Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBn

LTE B26 1.4MHz QPSK

Fundamental Substitution Measurement (Fc < 1GHz) UL LLC, Chamber N Company: SOMC Project #: 16/33633N Date: 08/10/2016 Test Engineer: Brian Kiewra / John Manser Configuration: Standalone (LTE Sample #1) Mode: LTE 26, 3MHz, QPSK Test Equipment: Substitution: Dipole antenna AT0016, cable CBL055, and signal-source T374 SG reading (dBm) Ant Pol. Cable Loss Antenna Gain (dBm) Antenna Gain (dBm) ERP (dBm) (dBm) Limit (dBm) (dBm) Margin (dBm) 23.18 V 5.1 14.18 H 5.1 0.7 -1.45 16.65 50.0 33.3 -1.45 7.65 50.0 42.3 V 5.1 H 5.1 0.7 -1.45 -1.45 17.45 38.5 -21.0 8.14 38.5 -30.3 831.50 831.50 24.66 V 5.1 15.33 H 5.1 0.7 -1.45 18.06 38.5 -20.4 -1.45 8.73 38.5 -29.7 High Ch | 847.50 | 24.80 | V | 5.2 | 0.7 | 1.45 | 18.16 | 38.5 | 20.3 | 847.50 | 15.82 | H | 5.2 | 0.7 | 1.45 | 9.18 | 38.5 | 29.3 | Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

LTE B26 3MHz QPSK

				UL LLC, Cha	illibel N				
ompany:	SOMC								
roject#:	16J23633N								
ate: 08/1	10/2016								
est Engi	neer: Brian K	iewra / John	Manser						
	tion: Standalo								
	E 26, 5MHz, QI		imple #1)						
lode: L II	E 26, OMHZ, Q	PSK							
est Equi									
	Substitution:	Dipole antenn	a AT0016, cable	CBL055, and signa	al-source T374				
		Ant. Pol.	Cable Loss	Antenna Gain	Antenna Gain	ERP	Limit	Margin	Notes
f	SG reading								
f MHz	SG reading (dBm)	(H/V)	(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
			(dB)	(dBi)	(dBd)	(dBm)	(dBm)	(dB)	
MHz Part 90 816.50	(dBm) 23.51		5.1	0.7	-1.45	16.98	(dBm) 50.0	(dB) -33.0	
MHz Part 90	(dBm)	(H/V)		,,	,				
MHz Part 90 816.50 816.50 Part 22	(dBm) 23.51 14.53	(H/V)	5.1 5.1	0.7 0.7	-1.45 -1.45	16.98 8.00	50.0 50.0	-33.0 -42.0	
MHz Part 90 816.50 816.50	(dBm) 23.51	(H/V)	5.1	0.7	-1.45	16.98	50.0	-33.0	
MHz Part 90 816.50 816.50 Part 22	(dBm) 23.51 14.53	(H/V) V H	5.1 5.1	0.7 0.7	-1.45 -1.45	16.98 8.00	50.0 50.0	-33.0 -42.0	
MHz Part 90 816.50 816.50 Part 22 826.50	23.51 14.53 24.05	(H/V) V H	5.1 5.1 5.1	0.7 0.7	-1.45 -1.45 -1.45	16.98 8.00	50.0 50.0 38.5	-33.0 -42.0 -21.0	
MHz Part 90 816.50 816.50 Part 22 826.50 826.50 Mid Ch 831.50	23.51 14.53 24.05 14.97 24.42	(H/V) V H	5.1 5.1 5.1	0.7 0.7 0.7 0.7	-1.45 -1.45 -1.45	16.98 8.00	50.0 50.0 38.5 38.5 38.5	-33.0 -42.0 -21.0	
MHz Part 90 816.50 816.50 Part 22 826.50 826.50 Mid Ch	23.51 14.53 24.05 14.97	(H/V) V H V H	5.1 5.1 5.1 5.1 5.1	0.7 0.7 0.7 0.7	.1.45 .1.45 .1.45 .1.45	16.98 8.00 17.48 8.40	50.0 50.0 38.5 38.5	33.0 42.0 -21.0 -30.1	
MHz Part 90 816.50 816.50 Part 22 826.50 826.50 Mid Ch 831.50	23.51 14.53 24.05 14.97 24.42 15.11	V H V H	5.1 5.1 5.1 5.1 5.1 5.1	0.7 0.7 0.7 0.7 0.7 0.7	1.45 1.45 1.45 1.45 1.45 1.45	16.98 8.00 17.48 8.40 17.82 8.51	50.0 50.0 38.5 38.5 38.5 38.5	33.0 42.0 21.0 30.1 20.6 29.9	
MHz Part 90 816.50 816.50 Part 22 826.50 826.50 Mid Ch 831.50 831.50	23.51 14.53 24.05 14.97 24.42	(H/V) V H V H	5.1 5.1 5.1 5.1 5.1	0.7 0.7 0.7 0.7	-1.45 -1.45 -1.45 -1.45 -1.45	16.98 8.00 17.48 8.40	50.0 50.0 38.5 38.5 38.5	33.0 42.0 21.0 30.1 -20.6	

Fundamental Substitution Measurement (Fc < 1GHz)

LTE B26 3MHz 16QAM

0.7

0.7 0.7

High Ch | 847.50 | 23.99 | V | 5.2 | 0.7 | 1.45 | 17.35 | 38.5 | 21.1 | 847.50 | 15.01 | H | 5.2 | 0.7 | 1.45 | 8.37 | 38.5 | 30.1

-1.45 15.78 50.0 34.2 -1.45 6.77 50.0 43.2

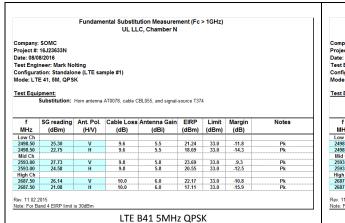
-1.45 16.60 38.5 -21.8 -1.45 7.30 38.5 -31.1

> -1.45 17.12 38.5 -21.3 -1.45 7.72 38.5 -30.7

22.31 V 5.1 0.7 13.30 H 5.1 0.7

> V 5.1 H 5.1

23.72 V 5.1 14.32 H 5.1


Rev. 11.02 2015 Note: For Band 13/17 ERP limit is 34.77dBm; For Band 26 limit is 50dBm

								16J23633N 10/2016	ate: 08/
								neer: Brian K	
						mple #1)		ition: Standalo	
							QAM	E 26, 5MHz, 16	lode: LT
								pment:	est Equi
				al-source T374	CBL055, and signa	a AT0016, cable	Dipole antenn	Substitution:	
				1 300100 1014	obcoss, and signe	a Pillouto, cable	Dipore america	ou bout un	
rgin Notes	Mannin	1 114	FDD	Antonno Coin	Antonna Cain	Cablalasa	A-4 D-I	00	
1B)	(dB)	(dBm)	(dBm)	(dBd)	(dBi)	(dB)	(H/V)	(dBm)	MHz
									Part 90
3.8	-33.8	50.0	16.20	-1.45	0.7	5.1	V	22.73	816.50
					0.7	5.1	Н	13.79	816.50
12.7	42.7	50.0	7.26	-1.45					
12.7		50.0	7.26	-1.45					Part 22
		50.0 38.5	7.26	-1.45	0.7	5.1	v	23.37	Part 22 826.50
21.7	-42.7						V	23.37	
21.7	-42.7 -21.7	38.5	16.80	-1.45	0.7	5.1			826.50
21.7	-42.7 -21.7	38.5	16.80	-1.45	0.7	5.1			826.50 826.50
21.7 30.8 21.5	-42.7 -21.7 -30.8	38.5 38.5	16.80 7.65	-1.45 -1.45	0.7 0.7	5.1 5.1	H	14.22	826.50 826.50 Mid Ch
21.7 30.8 21.5	-21.7 -30.8 -21.5	38.5 38.5 38.5	16.80 7.65 16.97	-1.45 -1.45	0.7 0.7	5.1 5.1 5.1	H V	14.22 23.57	826.50 826.50 Mid Ch 831.50 831.50
21.7 30.8 21.5 30.8	-21.7 -30.8 -21.5	38.5 38.5 38.5	16.80 7.65 16.97	-1.45 -1.45	0.7 0.7	5.1 5.1 5.1	H V	14.22 23.57	826.50 826.50 Mid Ch 831.50
	Marg (dE	Limit (dBm)	ERP (dBm)		CBL055, and signa Antenna Gain (dBi)		Ant. Pol. (H/V)		f MHz

LTE B26 5MHz 16QAM

LTE Band 41

D)4/ (0.411-)	0.0 - d -	DD /DD 6'	((2.41-)	EII	RP
BW (MHz)	Mode	RB/RB Size	f(MHz)	dBm	mW
		1/0	2498.5	21.24	133.05
	QPSK	1/0	2593	23.69	233.88
5		1/0	2687.5	22.17	164.82
3	16QAM	1/0	2498.5	21.18	131.22
		1/0	2593	23.73	236.05
		1/0	2687.5	22.22	166.72
		1/0	2501	21.23	132.74
	QPSK	1/0	2593	23.67	232.81
10		1/0	2685	22.27	168.66
10		1/0	2501	21.17	130.92
	16QAM	1/0	2593	23.72	235.50
		1/0	2685	22.34	171.40
		1/0	2503.5	20.80	120.23
	QPSK	1/0	2593	23.55	226.46
15		1/0	2682.5	22.04	159.96
13		1/0	2503.5	20.97	125.03
	16QAM	1/0	2593	23.69	233.88
		1/0	2682.5	22.28	169.04
		1/0	2506	21.29	134.59
	QPSK	1/0	2593	23.75	237.14
20		1/0	2680	22.41	174.18
20		1/0	2506	21.36	136.77
	16QAM	1/0	2593	23.82	240.99
		1/0	2680	22.45	175.79

		Fundame		ution Measuren .C, Chamber N	nent (Fc	> 1GHz)		
ate: 08/0 est Engi onfigura	16J23633N	ne (LTE sai	mple #1)					
est Equi		Horn antenna	AT0078, cable C	BL055, and signal-	source T374	1		
est Equi		Horn antenna Ant. Pol.	,	BL055, and signal-	EIRP	Limit	Margin	Notes
	Substitution:		,				Margin (dB)	Notes
f MHz Low Ch	Substitution: SG reading (dBm)	Ant. Pol.	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	
f MHz Low Ch 2498.50	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	Pk
f MHz Low Ch 2498.50 2498.50	Substitution: SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	
f MHz Low Ch 2498.50 2498.50 Mid Ch	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm) 21.18 18.80	Limit (dBm) 33.0 33.0	.11.8 -14.2	Pk Pk
f MHz Low Ch 2498.50 2498.50 Mid Ch 2593.00	SG reading (dBm) 25.24 22.86 27.76	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.18 18.80 23.73	Limit (dBm) 33.0 33.0 33.0	.11.8 .14.2	Pk Pk Pk
f MHz Low Ch 2498.50 2498.50 Mid Ch 2593.00 2593.00	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm) 21.18 18.80	Limit (dBm) 33.0 33.0	.11.8 -14.2	Pk Pk
f MHz Low Ch 2498.50 2498.50 Mid Ch 2593.00 2593.00 High Ch	SG reading (dBm) 25.24 22.86 27.76 24.55	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6 9.8	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.18 18.80 23.73 20.52	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -11.8 -14.2 -9.3 -12.5	Pk Pk Pk
f MHz Low Ch 2498.50 2498.50 Mid Ch 2593.00 2593.00	SG reading (dBm) 25.24 22.86 27.76	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.18 18.80 23.73	Limit (dBm) 33.0 33.0 33.0	.11.8 .14.2	Pk Pk Pk

LTE B41 5MHz 16QAM

Fundamental Substitution Measurement (Fc > 1GHz)
UL LLC, Chamber N

Fundamental Substitution Measurement (Fc > 1GHz)

UL LLC, Chamber N

Company: SOMC
Project #: 15\(\)23633N

Date: 8\(\)08\(\)08\(\)2016

Test Engineer: Mark Notting

Configuration: Standalone (LTE sample #1)

Mode: LTE 41, 10M, QPSK

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

Test Equipment:

Substitution: Horn antenna AT0078, cable CBL055, and signal-source T374

LTE B41 10MHz 16QAM

Fundamental Substitution Measurement (Fc > 1GHz)

Fundamental Substitution Measurement (Fc > 1GHz) UL LLC, Chamber N Company: SOMC Project #: 16J23853N Date: 080092018 Test Engineer: Mark Nolting Configuration: Standalone (LTE sample #1) Mode: LTE 41, 15M, QPSK Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: Hom antenna AT0078, cable CBL055, and signal-source T374 | Test Equipment: Substitution: H

LTE B41 15MHz QPSK

LTE B41 10MHz QPSK

roject #: ate: 08/0 est Engi onfigura	: SOMC 16J23633N 18/2016 neer: Mark No Ition: Standalo E 41, 15M, 16G	ne (LTE sai	nple #1)					
est Equi	pment:		AT0078, cable C	BL055, and signal-	source T37	1		
f MHz	SG reading	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes
Low Ch	,,	1.2.4	()	(2.21)	,	(2.2011)	\/	
2503.50	25.03	V	9.6	5.5	20.97	33.0	-12.0	Pk
	23.11	Н	9.6	5.5	19.05	33.0	-13.9	Pk
2503.50					23.69	33.0	-9.3	Pk
2503.50 Mid Ch 2593.00	27.72	V	9.8	5.8	23.69		-9.3	PK PK
2503.50 Mid Ch 2593.00 2593.00	27.72 24.66	V H	9.8 9.8	5.8 5.8	20.63	33.0	-12.4	Pk
2503.50 Mid Ch 2593.00 2593.00 High Ch	24.66	H	9.8	5.8	20.63	33.0	-12.4	Pk
2503.50 Mid Ch 2593.00 2593.00 High Ch 2682.50	24.66 26.25	H V	9.8	5.8 6.0	20.63	33.0 33.0	-12.4 -10.7	Pk Pk
2503.50 Mid Ch 2593.00 2593.00 High Ch 2682.50 2682.50	24.66	H	9.8	5.8	20.63	33.0	-12.4	Pk

Company:	SOMC							
roject #:	16J23633N							
Date: 08/0	8/2016							
Γest Engi	neer: Mark No	lting						
Configura	tion: Standalo	ne (LTE sar	mple #1)					
Mode: LTI	E 41, 20M, 16Q	DAM.						
	,,							
Test Equi	nment							
		Unan antanna	AT0070	DIOSE and sincel	T27			
		Horn antenna	AT0078, cable C	BL055, and signal-	source T374	1		
		Horn antenna	AT0078, cable C	BL055, and signal-	source T374	1		
	Substitution:						Margin	Notes
				BL055, and signal- Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Notes
f	Substitution:	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit		Notes
f MHz	Substitution:	Ant. Pol. (H/V)	Cable Loss	Antenna Gain (dBi)	EIRP	Limit (dBm)	(dB)	Pk
f MHz Low Ch 2506.00 2506.00	Substitution: SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	(dB)	
f MHz Low Ch 2506.00 2506.00 Mid Ch	Substitution: SG reading (dBm) 25.41 23.36	Ant. Pol. (H/V)	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.36 19.30	Limit (dBm) 33.0 33.0	.11.6 .13.7	Pk Pk
f MHz Low Ch 2506.00 2506.00 Mid Ch 2593.00	Substitution: SG reading (dBm) 25.41 23.36 27.86	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.36 19.30 23.82	Limit (dBm) 33.0 33.0 33.0	.11.6 .13.7	Pk Pk Pk
f MHz Low Ch 2506.00 2506.00 Mid Ch 2593.00 2593.00	Substitution: SG reading (dBm) 25.41 23.36	Ant. Pol. (H/V)	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.36 19.30	Limit (dBm) 33.0 33.0	.11.6 .13.7	Pk Pk
f MHz Low Ch 2506.00 2506.00 Mid Ch 2593.00 2593.00 High Ch	Substitution: SG reading (dBm) 25.41 23.36 27.86 24.80	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6 9.8	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.36 19.30 23.82 20.77	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -11.6 -13.7 -9.2 -12.2	Pk Pk Pk
f MHz Low Ch 2506.00 2506.00 Mid Ch 2593.00 2593.00	Substitution: SG reading (dBm) 25.41 23.36 27.86 24.80 26.42	Ant. Pol. (H/V)	Cable Loss (dB) 9.6 9.6	Antenna Gain (dBi) 5.5 5.5	EIRP (dBm) 21.36 19.30 23.82	Limit (dBm) 33.0 33.0 33.0	.11.6 .13.7	Pk Pk Pk Pk
f MHz Low Ch 2506.00 2506.00 Mid Ch 2593.00 2593.00 High Ch	Substitution: SG reading (dBm) 25.41 23.36 27.86 24.80	Ant. Pol. (H/V) V H	Cable Loss (dB) 9.6 9.6 9.8	Antenna Gain (dBi) 5.5 5.5 5.5 5.8	EIRP (dBm) 21.36 19.30 23.82 20.77	Limit (dBm) 33.0 33.0 33.0 33.0	(dB) -11.6 -13.7 -9.2 -12.2	Pk Pk Pk Pk

FCC ID: PY7-22041R

14.2. FIELD STRENGTH OF SPURIOUS RADIATION RULE PART(S)

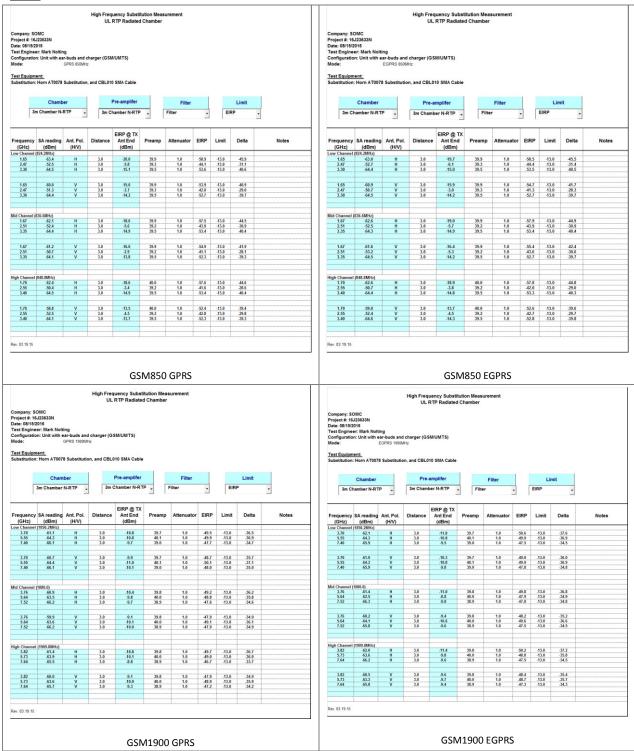
FCC: §2.1053, §22.917, §24.238, §27.53 and §90.691

LIMIT

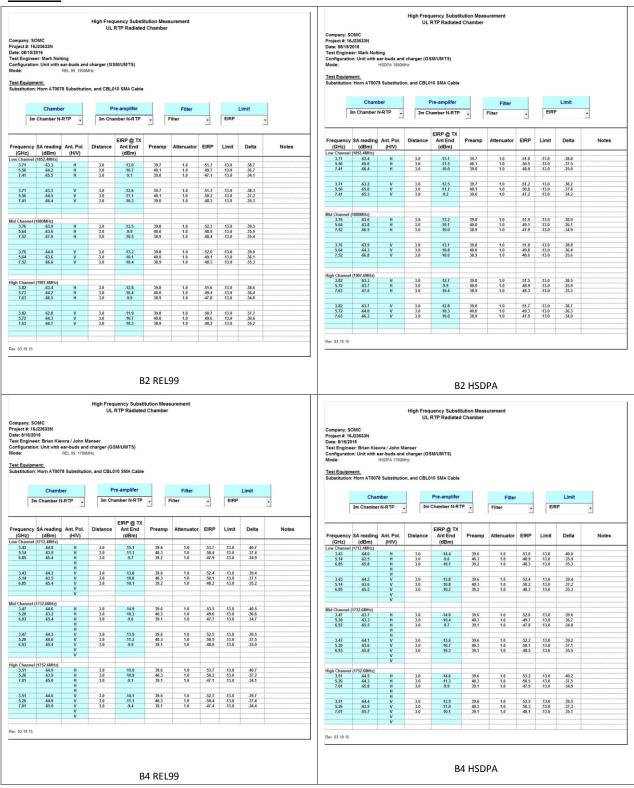
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P) dB$.

Part 27: (m)(4) (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the Channel edge and 5 megahertz from the Channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the Channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the Channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on Channel BRS Channel 1 on the same terms and conditions as adjacent Channel BRS or EBS licensees.

TEST PROCEDURE


For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

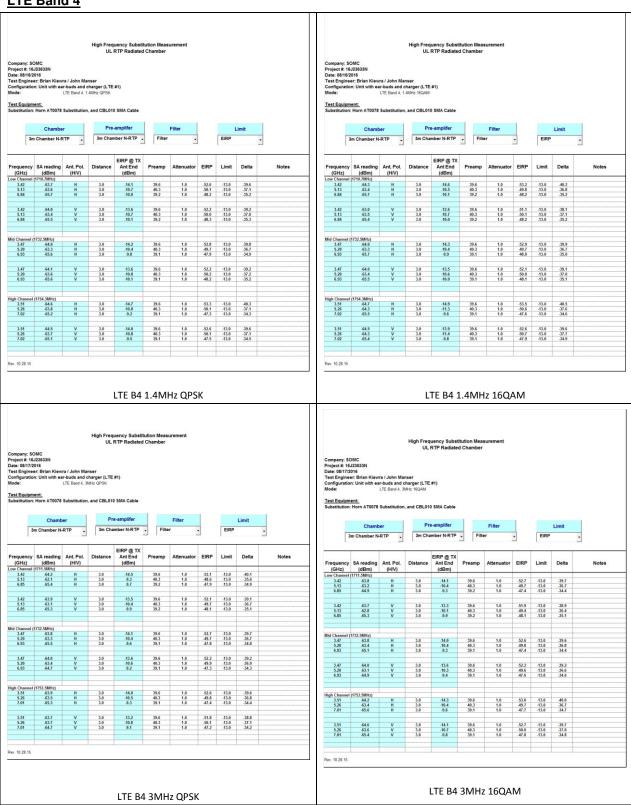

14.2.1. SPURIOUS RADIATION RESULTS

DATE: 9/6/2016

GSM

WCDMA

High Frequency Substitution Measurement UL RTP Radiated Chamber


B5 HSDPA

DATE: 9/6/2016

dBm) 4MHz)		3m Cha	e-amplifer mber N-RTP	· Fi	Filter		EIRP	Limit	
reading dBm) 4MHz)	Ant. Pol.		mber N-RTP	· Fi	iter		EIDD		
dBm) 4MHz)							EIRP	•	
		Distance	EIRP @ TX Ant End (dBm)	Preamp	Attenuator	EIRP	Limit	Delta	Notes
.63.3 .63.5	H	3.0	-19.8 -16.8	39.9 39.3	1.0	-58.7 -55.1	-13.0 -13.0	-45.7 -42.1	
-64.5	H	3.0	-15.1	39.5	1.0	-53.6	-13.0	-40.6	
63.0	v	30	40.0	70.0	10	56.0	12.0	41.0	
-63.4							-13.0		
.64.2	V	3.0	-14.0	39.5	1.0	-52.4	-13.0	-39.4	
			40.4	20.0		50.0	40.0	45.0	
-63.7	H	3.0	-14.2	39.5	1.0	-52.8	-13.0	-39.8	
C2.2		20	-0.4	20.0	40	60.0	42.0	42.0	
-64.4	v	3.0	-14.1	39.5	1.0	-52.6	-13.0	-39.6	
.6MHz)					-				
.63.8	H	3.0	-16.6	39.5	1.0	-52.8	-13.0	-39.8	
					-				
-63.0	V	3.0	-17.7	39.9	1.0	-56.6	-13.0	-43.6	
-63.8	V	3.0	-15.9	39.2	1.0	-54.1		-41.1	
-64.1	V	3.0	-13.7	39.5	1.0	-52.2	-13.0	-39.2	
	64.2 MHz) .62.7 .63.7 .62.3 .62.3 .64.2 .64.4 .63.1 .63.5 .63.8 .63.8	65.4 V 64.2 V 64.2 V 64.2 V 64.2 V 64.2 V 64.2 V 64.3 H 65.1 H 65.1 V 66.1 H 65.1 H 65.1 H 65.1 H 65.1 H 65.1 H 65.1 V 65.5 H	55.4 V 15.6 (42 V 3.0 1896) 1627 H 10.6 1637 H 35.6 1637 H 35.6 1642 V 35.6 1642 V 35.6 1644 V 35.6 1655 H 35.6 1658 H 35.6 1658 V 35.6	\$53.4 V 3.0 15.7 \$14.0 \$15.7 \$14.0 \$15.7 \$1.0 \$15.7 \$1.0 \$15.7 \$1.0 \$15.7 \$1.0 \$15.7 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0	35.4 V 3.9 -15.7 29.3 462 V 3.0 -14.9 39.5 3860 V 3.0 -14.9 39.5 387 H 3.0 -15.1 39.9 46.7 H 3.0 -15.1 39.9 46.7 H 3.0 -15.1 39.2 50.7 H 3.0 -14.1 39.9 44.2 V 3.0 -14.1 39.9 44.2 V 3.0 -14.1 39.2 44.4 V 3.0 -14.1 39.2 45.1 H 3.0 -15.4 39.2 45.2 H 3.0 -14.2 39.5 45.1 H 3.0 -15.4 39.2 45.1 H 3.0 -14.2 39.5 45.2 H 3.0 -14.3 39.5 45.3 H 3.0 -14.1 39.5 45.2	1534	15.7 10.8 15.7 29.3 1.0 24.0	1840 V 10	1534 V 30 1537 293 1.0 54.0 15.0 41.0 41.0

Rev. 03.19.15

LTE Band 4

Page 204 of 221

r: Brian Klewra / John Manser : Unit with ear-buds and charger (LTE #1) LTE Band 4, 5MHz QPSK

High Frequency Substitution Measu UL RTP Radiated Chamber

LTE B4 5MHz QPSK

High Frequency Substitution Med UL RTP Radiated Chambe

> EIRP @ TX Ant End

Preamp Attenuator EIRP

LTE B4 10MHz QPSK

Limit Delta

-13.0 -39.8 -13.0 -37.0 -13.0 -35.2

.13.0 .38.6 .13.0 .36.6 .13.0 .35.4

.52.2 .13.0 .39.2 49.9 .13.0 .36.9 47.6 .13.0 .34.6

.51.6 .49.6 .48.4

ment: n: Horn AT0078 Substitution, and CBL010 SMA Cable

3m Chamber N-RTP

-51.8 -13.0 -38.8 49.9 -13.0 -36.9 48.0 -13.0 -35.0

Pre-amplife

LTE B4 10MHz 16QAM

Page	205	of 221	
------	-----	--------	--

Rev. 10.28.15

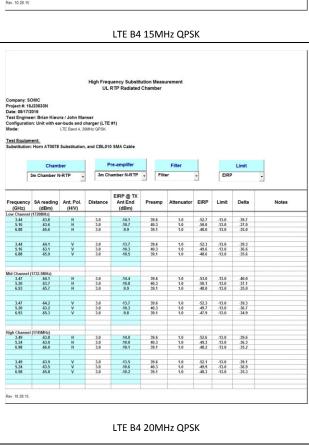
r: Brian Kiewra / John Manser : Unit with ear-buds and charger (LTE #1) LTE Band 4, 15MHz QPSK

3.44 5.15 6.87

3.50 5.24 6.99 High Frequency Substitution Meas UL RTP Radiated Chamber

Frequency SA reading Ant Pol. Distance GBM (GHz) (GHz) (GHz) (GHm) (HIV) (GBm) (HIV) (GBm) (HIV) (GBm) (HIV) (HIV)

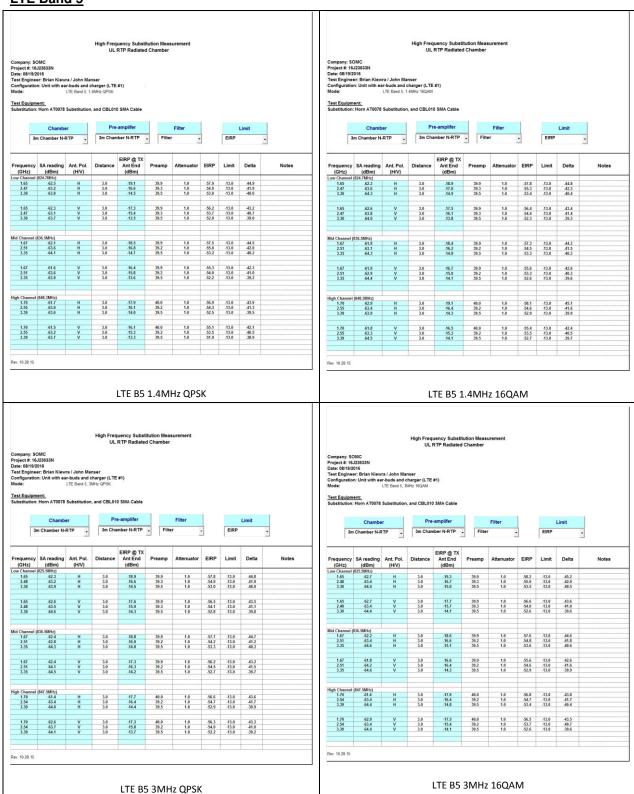
.51.9 .13.0 .38.9 .50.0 .13.0 .37.0 .48.3 .13.0 .35.3


.53.0 .13.0 .40.0 .50.0 .13.0 .37.0 .47.1 .13.0 .34.1

-52.6 -13.0 -39.6 49.9 -13.0 -36.9 47.9 -13.0 -34.9

.52.6 .13.0 .39.6 .50.5 .13.0 .37.5 .47.9 .13.0 .34.9

1.0 1.0 1.0


LTE B4 20MHz 16QAM

Page 206 of 221

FCC ID: PY7-22041R

LTE Band 5

Page 208 of 221

LTE B5 10MHz 16QAM