Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Certificate No: D2450V2-706_Jan22

CALIBRATION CERTIFICATE

Object D2450V2 - SN:706

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: January 13, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	01-Nov-21 (No. DAE4-601_Nov21)	Nov-22
	2		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	11111
			M. Ne se
Approved by:	Sven Kühn	Deputy Manager	
			5. 6

Issued: January 14, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-706_Jan22

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-706_Jan22 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	(magan)	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-706_Jan22 Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω + 3.9 jΩ		
Return Loss	- 27.1 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.143 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	00540
Manufactured by	SPEAG

Certificate No: D2450V2-706_Jan22 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 13.01.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:706

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

• Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 01.11.2021

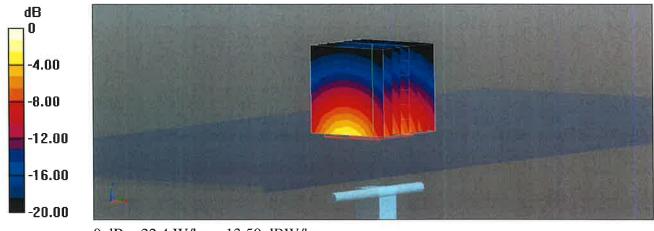
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

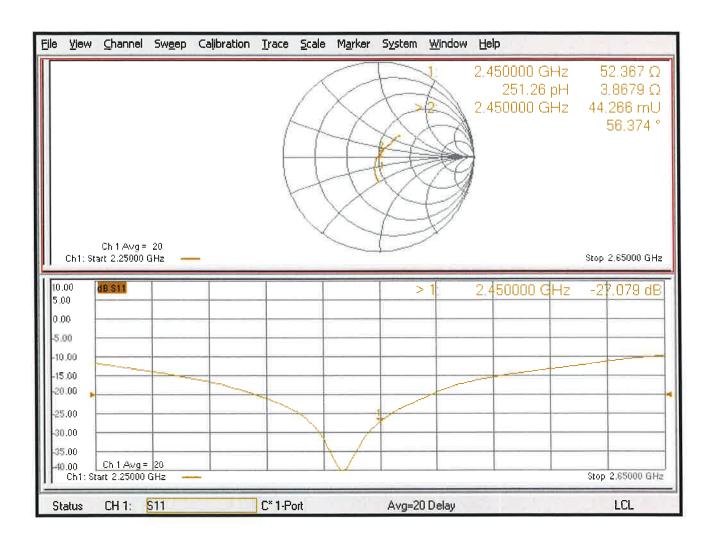
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.3 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.32 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.3%

Maximum value of SAR (measured) = 22.4 W/kg

0 dB = 22.4 W/kg = 13.50 dBW/kg

Impedance Measurement Plot for Head TSL

CERTIFICATE OF CALIBRATION

ISSUED BY UL INTERNATIONAL (UK) LTD

DATE OF ISSUE: 06/Oct/2021 CERTIFICATE NUMBER: 13697410JD01H

UL INTERNATIONAL (UK) LTD UNIT 1-3 HORIZON KINGSLAND PARK, WADE ROAD BASINGSTOKE, HAMPSHIRE RG24 8AH, UK

TEL: +44 (0) 1256 312100 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

APPROVED SIGNATORY

Page 1 of 10

1 = -

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description: Dipole Validation Kit Date of Receipt: 24/Sep/2021

Manufacturer: Speag

Type/Model Number: D2600V2

Serial Number: 1006

Calibration Date: 29/Sep/2021

Calibrated By: Masood Khan

Test Engineer

Signature:

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) °C and humidity < 70%

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025:2017 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13697410JD01H

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2016**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. DASY 6 System Handbook
- 6. Dipole Calibration Procedure V1.2: Calibration performed as per internal procedure

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
PRE0135115	Data Acquisition Electronics	SPEAG	DAE4	1438	12 Apr 2021	12
PRE0134817	Probe	SPEAG	ES3DV3	3335	14 Jan 2021	12
PRE0135603	Dipole	SPEAG	D2600V2	SN1109	15 Feb 2021	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	-
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	22 Mar 2021	12
M2028	Vector Network Analyser	Keysight Technologies	E5071C	MY46521873	20 Jul 2021	12
M2029	Calibration Kit	Keysight Technologies	N4691B	MY46181255	02 Aug 2021	12
M1647	Signal Generator	HP	8648C	3537A01598	03 Mar 2021	12

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13697410JD01H

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L	
Robot Serial Number:	F17/5ENYG1/A/01	
DASY Version:	cDASY16.0.0.116	
Phantom:	Flat section of SAM Twin Phantom	
Distance Dipole Centre:	10 mm (with spacer)	
Frequency:	2600 MHz	

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	I Temp	Parameters	Target	Measured	Uncertainty
Simulant Liquid	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Hood	2600	21.6 °C	24.2 ℃	20.8 °C	21.1 %	εr	39.00	39.23	± 5%
Head	2000	21.0 C	21.2 C	20.6 C	21.1 C	σ	1.96	1.94	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.80 W/Kg	54.94 W/Kg	+16.80 / -16.43%
пеац	SAR averaged over 10g	6.34 W/Kg	25.24 W/Kg	+16.72 / -16.42%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	44.09 + 0.92j Ω	± 3.01
пеаи	Return Loss	23.74	± 2.93

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13697410JD01H

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D2600V2; Type: Dipole; Serial: SN1006;

Interpolated SAR (W/kg)

27.5

Communication System: CW UID: 0; Frequency: 2600.0 MHz; Duty Cycle: 1; Medium: HSL; Site65_28Sep2021_082639_Head - 900 1800 1900 2300 2600 5%; Medium parameters used: f = 2600.0 MHz; σ = 1.94 S/m; ϵ_r = 39.2; ρ = 1000 kg/m3; $\Delta\epsilon_r$ = 0.57 %; $\Delta\sigma$ = -1.03 %; No correction

Phantom section: Flat; DASY 6 Configuration:

- Laboratory Name: Site65:

- Probe: ES3DV3 - SN3335; ConvF(4.44, 4.44, 4.44); Calibrated: 14 Jan 2021

- Sensor-Surface: 3 mm; VMS + 6p

- Electronics: DAE4 - SN1438; Calibrated: 12 Apr 2021

- Phantom: Twin-SAM V8.0 (30deg probe tilt); Serial: 1945

- Measurement SW: cDASY16.0.0.116

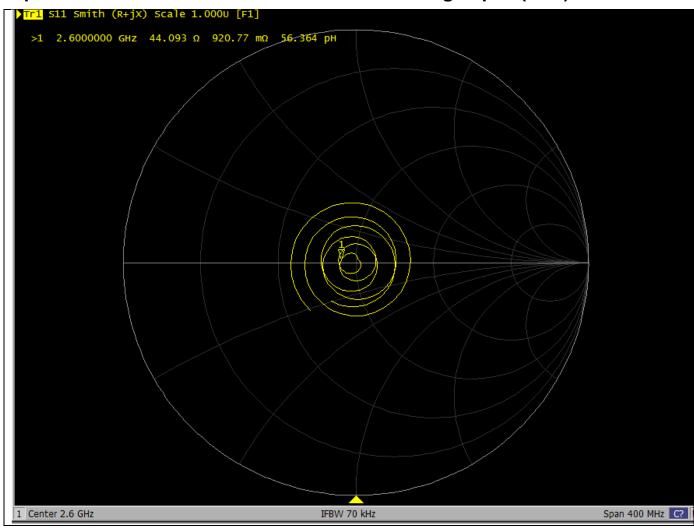
Area Scan (40x80):Interpolated grid: dx=10 mm, dy=10 mm

Zoom Scan1(30x30x30):Measurement grid: dx=5 mm, dy=5 mm, dz=1.5 mm; Grading Ratio:

1.5; Reference Value = 18.620 V/m; Power Drift = 0.00 dB

Minimum horizontal 3dB distance: 9.1 mm;

Vertical M2/M1 Ratio: 81.0 %;

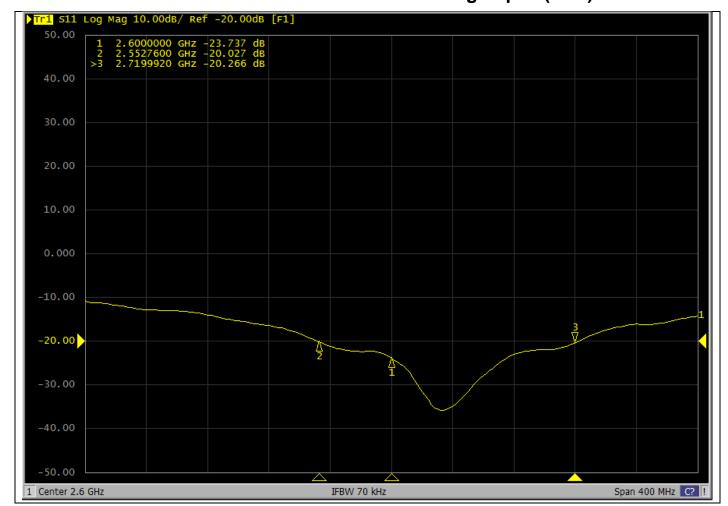

SAR(1 g) = 13.800 W/kg; SAR(10 g) = 6.340 W/kg

UKAS Accredited Calibration Laboratory No. 5772

CERTIFICATE NUMBER: 13697410JD01H

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)


NUMBER: 13697410JD01H

CERTIFICATE

Page 7 of 10

UKAS Accredited Calibration Laboratory No. 5772

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

Calibration Certificate Label:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01H

Instrument ID: 1006

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01H

Instrument ID: 1006

Calibration Date: 29/Sep/2021

Calibration Due Date:

UL INTERNATIONAL (UK) LTD Tel: +44 (0) 1256312000

Certificate Number: 13697410JD01H

Instrument ID: 1006

Calibration Date: 29/Sep/2021

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL USA

Accreditation No.: SCS 0108

Certificate No: D5GHzV2-1138_Aug21

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1138

Calibration procedure(s)

QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

August 19, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
	SA.		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 = 11
Approved by:	Katja Pokovic	Technical Manager	MINC
			A LA

Issued: August 19, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1138_Aug21

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		(HENE)

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1138_Aug21 Page 3 of 8

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1138_Aug21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	50.7 Ω - 6.3 jΩ
Return Loss	- 24.1 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.3 Ω - 0.6 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	56.1 Ω - 0.6 jΩ
Return Loss	- 24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1138_Aug21 Page 5 of 8

DASY5 Validation Report for Head TSL

Date: 19.08.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1138

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.95$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz,
 ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.71 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.43 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68%

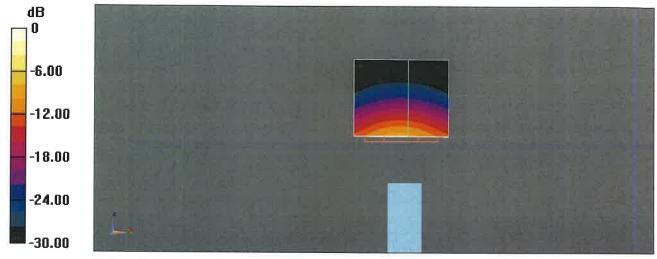
Maximum value of SAR (measured) = 19.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

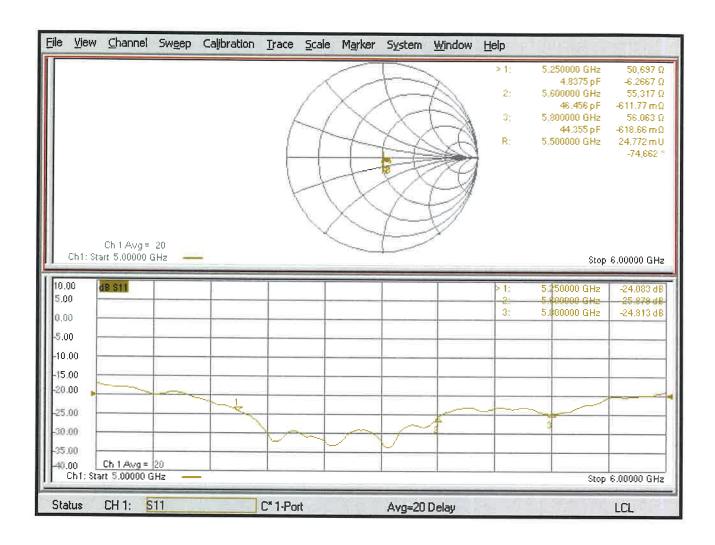
Reference Value = 75.31 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 31.5 W/kg


SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.8%


Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1138_Aug21

0 dB = 17.9 W/kg = 12.52 dBW/kg

Impedance Measurement Plot for Head TSL

