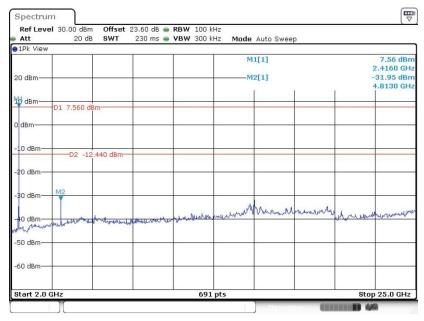
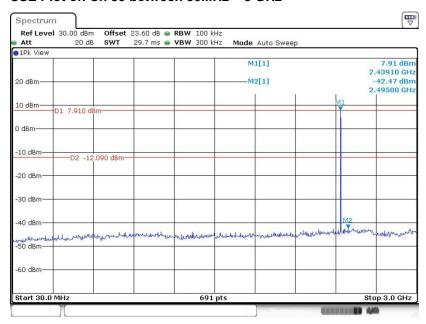

<2Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

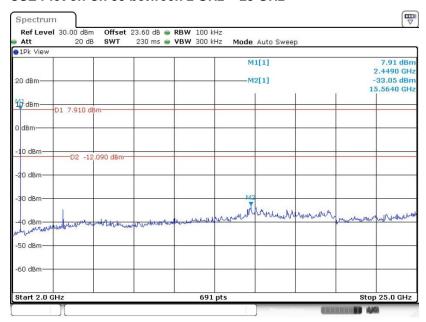
Report No.: FR8O3024

Date: 5.NOV.2018 14:36:17


CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

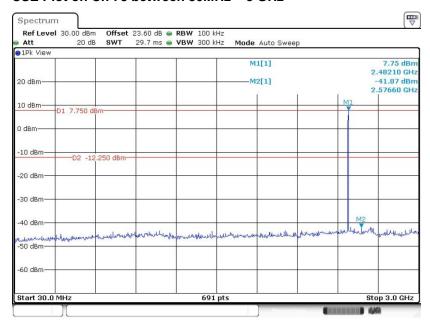
Date: 5.NOV.2018 14:36:44

TEL: 886-3-327-3456 Page Number : 44 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

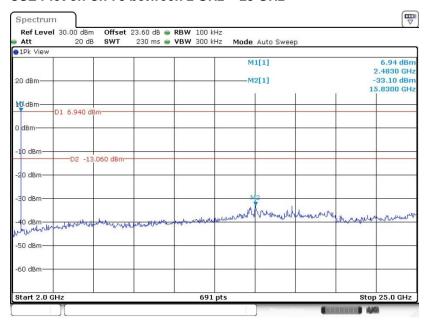
Report No.: FR8O3024

Date: 5.NOV.2018 14:42:42


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 5.NOV.2018 14:43:13

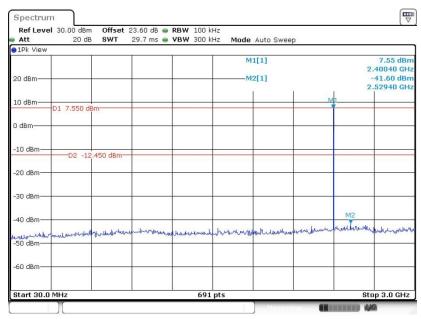
TEL: 886-3-327-3456 Page Number : 45 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR8O3024

Date: 5.NOV.2018 14:52:12

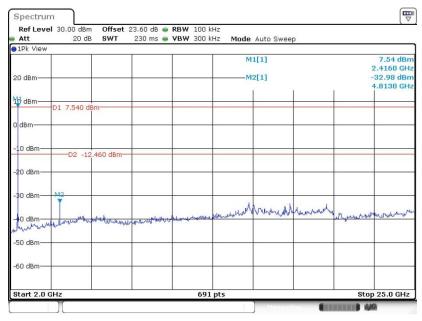
CSE Plot on Ch 78 between 2 GHz ~ 25 GHz



Date: 5.NOV.2018 14:52:41

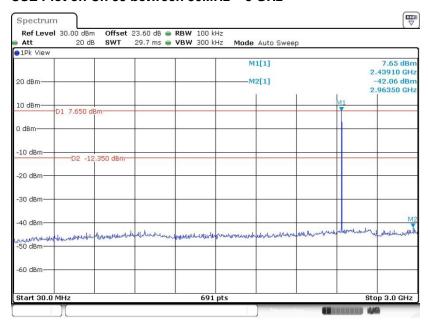
TEL: 886-3-327-3456 Page Number : 46 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

<3Mbps>


CSE Plot on Ch 00 between 30MHz ~ 3 GHz

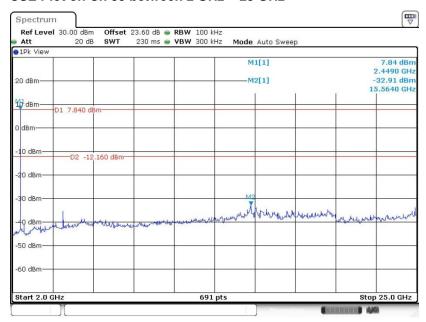
Report No.: FR8O3024

Date: 5.NOV.2018 15:01:39


CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

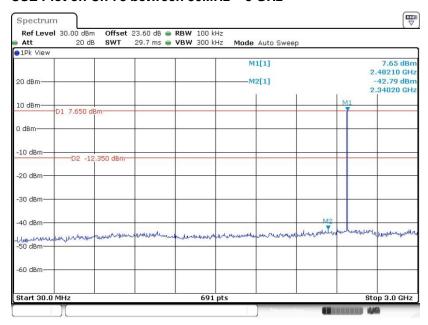
Date: 5.NOV.2018 15:02:09

TEL: 886-3-327-3456 Page Number : 47 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018


CSE Plot on Ch 39 between 30MHz ~ 3 GHz

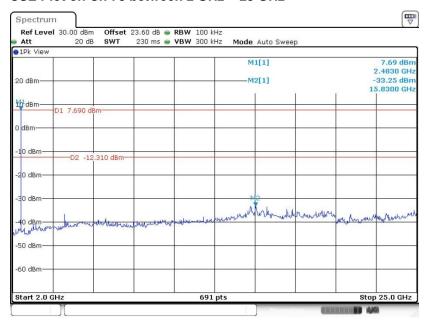
Report No.: FR8O3024

Date: 5.NOV.2018 15:14:53


CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 5.NOV.2018 15:15:23

TEL: 886-3-327-3456 Page Number : 48 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018


CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Report No.: FR8O3024

Date: 5.NOV.2018 16:08:27

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 5.NOV.2018 16:08:55

TEL: 886-3-327-3456 Page Number : 49 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR8O3024

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 50 of 58
FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

3.8.3 Test Procedures

1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR8O3024

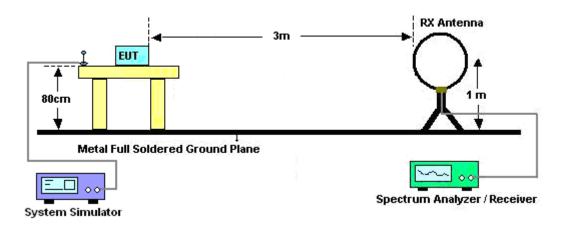
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

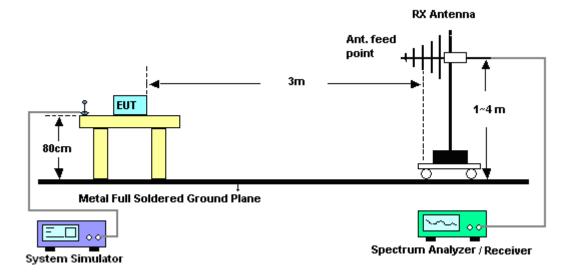
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

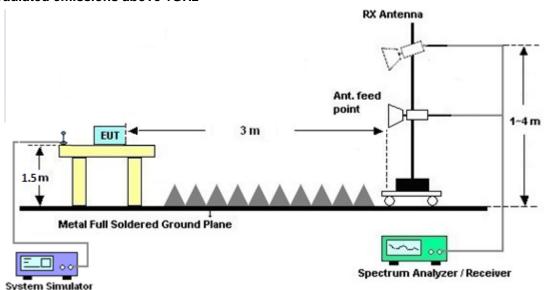

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-30.63dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-3456 Page Number : 51 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018


3.8.4 Test Setup

For radiated emissions below 30MHz


Report No.: FR8O3024

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 52 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

For radiated emissions above 1GHz

Report No.: FR8O3024

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 53 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

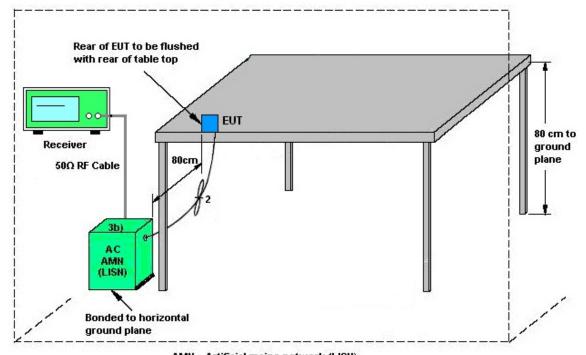
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR8O3024

Eroquency of emission (MUz)	Conducted limit (dBμV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


See list of measuring equipment of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 Page Number : 54 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

3.9.4 Test Setup

Report No.: FR8O3024

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 55 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR8O3024

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 56 of 58 FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB41292344	N/A	Dec. 20, 2017	Nov. 01, 2018~ Nov. 05, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Dec. 20, 2017	Nov. 01, 2018~ Nov. 05, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 07, 2017	Nov. 01, 2018~ Nov. 05, 2018	Nov. 06, 2018	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC1300484	N/A	Mar. 01, 2018	Nov. 01, 2018~ Nov. 05, 2018	Feb. 28, 2019	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 31, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	Dec. 31, 2018	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Dec. 31, 2018	Nov. 13, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Dec. 31, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Dec. 31, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Dec. 31, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	May 15, 2017	Dec. 14, 2018	May 14, 2019	Radiation (03CH16-HY)
Amplifier	MITEQ	TTA1840-35-H G	1871923	18GHz~40GHz,V SWR: 2.5:1 max	Jul. 16, 2018	Dec. 14, 2018	Jul. 15, 2019	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 14, 2018	Dec. 14, 2018	Mar. 13, 2019	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/4	30M-18G	Mar. 14, 2018	Dec. 14, 2018	Mar. 13, 2019	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	18GHz- 40GHz	Nov. 20, 2018	Dec. 14, 2018	Nov. 19, 2019	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Dec. 14, 2018	N/A	Radiation (03CH16-HY)
Preamplifier	Jet-Power	JPA0118-55- 303	1710001800054 001	1GHz~18GHz	Apr. 16, 2018	Dec. 14, 2018	Apr. 15, 2019	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY57290111	3Hz~26.5GHz	Nov. 29, 2018	Dec. 14, 2018	Nov. 28, 2019	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL6111D&008 02N1D01N-06	47020&06	30MHz to 1GHz	Oct. 13, 2018	Dec. 14, 2018	Oct. 12, 2019	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1000MHz	Oct. 02, 2018	Dec. 14, 2018	Oct. 01, 2019	Radiation (03CH16-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5GHz	May 28, 2018	Dec. 14, 2018	May 27, 2019	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SF102/2*11SK 252	MY4278/2	9kHz~40GHz	May 17, 2018	Dec. 14, 2018	May 16, 2019	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Sep. 07, 2018	Dec. 14, 2018	Sep. 06, 2019	Radiation (03CH16-HY)

Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number : 57 of 58
FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Report No.: FR8O3024

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9
of 95% (U = 2Uc(y))	4. 3

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0
of 95% (U = 2Uc(y))	5.0

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Manageria a Unicontainte for a Level of Confidence	
Measuring Uncertainty for a Level of Confidence	2.0
of 95% (U = 2Uc(y))	3.9

TEL: 886-3-327-3456 Page Number : 58 of 58
FAX: 886-3-328-4978 Issued Date : Dec. 31, 2018

Report Number : FR8O3024

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Luffy Lin / Richard Qiu	Temperature:	21~25	°C
Test Date:	2018/11/1~2018/11/5	Relative Humidity:	51~54	%

TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.816	0.871	0.999	0.5441	Pass
DH	1Mbps	1	39	2441	0.819	0.877	0.990	0.5461	Pass
DH	1Mbps	1	78	2480	0.822	0.871	1.003	0.5480	Pass
2DH	2Mbps	1	0	2402	1.216	1.169	1.003	0.8104	Pass
2DH	2Mbps	1	39	2441	1.220	1.172	0.999	0.8133	Pass
2DH	2Mbps	1	78	2480	1.216	1.172	0.999	0.8104	Pass
3DH	3Mbps	1	0	2402	1.207	1.155	0.998	0.8046	Pass
3DH	3Mbps	1	39	2441	1.207	1.158	0.994	0.8046	Pass
3DH	3Mbps	1	78	2480	1.207	1.158	0.999	0.8046	Pass

TEST RESULTS DATA

Dwell Time

Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Nomal	79	106.67	2.94	0.31	0.4	Pass
AFH	20	53.33	2.94	0.16	0.4	Pass

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	7.72	20.97	Pass
DH1	39	1	7.68	20.97	Pass
	78	1	7.57	20.97	Pass
	0	1	8.99	20.97	Pass
2DH1	39	1	8.93	20.97	Pass
	78	1	8.81	20.97	Pass
	0	1	9.39	20.97	Pass
3DH1	39	1	9.06	20.97	Pass
	78	1	8.95	20.97	Pass

TEST RESULTS DATA

Average Power Table (Reporting Only)

DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	7.45	4.77
DH1	39	1	7.41	4.77
	78	1	7.36	4.77
	0	1	7.40	4.65
2DH1	39	1	7.35	4.65
	78	1	7.30	4.65
	0	1	7.38	4.65
3DH1	39	1	7.34	4.65
	78	1	7.33	4.65
	78	1	7.33	4.65

TEST RESULTS DATA

Number of Hoppina Frequency

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

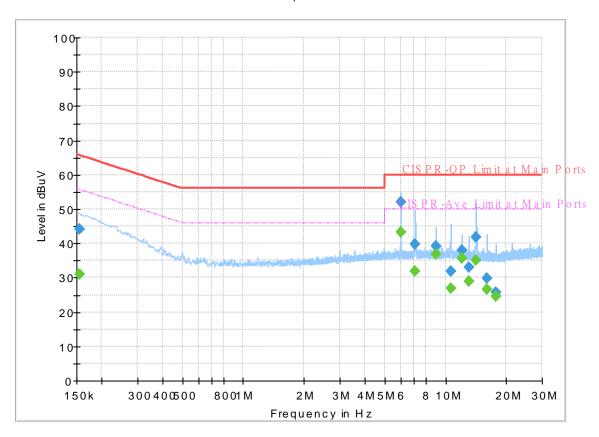
Appendix B. AC Conducted Emission Test Results

Test Engineer :	limmy Chang	Temperature :	24~26 ℃
rest Engineer.		Relative Humidity:	52~54%

Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number : B1 of B1

EUT Information

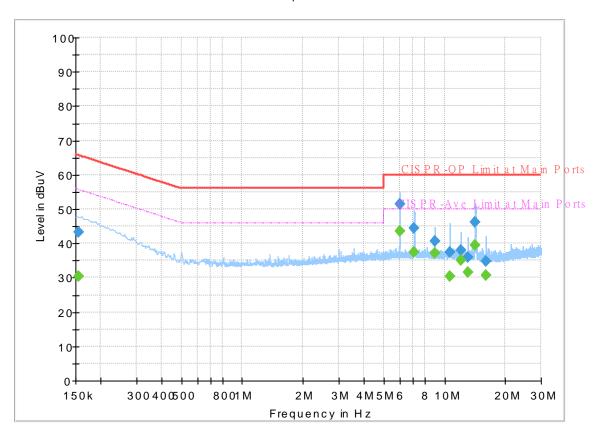

 Report NO :
 803024

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum


Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500		30.88	55.75	24.87	L1	OFF	19.5
0.154500	44.14		65.75	21.61	L1	OFF	19.5
6.000000		43.25	50.00	6.75	L1	OFF	19.8
6.000000	52.13		60.00	7.87	L1	OFF	19.8
7.082250		31.79	50.00	18.21	L1	OFF	19.8
7.082250	39.65		60.00	20.35	L1	OFF	19.8
8.999250		36.72	50.00	13.28	L1	OFF	19.9
8.999250	39.33		60.00	20.67	L1	OFF	19.9
10.612500		26.79	50.00	23.21	L1	OFF	19.9
10.612500	32.00		60.00	28.00	L1	OFF	19.9
12.000750		35.78	50.00	14.22	L1	OFF	20.0
12.000750	38.00		60.00	22.00	L1	OFF	20.0
13.089750		29.07	50.00	20.93	L1	OFF	20.0
13.089750	33.15		60.00	26.85	L1	OFF	20.0
14.165250		35.11	50.00	14.89	L1	OFF	20.1
14.165250	41.75		60.00	18.25	L1	OFF	20.1
16.082250		26.48	50.00	23.52	L1	OFF	20.1
16.082250	29.96		60.00	30.04	L1	OFF	20.1
17.679750		24.48	50.00	25.52	L1	OFF	20.2
17.679750	25.73		60.00	34.27	L1	OFF	20.2

EUT Information

Report NO: 803024
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154500		30.37	55.75	25.38	N	OFF	19.5
0.154500	43.35		65.75	22.40	N	OFF	19.5
6.000000		43.58	50.00	6.42	N	OFF	19.8
6.000000	51.40		60.00	8.60	N	OFF	19.8
7.095750		37.28	50.00	12.72	N	OFF	19.8
7.095750	44.31		60.00	15.69	N	OFF	19.8
8.999250		37.11	50.00	12.89	N	OFF	19.9
8.999250	40.60		60.00	19.40	N	OFF	19.9
10.650750		30.45	50.00	19.55	N	OFF	20.0
10.650750	37.50	-	60.00	22.50	N	OFF	20.0
12.000750		35.13	50.00	14.87	N	OFF	20.0
12.000750	38.03		60.00	21.97	N	OFF	20.0
13.101000		31.47	50.00	18.53	N	OFF	20.0
13.101000	35.90		60.00	24.10	N	OFF	20.0
14.205750		39.54	50.00	10.46	N	OFF	20.1
14.205750	46.18		60.00	13.82	N	OFF	20.1
16.100250		30.69	50.00	19.31	N	OFF	20.2
16.100250	34.83		60.00	25.17	N	OFF	20.2

Appendix C. Radiated Spurious Emission

Toot Engineer	Nick Yu	Temperature :	23~24°C
Test Engineer :		Relative Humidity :	56~58%

Report No.: FR8O3024

2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.695	46.29	-27.71	74	43.79	27.24	8.4	33.14	171	338	Р	Н
		2389.695	15.66	-38.34	54	-	-	-	-	-	-	Α	Н
	*	2402	103.34	-	-	100.84	27.26	8.41	33.17	171	338	Р	Н
	*	2402	72.71	-	-	-	-	-	-	-	-	Α	Н
ВТ													Н
CH00													Н
2402MHz		2357.355	46.18	-27.82	74	43.78	27.16	8.35	33.11	377	75	Р	V
Z-TOZIVITIZ		2357.355	15.55	-38.45	54	-	-	-	-	-	-	Α	V
	*	2402	98.98	-	-	96.48	27.26	8.41	33.17	377	75	Р	V
	*	2402	68.35	-	-	-	-	-	-	-	-	Α	V
													V
													V
		2355.36	46.05	-27.95	74	43.66	27.15	8.35	33.11	113	333	Р	Н
		2355.36	15.42	-38.58	54	-	-	-	-	-	-	Α	Н
	*	2440	104.02	-	-	101.43	27.36	8.43	33.2	113	333	Р	Н
	*	2440	73.39	-	-	-	-	-	-	-	-	Α	Н
D.T.		2492.23	46.69	-27.31	74	44.03	27.48	8.47	33.29	113	333	Р	Н
BT CH 39		2492.23	16.06	-37.94	54	-	-	-	-	-	-	Α	Н
2441MHz		2326.66	46.04	-27.96	74	43.74	27.08	8.3	33.08	366	192	Р	٧
Z77 (IVII IZ		2326.66	15.41	-38.59	54	-	-	-	-	-	-	Α	٧
	*	2441	99	-	-	96.44	27.36	8.43	33.23	366	192	Р	٧
	*	2441	68.37	-	-	-	-	-	-	-	-	Α	V
		2487.4	46.93	-27.07	74	44.26	27.47	8.46	33.26	366	192	Р	V
		2487.4	16.3	-37.7	54	-	-	-	-	-	-	Α	V

TEL: 886-3-327-3456 Page Number : C1 of C6

FCC RADIO TEST REPORT

	*	2480	103.76	-	-	101.11	27.45	8.46	33.26	107	337	Р	Н
	*	2480	73.13	-	-	-	-	-	-	-	-	Α	Н
		2483.52	67.78	-6.22	74	65.12	27.46	8.46	33.26	107	337	Р	Н
		2483.52	37.15	-16.85	54	-	-	-	-	-	-	Α	Н
D.T.													Н
BT CH 70													Н
CH 78 2480MHz	*	2480	99.81	-	-	97.16	27.45	8.46	33.26	341	241	Р	V
2400WII 12	*	2480	69.18	-	-	-	-	-	-	-	-	Α	V
		2483.52	64.08	-9.92	74	61.42	27.46	8.46	33.26	341	241	Р	V
		2483.52	33.45	-20.55	54	-	-	-	-	-	-	Α	٧
													V
													V
	1. N	o other spurio	us found.										
Remark		ll results are F		st Peak	and Avera	ige limit lin	e.						

Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number : C2 of C6

2.4GHz 2400~2483.5MHz

Report No.: FR8O3024

BT (Harmonic @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V
		4804	61.99	-12.01	74	75.59	31.21	13.73	58.54	100	0	Р	Н
		4804	31.36	-22.64	54	-	-	-	-	-	-	Α	Н
													Н
BT													Н
CH 00		4804	58.36	-15.64	74	71.96	31.21	13.73	58.54	100	0	Р	V
2402MHz		4804	27.73	-26.27	54	-	-	-	-	-	-	Α	V
													V
													V
		4882	56.82	-17.18	74	70.12	31.36	13.86	58.52	100	0	Р	Н
		4882	26.19	-27.81	54	-	-	-	-	-	-	Α	Н
		7323	54.94	-19.06	74	62.59	36.1	15.21	58.96	100	0	Р	Н
ВТ		7323	24.31	-29.69	54	-	-	-	-	-	-	Α	Н
CH 39		4882	53.66	-20.34	74	66.96	31.36	13.86	58.52	100	0	Р	V
2441MHz		4882	23.03	-30.97	54	-	-	-	-	-	-	Α	V
		7323	51.55	-22.45	74	59.2	36.1	15.21	58.96	100	0	Р	V
		7323	20.92	-33.08	54	-	-	-	-	-	-	Α	V
		4960	52.61	-21.39	74	65.63	31.52	13.97	58.51	100	0	Р	Н
		4960	21.98	-32.02	54	-	-	-	-	-	-	Α	Н
		7440	54.88	-19.12	74	62.02	36.43	15.28	58.85	100	0	Р	Н
BT		7440	24.25	-29.75	54	-	-	-	-	-	-	Α	Н
CH 78 2480MHz		4960	48.31	-25.69	74	61.33	31.52	13.97	58.51	100	0	Р	V
240UIVINZ		4960	17.68	-36.32	54	-	-	-	-	-	-	Α	V
		7440	49.98	-24.02	74	57.12	36.43	15.28	58.85	100	0	Р	V
		7440	19.35	-34.65	54	-	-	-	-	-	-	Α	٧

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C3 of C6

Emission below 1GHz

Report No.: FR8O3024

: C4 of C6

2.4GHz BT (LF)

(MHz) 30 137.46 291.63 556.2 710.9 853	(dBμV/m) 23.08 17.08 19.62 26.39 28.3 31.96	-16.92 -26.42 -26.38 -19.61	43.5	Level (dΒμV) 29.01 29.96 29.95	Factor (dB/m) 26.2 18.08 19.62	Loss (dB) 0.32 1.4	Factor (dB) 32.45 32.36	Pos (cm)	Pos (deg)	Avg. (P/A) P	Н
30 137.46 291.63 556.2 710.9	23.08 17.08 19.62 26.39 28.3	-16.92 -26.42 -26.38 -19.61	40 43.5 46	29.01	26.2 18.08	0.32	32.45	-	-	Р	Н
137.46 291.63 556.2 710.9	17.08 19.62 26.39 28.3	-26.42 -26.38 -19.61	43.5 46	29.96	18.08						
291.63 556.2 710.9	19.62 26.39 28.3	-26.38 -19.61	46			1.4	32.36	-	_	Р	Į.
556.2 710.9	26.39 28.3	-19.61		29.95	19.62					'	Н
710.9	28.3		46		. 5.52	2.47	32.42	-	-	Р	Н
		177	_	30.51	24.89	3.63	32.64	-	-	Р	Н
853	31.96	-17.7	46	29.78	26.84	4.19	32.51	-	-	Р	Н
		-14.04	46	30.64	28.72	4.66	32.06	100	0	Р	Н
											Н
											Н
											Н
											Н
											Н
											Н
31.62	33.01	-6.99	40	40.13	25.04	0.29	32.45	100	0	Р	V
42.15	25.55	-14.45	40	38.77	18.66	0.56	32.44	-	-	Р	V
173.37	18.99	-24.51	43.5	33.9	15.85	1.6	32.36	-	-	Р	V
515.6	26.63	-19.37	46	31.32	24.53	3.38	32.6	-	-	Р	V
714.4	28.55	-17.45	46	29.92	26.92	4.22	32.51	-	-	Р	V
980.4	33.29	-20.71	54	29.19	29.98	5.21	31.09	-	-	Р	V
											V
											V
											V
											V
											V
											V
	42.15 173.37 515.6 714.4 980.4 No other spu	42.15 25.55 173.37 18.99 515.6 26.63 714.4 28.55 980.4 33.29 No other spurious found.	42.15 25.55 -14.45 173.37 18.99 -24.51 515.6 26.63 -19.37 714.4 28.55 -17.45 980.4 33.29 -20.71	42.15 25.55 -14.45 40 173.37 18.99 -24.51 43.5 515.6 26.63 -19.37 46 714.4 28.55 -17.45 46 980.4 33.29 -20.71 54 No other spurious found.	42.15 25.55 -14.45 40 38.77 173.37 18.99 -24.51 43.5 33.9 515.6 26.63 -19.37 46 31.32 714.4 28.55 -17.45 46 29.92 980.4 33.29 -20.71 54 29.19 No other spurious found.	42.15 25.55 -14.45 40 38.77 18.66 173.37 18.99 -24.51 43.5 33.9 15.85 515.6 26.63 -19.37 46 31.32 24.53 714.4 28.55 -17.45 46 29.92 26.92 980.4 33.29 -20.71 54 29.19 29.98	42.15 25.55 -14.45 40 38.77 18.66 0.56 173.37 18.99 -24.51 43.5 33.9 15.85 1.6 515.6 26.63 -19.37 46 31.32 24.53 3.38 714.4 28.55 -17.45 46 29.92 26.92 4.22 980.4 33.29 -20.71 54 29.19 29.98 5.21	42.15 25.55 -14.45 40 38.77 18.66 0.56 32.44 173.37 18.99 -24.51 43.5 33.9 15.85 1.6 32.36 515.6 26.63 -19.37 46 31.32 24.53 3.38 32.6 714.4 28.55 -17.45 46 29.92 26.92 4.22 32.51 980.4 33.29 -20.71 54 29.19 29.98 5.21 31.09	42.15 25.55 -14.45 40 38.77 18.66 0.56 32.44 - 173.37 18.99 -24.51 43.5 33.9 15.85 1.6 32.36 - 515.6 26.63 -19.37 46 31.32 24.53 3.38 32.6 - 714.4 28.55 -17.45 46 29.92 26.92 4.22 32.51 - 980.4 33.29 -20.71 54 29.19 29.98 5.21 31.09 -	42.15 25.55 -14.45 40 38.77 18.66 0.56 32.44 - - 173.37 18.99 -24.51 43.5 33.9 15.85 1.6 32.36 - - 515.6 26.63 -19.37 46 31.32 24.53 3.38 32.6 - - 714.4 28.55 -17.45 46 29.92 26.92 4.22 32.51 - - 980.4 33.29 -20.71 54 29.19 29.98 5.21 31.09 - -	42.15 25.55 -14.45 40 38.77 18.66 0.56 32.44 - - P 173.37 18.99 -24.51 43.5 33.9 15.85 1.6 32.36 - - P 515.6 26.63 -19.37 46 31.32 24.53 3.38 32.6 - - P 714.4 28.55 -17.45 46 29.92 26.92 4.22 32.51 - - P 980.4 33.29 -20.71 54 29.19 29.98 5.21 31.09 - - P

TEL: 886-3-327-3456 Page Number

Note symbol

Report No.: FR8O3024

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C5 of C6

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8O3024

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
ВТ		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

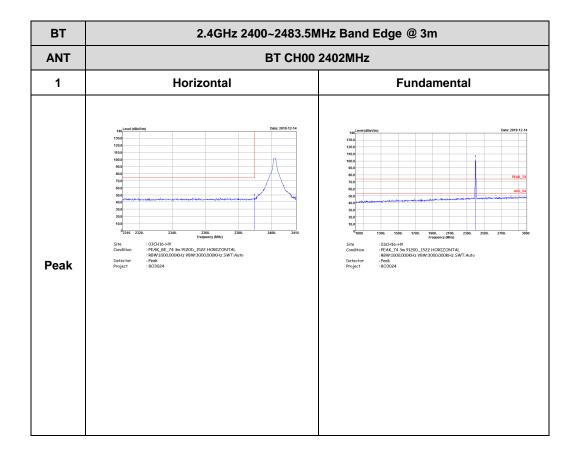
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

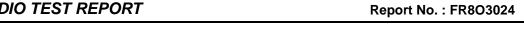
TEL: 886-3-327-3456 Page Number : C6 of C6

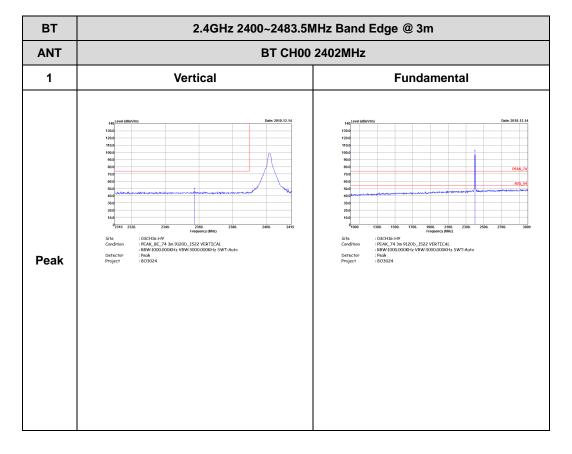
Appendix D. Radiated Spurious Emission Plots

Toot Engineer :	Nick Yu	Temperature :	23~24°C
Test Engineer :		Relative Humidity :	56~58%

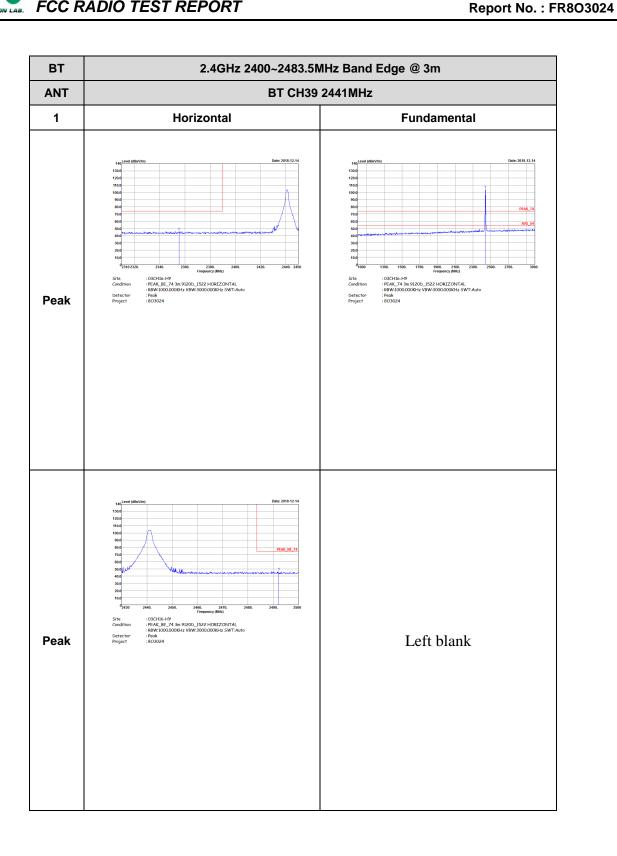

Report No.: FR8O3024

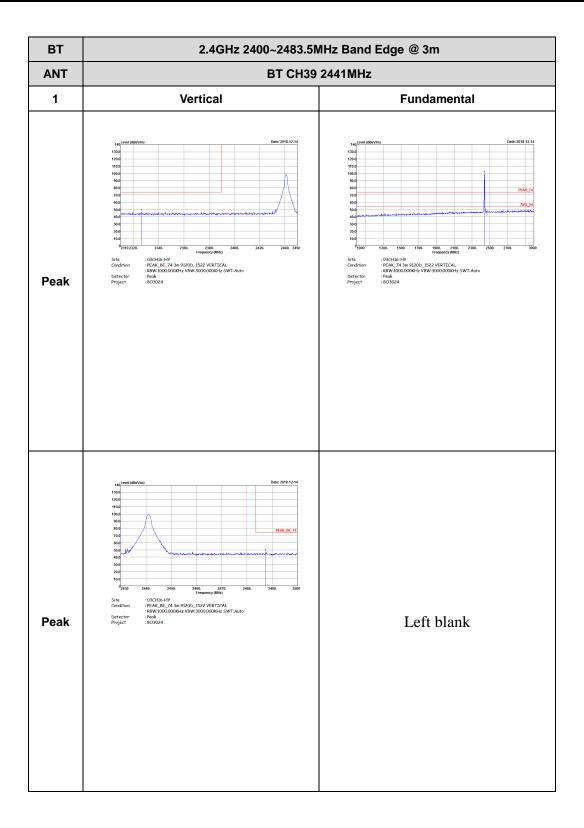
Note symbol

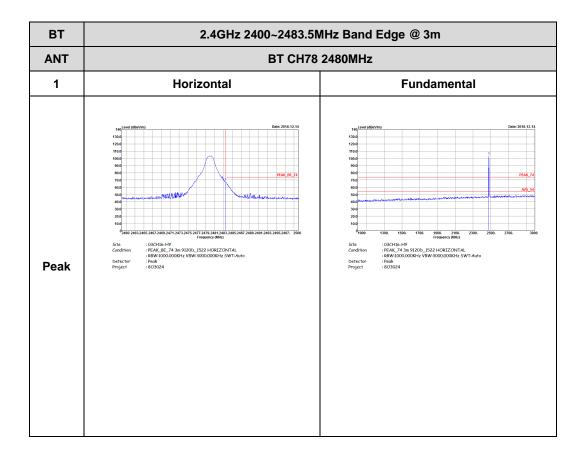

-L	Low channel location
-R	High channel location


2.4GHz 2400~2483.5MHz

BT (Band Edge @ 3m)


TEL: 886-3-327-3456 Page Number: D1 of D10

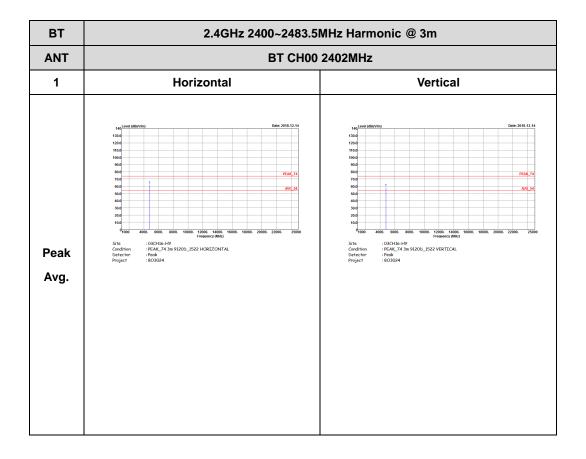

TEL: 886-3-327-3456 Page Number : D2 of D10


: D3 of D10 TEL: 886-3-327-3456 Page Number

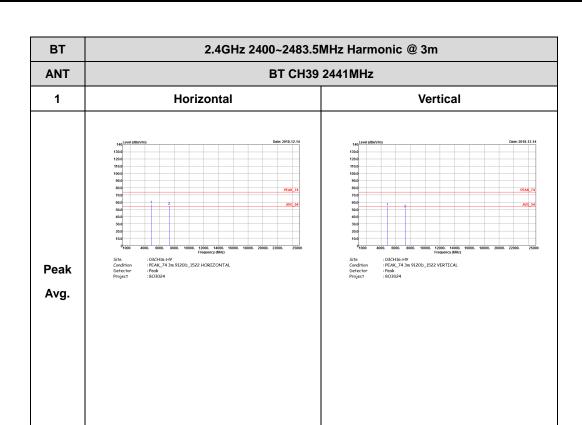
Report No.: FR8O3024

: D4 of D10 TEL: 886-3-327-3456 Page Number

TEL: 886-3-327-3456 Page Number: D5 of D10

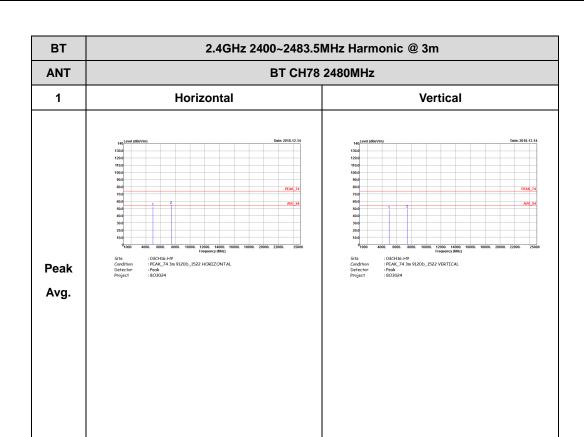

Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number : D6 of D10


2.4GHz 2400~2483.5MHz

Report No.: FR8O3024

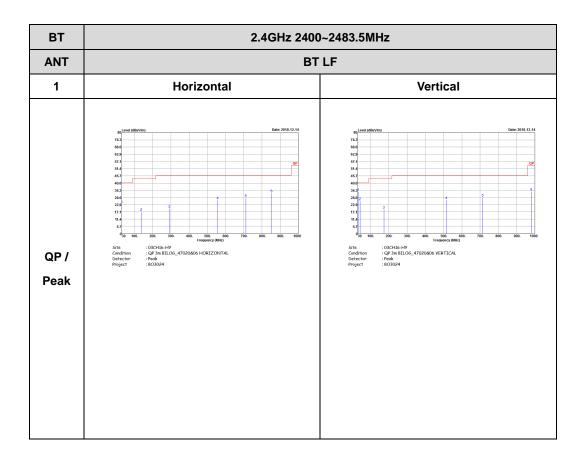
BT (Harmonic @ 3m)



TEL: 886-3-327-3456 Page Number: D7 of D10

Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number: D8 of D10

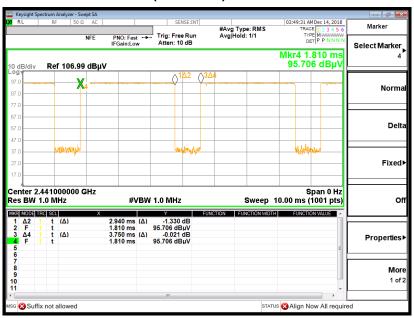


Report No.: FR8O3024

TEL: 886-3-327-3456 Page Number: D9 of D10

Emission below 1GHz 2.4GHz BT (LF)

Report No.: FR8O3024


TEL: 886-3-327-3456 Page Number : D10 of D10

Report No.: FR8O3024

Appendix E. Duty Cycle Plots

3DH5 on time (One Pulse) Plot on Channel 39

on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 1 * 2.94 / 100 = 2.94 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -30.63 dB
- **3DH5** has the highest duty cycle worst case and is reported.

TEL: 886-3-327-3456 Page Number : E1 of E2

FCC RADIO TEST REPORT

Duty Cycle Correction Factor Consideration for AFH mode:

Report No.: FR8O3024

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

2.94 ms x 10 channels = 29.4 ms

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.94 ms x 1 = 2.94 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(2.94 \text{ ms}/100 \text{ms}) = -30.63 \text{ dB}$

——THE END——

TEL: 886-3-327-3456 Page Number : E2 of E2