                  | 1.52                               | 8.04    | 8.04    | 8.04    | 0.40               | 0.85                       | ± 12.0 %     |
| 2000                 | 53.3                                  | 1.52                               | 8.20    | 8.20    | 8.20    | 0.42               | 0.80                       | ± 12.0 %     |
| 2300                 | 52.9                                  | 1.81                               | 7.89    | 7.89    | 7.89    | 0.36               | 0.88                       | ± 12.0 %     |
| 2450                 | 52.7                                  | 1.95                               | 7.78    | 7.78    | 7.78    | 0.34               | 0.87                       | ± 12.0 %     |
| 2600                 | 52.5                                  | 2.16                               | 7.44    | 7.44    | 7.44    | 0.24               | 0.99                       | ± 12.0 %     |
| 3500                 | 51.3                                  | 3.31                               | 7.21    | 7.21    | 7.21    | 0.30               | 1.20                       | ± 13.1 %     |
| 5250                 | 48.9                                  | 5.36                               | 5.06    | 5.06    | 5.06    | 0.50               | 1.90                       | ± 13.1 %     |
| 5600                 | 48.5                                  | 5.77                               | 4.35    | 4.35    | 4.35    | 0.50               | 1.90                       | ± 13.1 %     |
| 5750                 | 48.3                                  | 5.94                               | 4.52    | 4.52    | 4.52    | 0.50               | 1.90                       | ± 13.1 %     |

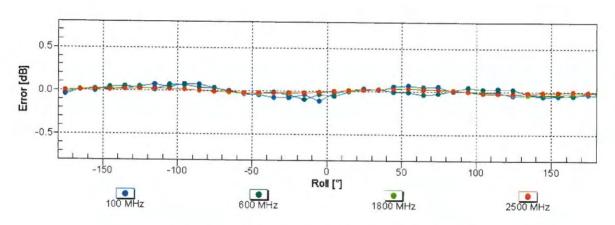
 $<sup>^{\</sup>rm C}$  Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.


validity can be extended to  $\pm$  110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

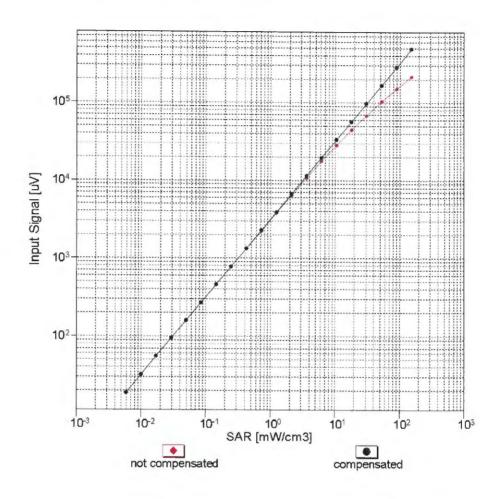
the ConvF uncertainty for indicated target tissue parameters.

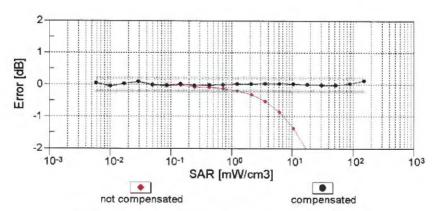

Galloha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



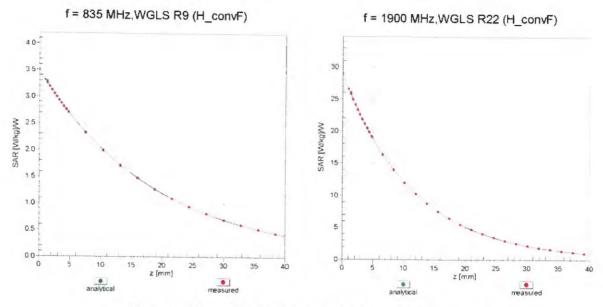
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

## **Conversion Factor Assessment**



### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 94.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |