

FCC RADIO TEST REPORT

FCC ID	: PY7-24870P
Equipment	: GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, NFC, FM receiver and GNSS
Brand Name	: SONY
Applicant	: Sony Corporation
	1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan
Manufacturer	: Sony Corporation
	1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan
Standard	: FCC 47 CFR Part 2, 27(L)
Test Date(s)	: Jan. 07, 2022 ~ Jan. 18, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Alexany

ACCREDITED Cert #5145.02

Approved by: Alex Wang / Manager

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Table of Contents

His	tory of	f this test report	.3
Su	mmary	of Test Result	4
1	Gene	ral Description	
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test 0	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	7
	2.3	Support Unit used in test configuration	8
	2.4	Measurement Results Explanation Example	8
	2.5	Frequency List of Low/Middle/High Channels	8
3	Cond	ucted Test Result	.9
	3.1	Measuring Instruments	9
	3.2	Conducted Output Power and EIRP	10
	3.3	Peak-to-Average Ratio	11
	3.4	99% Occupied Bandwidth and 26dB Bandwidth Measurement	12
	3.5	Conducted Band Edge	13
	3.6	Conducted Spurious Emission	14
	3.7	Frequency Stability	15
4	Radia	ted Test Items	16
	4.1	Measuring Instruments	16
	4.2	Test Setup	16
	4.3	Test Result of Radiated Test	17
	4.4	Field Strength of Spurious Radiation Measurement	18
5	List o	f Measuring Equipment	19
6		tainty of Evaluation	
Ap		A. Test Results of Conducted and ERP/EIRP Test	

Appendix B. Test Results of Radiated Test

History of this test report

Report No.	Version	Description	Issued Date
FG1D0405A	01	Initial issue of report	Mar. 17, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
	§2.1046 Conducted Output Pow		Report only	
3.2	§27.50(d)(4)	Equivalent Isotropic Radiated Power (WCDMA Band IV)	Pass	-
3.3	N/A	Peak-to-Average Ratio	Reporting only	
3.4	§2.1049	Occupied Bandwidth (WCDMA Band IV)	Pass	-
3.5	§2.1051 §27.53(h)	Band Edge Measurement (WCDMA Band IV)	Pass	-
3.6	§2.1051 §27.53(h)	Conducted Emission (WCDMA Band IV)	Pass	-
3.7	§2.1055 §27.54	Frequency Stability Temperature & Voltage	Pass	-
4.4	§2.1053 §27.50(d)(4)	Field Strength of Spurious Radiation (WCDMA Band IV)	ngth of Spurious Radiation Pass	

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, DTS/UNII a/b/g/n/ac, NFC, FM Receiver, and GNSS

Product Specification subjective to this standard				
Antenna Type	PIFA Antenna			
Antenna Gain	AWS Band: -1.1 dBi			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

	EUT Information List							
HW Version	SW Version	IMEI Code	Performed Test Item					
A		004402543119840/ 004402543119857	Conducted Measurement					
	0.306	004402543285823/ 004402543285831	Radiated Spurious Emission					
		004402543285823/ 004402543285831	ERP/EIRP Test					

Note: For other wireless features of this EUT, test report will be issued separately.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator

FCC Rule	Frequency Range (MHz)	System	Type of Modulation	Maximum ERP/EIRP (W)	Emission Designator
Part 27	1712.4 ~ 1752.6	WCDMA Band IV RMC 12.2Kbps	QPSK	0.1300	4M15F9W

1.4 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Ir	Sporton International Inc. (Kunshan)					
	No. 1098, Pengxi North	n Road, Kunshan Economi	c Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China						
Test Sile Location	TEL:+86-512-57900158						
	FAX : +86-512-57900958						
	Sporton Site No.	FCC Designation No.	FCC Test Firm				
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.				
	03CH04-KS TH01-KS	CN1257	314309				

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- ANSI / TIA-603-E
- FCC 47 CFR Part 2,
- FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 412172 D01 Determining ERP and EIRP v01r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Test Mode

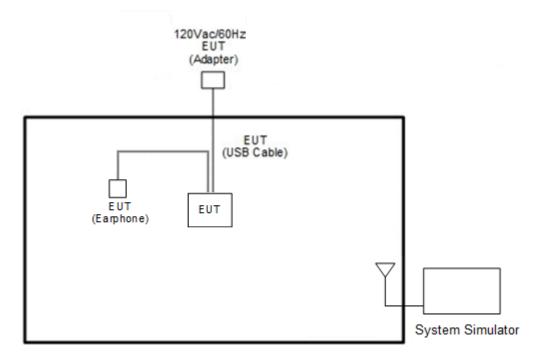
Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.26 exploratory test procedures and find Y plane as worst plane.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 10th for WCDMA Band IV.

All modes, data rates and positions were investigated.


Test modes are chosen to be reported as the worst case configuration below:

Test Modes					
Band Radiated TCs Conducted TCs					
WCDMA Band IV	RMC 12.2Kbps Link	RMC 12.2Kbps Link			

Remark: We have evaluated simultaneous transmissions modes and determined no new significant emissions are observed.

2.2 Connection Diagram of Test System

<EUT With Accessory>

2.3 Support Unit used in test configuration

lt	tem	Equipment	Brand Name	Model No.	FCC ID	Data Cable	Power Cord
1		LTE Base Station	Anritsu	MT8821C/MT8000	N/A	N/A	Unshielded,1.8m

2.4 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

The following shows an offset computation example with RF cable loss5.4 dB and a 10 dB attenuator.

Example:

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

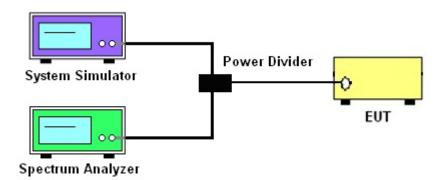
= 5.4 + 10 = 15.4 (dB)

2.5 Frequency List of Low/Middle/High Channels

Frequency List							
Band	Middle	Highest					
WCDMA	Channel	1312	1413	1513			
Band IV	Frequency	1712.4	1732.6	1752.6			

3 Conducted Test Result

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup


3.1.2 Conducted Output Power

3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission

3.1.4 Frequency Stability

3.1.5 Test Result of Conducted Test

Please refer to Appendix A.

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958

3.2 Conducted Output Power and EIRP

3.2.1 Description of the Conducted Output Power and EIRP

A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The EIRP of mobile transmitters must not exceed 1 Watts for WCDMA Band IV.

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

 L_{C} = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Test Procedures

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through system simulator.
- 3. Select the lowest, middle, and the highest channels for each band and different modulation.
- 4. Measure the maximum burst average power for GSM and maximum average power for other modulation signal.

3.3 Peak-to-Average Ratio

3.3.1 Description of the PAR Measurement

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. Set EUT to transmit at maximum output power.
- 3. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator.
- 4. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

3.4 99% Occupied Bandwidth and 26dB Bandwidth Measurement

3.4.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal.

3.4.2 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (This is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.5 Conducted Band Edge

3.5.1 Description of Conducted Band Edge Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

3.5.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 2. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The band edges of low and high channels for the highest RF powers were measured.
- 4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 5. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

3.6 Conducted Spurious Emission

3.6.1 Description of Conducted Spurious Emission Measurement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

3.6.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 6. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

3.7 Frequency Stability

3.7.1 Description of Frequency Stability Measurement

27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

3.7.2 Test Procedures for Temperature Variation

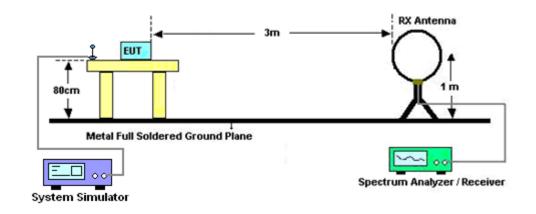
The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was set up in the thermal chamber and connected with the system simulator.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

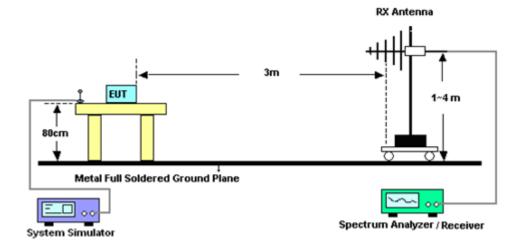
3.7.3 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

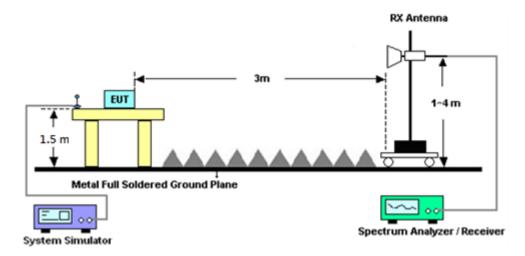

4 Radiated Test Items

4.1 Measuring Instruments


See list of measuring instruments of this test report.

4.2 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

4.3 Test Result of Radiated Test

Please refer to Appendix B.

Note:

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line was not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

4.4 Field Strength of Spurious Radiation Measurement

4.4.1 Description of Field Strength of Spurious Radiated Measurement

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

4.4.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a rotatable wooden table 0.8 meters for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz above the ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1 MHz, VBW = 3 MHz, taking record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Take the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
- 11. ERP (dBm) = EIRP 2.15
- 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 13. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts)

5 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 14, 2021	Jan. 07, 2022	Oct. 13, 2022	Conducted (TH01-KS)
Power divider	STI	STI08-0055	-	0.5~40GHz	Aug. 26, 2021	Jan. 07, 2022	Aug. 25, 2022	Conducted (TH01-KS)
Temperature & humidity chamber	Hongzhan	LP-150U	H2014011440	-40~+150°C 20%~95%RH	Jul. 12, 2021	Jan. 07, 2022	Jul. 11, 2022	Conducted (TH01-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55150244	10Hz-44G,MAX 30dB	Apr. 13, 2021	Jan. 18, 2022	Apr. 12, 2022	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 31, 2021	Jan. 18, 2022	Oct. 30, 2022	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2021	Jan. 18, 2022	May 29, 2022	Radiation (03CH04-KS)
Horn Antenna	Schwarzbeck	BBHA9120D	1356	1GHz~18GHz	Apr. 18, 2021	Jan. 18, 2022	Apr. 17, 2022	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2022	Jan. 18, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
Amplifier	Burgeon	BPA-530	102219	0.01MHz ~3000MHz	Nov. 01, 2021	Jan. 18, 2022	Oct. 31, 2022	Radiation (03CH04-KS)
Amplifier	MITEQ	EM18G40G GA	060728	18~40GHz	Jan. 05, 2022	Jan. 18, 2022	Jan. 04, 2023	Radiation (03CH04-KS)
high gain Amplifier	MITEQ	AMF-7D-00 101800-30-1 0P	2025788	1Ghz-18Ghz	Jul. 30, 2021	Jan. 18, 2022	Jul. 29, 2022	Radiation (03CH04-KS)
Amplifier	Keysight	83017A	MY57280106	500MHz~26.5GHz	Oct. 13, 2021	Jan. 18, 2022	Oct. 12, 2022	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Jan. 18, 2022	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jan. 18, 2022	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jan. 18, 2022	NCR	Radiation (03CH04-KS)

NCR: No Calibration Required

6 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.3dB
Confidence of 95% (U = 2Uc(y))	3.30B

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.8dB
Confidence of 95% ($0 = 20C(y)$)	

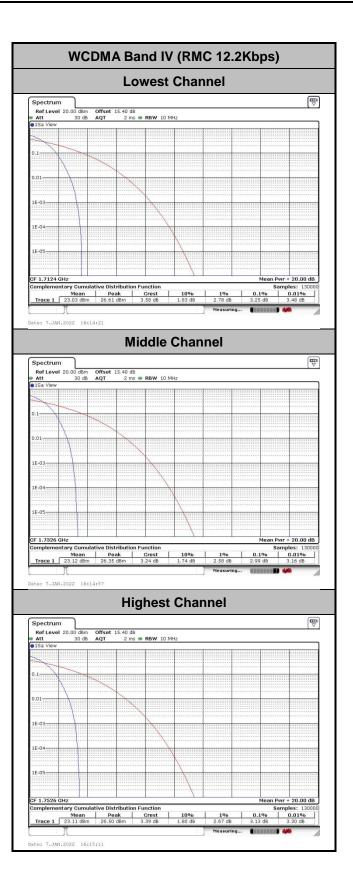
Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of	2.8dB
Confidence of 95% (U = 2Uc(y))	2.000

Appendix A. Test Results of Conducted and ERP/EIRP Test

Conducted Output Power(Average power) and ERP/EIRP

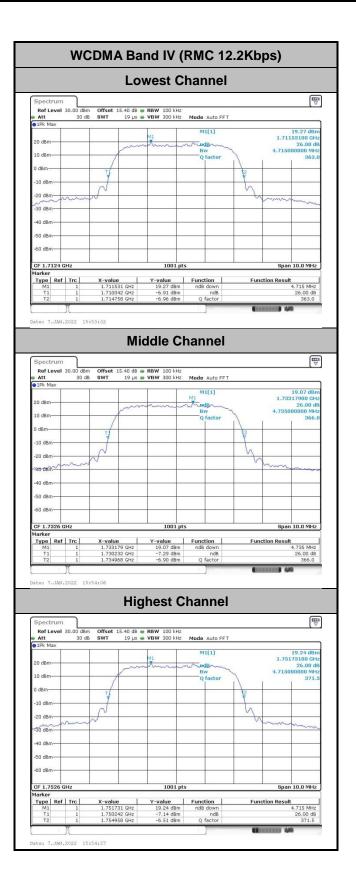
	Band		WCDMA IV				
	TX Channel	1312	1413	1513		EIRP(W)	
	Rx Channel	1537	1638	1738			
Fre	equency (MHz)	1712.4	1732.6	1752.6	L M H		н
3GPP Rel 99	AMR 12.2Kbps	22.16	22.21	22.18	0.1276	0.1291	0.1282
3GPP Rel 99	RMC 12.2Kbps	22.17	22.24	22.20	0.1279	0.1300	0.1288
3GPP Rel 6	HSDPA Subtest-1	21.11	21.23	21.03	0.1002	0.1030	0.0984
3GPP Rel 6	HSDPA Subtest-2	20.99	21.19	21.23	0.0975	0.1021	0.1030
3GPP Rel 6	HSDPA Subtest-3	20.59	20.52	20.47	0.0889	0.0875	0.0865
3GPP Rel 6	HSDPA Subtest-4	20.67	20.55	20.64	0.0906	0.0881	0.0899
3GPP Rel 8	DC-HSDPA Subtest-1	21.20	21.00	20.89	0.1023	0.0977	0.0953
3GPP Rel 8	DC-HSDPA Subtest-2	20.92	20.92	21.02	0.0959	0.0959	0.0982
3GPP Rel 8	DC-HSDPA Subtest-3	20.72	20.60	20.57	0.0916	0.0891	0.0885
3GPP Rel 8	DC-HSDPA Subtest-4	20.78	20.60	20.55	0.0929	0.0891	0.0881
3GPP Rel 6	HSUPA Subtest-1	21.11	21.02	20.92	0.1002	0.0982	0.0959
3GPP Rel 6	HSUPA Subtest-2	18.94	19.19	18.98	0.0608	0.0644	0.0614
3GPP Rel 6	HSUPA Subtest-3	19.93	20.26	20.06	0.0764	0.0824	0.0787
3GPP Rel 6	HSUPA Subtest-4	19.23	19.20	19.02	0.0650	0.0646	0.0619
3GPP Rel 6	HSUPA Subtest-5	21.07	20.79	21.11	0.0993	0.0931	0.1002
3GPP Rel 7	HSPA+ (16QAM) Subtest-1	19.89	19.92	19.98	0.0757	0.0762	0.0773



A2. WCDMA

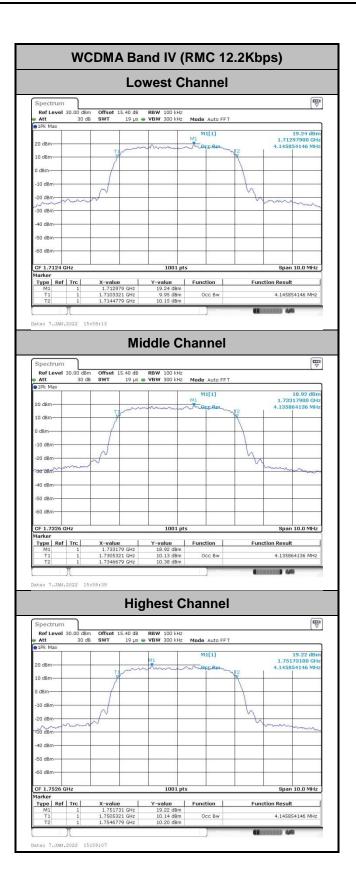
Peak-to-Average Ratio

Mode	WCDMA Band IV	Limit: 13dB	
Mod.	RMC 12.2Kbps	Result	
Lowest CH	3.25		
Middle CH	2.99	PASS	
Highest CH	3.13		

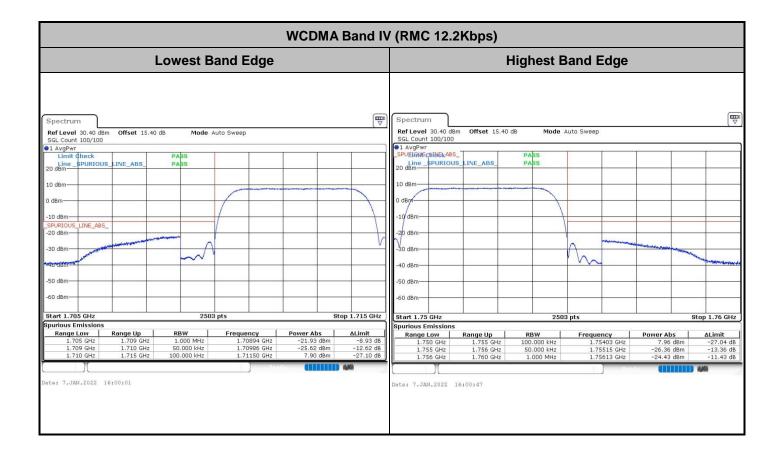


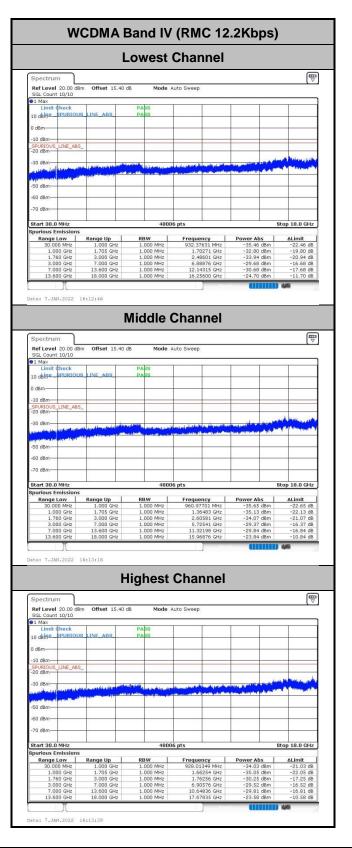
26dB Bandwidth

Mode	WCDMA Band IV (MHz)
Mod.	RMC 12.2Kbps
Lowest CH	4.72
Middle CH	4.74
Highest CH	4.72



Occupied Bandwidth


Mode	WCDMA Band IV (MHz)		
Mod.	RMC 12.2Kbps		
Lowest CH	4.15		
Middle CH	4.14		
Highest CH	4.15		



Conducted Band Edge

Conducted Spurious Emission

Test Conditions	Middle Channel	WCDMA Band IV (RMC 12.2Kbps)	Limit Note 2.
Temperature (°C)	Voltage (Volt)	Deviation (ppm)	Result
50	Normal Voltage	0.0063	
40	Normal Voltage	0.0124	
30	Normal Voltage	0.0015	
20(Ref.)	Normal Voltage	0.0000	
10	Normal Voltage	0.0031	
0	Normal Voltage	0.0062	
-10	Normal Voltage	0.0136	PASS
-20	Normal Voltage	0.0142	
-30	Normal Voltage	0.0068	
20	Maximum Voltage	0.0061	
20	Normal Voltage	0.0018	
20	Battery End Point	0.0144	

Note:

- 1. Normal Voltage = 3.89V ; Battery End Point (BEP) =3.4 ; Maximum Voltage =4.48V
- **2.** The frequency fundamental emissions stay within the authorized frequency block based on the frequency deviation measured is small.

Appendix B. Test Results of Radiated Test

Radiated Spurious Emission

WCDMA Band IV(RMC 12.2Kbps)								
Channel	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)
	3426	-56.44	-13	-43.44	-67.18	2.604	13.34	Н
	5133	-53.37	-13	-40.37	-63.88	3.011	13.52	Н
Lowest	6840	-52.49	-13	-39.49	-62.69	3.271	13.47	Н
Lowest	3426	-56.73	-13	-43.73	-67.47	2.604	13.34	V
	5133	-52.46	-13	-39.46	-62.97	3.011	13.52	V
	6840	-53.15	-13	-40.15	-63.35	3.271	13.47	V
	3465	-55.54	-13	-42.54	-66.28	2.604	13.34	Н
	5205	-52.98	-13	-39.98	-63.49	3.011	13.52	Н
Middle	6930	-52.72	-13	-39.72	-62.92	3.271	13.47	Н
Middle	3465	-56.70	-13	-43.70	-67.44	2.604	13.34	V
	5205	-53.23	-13	-40.23	-63.74	3.011	13.52	V
	6930	-52.73	-13	-39.73	-62.93	3.271	13.47	V
	3510	-55.10	-13	-42.10	-65.84	2.604	13.34	Н
HIghest	5250	-53.40	-13	-40.40	-63.91	3.011	13.52	Н
	7005	-52.14	-13	-39.14	-62.34	3.271	13.47	Н
	3510	-56.43	-13	-43.43	-67.17	2.604	13.34	V
	5250	-53.70	-13	-40.70	-64.21	3.011	13.52	V
	7005	-52.10	-13	-39.10	-62.30	3.271	13.47	V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

------THE END-------