

FCC RADIO TEST REPORT

FCC ID	: PY7-45256F
Equipment	: GSM/WCDMA/LTE/5G Phone with BT, DTS/UNII a/b/g/n/ac/ax, GPS and NFC
Brand Name	: Sony
Applicant	: Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan
Manufacturer	: Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Mar. 24, 2021 and testing was started from Mar. 30, 2021 and completed on Apr. 13, 2021. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Win

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	tory o	of this test report	3
Su	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	20
	3.3	Power Spectral Density Measurement	21
	3.4	Conducted Band Edges and Spurious Emission Measurement	30
	3.5	Radiated Band Edges and Spurious Emission Measurement	41
	3.6	AC Conducted Emission Measurement	45
	3.7	Antenna Requirements	47
4	List o	of Measuring Equipment	48
5	Unce	rtainty of Evaluation	50
Ap	pendix	x A. Conducted Test Results	
Ap	pendix	x B. AC Conducted Emission Test Result	
Ap	pendix	x C. Radiated Spurious Emission	
Ap	pendix	x D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR132425B	01	Initial issue of report	Apr. 23, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission Pass		-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 3.33 dB at 18000.000 MHz
3.6	15.207	AC Conducted Emission Pass		Under limit 11.39 dB at 0.335 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Vivian Hsu

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, DTS/UNII a/b/g/n/ac/ax, NFC, and GNSS.

Product Specification subjective to this standard		
Antenna Type / Gain	<ant. 0="">: Loop Type Antenna with gain -2.3 dBi</ant.>	
Antenna Type / Galli	<ant. 1="">: Loop Type Antenna with gain -7.0 dBi</ant.>	

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

EUT Information List				
HW Version SW Version		S/N	Performed Test Item	
	0.325	QV7200A968	RF conducted measurement	
A	0.325	QV7200NJ7E	Radiated Spurious Emission	
	0.747	QV7200P17E	AC Conducted Emission	

Accessory List		
	Model Name : XQZ-UC1	
AC Adapter	S/N : 0020W51300039 (for Radiated Spurious Emission) 0020W51300096 (for Conducted Emission)	
	Model Name : MH750	
Earphone	S/N : N/A	
Bluete eth Ferrik en e	Model Name : SBH82D	
Bluetooth Earphone	S/N : N/A	
	Model Name : XQZ-UB1	
USB Cable	S/N : N/A	

Note:

- 1. Above EUT list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test, and the serial number of each type of accessories is listed in each section of this report.
- 3. For other wireless features of this EUT, test report will be issued separately.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No. TH02-HY, CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
Test Sile NO.	03CH15-HY (TAF Code: 3786)	
Remark	The Radiated Spurious Emission test item subcontracted to Sporton International Inc. Wensan Laboratory	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

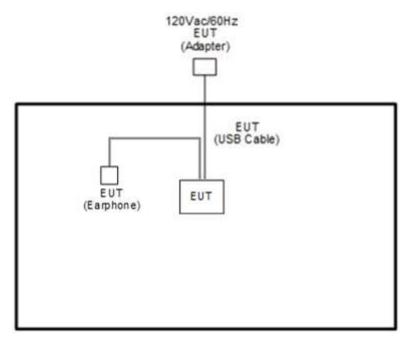
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y Plane for Ant. 0; Z Plane for Ant. 1) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases			
Test Item	Data Rate / Modulation		
	Bluetooth – LE / GFSK		
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps		
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps		
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps		
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps		
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps		
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps		
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps		
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps		
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps		
AC Conducted	Mode 1 : GSM850 Idle + Bluetooth Link + WLAN (2.4GHz) Link + MPEG4 +		
Emission	Earphone + USB Cable (Charging from AC Adapter) + Battery		



2.3 Connection Diagram of Test System

<AC Conducted Emission>

<Bluetooth-LE Tx Mode>

TEL : 886-3-327-3456	Page Number	: 9 of 50
FAX : 886-3-328-4978	Issued Date	: Apr. 23, 2021
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	Dell	Latitude 3400	FCC DOC	N/A	AC I/P: Unshielded, 1.2m DC O/P: Shielded, 1.8m
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

The RF test items, utility "FTMC_bridge V_0.39" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 **Test Result**

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

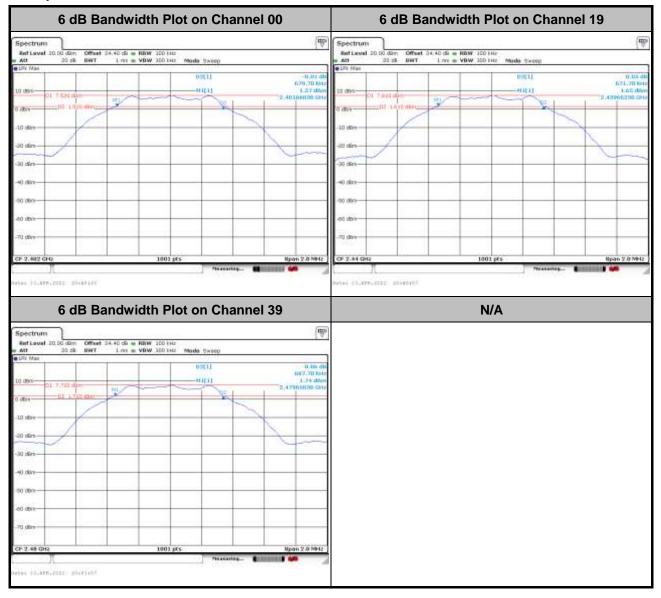
See list of measuring equipment of this test report.

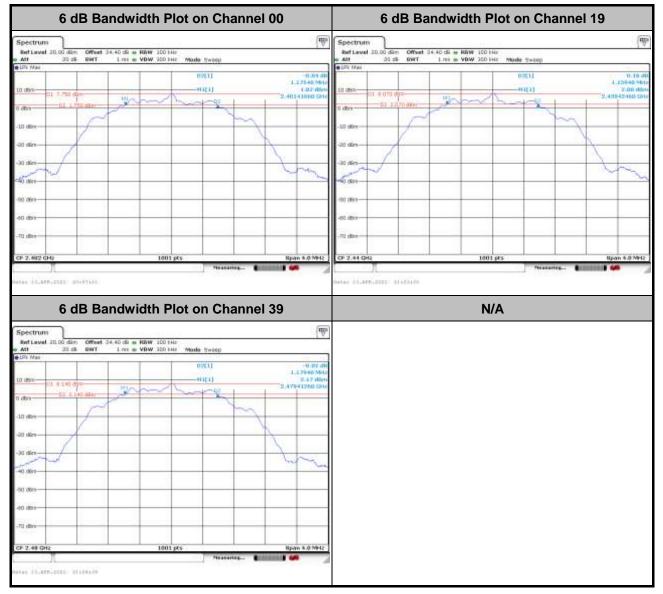
3.1.3 Test Procedures

- The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW). 1.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- Set the maximum power setting and enable the EUT to transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 5. 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

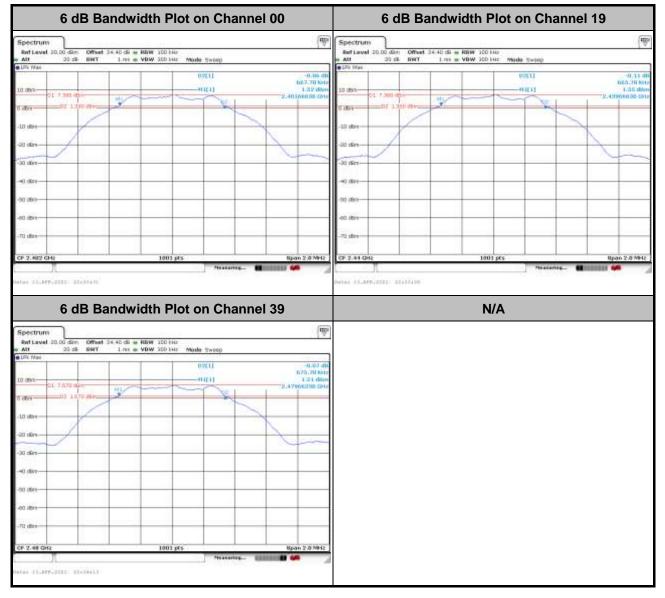
EUT

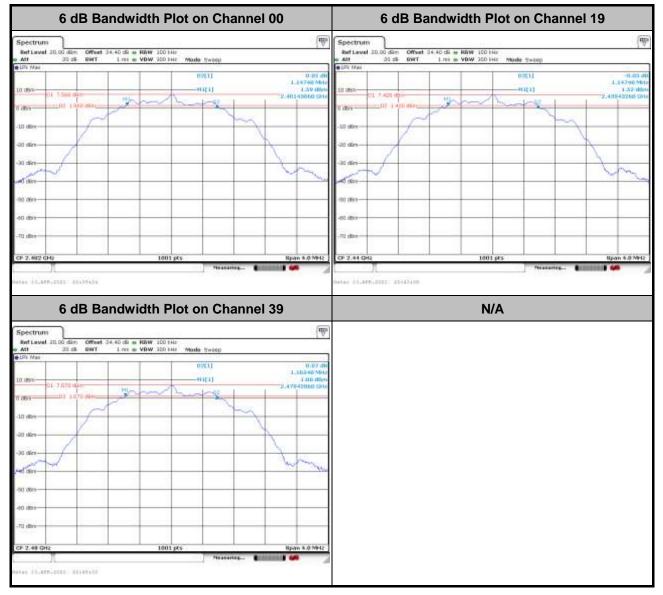

Spectrum Analyzer


3.1.5 Test Result of 6dB Bandwidth

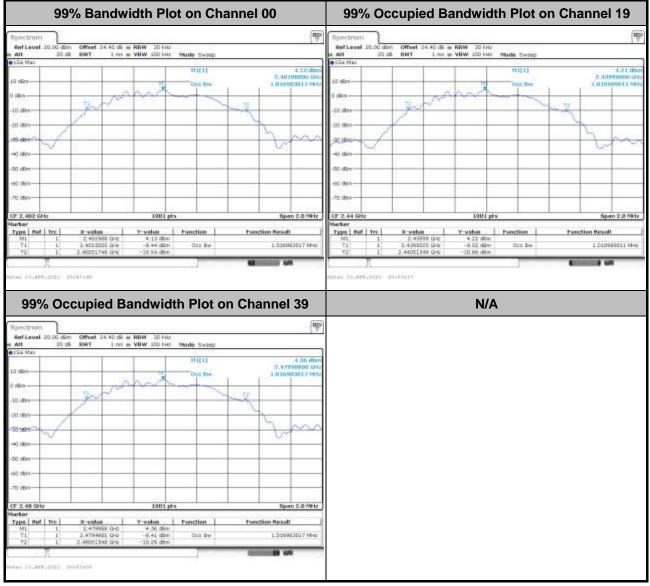
Please refer to Appendix A.

<Ant. 0>

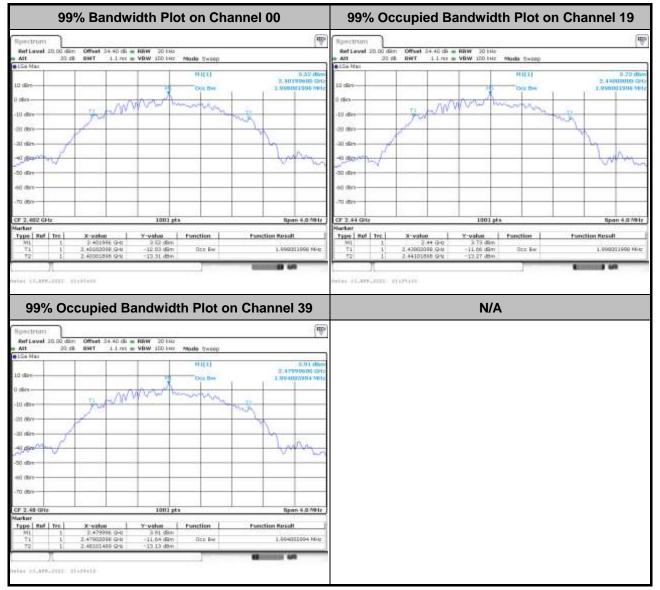




<Ant. 1>

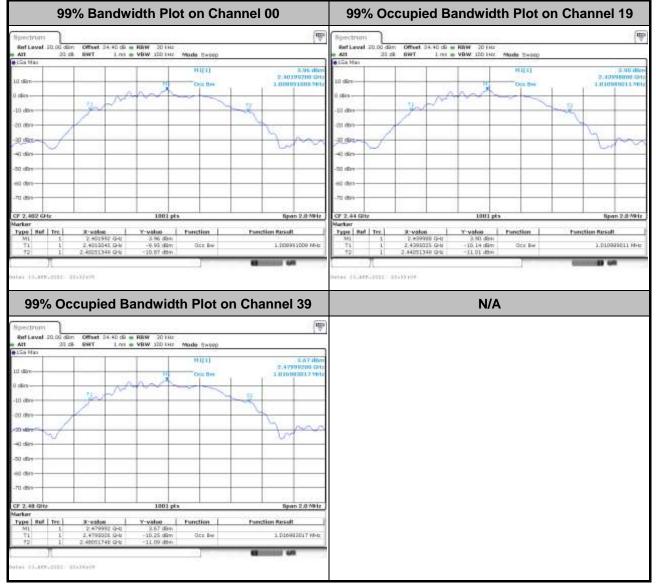


3.1.6 Test Result of 99% Occupied Bandwidth

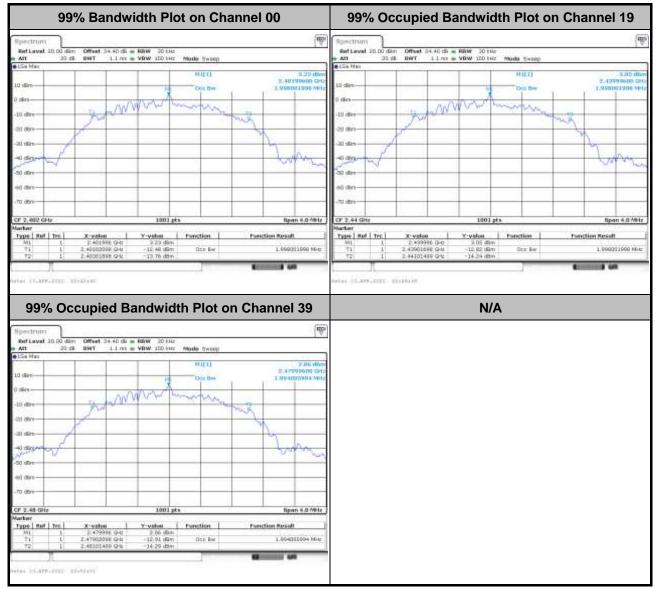

Please refer to Appendix A.

<Ant. 0>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<Ant. 1>

<1Mbps>

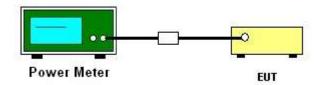
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

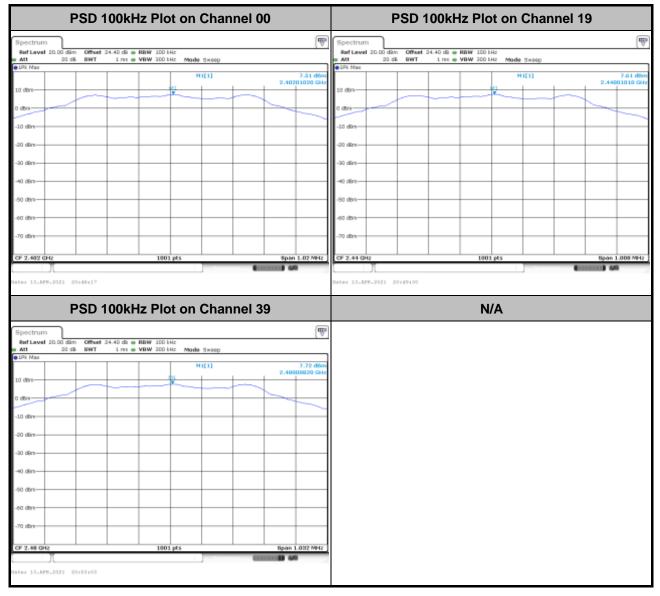
See list of measuring equipment of this test report.

3.3.3 Test Procedures

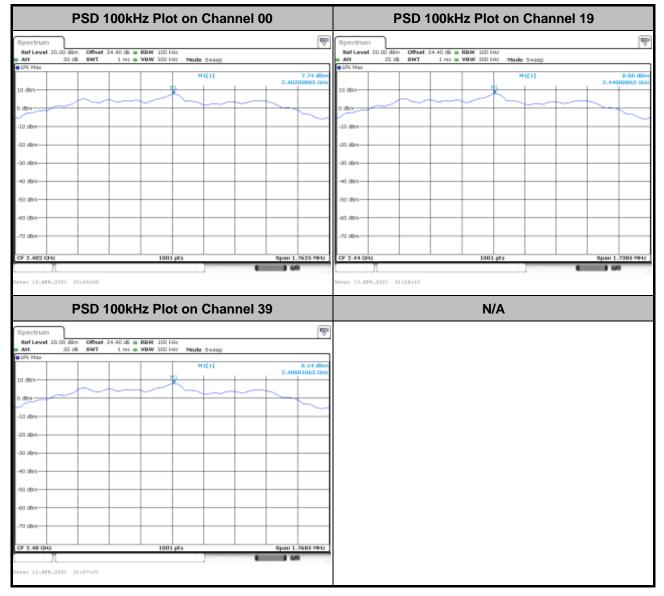
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

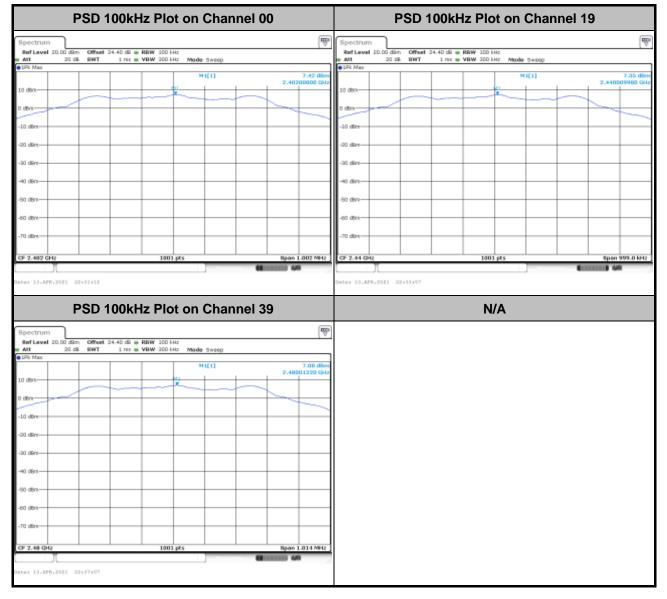

3.3.5 Test Result of Power Spectral Density

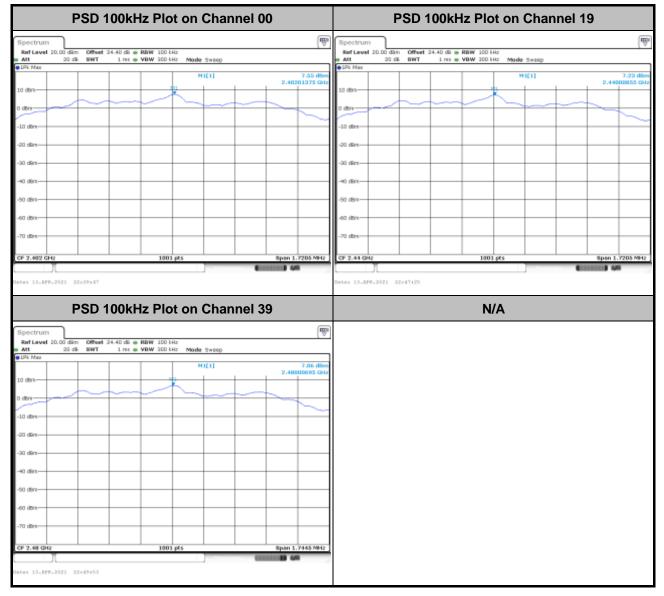
Please refer to Appendix A.



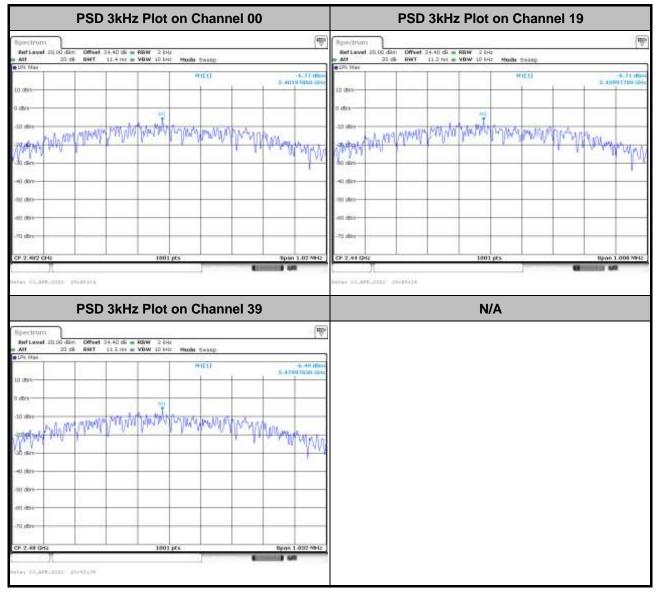
3.3.6 Test Result of Power Spectral Density Plots (100kHz)

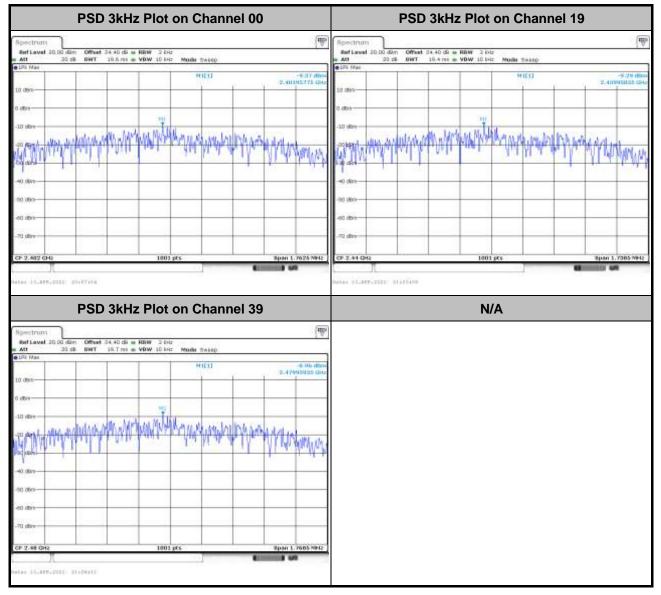
<Ant. 0>





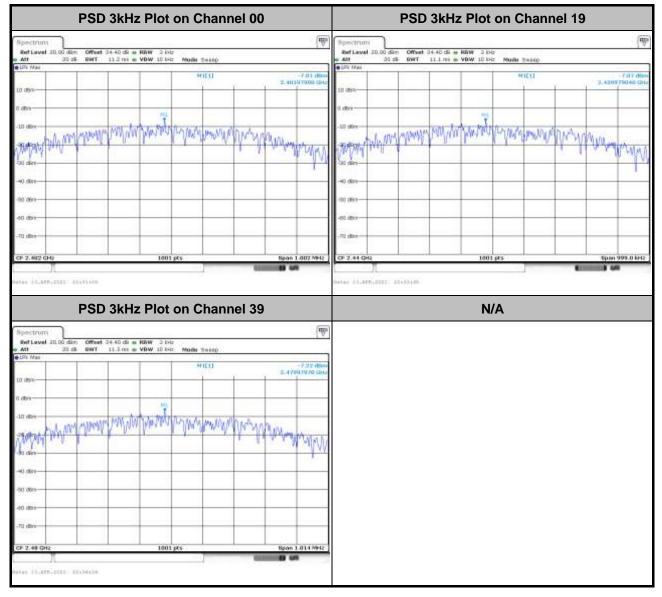
<Ant. 1>

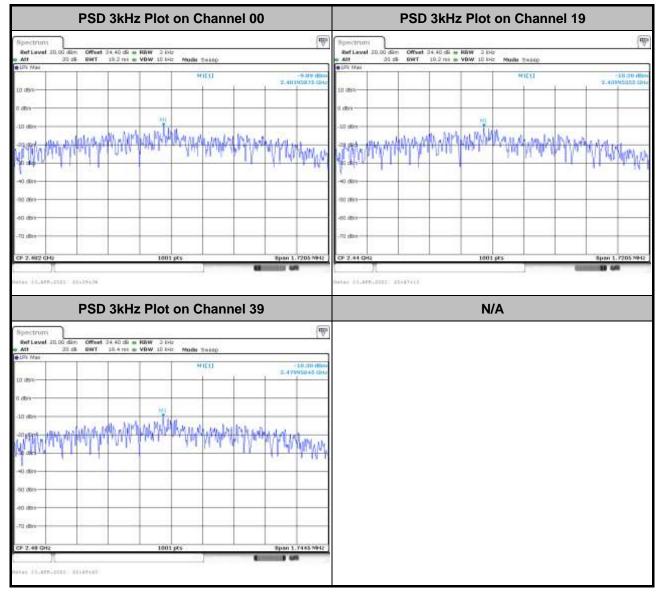




3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<Ant. 0>



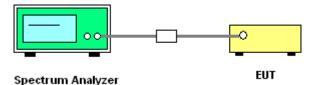


<Ant. 1>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

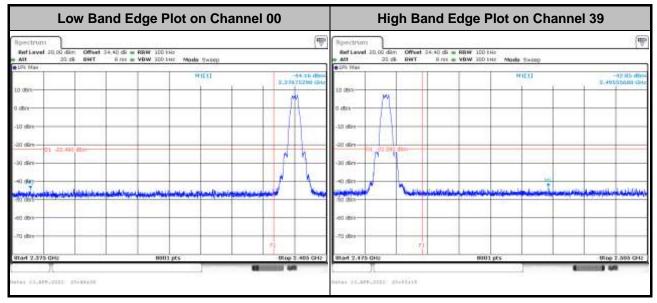

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

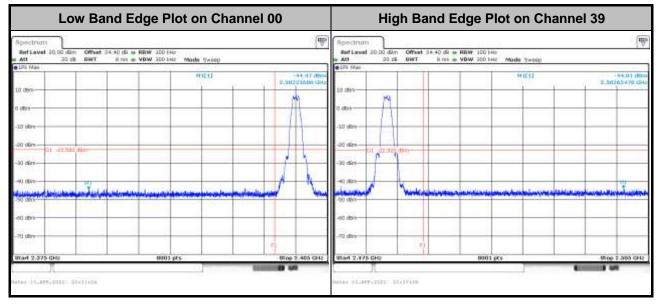
3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges Plots

<Ant. 0>

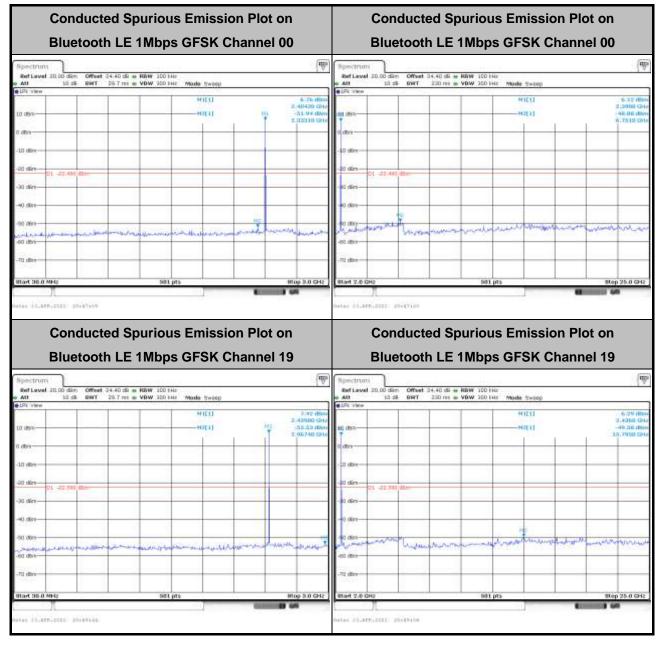
<1Mbps>


	Low Band I	Edge Plot on Cha	nnel 00	High Band Edge Plot on Channel 39								
Spectrum Ref Level 20.1		• RNW 1001Hz	Spectrum Buffavel 20.00 dim Offset 34.40 di = RBW 2001Hz									
thA e	20 28 9WT 9 mil	· VBW 300 kHz Mode Sweep		thA o	20.58 8997	9.181 @ ¥	BW, 300 1Hz	Mode Sweep				
• 17% Maxi		91[1]	-41.49 dbm 2.20607000 dbm	●17k Mai		1		HIEL		-43.17 dim 2.48794789 GHz		
10 05%			N	10 05%-	Ne							
0.dbri			m	0.dbrs	11							
-10 dire				-10 dire				-				
-20 dân	22 per dem-			-20 dân - o	1 -21.041.19**	++		_				
-30 dim				-30 dim-								
-40 döre	AND THE OWNER		1 1	-0 dan			T. I.	and the state of		CALLER TO BE AND		
do dere	All the state of t	-	and the second sec	-50 dbn		And in the second second	No. of Concession, Name	wooding	and the second second	Normalian		
-60 db/n	_			-60 (Br)								
-70 din			5	-70 dire	-	ri.						
81art 2.375 GH	r	0001 ges		8tart 2,4754	CHIL	T I	0001 p	5		610p 2.363 GHz		
Datai 12.477.23	11. 20100320		Emmin on	Dates 12.475	n. ann narai	<u>j</u>						

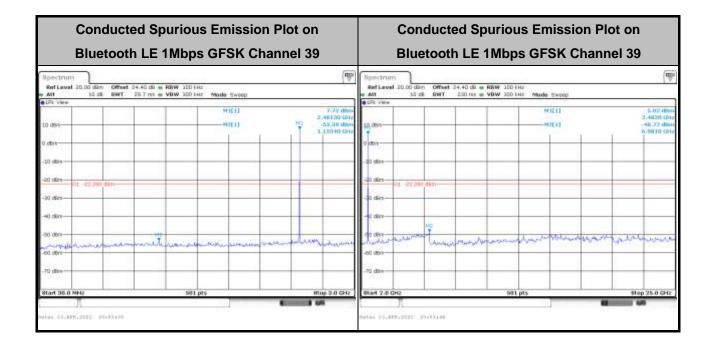
TEL : 886-3-327-3456	Page Number	: 31 of 50
FAX : 886-3-328-4978	Issued Date	: Apr. 23, 2021
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

<Ant. 1>

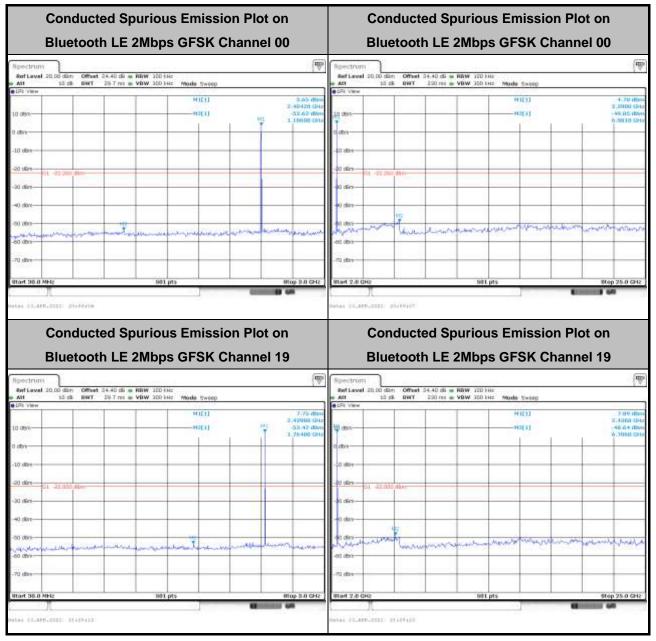
<1Mbps>

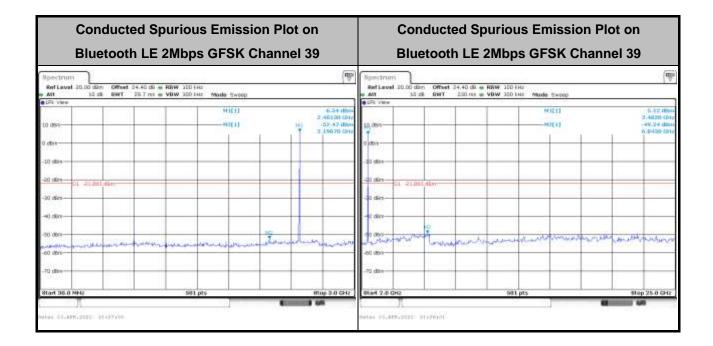


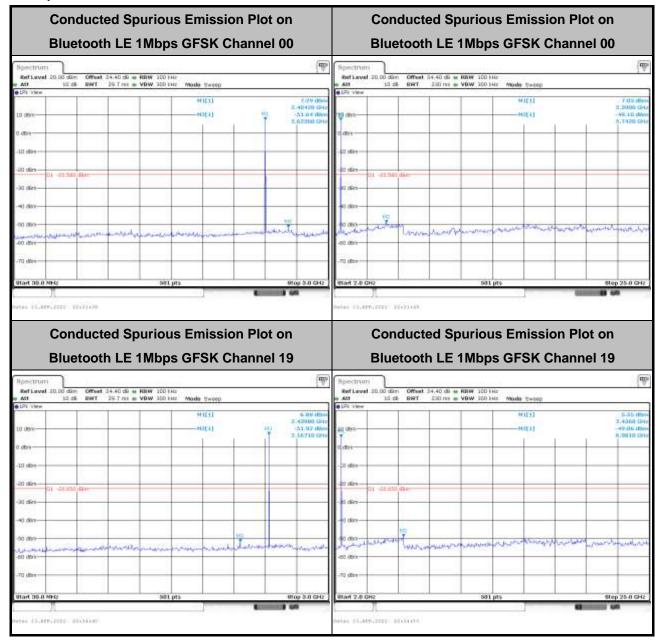
Low Band Edge Plot on Channel 00								High Band Edge Plot on Channel 39											
																	thA. o		SWT
 LFR Mail 	1	110000	1000		and Marian		-	No. of Lot of Lo	 LFR Max 		-	1000			epoter -			1000	
					91211	-46.89 dbm 2.30996506 GHz									41[1]	1[1] -43,42 dbm 2,48564600 GHz			
10 05%						1 1	-	1	10 08%-	7.55		-	-	-	+	+			
							1.3	de la		ala									
0.dbri				_			1	1	0.001	13		-	-	-	-	-		-	
-10 dbr							1	1	-10 dire	1	4								
							1			1	1								
-20 dân	01 -22.490	12	_	_					-20 dân	01 -21-940			-	-	-	-			
-11200							1			01 -11 34									
-30 dim-									-30 dim-		1.		-			-			
-sū dāv						H	Λ.	N		N	N.								
	No.	and the second	a constant	- Maria	and a second second	and a second second		1		1	Les.		and the second	24.000	an aver		COLUMN ST		
-90 (8h)		and share the second	WANT COMPLY	We wanted	Menimuma	And the second second	-	No.	-50 dBre		Newsy	April 1 March 1 March 1	A REPORT OF A REPORT OF A	March and	and in the second second	en andre a	minimum (sea	10.00 M 10.00	
-60 (Brit									-60 (Brit-				-	-	-	-		-	
-10 B									1310-2-1-							-			
-70 dire									-70 dim		1								
Start 2.375	S GHIE			8901 201	F		thop	2.405 GHz	Start 2.47	S-GHE			890	1 pts		-	610p	2.383 GH2	
8 - U	210			-		ALC: NO.		10	S	10				-			B 4	-	
utos (S.AP	N.2121 - 1	1110101							patas 15.4		1010104								

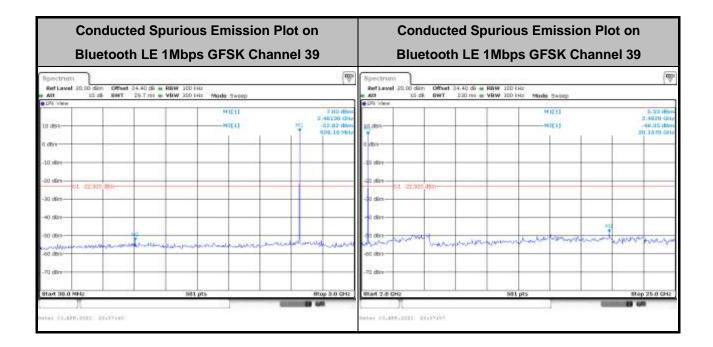


3.4.6 Test Result of Conducted Spurious Emission Plots


<Ant. 0>

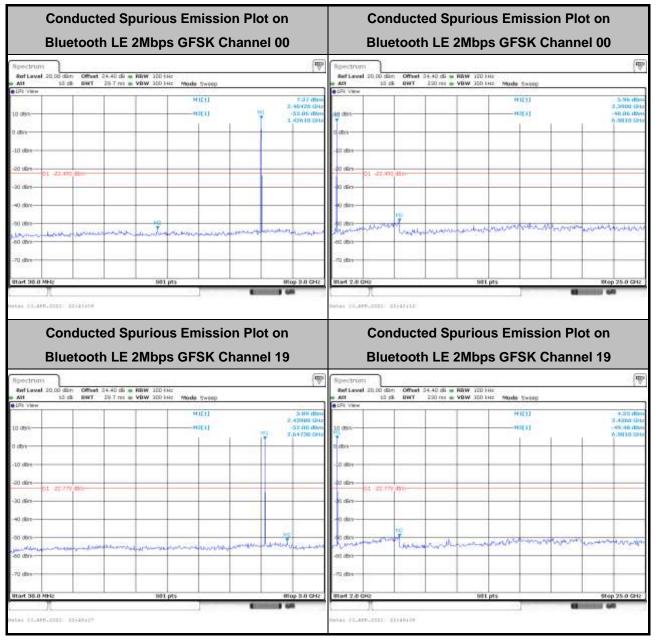


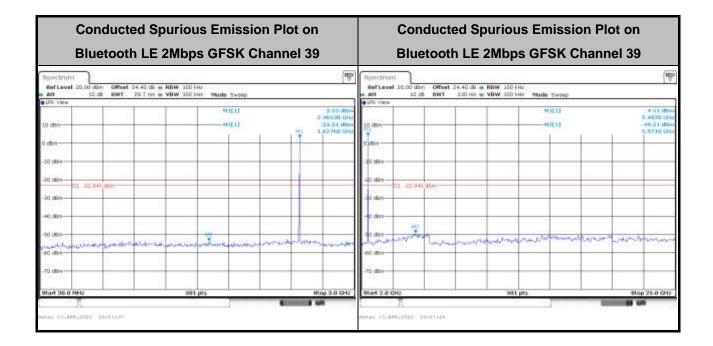




<Ant. 1>

<1Mbps>





<2Mbps>

3.5 Radiated Band Edges and Spurious Emission Measurement

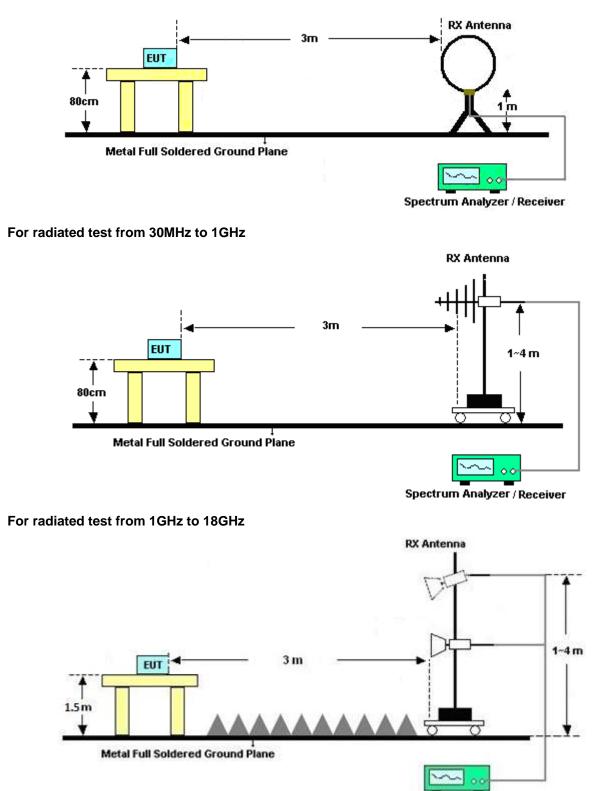
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

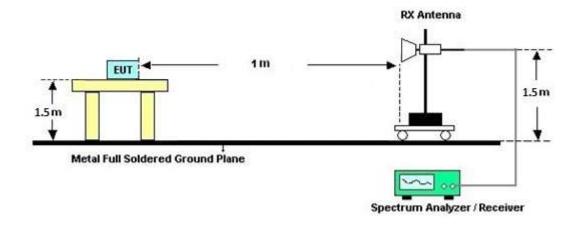
See list of measuring equipment of this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1 GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and be reported.
- 7. For testing above 1 GHz, the emission level of the EUT in peak mode was 20 dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and be reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Spectrum Analyzer / Receiver

TEL : 886-3-327-3456 FAX : 886-3-328-4978 Report Template No.: BU5-FR15CBT4.0 Version 2.4 Page Number: 43 of 50Issued Date: Apr. 23, 2021Report Version: 01

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

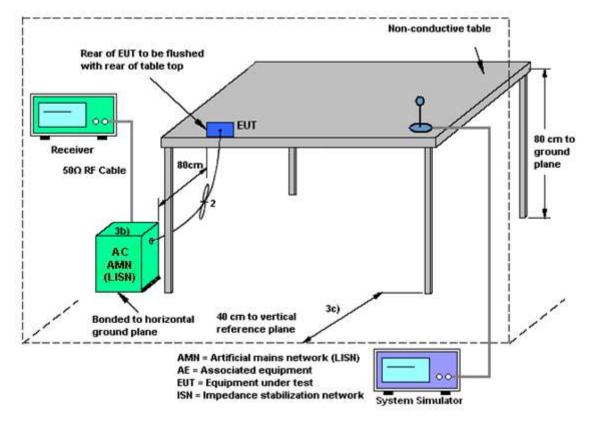
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

:46 of 50 :Apr. 23, 2021 :01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Apr. 08, 2021~ Apr. 13, 2021	Jul. 13, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01 N-06	41912 & 05	30MHz~1GHz	Feb. 08, 2021	Apr. 08, 2021~ Apr. 13, 2021	Feb. 07, 2022	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2020	Apr. 08, 2021~ Apr. 13, 2021	Dec. 27, 2021	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-016 20	1GHz~18GHz	Nov. 03, 2020	Apr. 08, 2021~ Apr. 13, 2021	Nov. 02, 2021	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 251	18GHz~40GHz	Dec. 02, 2020	Apr. 08, 2021~ Apr. 13, 2021	Dec. 01, 2021	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0055006	1GHz~18GHz	May 07, 2020	Apr. 08, 2021~ Apr. 13, 2021	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 21, 2020	Apr. 08, 2021~ Apr. 13, 2021	Aug. 20, 2021	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	0600789	18-40GHz	Oct. 27, 2020	Apr. 08, 2021~ Apr. 13, 2021	Oct. 26, 2021	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20MHz~8.4GHz	Nov. 02, 2020	Apr. 08, 2021~ Apr. 13, 2021	Nov. 01, 2021	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY501801 36	3Hz~44GHz	May 04, 2020	Apr. 08, 2021~ Apr. 13, 2021	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Apr. 08, 2021~ Apr. 13, 2021	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Apr. 08, 2021~ Apr. 13, 2021	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24 (k5)	RK-00045 1	N/A	N/A	Apr. 08, 2021~ Apr. 13, 2021	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/ 4, MY9838/4 PE,508405 /2E	30MHz~18G	Nov. 16, 2020	Apr. 08, 2021~ Apr. 13, 2021	Nov. 15, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 22, 2021	Apr. 08, 2021~ Apr. 13, 2021	Feb. 21, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 22, 2021	Apr. 08, 2021~ Apr. 13, 2021	Feb. 21, 2022	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz~30MHz	Mar. 11, 2021	Apr. 08, 2021~ Apr. 13, 2021	Mar. 10, 2022	Radiation (03CH15-HY)
Filter	Wainwright	WLJ4-1000-1 530-6000-40S T	SN4	1.53GHz Low Pass Filter	Jul. 03, 2020	Apr. 08, 2021~ Apr. 13, 2021	Jul. 02, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN4	3GHz High Pass Filter	Sep. 16, 2020	Apr. 08, 2021~ Apr. 13, 2021	Sep. 15, 2021	Radiation (03CH15-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02, 2021	Mar. 30, 2021~ Apr. 13, 2021	Mar. 01, 2022	Conducted (TH02-HY)
Power Sensor	DARE	RPR3006W	16I00054SN O12	10MHz~6GHz	Dec. 16, 2020	Mar. 30, 2021~ Apr. 13, 2021	Dec. 15, 2021	Conducted (TH02-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz ~ 40GHz	Jul. 22, 2020	Mar. 30, 2021~ Apr. 13, 2021	Jul. 21, 2021	Conducted (TH02-HY)
Switch Box & RF Cable	EM Electronics	EMSW18SE	SW200302	N/A	Mar. 17,2021	Mar. 30, 2021~ Apr. 13, 2021	Mar. 16,2022	Conducted (TH02-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Apr. 08, 2021	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 30, 2020	Apr. 08, 2021	Nov. 29, 2021	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 18, 2020	Apr. 08, 2021	Nov. 17, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 01, 2020	Apr. 08, 2021	Nov. 30, 2021	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2020	Apr. 08, 2021	Nov. 15, 2021	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Apr. 08, 2021	N/A	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Feb. 25, 2021	Apr. 08, 2021	Feb. 24, 2022	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 31, 2020	Apr. 08, 2021	Dec. 30, 2021	Conduction (CO05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	47
of 95% (U = 2Uc(y))	4.7

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	0.0

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9
of 95% (U = 2Uc(y))	

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Eason Huang	Temperature:	21~25	°C
Test Date:	2021/3/30~04/13	Relative Humidity:	51~54	%

<Ant. 0>

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.016	0.680	0.50	Pass		
BLE	1Mbps	1	19	2440	1.010	0.672	0.50	Pass		
BLE	1Mbps	1	39	2480	1.016	0.688	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
	BLE	1Mbps	1	0	2402	8.80	30.00	-2.30	6.50	36.00	Pass
	BLE	1Mbps	1	19	2440	8.80	30.00	-2.30	6.50	36.00	Pass
Γ	BLE	1Mbps	1	39	2480	8.90	30.00	-2.30	6.60	36.00	Pass

Peak Power Density											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	7.51	-6.77	-2.30	8.00	Pass		
BLE	1Mbps	1	19	2440	7.61	-6.71	-2.30	8.00	Pass		
BLE	1Mbps	1	39	2480	7.72	-6.49	-2.30	8.00	Pass		

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandw										
		Data			Frag	99%	6dB BW	6dB BW			
Mo		Data Rate	NTX	CH.	Freq. (MHz)	Occupied BW (MHz)	(MHz)	Limit (MHz)	Pass/Fail		
BL	-E 2	2Mbps	1	0	2402	1.998	1.175	0.50	Pass		
BL	_E 2	2Mbps	1	19	2440	1.998	1.159	0.50	Pass		
BL	-E 2	2Mbps	1	39	2480	1.994	1.179	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	2Mbps	1	0	2402	8.90	30.00	-2.30	6.60	36.00	Pass		
BLE	2Mbps	1	19	2440	8.90	30.00	-2.30	6.60	36.00	Pass		
BLE	2Mbps	1	39	2480	9.00	30.00	-2.30	6.70	36.00	Pass		

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	2Mbps	1	0	2402	7.74	-9.37	-2.30	8.00	Pass		
BLE	2Mbps	1	19	2440	8.00	-9.29	-2.30	8.00	Pass		
BLE	2Mbps	1	39	2480	8.14	-8.96	-2.30	8.00	Pass		

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

<Ant. 1>

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail				
BLE	1Mbps	1	0	2402	1.009	0.668	0.50	Pass				
BLE	1Mbps	1	19	2440	1.110	0.666	0.50	Pass				
BLE	1Mbps	1	39	2480	1.017	0.676	0.50	Pass				

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail				
BLE	1Mbps	1	0	2402	8.80	30.00	-7.00	1.80	36.00	Pass	1			
BLE	1Mbps	1	19	2440	8.80	30.00	-7.00	1.80	36.00	Pass	Ì			
BLE	1Mbps	1	39	2480	8.90	30.00	-7.00	1.90	36.00	Pass				

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
N	1od.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
E	BLE	1Mbps	1	0	2402	7.42	-7.01	-7.00	8.00	Pass			
E	BLE	1Mbps	1	19	2440	7.35	-7.07	-7.00	8.00	Pass			
E	BLE	1Mbps	1	39	2480	7.08	-7.22	-7.00	8.00	Pass			

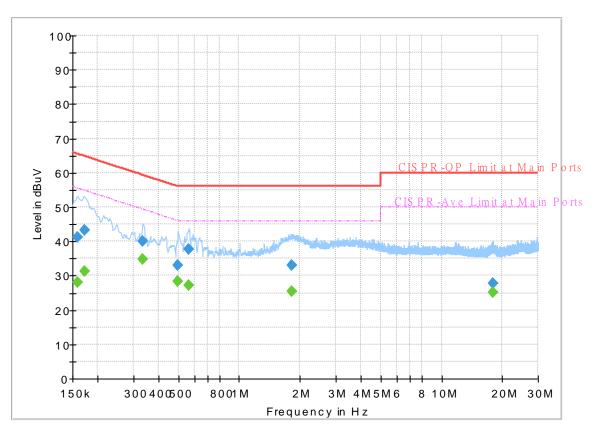
Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandw										
	Data			Freq.	99% Occupied	6dB BW	6dB BW			
Mod.	Rate	Ντχ	CH.	(MHz)	BW (MHz)	(MHz)	Limit (MHz)	Pass/Fail		
BLE	2Mbps	1	0	2402	1.998	1.147	0.50	Pass		
BLE	2Mbps	1	19	2440	1.998	1.147	0.50	Pass		
BLE	2Mbps	1	39	2480	1.994	1.163	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	2Mbps	1	0	2402	8.90	30.00	-7.00	1.90	36.00	Pass	
BLE	2Mbps	1	19	2440	8.90	30.00	-7.00	1.90	36.00	Pass	
BLE	2Mbps	1	39	2480	9.00	30.00	-7.00	2.00	36.00	Pass	

Mod.Data RateNTXCH.Freq. (MHz)Peak PSD (dBm /100kHz)Peak PSD (dBm /3kHz)DG (dBm (dBm /3kHz)Peak PSD Limit (dBm /3kHz)Peak PSD Limit (dBm /3kHz) <t< th=""><th></th><th colspan="11"><u>TEST RESULTS DATA</u> <u>Peak Power Density</u></th></t<>		<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
BLE 2Mbps 1 19 2440 7.23 -10.28 -7.00 8.00 Pass	Mod.		NTX	CH.		(dBm	(dBm		Limit (dBm	Pass/Fail		
	BLE	2Mbps	1	0	2402	7.55	-9.89	-7.00	8.00	Pass		
	BLE	2Mbps	1	19	2440	7.23	-10.28	-7.00	8.00	Pass		
BLE 2Mbps 1 39 2480 7.06 -10.30 -7.00 8.00 Pass	BLE	2Mbps	1	39	2480	7.06	-10.30	-7.00	8.00	Pass		

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

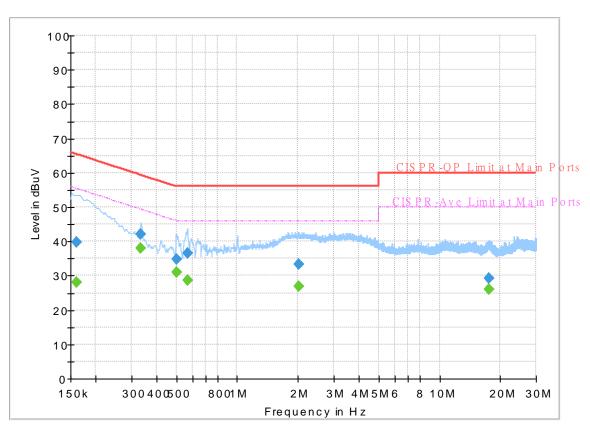


Appendix B. AC Conducted Emission Test Results

Toot Engineer	Tom Loo	Temperature :	23~26 ℃
Test Engineer :	Tom Lee	Relative Humidity :	40~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 132425 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.159000		28.19	55.52	27.33	L1	OFF	19.7
0.159000	41.09		65.52	24.43	L1	OFF	19.7
0.172500		31.35	54.84	23.49	L1	OFF	19.7
0.172500	43.17		64.84	21.67	L1	OFF	19.7
0.334500		34.71	49.34	14.63	L1	OFF	19.7
0.334500	39.96		59.34	19.38	L1	OFF	19.7
0.498750		28.49	46.02	17.53	L1	OFF	19.9
0.498750	33.08		56.02	22.94	L1	OFF	19.9
0.564000		27.34	46.00	18.66	L1	OFF	19.9
0.564000	37.64		56.00	18.36	L1	OFF	19.9
1.826250		25.53	46.00	20.47	L1	OFF	20.2
1.826250	33.18		56.00	22.82	L1	OFF	20.2
18.044250		25.13	50.00	24.87	L1	OFF	20.5
18.044250	27.68		60.00	32.32	L1	OFF	20.5

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 132425 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250		27.98	55.40	27.42	Ν	OFF	19.7
0.161250	39.79		65.40	25.61	Ν	OFF	19.7
0.334500		37.95	49.34	11.39	Ν	OFF	19.8
0.334500	42.19		59.34	17.15	Ν	OFF	19.8
0.501000		30.95	46.00	15.05	Ν	OFF	19.9
0.501000	34.86		56.00	21.14	Ν	OFF	19.9
0.566250		28.76	46.00	17.24	Ν	OFF	20.0
0.566250	36.64		56.00	19.36	Ν	OFF	20.0
2.008500		26.86	46.00	19.14	Ν	OFF	20.2
2.008500	33.46		56.00	22.54	Ν	OFF	20.2
17.553750		26.15	50.00	23.85	Ν	OFF	20.6
17.553750	29.15		60.00	30.85	Ν	OFF	20.6

Appendix C. Radiated Spurious Emission

Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Temperature :	22.5~23.5°C
Test Engineer.		Relative Humidity :	45~55%

<Ant. 0>

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2351.685	54.75	-19.25	74	41.49	27.69	16.5	30.93	318	172	Р	н
		2331.84	44.91	-9.09	54	31.64	27.74	16.47	30.94	318	172	А	Н
DIE	*	2402	95.75	-	-	82.58	27.5	16.58	30.91	318	172	Ρ	н
BLE CH 00	*	2402	94.93	-	-	81.76	27.5	16.58	30.91	318	172	А	н
2402MHz		2387.07	54.66	-19.34	74	41.47	27.55	16.56	30.92	281	89	Р	V
240210112		2311.995	44.93	-9.07	54	31.67	27.78	16.43	30.95	281	89	А	V
	*	2402	97.13	-	-	83.96	27.5	16.58	30.91	281	89	Ρ	V
	*	2402	96.32	-	-	83.15	27.5	16.58	30.91	281	89	А	V
		2385.68	54.49	-19.51	74	41.29	27.56	16.56	30.92	264	352	Р	Н
		2319.44	44.87	-9.13	54	31.61	27.76	16.45	30.95	264	352	А	Н
	*	2440	96.21	-	-	82.97	27.5	16.64	30.9	264	352	Р	Н
	*	2440	95.41	-	-	82.17	27.5	16.64	30.9	264	352	А	Н
		2498.2	54.41	-19.59	74	41.15	27.4	16.73	30.87	264	352	Р	Н
BLE		2495.59	44.89	-9.11	54	31.62	27.41	16.73	30.87	264	352	А	Н
CH 19 2440MHz		2336.88	55.13	-18.87	74	41.86	27.73	16.48	30.94	338	76	Р	V
2440101672		2345.52	44.81	-9.19	54	31.54	27.71	16.49	30.93	338	76	А	V
	*	2440	98.26	-	-	85.02	27.5	16.64	30.9	338	76	Р	V
	*	2440	97.48	-	-	84.24	27.5	16.64	30.9	338	76	А	V
		2497.75	54.43	-19.57	74	41.17	27.4	16.73	30.87	338	76	Р	V
		2489.11	44.82	-9.18	54	31.55	27.42	16.72	30.87	338	76	А	V

	*	2480	97.38	-	-	84.12	27.44	16.7	30.88	300	358	Р	н
	*	2480	96.8	-	-	83.54	27.44	16.7	30.88	300	358	А	Н
		2494.8	54.64	-19.36	74	41.37	27.41	16.73	30.87	300	358	Ρ	н
		2493.24	44.86	-9.14	54	31.6	27.41	16.72	30.87	300	358	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	100.14	-	-	86.88	27.44	16.7	30.88	300	88	Ρ	V
240011112	*	2480	99.5	-	-	86.24	27.44	16.7	30.88	300	88	А	V
		2487.28	54.34	-19.66	74	41.07	27.43	16.72	30.88	300	88	Ρ	V
		2496.16	44.82	-9.18	54	31.55	27.41	16.73	30.87	300	88	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lim	iit line.							

2.4GHz 2400~2483.5MHz

		-			LE (Harm			_	[-		[ſ
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
Ant. 0		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	38.53	-35.47	74	56.46	31.1	10.05	59.08	100	0	P	Н
		17985	59.11	-14.89	74	49.42	48.73	18.88	57.92	100	325	Р	Н
		17985	49.33	-4.67	54	39.64	48.73	18.88	57.92	100	325	А	н
BLE													Н
CH 00 2402MHz		4804	37.88	-36.12	74	55.81	31.1	10.05	59.08	100	0	Р	V
240210112		17985	58.95	-15.05	74	49.26	48.73	18.88	57.92	100	126	Р	V
		17985	48.95	-5.05	54	39.26	48.73	18.88	57.92	100	126	А	V
													V
		4880	37.3	-36.7	74	55.28	31.04	10.11	59.13	100	0	Р	Н
		7320	43.99	-30.01	74	53.92	36.3	12.32	58.55	100	0	Р	Н
BLE		17985	59.9	-14.1	74	50.21	48.73	18.88	57.92	300	214	Р	Н
CH 19		17985	50.11	-3.89	54	40.42	48.73	18.88	57.92	300	214	А	Н
2440MHz		4880	38.27	-35.73	74	56.25	31.04	10.11	59.13	100	0	Р	V
		7320	44.38	-29.62	74	54.31	36.3	12.32	58.55	100	0	Р	V
		18000	58.9	-15.1	74	48.91	49	18.89	57.9	100	127	Р	V
		18000	48.79	-5.21	54	38.8	49	18.89	57.9	100	127	А	V
		4960	38.82	-35.18	74	56.61	31.22	10.17	59.18	100	0	Р	Н
		7440	44.79	-29.21	74	54.48	36.3	12.39	58.38	100	0	Р	Н
BLE		18000	58.96	-15.04	74	48.97	49	18.89	57.9	300	264	Р	Н
CH 39		18000	48.78	-5.22	54	38.79	49	18.89	57.9	300	264	А	Н
2480MHz		4960	38.91	-35.09	74	56.7	31.22	10.17	59.18	100	0	Р	V
		7440	46.08	-27.92	74	55.77	36.3	12.39	58.38	100	0	Р	V
		18000	59.88	-14.12	74	49.89	49	18.89	57.9	100	136	Р	V
		18000	49.96	-4.04	54	39.97	49	18.89	57.9	100	136	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

BLE (Harmonic @ 3m)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band	Edge	@ 3m)
-----------	------	-------

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2354.31	54.44	-19.56	74	41.19	27.68	16.5	30.93	318	171	Р	Н
		2353.785	44.98	-9.02	54	31.73	27.68	16.5	30.93	318	171	А	Н
	*	2402	95.69	-	-	82.52	27.5	16.58	30.91	318	171	Р	Н
	*	2402	93.63	-	-	80.46	27.5	16.58	30.91	318	171	А	Н
BLE													н
CH 00													Н
2402MHz		2317.35	55.31	-18.69	74	42.05	27.77	16.44	30.95	317	78	Ρ	V
		2316.93	44.99	-9.01	54	31.73	27.77	16.44	30.95	317	78	А	V
	*	2402	97.92	-	-	84.75	27.5	16.58	30.91	317	78	Р	V
-	*	2402	96.23	-	-	83.06	27.5	16.58	30.91	317	78	А	V
													V
													V
		2358	54.3	-19.7	74	41.05	27.67	16.51	30.93	272	354	Ρ	Н
		2359.76	45.04	-8.96	54	31.8	27.66	16.51	30.93	272	354	А	Н
	*	2440	96.5	-	-	83.26	27.5	16.64	30.9	272	354	Ρ	Н
	*	2440	94.76	-	-	81.52	27.5	16.64	30.9	272	354	А	Н
		2496.67	54.39	-19.61	74	41.12	27.41	16.73	30.87	272	354	Ρ	Н
BLE		2487.58	44.87	-9.13	54	31.61	27.42	16.72	30.88	272	354	А	Н
CH 19 2440MHz		2317.68	55.6	-18.4	74	42.35	27.76	16.44	30.95	300	75	Ρ	V
∠┭┭ѵӏѷӀ⊓Ⴭ		2326.48	44.78	-9.22	54	31.51	27.75	16.46	30.94	300	75	А	V
	*	2440	98.57	-	-	85.33	27.5	16.64	30.9	300	75	Р	V
	*	2440	96.92	-	-	83.68	27.5	16.64	30.9	300	75	А	V
		2487.13	54.23	-19.77	74	40.96	27.43	16.72	30.88	300	75	Р	V
		2495.5	45.17	-8.83	54	31.9	27.41	16.73	30.87	300	75	А	V

	*	2480	96.94	-	-	83.68	27.44	16.7	30.88	300	351	Р	Н
	*	2480	95.32	-	-	82.06	27.44	16.7	30.88	300	351	А	н
		2498.28	54.62	-19.38	74	41.36	27.4	16.73	30.87	300	351	Р	Н
		2487.16	44.9	-9.1	54	31.63	27.43	16.72	30.88	300	351	А	н
													н
BLE													н
CH 39 2480MHz	*	2480	100.5	-	-	87.24	27.44	16.7	30.88	300	87	Ρ	V
	*	2480	98.93	-	-	85.67	27.44	16.7	30.88	300	87	А	V
		2486.52	55.14	-18.86	74	41.88	27.43	16.71	30.88	300	87	Ρ	V
		2483.96	44.89	-9.11	54	31.63	27.43	16.71	30.88	300	87	А	V
													V
													V

2.4GHz 2400~2483.5MHz

			[DLE (Harri		-	-			-		ſ
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
Ant. 0		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4804	38.45	-35.55	74	56.38	31.1	10.05	59.08	100	0	P	H H
		17985	58.74	-15.26	74	49.05	48.73	18.88	57.92	300	263	Р	Н
		17985	48.96	-5.04	54	39.27	48.73	18.88	57.92	300	263	Α	Н
BLE													Н
CH 00		4804	38.11	-35.89	74	56.04	31.1	10.05	59.08	100	0	Р	V
2402MHz		17985	58.83	-15.17	74	49.14	48.73	18.88	57.92	100	147	Р	V
		17985	49.1	-4.9	54	39.41	48.73	18.88	57.92	100	147	А	V
													V
		4880	38.38	-35.62	74	56.36	31.04	10.11	59.13	100	0	Р	Н
		7320	43.72	-30.28	74	53.65	36.3	12.32	58.55	100	0	Р	Н
BLE		18000	59.21	-14.79	74	49.22	49	18.89	57.9	300	247	Р	Н
CH 19		18000	49.4	-4.6	54	39.41	49	18.89	57.9	300	247	А	Н
2440MHz		4880	39.29	-34.71	74	57.27	31.04	10.11	59.13	100	0	Р	V
		7320	44.44	-29.56	74	54.37	36.3	12.32	58.55	100	0	Р	V
		18000	59.64	-14.36	74	49.65	49	18.89	57.9	100	157	Р	V
		18000	49.75	-4.25	54	39.76	49	18.89	57.9	100	157	А	V
		4960	39.19	-34.81	74	56.98	31.22	10.17	59.18	100	0	Р	Н
		7440	44.85	-29.15	74	54.54	36.3	12.39	58.38	100	0	Р	Н
BLE		18000	60.46	-13.54	74	50.47	49	18.89	57.9	300	217	Р	Н
CH 39		18000	50.67	-3.33	54	40.68	49	18.89	57.9	300	217	А	Н
2480MHz		4960	39.32	-34.68	74	57.11	31.22	10.17	59.18	100	0	Р	V
		7440	45.04	-28.96	74	54.73	36.3	12.39	58.38	100	0	Р	V
		17985	59.65	-14.35	74	49.96	48.73	18.88	57.92	100	124	Р	V
		17985	49.46	-4.54	54	39.77	48.73	18.88	57.92	100	124	А	V
Remark		o other spurious											
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF)

dBµV/m) 39.45	Limit (dB) -34.55	Line (dBµV/m) 74	Level (dBμV) 43.59	Factor (dB/m) 38.4	Loss (dB) 12.16	Factor (dB) 54.7	Pos (cm) 150	Pos (deg) 0	Avg. (P/A) P	(H/V) H H H H H H H H
39.45										H H H H H H H
	-34.55	74	43.59	38.4	12.16	54.7	150	0	P	H H H H H H
										H H H H H
										H H H H
										H H H H
										H H H
										H H H
										H H
										H H
										Н
										н
										Н
00.00	04.04	74	40.47	00.00	40.04	54.04	450	0	D	
39.66	-34.34	74	43.47	38.62	12.21	54.64	150	0	Р	V
										V
										V
										V
										V
										V
										V
										V
										V
										V
										V
										V
		ound	ound.				ound. S against limit line.			

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
0		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		44.55	23.32	-16.68	40	38.01	17.06	0.84	32.59	-	-	Р	Н
		105.66	31.31	-12.19	43.5	45.87	16.48	1.47	32.51	-	-	Р	Н
		141.55	27.11	-16.39	43.5	40.49	17.42	1.7	32.5	-	-	Ρ	Н
		221.09	22.74	-23.26	46	37.77	15.25	2.14	32.42	-	-	Р	Н
		429.64	25.45	-20.55	46	32.15	22.91	2.8	32.41	-	-	Ρ	н
		733.25	38.13	-7.87	46	39.4	27.5	3.68	32.45	100	0	Р	Н
													н
													н
													н
													н
													н
2.4GHz BLE													н
BLE LF		43.58	33.77	-6.23	40	48.05	17.47	0.83	32.58	100	0	Р	V
LF		103.72	23.67	-19.83	43.5	38.44	16.28	1.46	32.51	-	-	Р	V
		135.73	24.29	-19.21	43.5	37.65	17.49	1.66	32.51	-	-	Р	V
		174.53	25.01	-18.49	43.5	40.34	15.24	1.92	32.49	-	-	Р	V
		220.12	22.38	-23.62	46	37.48	15.18	2.14	32.42	-	-	Р	V
		717.73	36.05	-9.95	46	38.11	26.76	3.63	32.45	-	-	Р	V
													V
													V
													V
													V
													V
													V

2.4GHz BLE (LF)

<Ant. 1> <1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2320.29	55.51	-18.49	74	42.25	27.76	16.45	30.95	270	318	Ρ	Н
		2338.56	44.85	-9.15	54	31.59	27.72	16.48	30.94	270	318	А	Н
	*	2402	94.27	-	-	81.1	27.5	16.58	30.91	270	318	Р	н
	*	2402	93.53	-	-	80.36	27.5	16.58	30.91	270	318	А	Н
BLE													Н
CH 00													Н
2402MHz		2336.775	55.13	-18.87	74	41.86	27.73	16.48	30.94	100	32	Р	V
240211112		2370.375	44.95	-9.05	54	31.72	27.62	16.53	30.92	100	32	А	V
	*	2402	98.19	-	-	85.02	27.5	16.58	30.91	100	32	Р	V
	*	2402	97.42	-	-	84.25	27.5	16.58	30.91	100	32	А	V
													V
													V
		2327.12	55.31	-18.69	74	42.04	27.75	16.46	30.94	117	151	Р	Н
		2333.84	44.88	-9.12	54	31.62	27.73	16.47	30.94	117	151	А	Н
	*	2440	95.33	-	-	82.09	27.5	16.64	30.9	117	151	Ρ	Н
	*	2440	94.47	-	-	81.23	27.5	16.64	30.9	117	151	А	Н
		2487.67	55.02	-18.98	74	41.76	27.42	16.72	30.88	117	151	Р	Н
BLE		2498.56	44.79	-9.21	54	31.53	27.4	16.73	30.87	117	151	А	Н
CH 19 2440MHz		2332.08	55.03	-18.97	74	41.76	27.74	16.47	30.94	150	31	Ρ	V
2440101112		2319.76	44.98	-9.02	54	31.72	27.76	16.45	30.95	150	31	А	V
	*	2440	99.02	-	-	85.78	27.5	16.64	30.9	150	31	Ρ	V
	*	2440	98.17	-	-	84.93	27.5	16.64	30.9	150	31	Α	V
		2485.87	54.3	-19.7	74	41.04	27.43	16.71	30.88	150	31	Р	V
		2496.49	44.84	-9.16	54	31.57	27.41	16.73	30.87	150	31	А	V

	*	2480	93.76	-	-	80.5	27.44	16.7	30.88	400	309	Р	Н
	*	2480	93.07	-	-	79.81	27.44	16.7	30.88	400	309	А	Н
		2489.88	55.09	-18.91	74	41.82	27.42	16.72	30.87	400	309	Ρ	Н
		2496.4	44.81	-9.19	54	31.54	27.41	16.73	30.87	400	309	А	Н
													Н
BLE CH 39													Н
СП 39 2480MHz	*	2480	96.68	-	-	83.42	27.44	16.7	30.88	100	29	Р	V
240010112	*	2480	95.82	-	-	82.56	27.44	16.7	30.88	100	29	А	V
		2486.84	55	-19	74	41.74	27.43	16.71	30.88	100	29	Р	V
		2493	44.82	-9.18	54	31.56	27.41	16.72	30.87	100	29	А	V
													V
													V
Remark		o other spurious I results are PA		^D eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

		_					-			_		_	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		4804	39.48	-34.52	74	57.41	31.1	10.05	59.08	100	0	P	H
		18000	59.99	-14.01	74	50	49	18.89	57.9	100	136	Р	Н
		18000	50.2	-3.8	54	40.21	49	18.89	57.9	100	136	Α	Н
BLE													Н
CH 00		4804	38.3	-35.7	74	56.23	31.1	10.05	59.08	100	0	Р	V
2402MHz		17985	59.69	-14.31	74	50	48.73	18.88	57.92	300	302	Р	V
		17985	49.47	-4.53	54	39.78	48.73	18.88	57.92	300	302	А	V
													V
		4880	39.6	-34.4	74	57.58	31.04	10.11	59.13	100	0	Р	Н
		7320	45.48	-28.52	74	55.41	36.3	12.32	58.55	100	0	Ρ	Н
515		18000	60.02	-13.98	74	50.03	49	18.89	57.9	100	127	Ρ	Н
BLE		18000	50.21	-3.79	54	40.22	49	18.89	57.9	100	127	А	Н
CH 19 2440MHz		4880	39.45	-34.55	74	57.43	31.04	10.11	59.13	100	0	Р	V
244010112		7320	45.83	-28.17	74	55.76	36.3	12.32	58.55	100	0	Р	V
		18000	59.31	-14.69	74	49.32	49	18.89	57.9	300	326	Р	V
		18000	49.49	-4.51	54	39.5	49	18.89	57.9	300	326	А	V
		4960	40.17	-33.83	74	57.96	31.22	10.17	59.18	100	0	Р	Н
		7440	46.31	-27.69	74	56	36.3	12.39	58.38	100	0	Р	Н
		18000	59.77	-14.23	74	49.78	49	18.89	57.9	100	127	Р	Н
BLE CH 39		18000	49.95	-4.05	54	39.96	49	18.89	57.9	100	127	А	Н
2480MHz		4960	39.46	-34.54	74	57.25	31.22	10.17	59.18	100	0	Р	V
240011112		7440	45.15	-28.85	74	54.84	36.3	12.39	58.38	100	0	Р	V
		18000	60.34	-13.66	74	50.35	49	18.89	57.9	300	317	Р	V
		18000	50.52	-3.48	54	40.53	49	18.89	57.9	300	317	А	V
Remark		o other spurious		eak and	Average lim	it line.							

BLE (Harmonic @ 3m)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band	Edge @ 3m)	
-----------	------------	--

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2315.46	55.03	-18.97	74	41.77	27.77	16.44	30.95	270	324	Р	Н
		2325.015	44.79	-9.21	54	31.52	27.75	16.46	30.94	270	324	А	Н
	*	2402	94.34	-	-	81.17	27.5	16.58	30.91	270	324	Р	Н
	*	2402	92.61	-	-	79.44	27.5	16.58	30.91	270	324	А	Н
BLE													Н
CH 00													Н
2402MHz		2313.36	54.97	-19.03	74	41.71	27.77	16.44	30.95	100	32	Р	V
240211112		2359.77	45.05	-8.95	54	31.81	27.66	16.51	30.93	100	32	А	V
	*	2402	98.4	-	-	85.23	27.5	16.58	30.91	100	32	Р	V
	*	2402	96.75	-	-	83.58	27.5	16.58	30.91	100	32	Α	V
													V
													V
		2369.04	55.2	-18.8	74	41.98	27.62	16.53	30.93	113	154	Р	Н
		2315.92	44.91	-9.09	54	31.65	27.77	16.44	30.95	113	154	Α	Н
	*	2440	94.92	-	-	81.68	27.5	16.64	30.9	113	154	Р	Н
	*	2440	93.32	-	-	80.08	27.5	16.64	30.9	113	154	А	Н
BLE		2489.83	54.04	-19.96	74	40.77	27.42	16.72	30.87	113	154	Р	Н
CH 19		2484.79	44.79	-9.21	54	31.53	27.43	16.71	30.88	113	154	А	Н
2440MHz		2329.04	54.83	-19.17	74	41.57	27.74	16.46	30.94	152	31	Р	V
27701112		2386.8	45.06	-8.94	54	31.87	27.55	16.56	30.92	152	31	Α	V
	*	2440	99.28	-	-	86.04	27.5	16.64	30.9	152	31	Р	V
	*	2440	97.55	-	-	84.31	27.5	16.64	30.9	152	31	А	V
		2496.49	54.52	-19.48	74	41.25	27.41	16.73	30.87	152	31	Р	V
		2490.55	44.88	-9.12	54	31.61	27.42	16.72	30.87	152	31	А	V

	*	2480	94.58	-	-	81.32	27.44	16.7	30.88	361	305	Р	Н
	*	2480	93.03	-	-	79.77	27.44	16.7	30.88	361	305	А	Н
		2486.8	54.95	-19.05	74	41.69	27.43	16.71	30.88	361	305	Р	Н
		2490.8	44.87	-9.13	54	31.6	27.42	16.72	30.87	361	305	А	н
													Н
BLE													Н
CH 39 2480MHz	*	2480	97.06	-	-	83.8	27.44	16.7	30.88	100	32	Р	V
2400111172	*	2480	95.47	-	-	82.21	27.44	16.7	30.88	100	32	А	V
		2498.2	54.52	-19.48	74	41.26	27.4	16.73	30.87	100	32	Ρ	V
		2495.04	44.86	-9.14	54	31.59	27.41	16.73	30.87	100	32	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

		-		-	ELE (Harm				[-		[ſ
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
•		4804	38.53	-35.47	74	56.46	31.1	10.05	59.08	100	0	P	н. Н
		17985	59.11	-14.89	74	49.42	48.73	18.88	57.92	100	125	Р	Н
		17985	49.3	-4.7	54	39.61	48.73	18.88	57.92	100	125	Α	Н
BLE													Н
CH 00 2402MHz		4804	37.88	-36.12	74	55.81	31.1	10.05	59.08	100	0	Р	V
240210112		17985	58.95	-15.05	74	49.26	48.73	18.88	57.92	300	209	Ρ	V
		17985	49.13	-4.87	54	39.44	48.73	18.88	57.92	300	209	А	V
													V
		4880	38.22	-35.78	74	56.2	31.04	10.11	59.13	100	0	Р	Н
		7320	43.75	-30.25	74	53.68	36.3	12.32	58.55	100	0	Р	Н
		18000	60.33	-13.67	74	50.34	49	18.89	57.9	100	120	Р	Н
BLE		18000	50.42	-3.58	54	40.43	49	18.89	57.9	100	120	А	Н
CH 19 2440MHz		4880	39.15	-34.85	74	57.13	31.04	10.11	59.13	100	0	Р	V
244011112		7320	44.56	-29.44	74	54.49	36.3	12.32	58.55	100	0	Р	V
		18000	58.82	-15.18	74	48.83	49	18.89	57.9	300	234	Р	V
		18000	48.91	-5.09	54	38.92	49	18.89	57.9	300	234	Α	V
		4960	38.35	-35.65	74	56.14	31.22	10.17	59.18	100	0	Р	Н
		7440	46.34	-27.66	74	56.03	36.3	12.39	58.38	100	0	Р	Н
BLE		17985	59.52	-14.48	74	49.83	48.73	18.88	57.92	100	104	Р	Н
CH 39		17985	49.63	-4.37	54	39.94	48.73	18.88	57.92	100	104	Α	Н
2480MHz		4960	38.4	-35.6	74	56.19	31.22	10.17	59.18	100	0	Р	V
		7440	44.85	-29.15	74	54.54	36.3	12.39	58.38	100	0	Р	V
		17985	58.79	-15.21	74	49.1	48.73	18.88	57.92	300	249	Р	V
		17985	49	-5	54	39.31	48.73	18.88	57.92	300	249	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF)													
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		22392	39.29	-34.71	74	42.61	38.95	12.27	54.54	150	0	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		21768	39.36	-34.64	74	43.77	38.35	11.94	54.7	150	0	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
Remark		o other spuriou results are PA		mit line.									
Remark				mit line.									

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.	1			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		42.61	27.15	-12.85	40	40.91	18	0.82	32.58	100	0	Р	Н
		104.69	29.53	-13.97	43.5	44.18	16.39	1.47	32.51	-	-	Р	Н
		154.16	24.86	-18.64	43.5	38.74	16.84	1.78	32.5	-	-	Р	н
		204.6	25	-18.5	43.5	40.22	15.15	2.07	32.44	-	-	Ρ	н
		746.83	32.76	-13.24	46	33.62	27.88	3.71	32.45	-	-	Р	н
		786.6	32.5	-13.5	46	32.81	28.08	3.85	32.24	-	-	Р	н
													н
													Н
													Н
													Н
0.4011-													Н
2.4GHz BLE													н
LF		43.58	32.34	-7.66	40	46.62	17.47	0.83	32.58	100	130	Q	V
		66.86	21.07	-18.93	40	40.53	11.96	1.12	32.54	-	-	Р	V
		104.69	29.16	-14.34	43.5	43.81	16.39	1.47	32.51	-	-	Р	V
		135.73	24.65	-18.85	43.5	38.01	17.49	1.66	32.51	-	-	Ρ	V
		179.38	25.01	-18.49	43.5	40.57	14.97	1.95	32.48	-	-	Р	V
		430.61	25.07	-20.93	46	31.77	22.91	2.8	32.41	-	-	Р	V
													V
													V
													V
													V
													V
	1												V

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

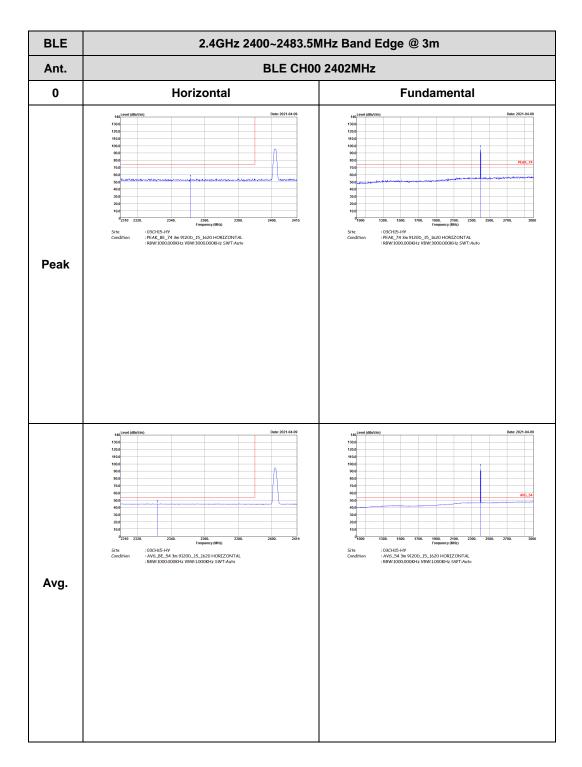
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

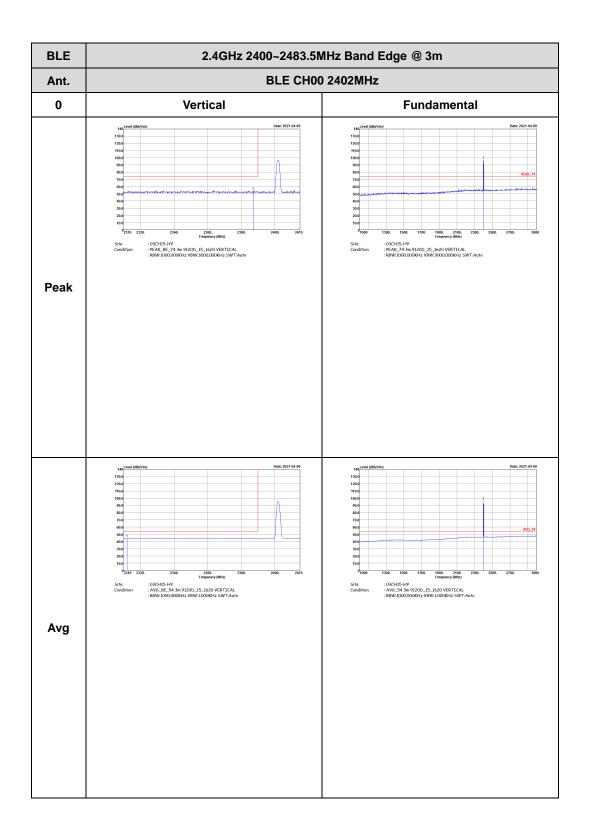
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

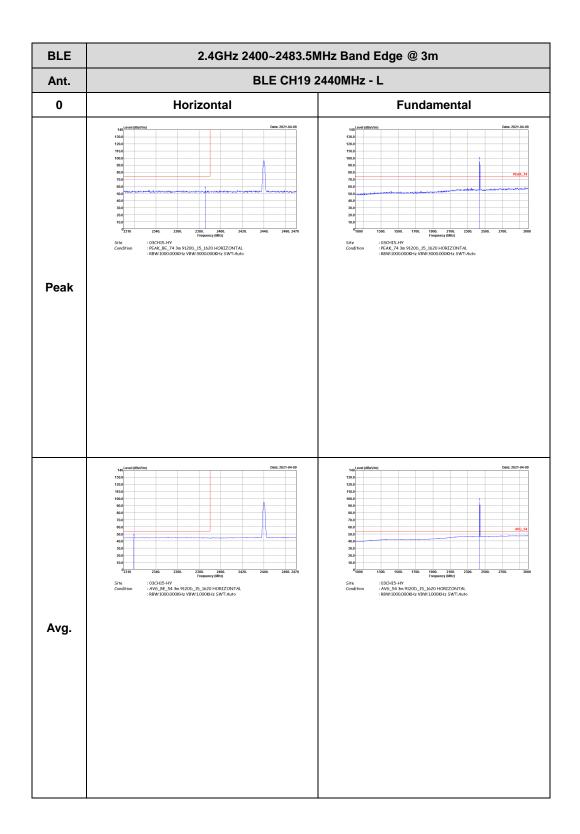
Test Engineer :	Leo Lee, Mancy Chou and Bigshow Wang	Temperature :	22.5~23.5°C
rest Engineer .		Relative Humidity :	45~55%

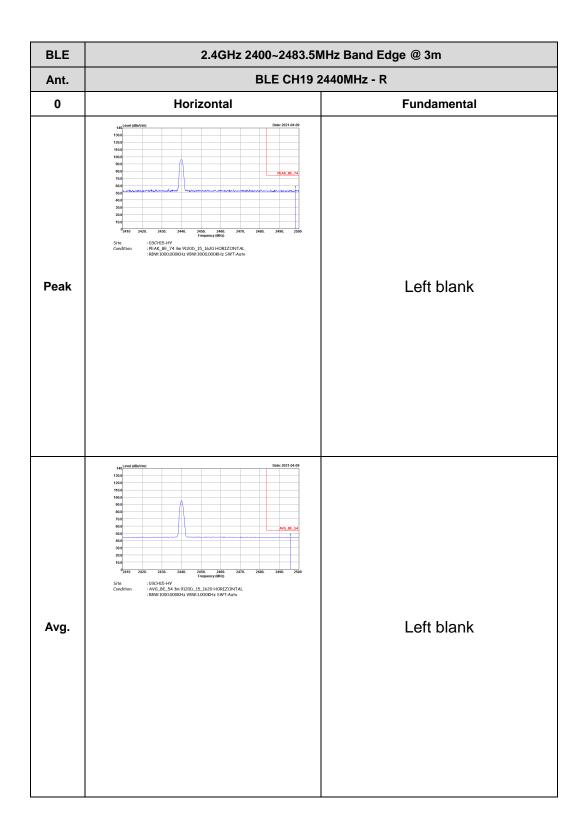
Note symbol

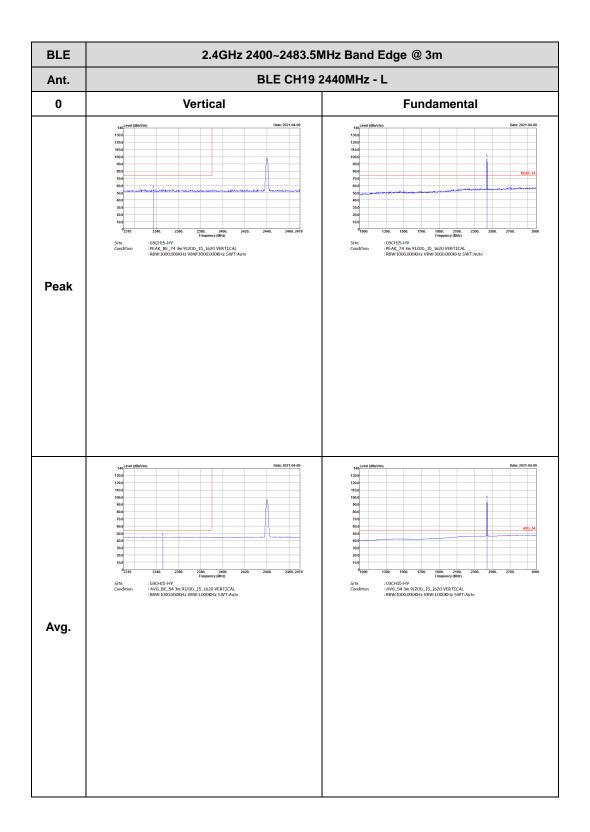

-L	-	Low channel location
-F	२	High channel location

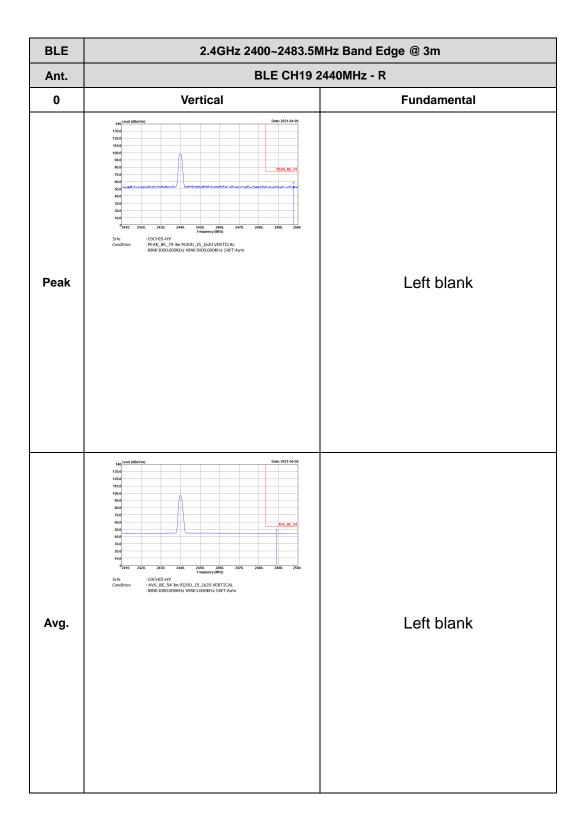

<Ant. 0> <1Mbps>

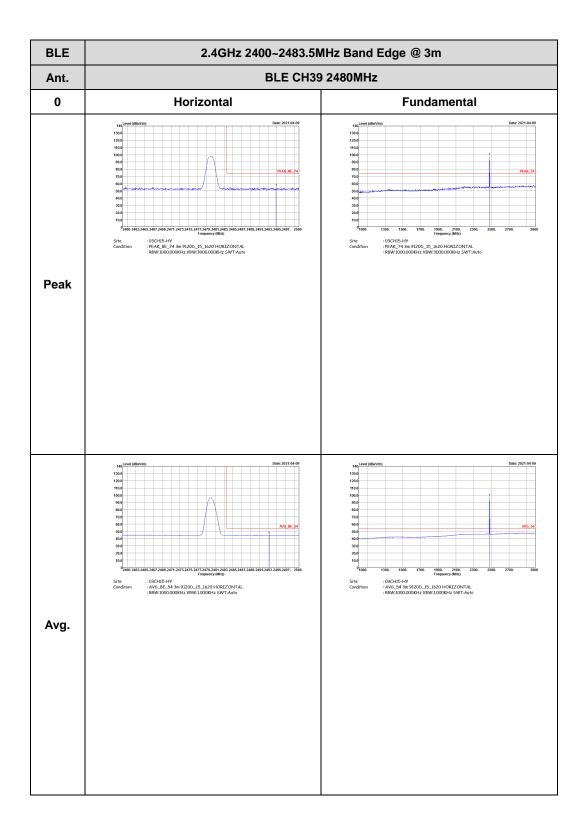
2.4GHz 2400~2483.5MHz

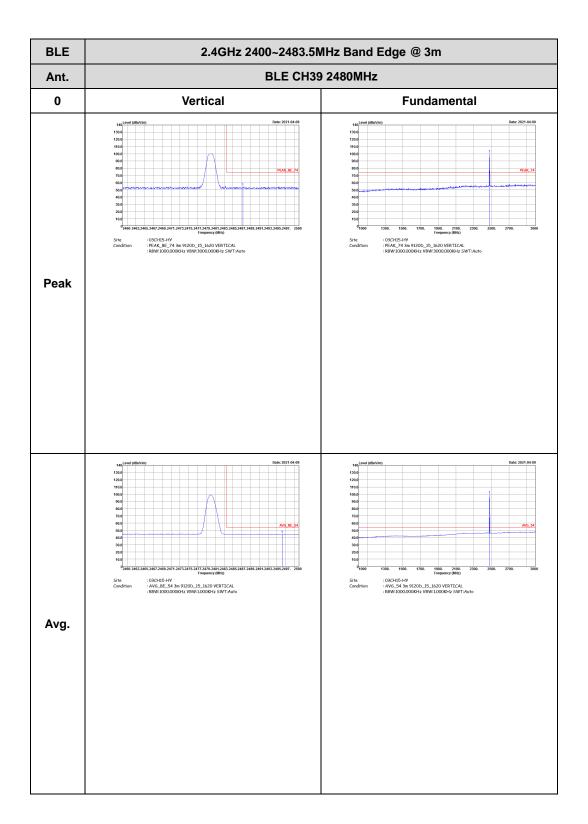

BLE (Band Edge @ 3m)

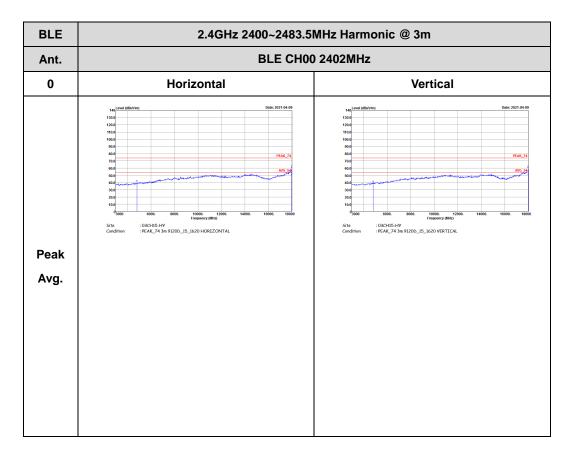


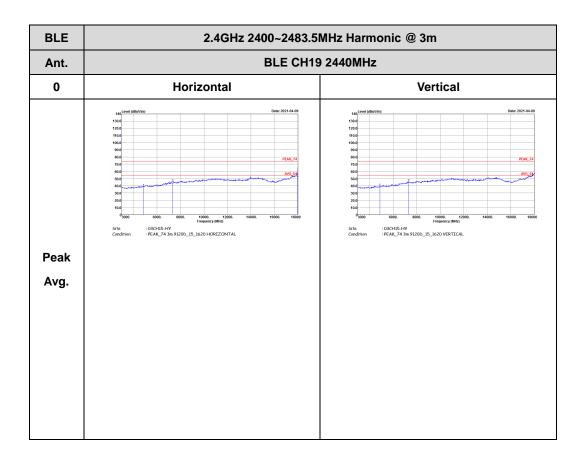




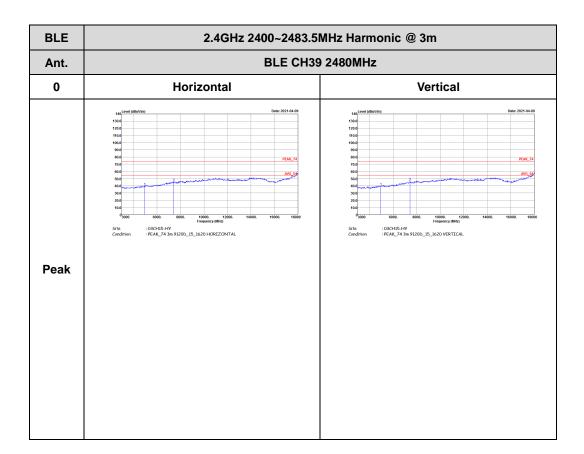




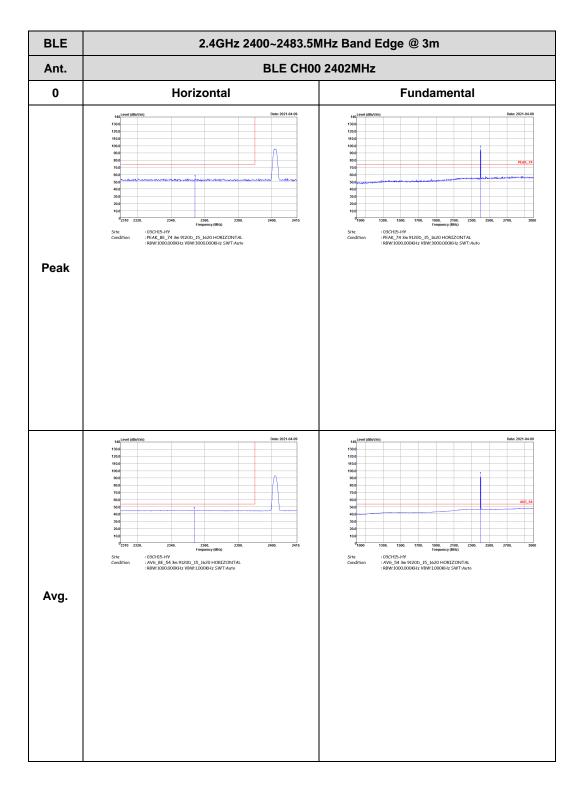


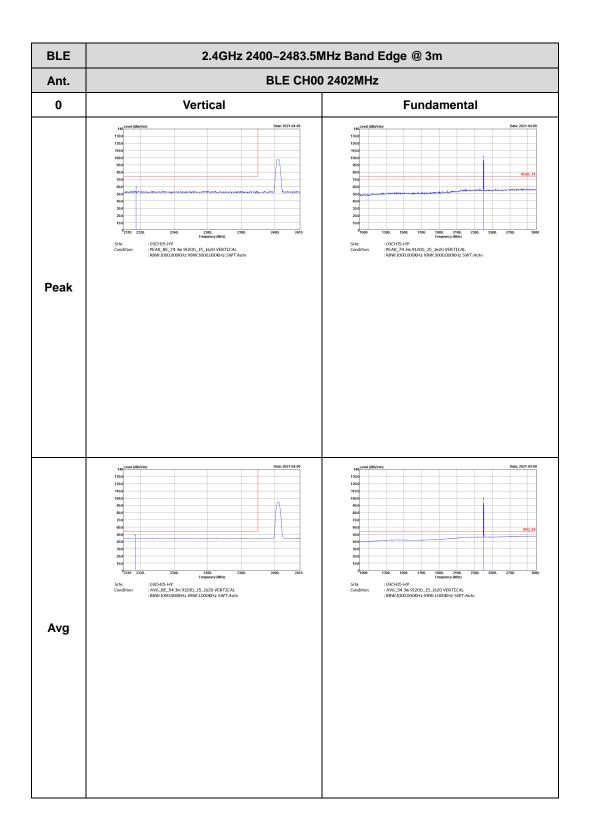


2.4GHz 2400~2483.5MHz

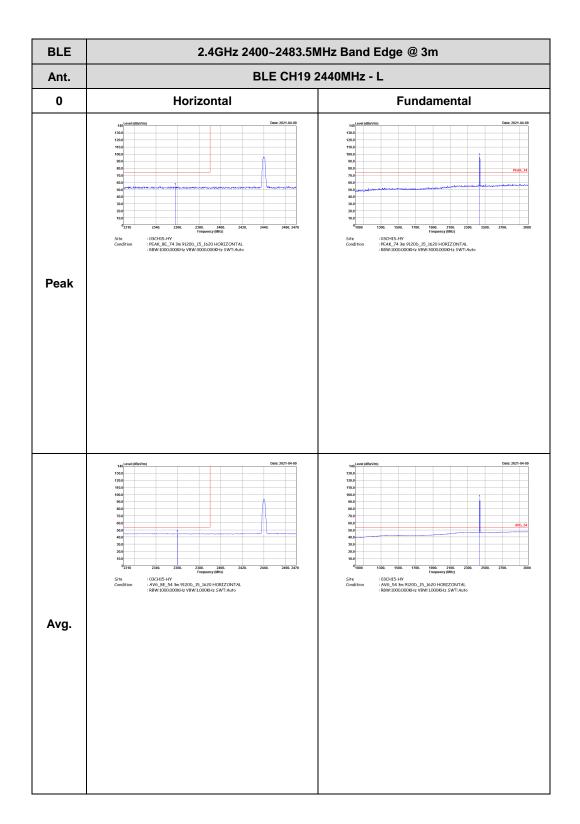


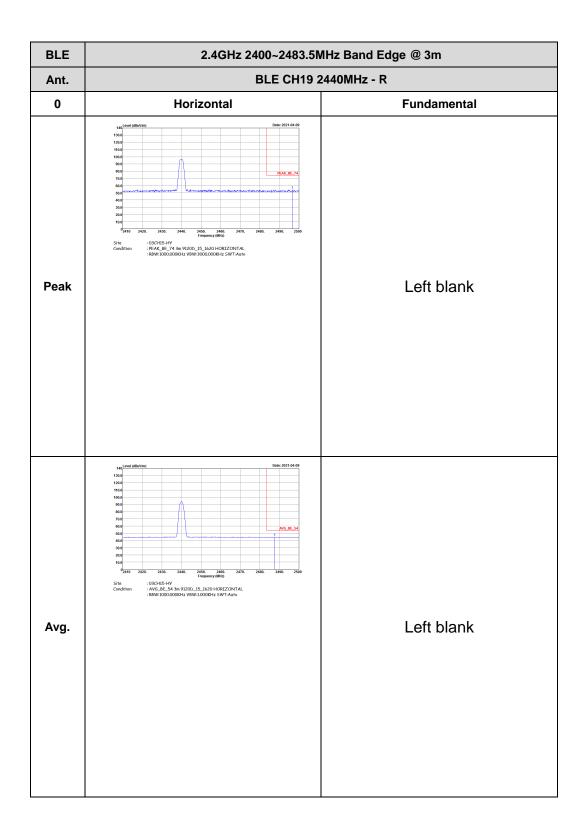
BLE (Harmonic @ 3m)

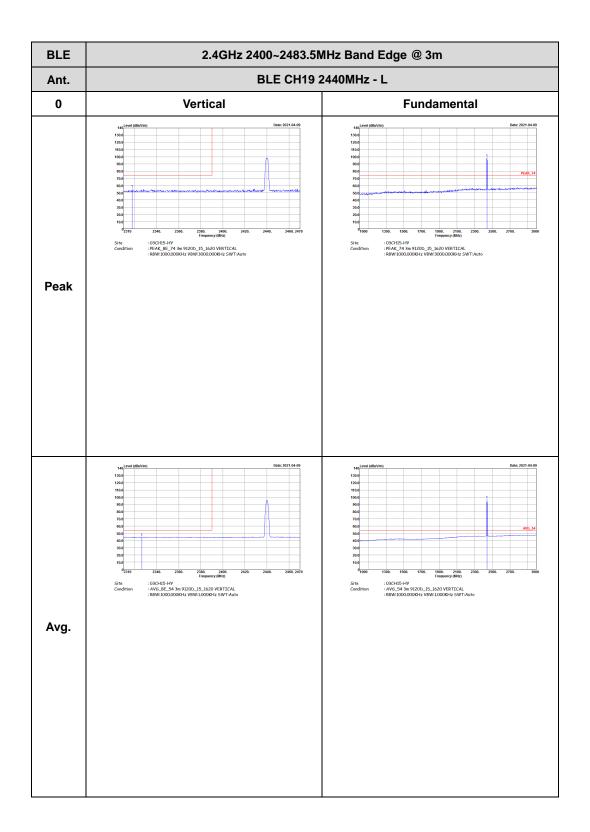


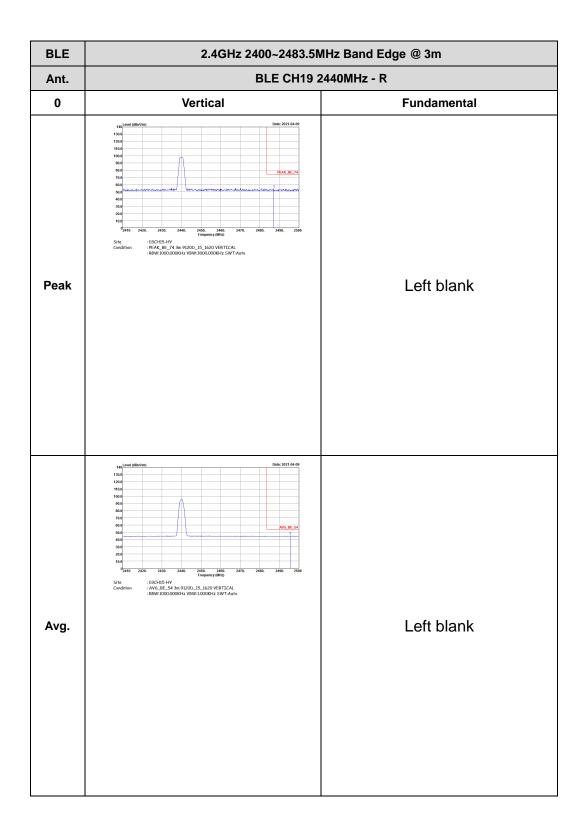

<2Mbps>

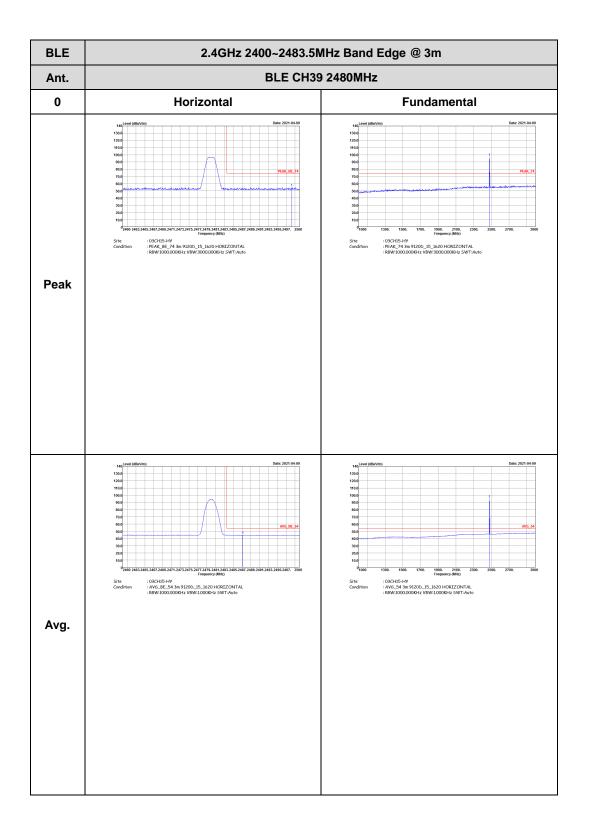
2.4GHz 2400~2483.5MHz

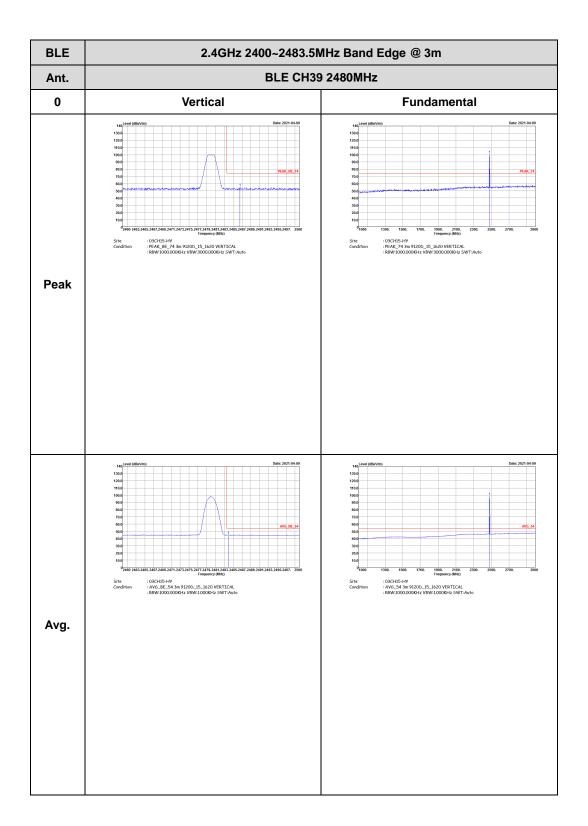

BLE (Band Edge @ 3m)

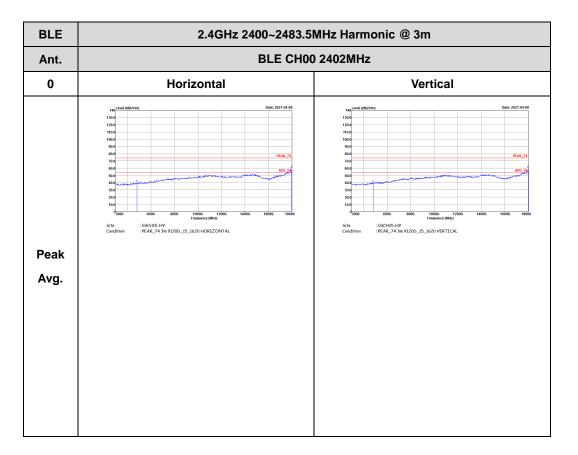


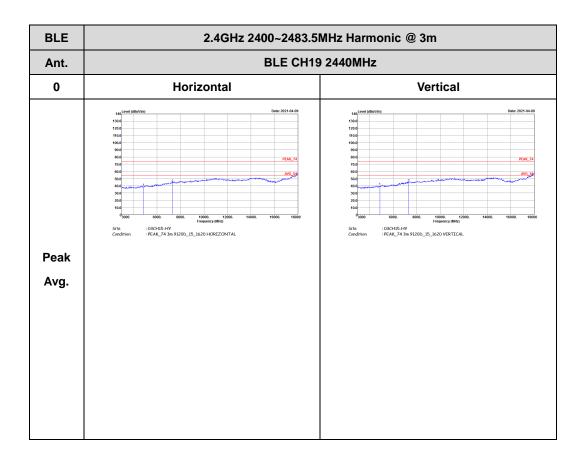




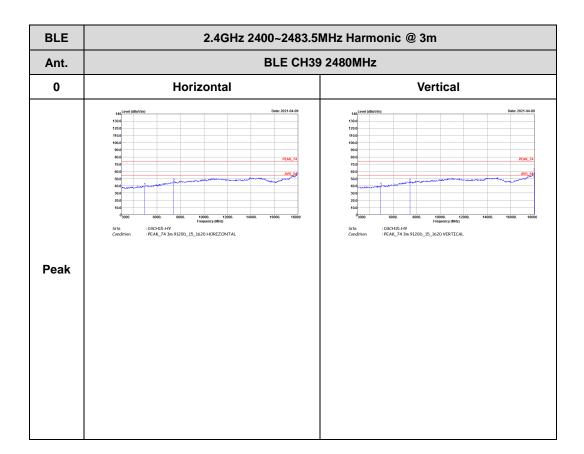




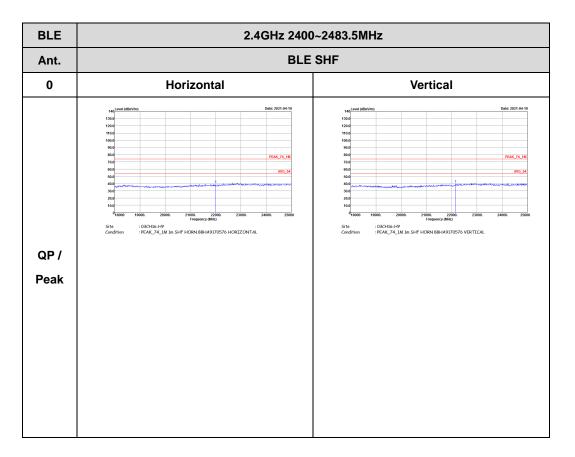


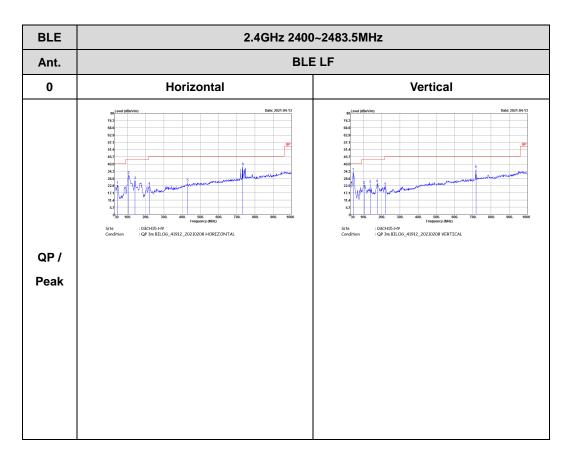


2.4GHz 2400~2483.5MHz



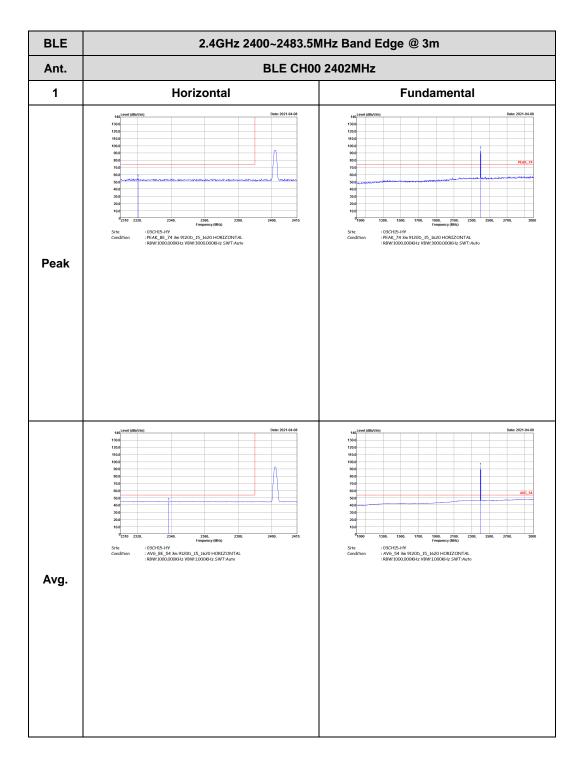
BLE (Harmonic @ 3m)

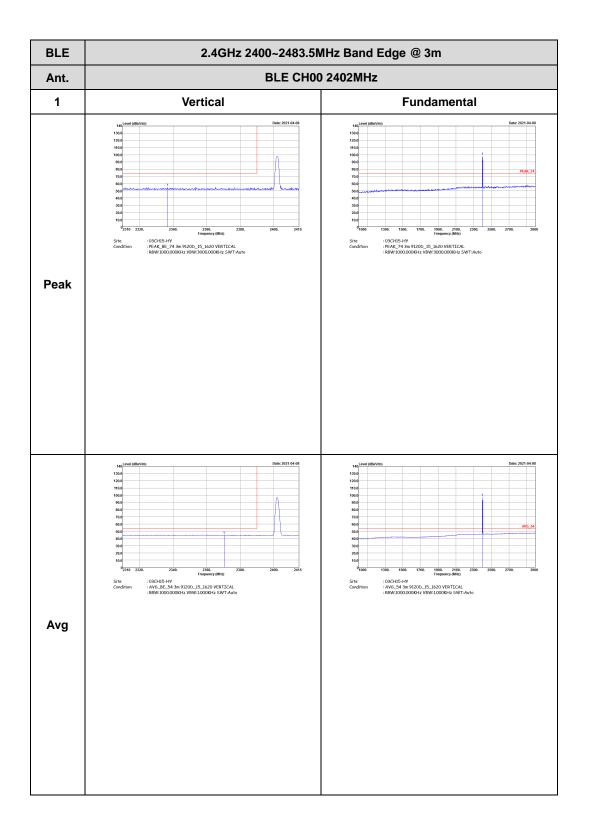



Emission above 18GHz

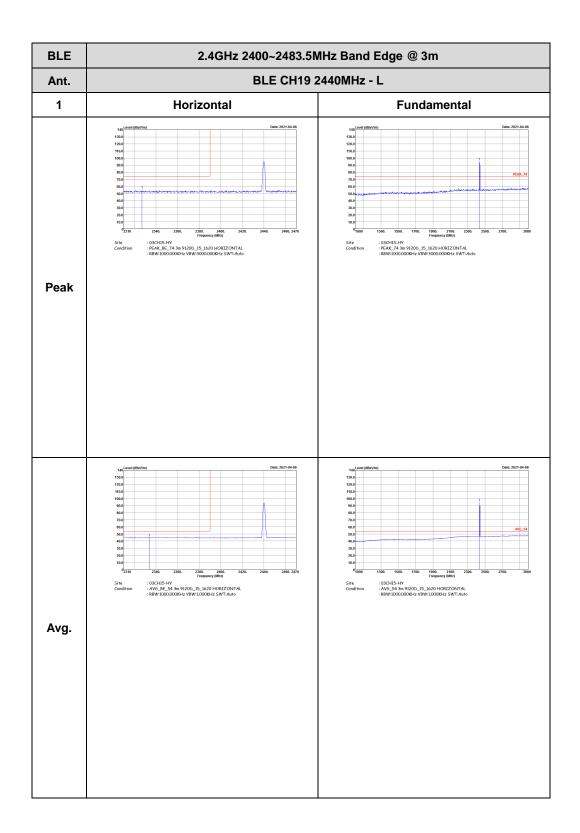
2.4GHz BLE (SHF)

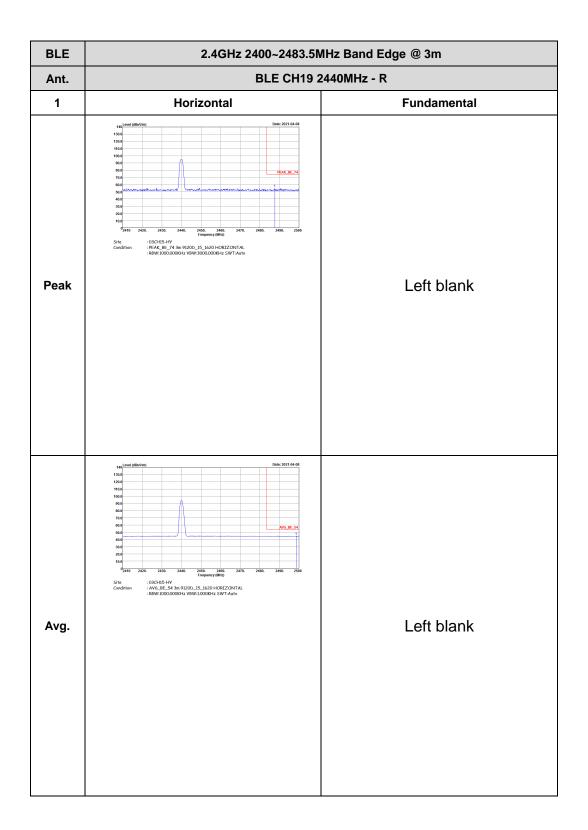
Emission below 1GHz

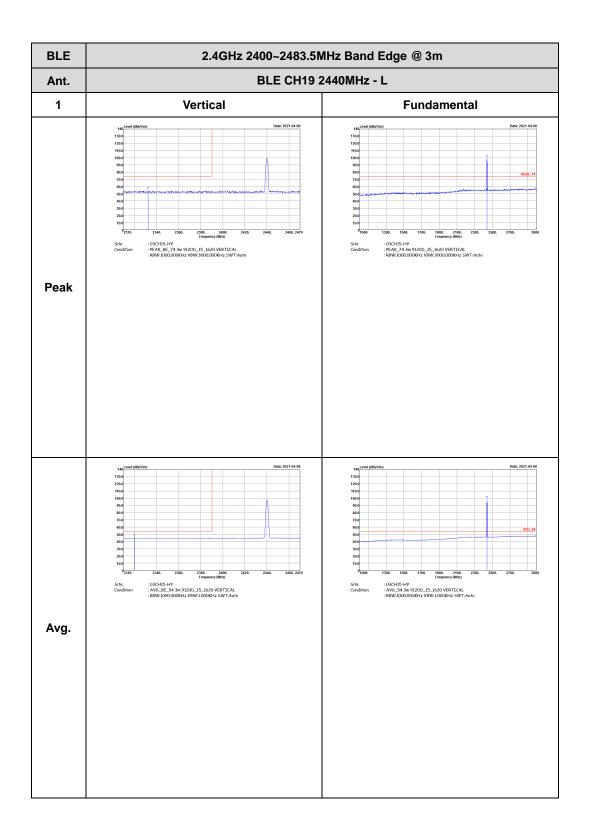

2.4GHz BLE (LF)

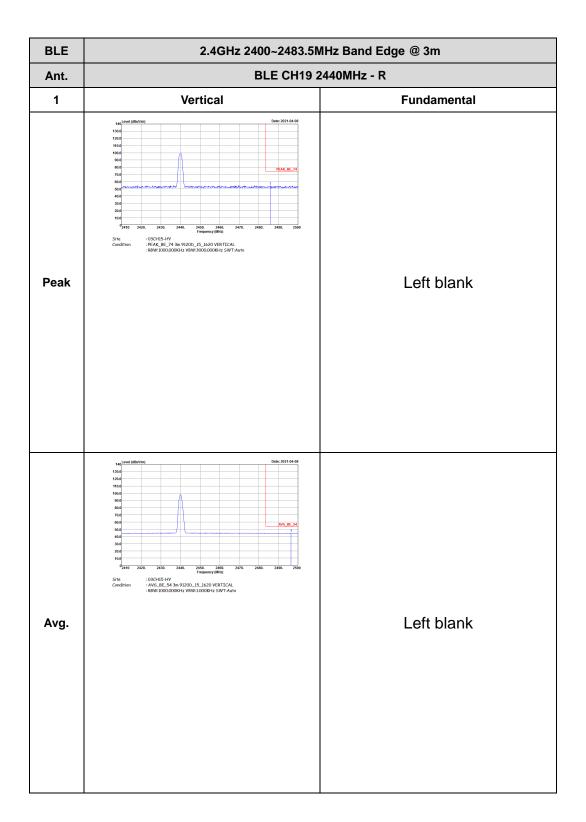

<Ant. 1> <1Mbps>

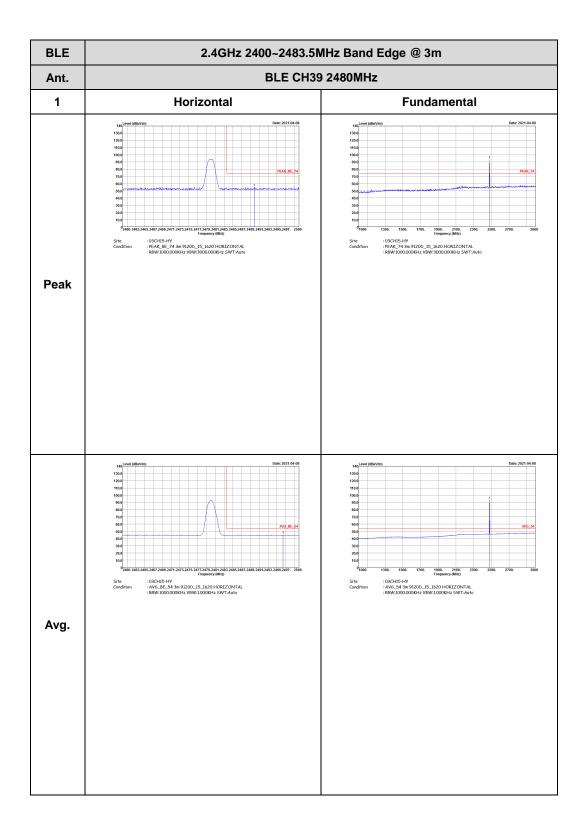
2.4GHz 2400~2483.5MHz

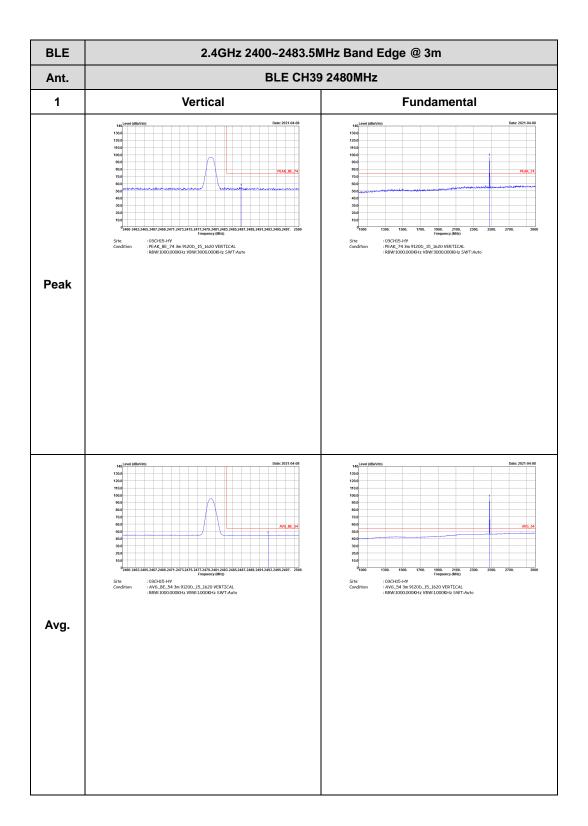

BLE (Band Edge @ 3m)

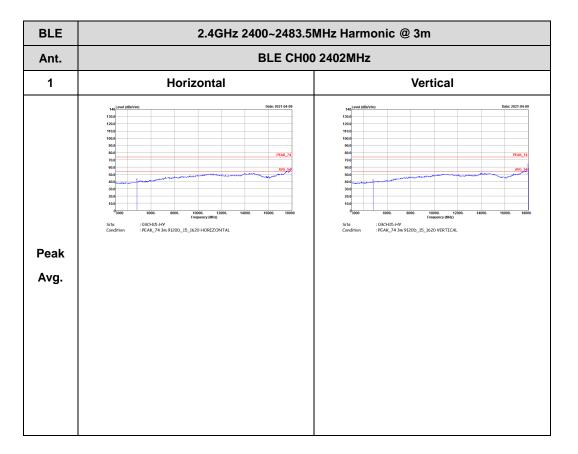


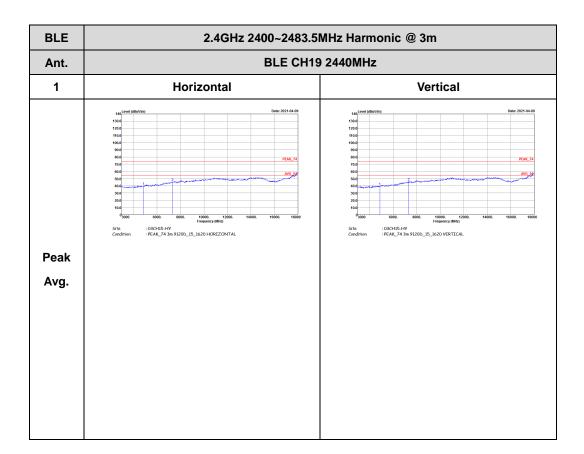




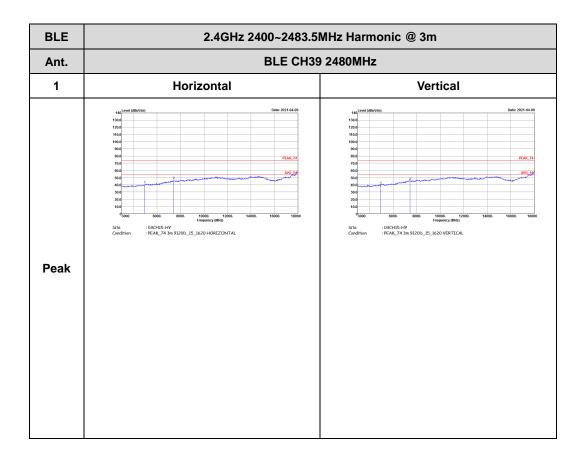




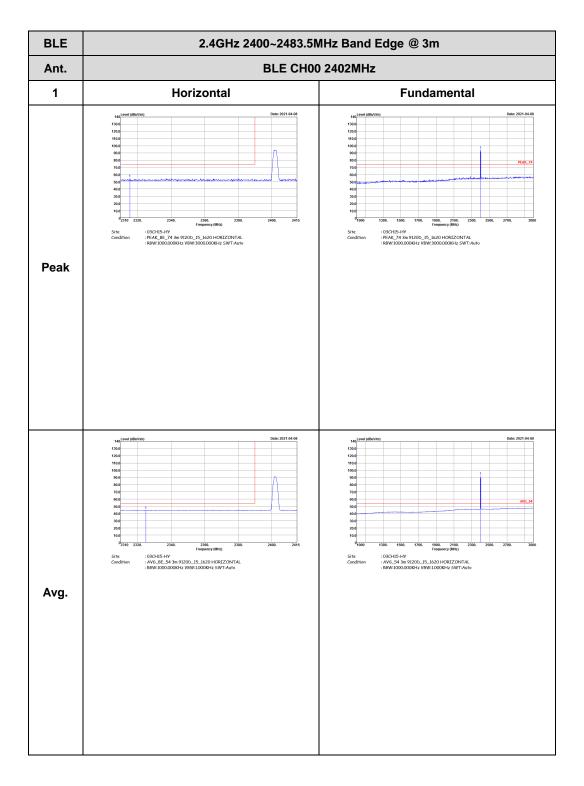


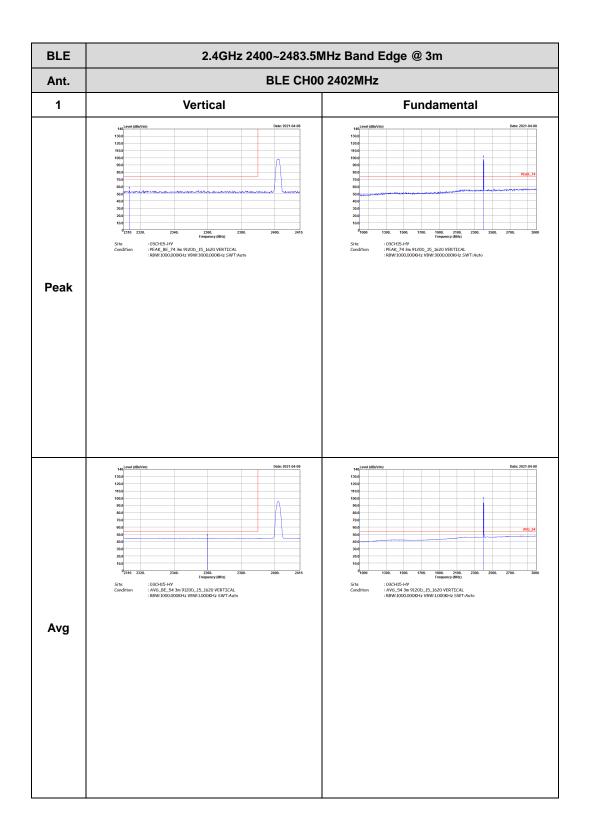


2.4GHz 2400~2483.5MHz

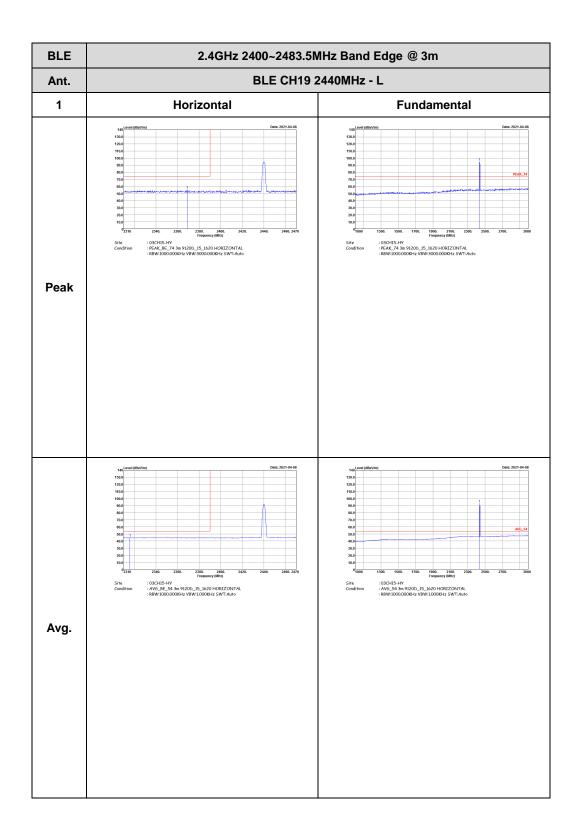


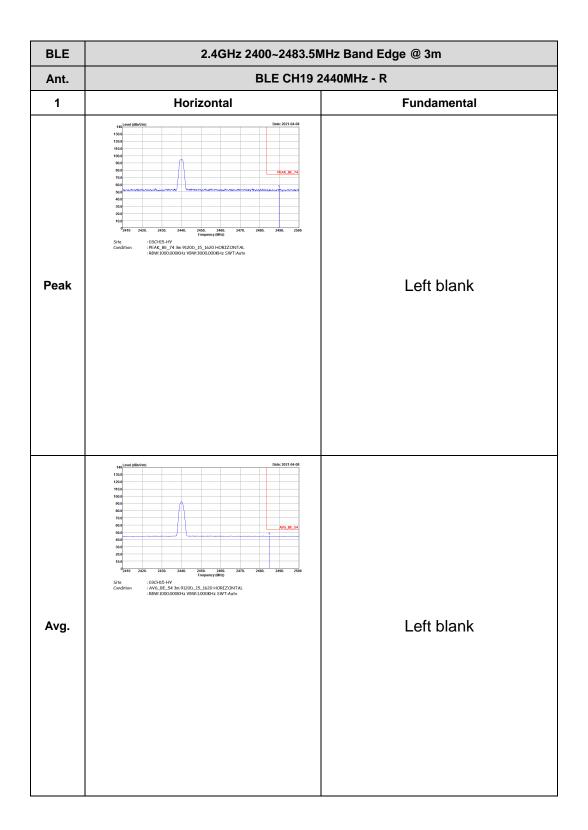
BLE (Harmonic @ 3m)

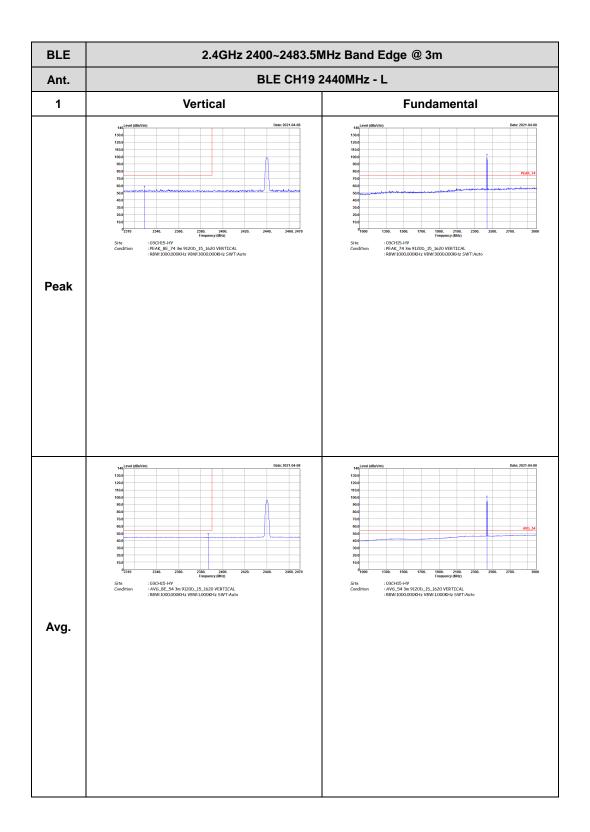


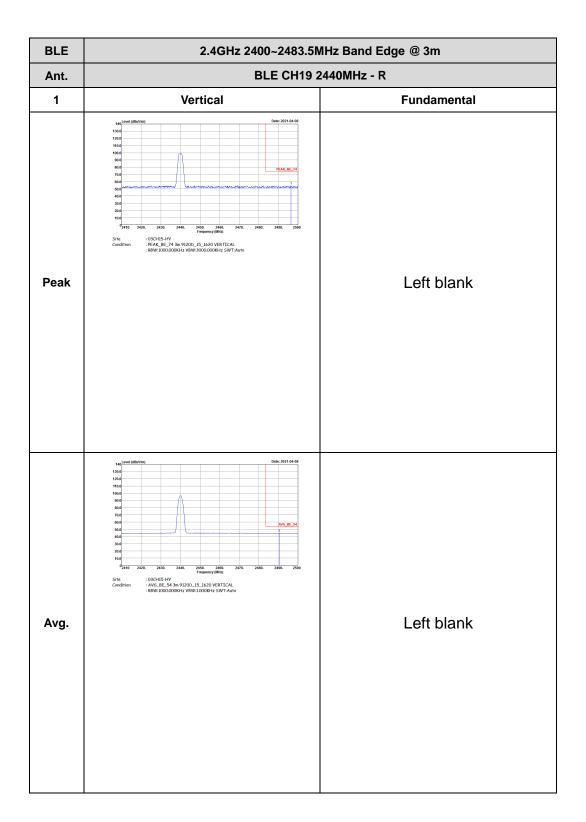

<2Mbps>

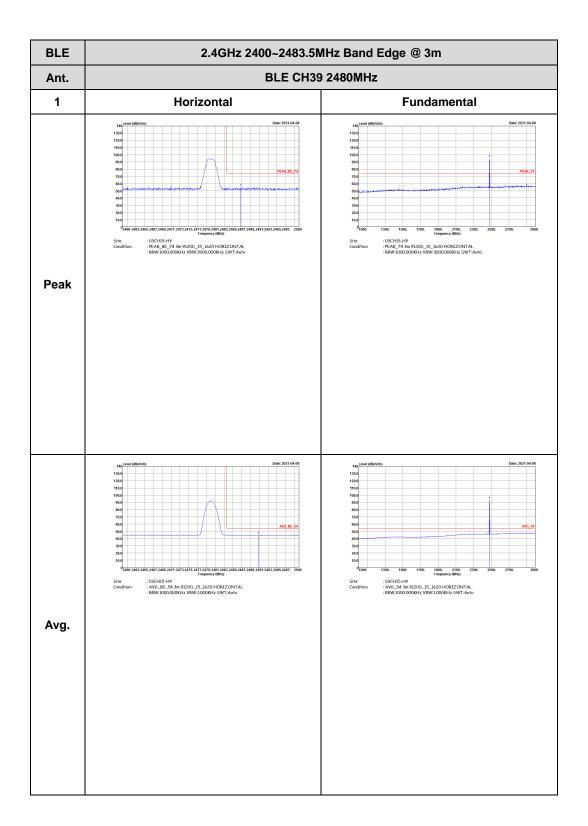
2.4GHz 2400~2483.5MHz

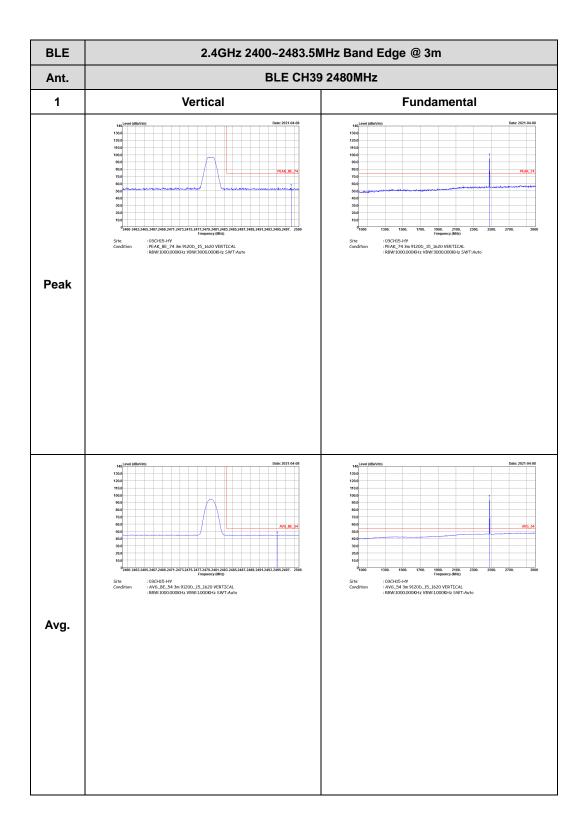

BLE (Band Edge @ 3m)

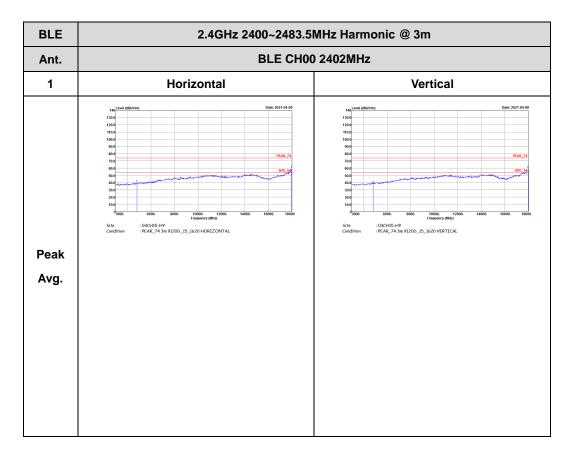


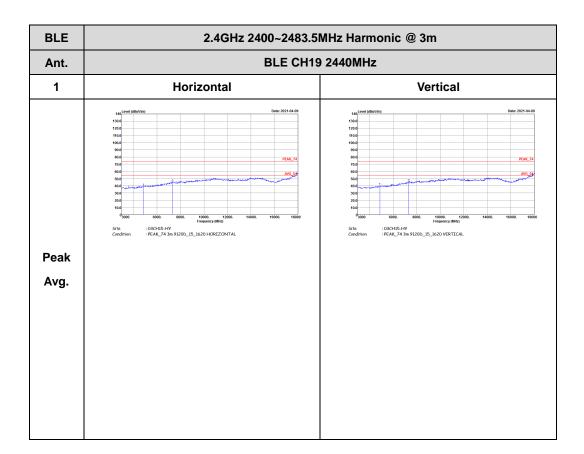




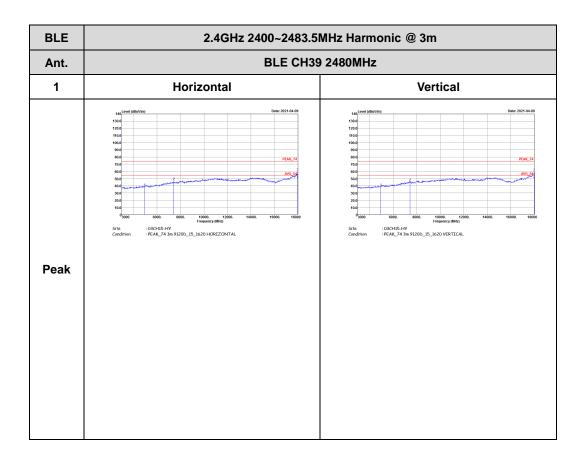




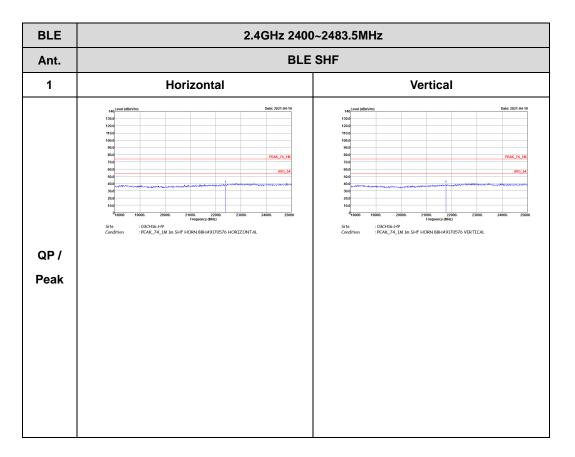


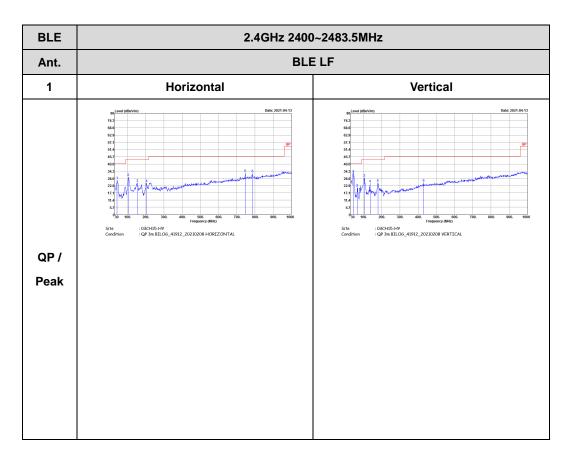


2.4GHz 2400~2483.5MHz



BLE (Harmonic @ 3m)




Emission above 18GHz

2.4GHz BLE (SHF)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
0	Bluetooth - LE for 1Mbps	85.20	2130	0.47	1kHz	0.70
0	Bluetooth - LE for 2Mbps	57.33	1075	0.93	1kHz	2.42
1	Bluetooth - LE for 1Mbps	85.20	2130	0.47	1kHz	0.70
1	Bluetooth - LE for 2Mbps	57.33	1075	0.93	1kHz	2.42

<Ant. 0>

Bluetooth	Bluetooth - LE for 2Mbps															
Spectrum	Spectrum															
Spectrum []] Ref Level 20.00 dBm Offset 24.40 dB ● RBW 10 MHz							Ref Level 20.00 dBm Offset 24.40 dB RBW 10 MHz									
	3 👄 SWT 5 m s	VBW 10 MHz				Att	20	dB 😑 SWT 5 m	ns 👄 VBW 10 MH:	z						
SGL 1Pk Max						SGL 91Pk Max										
-			M1[1]		9.26 dBm					M1[1]			9.59 dBm			
10 dB		D2	D3		300.00 µs	10 dBm		M1		D2	D3		1.59500 ms			
		Î	4 D2[1]		0.34 dB 2.13000 ms					D2[1]	Î		0.31 dB 1.07500 ms			
0 dBm						0 dBm										
-10 dBm						-10 dBm-										
-20 dBm						-20 dBm										
-so dem		H Porto	Vera		6	-30 dBm	14	selfed-and whether sales		www.patraka.jutamad	w/w/		herrichter			
-40 dBm						-40 dBm										
-40 dBm						-40 dBm										
-50 dBm-						-50 dBm-							-			
-60 dBm						-60 dBm										
						oo abiii										
-70 dBm						-70 dBm										
CF 2.402 GHz		1001 pt			500.0 µs/	CF 2.402 G	Hz		1001 p	ts			500.0 µs/			
Marker		1001 pt.	,		00010 µ37	Marker			1001 p				00010 µ37			
Type Ref Trc	X-value	Y-value	Function	Function Resul	t l	Type Ref	Trc	X-value	Y-value	Function		Function Re	sult			
M1 1 D2 M1 1	300.0 µs 2.13 ms	9.26 dBm 0.34 dB				M1 D2 M1	1	1.595 ms 1.075 ms	9.59 dBm 0.31 dB							
D3 M1 1	2.13 ms 2.5 ms	0.34 dB 0.05 dB				D2 M1		1.075 ms	-0.00 dB							
I II				Ready 🛛 🗰	<u> </u>		T				Ready					
					111		~~~~						11			
Date: 30.MAR.2021 1	1:46:25					Date: 30.MAI	R.2021	11:55:13								

<Ant. 1>

Bluetooth	luetooth - LE for 1Mbps								Bluetooth - LE for 2Mbps									
Spectrum	Spectrum																	
Ref Level 20.00 dBr Att 20 d SGL 1Pk Max		• RBW 10 MHz • VBW 10 MHz				Ref Leve Att SGL 1Pk Max	20.00 dB 20 c	m Offset 2 18 e SWT		RBW 10 MH	iz							
M1		D2	M1[1]		9.25 dBm 255.00 µs				м		M1[1] D2	D3		9.62 dBm .92500 ms				
10 dBm		4	▲ D2[1]		0.73 dB .13000 ms	10 dBm-					D2[1]	1		0.64 dB 07500 ms				
-10 dBm						-10 dBm-												
-20 dBm						-20 dBm												
1-90 ⁴ dBm		we have	post		يها	-30 dBm—		- WARANTAN	roughtout		Hitchuld	a data manaktaria		V-ye				
-40 dBm						-40 dBm												
-50 dBm						-50 dBm-												
-50 dBm						-50 dBm-												
CF 2.402 GHz	1001 pts 500.0 μs/											i00.0 µs/						
Marker Type Ref Trc	X-value	Y-value	Function	Function Result		Marker Type Re	f Trc	X-value	1	Y-value	Function	l Eu	nction Result					
M1 1 D2 M1 1	255.0 µs 2.13 ms	9.25 dBm 0.73 dB	runotion	- anotion nosait		M1 D2 N	1	1.9	25 ms 75 ms	9.62 dBn 0.64 dB	3		inderion recording					
D3 M1 1	2.5 ms	0.07 dB				D3 N	1 1	1.8	75 ms	-0.03 dE								
Date: 31.MAR.2021 2	20:51:05		R	teady 👘 🗰	111	Date: 31.M	JR.2021	20:52:19				Ready 📕		111				

