

SAR EVALUATION REPORT

IEEE Std 1528-2013

For GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac/ax, GPS, WPT & NFC

FCC ID: PY7-17565F

Report Number: R14311589-S1V3 Issue Date: 8/22/2022

> Prepared for Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075, Japan

Prepared by UL LLC 12 LABORATORY DR RTP, NC 27709, U.S.A. TEL: (919) 549-1400

Revision History

Rev.	Date	Revisions	Revised By
V1	8/12/2022	Initial Issue	
V2	8/17/2022	Corrected 8.2 10g zoom scan result for 1750 MHz (2A 07/27/2022). Revised output power tables for 9.1 GSM 850 DTM, 9.3 LTE Band 2, and 9.3 LTE Band 4. Changed RB 50/50 measured power for 10.5 LTE Band 2 to correctly match output power table and updated corresponding highest SAR plots in Appendix C. Updated 10.6 LTE Band 4 table for RB 1/99 with the new measured power and updated highest SAR plot in Appendix C. For section 10.8 the title was updated to include Bluetooth, test position was changed to right touch (instead of right cheek), and all the output power rounding and the leveraged data scaling was corrected. Added LTE Band 17 to supported list, and removed TDD references.	Lindsay Ryan
V3	8/22/2022	Updated DUT information in § 6	Richard Jankovics
V3	8/22/2022	Updated Section 1: BT reported SAR. Updated Section 12.2 and 12.4 BT result.	Devin Chang

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	. 7
4.1.	SAR Measurement System	. 7
4.2.	SAR Scan Procedures	. 8
4.3.	Test Equipment	10
5.	Measurement Uncertainty 1	11
6.	Device Under Test (DUT) Information 1	12
6.1.	DUT Description	12
6.2.	Wireless Technologies	13
6.3.	General LTE SAR Test and Reporting Considerations	14
6.4.	Power Back-off Operation	16
7.	RF Exposure Conditions (Test Configurations) 1	16
8.	Dielectric Property Measurements & System Check 1	17
8.1.	Dielectric Property Measurements	17
8.2.	System Check	19
9.	Conducted Output Power Measurements	21
9.1.	GSM	21
9.2.	W-CDMA	24
9.3.	LTE	28
9.4.	Wi-Fi 2.4GHz (DTS Band)	35
9.5.	Wi-Fi 5GHz (U-NII Bands)	37
9.6.	Bluetooth	40
10.	Measured and Reported (Scaled) SAR Results4	41
10.	1. GSM 850	43
10.2	2. GSM 1900	43
10.	3. W-CDMA Band II	44
10.	4. W-CDMA Band IV	44
10.	5. LTE Band 2 (20MHz Bandwidth) 4	44
10.	6. LTE Band 4 (20MHz Bandwidth) 4	45
10.	7. LTE Band 12 (10MHz Bandwidth)	45
10.8	3. WLAN & Bluetooth Spot Check Verification	46
	Page 3 of 50	

11.	SAR Measurement Variability	17
12.	Simultaneous Transmission Conditions	18
12.	1. Simultaneous transmission SAR test exclusion considerations	48
12.2	2. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Normal State & BT	48
12.3	3. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Simultaneous 2G_5G State	49
12.4	4. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Normal State & BT	49
12.	5. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Simultaneous 2G_5G State	49
Appe	ndixes	50
Арр	pendix A: SAR Setup Photos	50
Арр	pendix B: SAR System Check Plots	50
Арр	pendix C: SAR Highest Test Plots	50
Арр	pendix D: SAR Tissue Ingredients	50
Арр	pendix E: SAR Probe Certificates	50
Арр	pendix F: SAR Dipole Certificates	50

1. Attestation of Test Results

Applicant Name	Sony Corporation	Sony Corporation				
FCC ID	PY7-17565F	PY7-17565F				
Applicable Standards		Published RF exposure KDB procedures IEEE Std 1528-2013				
		SAR Limi	ts (W/Kg)			
Exposure Category		ial-average tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)		
General population / Uncontrolled exposure	1	.6		4		
	<u>Eq</u> ı	uipment Class - Highe	est Reported SAR (W	/kg)		
RF Exposure Conditions	PCE	DTS	NII	DSS		
Head	0.188	0.580	0.284	0.210		
Body-worn*	0.575	0.122	0.099	0.045		
Hotspot/BT Tethering	0.631	0.232	0.116	0.070		
Extremity (10g)	N/A	N/A	0.440	N/A		
Simultaneous TX	0.819	0.819	<mark>0.819</mark>	0.769		
Date Tested	7/25/2022 to 8/3/202	22				
Test Results	Pass					
*Note: The Body-worn minim exposure conditions testing w Note: WLAN and Bluetooth SAR cover variant FCC ID: PY7-17565 variants. The data reuse test pla Worst case SAR results for WLA Bluetooth SAR results from FCC	as performed at a separa data is referenced from FC 5F . All circuitry and features an was approved via manu AN and Bluetooth from refe	ation distance of 10 r CC ID: PY7-93060R (UI s for WLAN and Blueto facturer, with spot che prenced variant FCC IE	nm. L report # 14311585-S oth operations are iden ck measurements on w D: PY7-93060R are liste	1) and is leveraged t tical between the tw vorst case conditions ed above. WLAN an		
UL LLC tested the above equips show that the equipment tested is This report contains data provide validity of results after the integra	s capable of demonstrating ed by the customer which c	compliance with the re an impact the validity of	quirements as docume	nted in this report.		
The results documented in this described herein. It is the manufa with identical electrical and mech	acturer's responsibility to as nanical components. All san	sure that additional pro nples tested were in go	duction units of this mo ood operating condition	del are manufacture throughout the entir		

test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. Government, or any agency of the U.S. government.

Approved & Released By:	Prepared By
Att.	Richard Interview
Dave Weaver	Richard Jankovics
Operations Leader	Operations Leader
UL Verification Services Inc.	UL LLC

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE Std 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

In addition to the above, the following information was used:

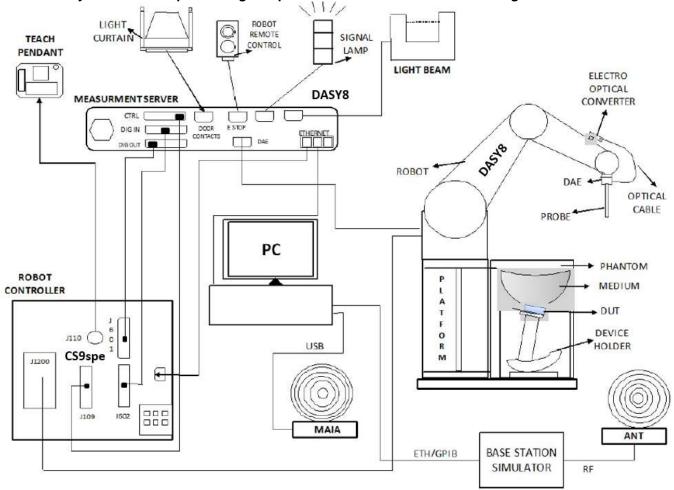
- o <u>TCB Workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- o <u>TCB Workshop</u> April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- o <u>TCB Workshop</u> October 2015; RF Exposure Procedures (KDB 941225 D05A)
- o <u>TCB Workshop</u> October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- TCB Workshop October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- TCB Workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- TCB Workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))
- o TCB Workshop April 2019; RF Exposure Procedures (802.11ax SAR Testing)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 2800 Perimeter Park Dr, Morrisville, NC, USA.

- SAR Lab 1A
- SAR Lab 2A
- SAR Lab 2B

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	1150067	2180C	825374
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	625374


UL LLC is accredited by A2LA, Certificate Number #0751.06

The Test Lab Conformity Assessment Body Identifier (CABID)

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY8 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY8¹ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

¹ DASY8 software used: DASY16.0.2.83 and older generations.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Std 1528-2013, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^{\circ}\pm1^{\circ}$
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} : \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz} : \leq 10 \ \mathrm{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters	extracted from KDB 86566	4 D01 SAR Measureme	nt 100 MHz to 6 GHz

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$			
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface		1 st two points closest	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm		
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$		
Note: δ is the penetration	on depth o	Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE				

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Netw ork Analyzer	Keysight	E5063A	MY54100681	08/20/2022
Dielectric Probe	SPEAG	DAKS-3.5	1051	11/16/2022
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 DA	11/16/2022
Thermometer	Fisher Scientific	15-078-181	210204689	03/13/2023

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Signal Generator	Keysight	N5181A	MY 50140788	12/09/2022
Signal Generator	Agilent	83640B	3844A00978	08/18/2022
Signal Generator	Keysight	N5182B	MY51350128	05/19/2023
Pow er Meter ¹	Keysight	N1912A	MY55136012	07/31/2022
Pow er Meter ¹	Keysight	N1912A	MY55116004	07/31/2022
Pow er Sensor	Keysight	N1921A	MY 55090023	03/22/2023
Pow er Sensor	Keysight	N1921A	MY 55090025	09/07/2022
Amplifier	MITEQ	AMF-4D-00400600-50-30P	N/A	N/A
Directional coupler	Mini-Circuits	ZUDC10-183+	1438	NA
DC Pow er Supply	Miteq	PS 15V1	1990186	N/A
RF Pow er Source	Speag	Pow erSource1	4278	06/21/2023

Note(s):

1) Equipment not used past calibration due date.

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe	SPEAG	EX3DV4	7549	02/21/2023
E-Field Probe	SPEAG	EX3DV4	7709	02/25/2023
E-Field Probe	SPEAG	EX3DV4	7711	03/11/2023
Data Acquisition Electronics	SPEAG	DAE4	1716	03/08/2023
Data Acquisition Electronics	SPEAG	DAE4	1714	02/23/2023
Data Acquisition Electronics	SPEAG	DAE4	1715	02/22/2023
System Validation Dipole	SPEAG	D750V3	1139	10/06/2022
System Validation Dipole	SPEAG	D900V2	1d180	10/06/2022
System Validation Dipole	SPEAG	D1750V2	1136	10/12/2022
System Validation Dipole	SPEAG	D1900V2	5d202	10/06/2022
System Validation Dipole	SPEAG	D2450V2	963	10/06/2022
System Validation Dipole	SPEAG	D5GHzV2	1213	10/12/2022
Environmental Indicator	Control Company	06-662-4	200037610	02/24/2023
Environmental Indicator	Control Company	06-662-4	200037635	02/24/2023

<u>Other</u>				
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112236	5/31/2023
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112237	5/31/2023
RF Pow er Meter	Keysight	N1911a	MY 55116001	7/07/2023
RF Pow er Meter	Keysight	N1911a	MY 55116003	8/17/2022
RF Pow er Sensor	Keysight	N1921a	MY 55090047	12/17/2022
RF Pow er Sensor	ETS Lindgren	7002-006	151058	3/09/2023
RF Pow er Sensor	ETS Lindgren	7002-006	160130	3/11/2023
RF Pow er Sensor	Boonton Electronics	RTP5008	12001	10/01/2022
RF Pow er Sensor	Boonton Electronics	RTP5008	12002	10/01/2022
Base Station Simulator	R&S	CMW 500	170733	11/15/2022
Base Station Simulator	R&S	CMW 500	170732	11/18/2022
Base Station Simulator	R&S	CMW 500	170193	4/29/2023
Base Station Simulator	R&S	CMW 500	170194	5/05/2023
Base Station Simulator	Anritsu	MT8821C	6262116751	5/14/2023
Base Station Simulator	Anritsu	MT8821C	6262287681	7/8/2023
DC Pow er Supply	Keysight	E3633A	MY 58426145	N/A
DC Pow er Supply	Keysight	E3633A	MY 62176088	N/A
DC Pow er Supply	Keysight	E3633A	MY 62176089	N/A
DC Pow er Supply	Keysight	E3633A	MY 61466084	N/A

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. These conditions have been met, therefore the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	This is a Phablet Devic Refer to Appendix A	e (display diagonal dimension > 15.	his is a Phablet Device (display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm) efer to Appendix A									
Back Cover	The Back Cover is not	removable										
Battery Options	The rechargeable batte	ery is not user accessible.										
Accessory	Headset											
Wireless Router (Hotspot)	⊠ Mobile Hotspot (Wi-F		ata connection with other Wi-Fi-enabled devices.									
Wi-Fi Direct		i Direct enabled devices transfer data directly between each other Manufacturer, the DUT support only as a group client and not support as a group owner.										
Bluetooth Tethering (Hotspot)		T Tethering mode permits the device to share its cellular data connection with other devices. I BT Tethering (Bluetooth 2.4 GHz)										
	S/N	IMEI	Notes									
	QV7700H6D8	00440254-382366-4	Radiated WWAN									
	QV7700F8D8	00440254-382380-5	Radiated WWAN									
Test sample information	QV770089D8	00440254-382368-0	Radiated WLAN									
	QV7700B7D8	00440254-382128-8	Conducted WWAN									
	QV7700BYD8	00440254-382144-5	Conducted WWAN									
QV7700DLD8 00440254-381670-0 Conducted WLAN												
Hardware Version	А											
Software Version	(WWAN) 0.42											
	(WLAN) 2.36											

Wireless Technologies 6.2.

Wireless technologies	Frequency bands	Opera	ating mode	Duty Cycle used for SAR testing				
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EDGE (8PSK)	GSM Class : A Multi-Slot Class: Class 33 - 4 Up, 5 Down	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%				
	Does this device support DT	TM (Dual Transfer Mode)?	⊠ Yes □ No					
W-CDMA (UMTS)	Band II Band IV	UMTS Rel. 99 (Voice & I HSDPA (Rel. 5) HSUPA (Rel. 6)	Data)	100%				
LTE	FDD Band 2 FDD Band 4 FDD Band 12 FDD Band 17	QPSK 16QAM 64QAM Rel. 10 Does not suppor	t Carrier Aggregation (CA)	100% (FDD)				
	Does this device support SV	/-LTE (1xRTT-LTE)? Ves	s 🛛 No					
	2.4 GHz	802.11b 802.11g 802.11n (HT20) 802.11ac (VHT20) 802.11ax (HE20)		99.92% _(802.11b) ¹				
Wi-Fi	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT80) 802.11ac (VHT160) 802.11ax (HE20) 802.11ax (HE40) 802.11ax (HE80) 802.11ax (HE160)		99.63% (802.11ac 80MHz BW) ² 99.65% (802.11ac 160MHz BW) ²				
	Does this device support bands 5.60 ~ 5.65 GHz? ⊠ Yes □ No							
	Does this device support Ba		□ No					
Bluetooth	2.4 GHz	BR, EDR, LE		76.8% (GFSK) ³				

Refer to §9.4 for Wi-Fi 2.4GHz Duty Cycle Measurement. Refer to §9.5 for Wi-Fi 5GHz Duty Cycle Measurements. Refer to §9.6 for Bluetooth Duty Cycle Measurement.

1. 2.

3.

6.3. General LTE SAR Test and Reporting Considerations

Item	Description									
Frequency range, Channel Bandwidth,			Frequency	range: 1710 -	1755 MHz (BV	√ = 45 MHz)				
Numbers and Frequencies	Band 2			Channel I	Bandwidth					
		20 MHz ¹	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz			
	Low	18700/	18675/	18650/	18625/	18165/	18067/			
	LOW	1860	1857.5	1855	1852.5	1851.5	1850.7			
	Mid	18900/	18900/	18900/	18900/	18900/	18900/			
		1880	1880	1880	1880	1880	1880			
	High	19100/	19125/	19150/	19175/	19185/	19193/			
		1900	1902.5	1905	1907.5	1908.5	1909.3			
			Frequency	range: 1710 -		V = 45 MHz)				
	Band 4				Bandwidth					
		20 MHz ¹	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz			
	Low	20050/	20025/	20000/	19975/	19965/	19957/			
		1720	1717.5	1715	1712.5	1711.5	1710.7			
	Mid	20175/	20175/	20175/	20175/	20175/	20175/			
		1732.5	1732.5	1732.5	1732.5	1732.5	1732.5			
	High	20300/	20325/	20350/ 1750	20375/ 1752.5	20385/ 1753.5	20393/			
		1745	1747.5				1754.3			
	Dond 10	Frequency range: 699 – 716 MHz (BW = 17 MHz) Channel Bandwidth								
	Band 12					0 MU-				
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz			
	Low			23060/ 704	23035/ 701.5	23025/ 700.5	23017/ 699.7			
				23095/	23095/	23095/	23095/			
	Mid			707.5	707.5	707.5	707.5			
				23130/	23155/	23165/	23173/			
	High			711	713.5	714.5	715.3			
			Frequency	range: 704 - 1						
	Band 17				Bandwidth	/				
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz			
	1			23780/	23755/					
	Low			709	706.5					
	Mid			23790/	23790/					
	IVIIG			710	710					
	High			23800/	23825/					
	riigii			711	713.5					

General LTE SAR Test and Reporting Considerations (continued)

LTE transmitter and antenna implementation	Refer to Appendix A.										
Maximum power reduction (MPR)	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3										
	Modulation	Cha	nnel bandy	width / Tra	nsmission	bandwidth	(NRB)	MPR (dB)			
		1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	-			
	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≲ 1			
	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
	16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			
	64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2			
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3			
	256 QAM	256 QAM ≥ 1									
	MPR Built-in by design The manufacturer MPR values are always within the 3GPP maximum MPR allowance but may not follow the default MPR values. A-MPR (additional MPR) was disabled during SAR testing										
Power reduction	No										
Spectrum plots for RB configurations	A properly configu	ired base s	tation simu	ulator was	used for th	ne SAR and	l power me	asurements			
	therefore, spectrum plots for each RB allocation and offset configuration are not included in the										
	SAR report.										
lotes:											

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
selected for testing per KDB 941225 D05 SAR for LTE Devices.

2. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.4. **Power Back-off Operation**

The DUT supports power reduction when Simultaneous WLAN transmission is active (i.e. WLAN Chain 0 and Chain 1 transmitting simultaneously).

Power	Technologies	Exposure Conditions Active						
Back-off mode	Supported		Body-worn	Hotspot	Phablet SAR (Extremity 10g)			
WLAN Simultaneous Tx	AN Simultaneous Tx Wi-Fi 2.4GHz Wi-Fi 5GHz		~	~	\checkmark			

Note(s):

Tune-Up Limits for WLAN (Simultaneous 2G_5G state) is Reduced Average Power. Please refer to §9 for all conducted power measurements.

Phablet SAR (Extremity 10g):

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Antenna	Band	Head	Rear	Front	Edge 1	Edge 2	Edge 3	Edge 4	Extremity
Antenna	Banu	Tieau	Real	TIOIR	(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)	(0 mm)
Cellular Main Antenna 1	GSM 850 LTE B12/17	Yes	Yes	Yes	No	No	Yes	Yes	Yes
Cellular Main Antenna 2	GSM 1900 W-CDMA B2/4 LTE B2/4	Yes	Yes	Yes	No	Yes	Yes	No	Yes
WLAN/BT Chain 0	Wi-Fi 2.4GHz Wi-Fi 5GHz Bluetooth	Yes	Yes	Yes	Yes	No	No	Yes	Yes
WLAN/BT Chain 1	Wi-Fi 2.4GHz Wi-Fi 5GHz Bluetooth	Yes	Yes	Yes	No	No	Yes	Yes	Yes
Notes.		•	·		•	•	·		

SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR. 1.

The Body-worn minimum separation distance is 10 mm. To cover both body-worn and hotspot RF exposure conditions testing was 2.

performed at a separation distance of 10 mm. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 3. W/kg. When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ad	Во	dy
raiget Frequency (Mirz)	۶ _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relative	Permittivity	(er)	Cor	nductivity (σ)
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
				5250	35.10	35.93	-2.32	4.70	4.70	-0.02
1A	2022-08-01	5250	Head	5150	35.30	36.05	-2.07	4.59	4.60	-0.28
				5350	34.91	35.82	-2.54	4.81	4.80	0.20
				5600	34.44	35.53	-3.08	5.11	5.06	0.90
1A	2022-08-01	5600	Head	5500	34.62	35.65	-2.88	4.99	4.96	0.55
				5725	34.20	35.39	-3.37	5.25	5.19	1.13
				900	42.43	41.50	2.24	0.94	0.97	-2.87
1A	2022-08-02	900	Head	840	42.55	41.50	2.53	0.92	0.91	2.01
				915	42.35	41.50	2.05	0.95	0.98	-3.14
				1900	38.49	40.00	-3.78	1.45	1.40	3.21
1A	2022-08-03	1900	Head	1850	38.57	40.00	-3.58	1.42	1.40	1.14
				1920	38.46	40.00	-3.85	1.46	1.40	4.21
				750	40.98	41.96	-2.34	0.91	0.89	1.85
2A	2022-07-25	750	Head	660	41.27	42.42	-2.72	0.88	0.89	-0.88
				800	40.91	41.71	-1.91	0.92	0.90	2.87
				1900	38.74	40.00	-3.15	1.45	1.40	3.86
2A	2022-07-25	1900	Head	1850	38.84	40.00	-2.90	1.43	1.40	2.00
				1920	38.71	40.00	-3.23	1.47	1.40	4.86
				750	42.99	41.96	2.45	0.92	0.89	3.18
2A	2022-08-02	750	Head	660	43.29	42.42	2.04	0.89	0.89	0.65
				800	42.91	41.71	2.89	0.93	0.90	4.20
				1750	38.32	40.08	-4.40	1.40	1.37	2.56
2B	2022-07-27	1750	Head	1710	38.41	40.15	-4.32	1.38	1.35	2.20
				1755	38.31	40.08	-4.41	1.41	1.37	2.57
				2450	37.88	39.20	-3.37	1.82	1.80	1.00
2B	2022-07-29	2450	Head	2400	37.95	39.30	-3.43	1.78	1.75	1.73
				2480	37.85	39.16	-3.35	1.84	1.83	0.47
				1750	38.47	40.08	-4.03	1.39	1.37	1.32
2B	2022-08-01	1750	Head	1710	38.54	40.15	-4.00	1.36	1.35	1.01
				1755	38.47	40.08	-4.01	1.39	1.37	1.33

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was recorded and the results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

						M	easured Resul	ts for 1g SAR		Me	asured Result	ts for 10g SAR		
SAR Lab	Date	Tissue Type	Dipole Type_Serial #	Dipole Cal. Due Data	Dipole Power (dBm)	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
1A	8/1/2022	Head	D5GHzV2 SN: 1213 (5.25 GHz)	10/12/2022	17.0	4.000	79.81	76.20	4.74	1.140	22.75	22.30	2.00	1
1A	8/1/2022	Head	D5GHzV2 SN: 1213 (5.60 GHz)	10/12/2022	17.0	4.260	85.00	81.80	3.91	1.200	23.94	23.60	1.45	2
1A	8/2/2022	Head	D900V2 SN: 1d180	10/6/2022	17.0	0.563	11.23	10.63	5.68	0.365	7.28	6.97	4.49	3
1A	8/3/2022	Head	D1900V2 SN: 5d202	10/6/2022	17.0	2.060	41.10	37.86	8.56	1.060	21.15	20.26	4.39	4
2A	7/25/2022	Head	D750V3 SN: 1139	10/6/2022	17.0	0.412	8.22	8.12	1.24	0.269	5.37	5.41	-0.79	
2A	7/26/2022	Head	D1900V2 SN: 5d202	10/6/2022	17.0	2.010	40.10	37.86	5.93	1.040	20.75	20.26	2.42	5
2A	8/2/2022	Head	D750V3 SN: 1139	10/6/2022	17.0	0.430	8.58	8.12	5.66	0.281	5.61	5.41	3.64	6
2B	7/27/2022	Head	D1750V2 SN: 1136	10/12/2022	17.0	1.870	37.31	34.44	8.34	0.984	19.61	18.63	5.28	7
2B	7/29/2022	Head	D2450V2 SN: 963	10/6/2022	17.0	2.660	53.07	51.36	3.34	1.230	24.54	24.56	-0.07	8
2B	8/1/2022	Head	D1750V2 SN: 1136	10/12/2022	17.0	1.850	36.91	34.44	7.18	0.969	19.33	18.63	3.78	

9. Conducted Output Power Measurements

Tune-Up Power Limits provided by the manufacturer are used to scale measured SAR values.

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When different maximum output power applies to GSM voice or GPRS/EDGE time slots, GSM voice and GPRS/EDGE time slots should be tested separately to determine compliance by summing the corresponding reported SAR.

The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance

Per October 2013 TCB Workshop:

When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

	0 "	-		_	Мах	imum Avera	ge Power (d	Bm)			
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-ւ	ıp Limit			
	Ocheme	01013			Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr			
			128	824.2	32.1	23.1					
		1	190	836.6	32.2	23.2	33.2	24.2			
			251	848.8	32.6	23.6					
			128	824.2	28.9	22.9					
		2	190	836.6	29.0	23.0	30.2	24.2			
GPRS/EDGE	CS1		251	848.8	29.2	23.1					
(GMSK)	031		128	824.2	27.2	22.9					
		3	190	836.6	27.3	23.0	28.4	24.1			
			251	848.8	27.4	23.1					
			128	824.2	26.1	23.1					
		4	190	836.6	26.2	23.2	27.2	24.2			
			251	848.8	26.5	23.5					
			128	824.2	26.6	17.6	27.7				
		1	190	836.6	27.2	18.1		18.7			
			251	848.8	26.8	17.8					
			128	824.2	23.6	17.6					
		2	190	836.6	23.6	17.6	24.7	18.7			
EDGE	MCS5		251	848.8	23.8	17.8					
(8PSK)	MCSS		128	824.2	21.8	17.6					
		3	190	836.6	20.9	16.7	22.9	18.6			
			251	848.8	21.9	17.7					
			128	824.2	21.1	18.1					
		4	190	836.6	20.9	17.9	21.7	18.7			
			251	848.8	21.7	18.7					

GSM 850 Main Ant 1 Measured Results

Based on the Tune-up Procedure, GPRS/EDGE (GMSK) mode with 4 time slots for Max power has maximum frame-averaged power.

GSM 850 DTM Main Ant 1 Measured Results

							Max	imum Avera	ge Power (d	Bm)		
Mode	Coding	Time	Ch No.	Freq.		Mea	sured			Tune-ι	ıp Limit	
	Scheme	Slots		(MHz)	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr
			128	824.2	32.5		23.4					
		1	190	836.6	32.7		23.7		33.2		24.2	
			251	848.8	32.8		23.8					
			128	824.2	29.1	29.1	23.1	23.1				
GSM GPRS/EDGE (Voice) + (GMSK)	CS1	2	190	836.6	29.2	29.2	23.2	23.2	30.2	30.2	24.2	24.2
			251	848.8	29.3	29.2	23.2	23.2				
			128	824.2	27.2	26.9	22.9	22.7				
		3	190	836.6	27.2	27.1	22.9	22.9	28.4	28.4	24.1	24.1
			251	848.8	27.2	27.0	23.0	22.7				
			128	824.2	32.5		23.4					
		1	190	836.6	32.7		23.7		33.2		24.2	
			251	848.8	32.8		23.8					
0004 5005			128	824.2	29.1	23.4	23.1	17.4				
GSM EDGE (Voice) + (8PSK)	MCS5	2	190	836.6	29.2	23.5	23.2	17.5	30.2	24.7	24.2	18.7
			251	848.8	29.3	23.5	23.2	17.5				
			128	824.2	27.2	21.1	22.9	16.8				
		3	190	836.6	27.2	21.1	22.9	16.8	28.4	22.9	24.1	18.6
			251	848.8	27.2	21.0	23.0	16.8				

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

• GSM(Voice) + GMSK(GPRS) mode with 1 time slot for Max power based on the Tune-up Procedure.

 SAR is not required for GSM(Voice) + EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than that of GSM(Voice) + GMSK (GPRS) mode or the adjusted SAR of the highest reported SAR of GSM(Voice) + GMSK (GPRS) is ≤ 1.2W/kg.

GSM 1900 Main Ant 2 Measured Results

		T		Free	Maxii	mum Avera	ge Power (dBm)
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-ι	ıp Limit
	Ocheme	01013			Burst Pwr	Frame Pw r	Burst Pwr	Frame Pw r
			512	1850.2	26.7	17.6		
		1	661	1880.0	26.9	17.9	27.7	18.7
			810	1909.8	26.8	17.8		
			512	1850.2	23.8	17.7		
		2	661	1880.0	23.7	17.6	24.7	18.7
GPRS/EDGE	CS1		810	1909.8	23.8	17.7		
(GMSK)	031		512	1850.2	21.8	17.5		
		3	661	1880.0	22.1	17.8	22.9	18.6
			810	1909.8	21.9	17.6		
			512	1850.2	20.9	17.9		
		4	661	1880.0	20.9	17.8	21.7	18.7
			810	1909.8	21.0	17.9		
			512	1850.2	25.9	16.9		
		1	661	1880.0	26.3	17.2	26.7	17.7
			810	1909.8	26.4	17.3		
			512	1850.2	22.7	16.7		
		2	661	1880.0	22.8	16.7	23.7	17.7
EDGE	MCS5		810	1909.8	22.9	16.9		
(8PSK)	IVICOD		512	1850.2	21.0	16.7		
		3	661	1880.0	21.5	17.3	21.9	17.6
			810	1909.8	21.3	17.0		
			512	1850.2	19.4	16.4		
		4	661	1880.0	20.2	17.2	20.7	17.7
			810	1909.8	19.7	16.7		

Notes:

Based on the Tune-up Procedure, GPRS/EDGE (GMSK) mode with 4 time slots for Max power has maximum frame-averaged power.

Page 22 of 50

GSM 1900 DTM Main Ant 2 Measured Results

							Max	imum Avera	ge Power (d	Bm)		
Mode	Coding	Time	Ch No.	Freq.		Mea	sured			Tune-u	ıp Limit	
	Scheme	Slots		(MHz)	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr
			512	1850.2	27.1		18.1					
		1	661	1880.0	27.0		18.0		27.7		18.7	
			810	1909.8	27.1		18.1					
0011 0000/5005			512	1850.2	24.6	24.6	18.5	18.5				
GSM GPRS/EDGE (Voice) + (GMSK)	CS1	2	661	1880.0	24.6	24.6	18.5	18.5	24.7	24.7	18.7	18.7
			810	1909.8	24.5	24.5	18.5	18.5				
			512	1850.2	22.7	22.5	18.4	18.3				
		3	661	1880.0	22.6	22.4	18.3	18.1	22.9	22.9	18.6	18.6
			810	1909.8	22.7	22.5	18.4	18.2				
			512	1850.2	27.1		18.1					
		1	661	1880.0	27.0		18.0		27.7		18.7	
			810	1909.8	27.1		18.1					
			512	1850.2	24.6	22.2	18.5	16.1				
GSM + EDGE (Voice) + (8PSK)	MCS5	2	661	1880.0	24.6	22.2	18.5	16.2	24.7	23.7	18.7	17.7
			810	1909.8	24.5	22.2	18.5	16.2				
			512	1850.2	22.7	20.3	18.4	16.1				
		3	661	1880.0	22.6	20.3	18.3	16.0	22.9	21.9	18.6	17.6
			810	1909.8	22.7	20.1	18.4	15.8				

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

• GSM(Voice) + GMSK(GPRS) mode with 1 time slot for Max power based on the Tune-up Procedure.

 SAR is not required for GSM(Voice) + EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than that of GSM(Voice) + GMSK (GPRS) mode or the adjusted SAR of the highest reported SAR of GSM(Voice) + GMSK (GPRS) is ≤ 1.2W/kg.

9.2. W-CDMA

Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA General Settings	Rel99 RMC	12.2kbps RMC
WCDIMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βa	β _d (SF)	βc/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 2: F N ir	or the HS-DP lagnitude (EV n clause 5.13. β_{hs} = 24/15 *	CCH power M) with HS- 1AA, $\Delta_{\sf ACK}$ a eta_c .	mask require DPCCH test nd Δ_{NACK} = 3	= 30/15 * β_c . ement test in claus in clause 5.13.1A, 0/15 with β_{hs} = 30	, and HSDPA 1/15 * eta_c , an	EVM with phas d ∆ _{CQI} = 24/15 v	e discontinuity vith
0		PR is based	on the relativ	For all other combi ve CM difference.			
a				the TFC during th actors for the refer			

HSUPA Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C.11.1.3: p values for transmitted to the second secon	er characteristics tests with HS-DPCCH and E-DCH
--	--

Sub- test	β¢	βa	βα (SF)	βαβα	βнs (Note1)	βες	βed (Note 4) (Note 5)	βed (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Nate 2) (Note 6)	AG Index (Note 5)	E- TFC
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	βed1: 47/15 βed2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0			5/15	5/15	47/15	4	1	1.0	0.0	12	67
Note 2 Note 3	CM = and E For st	-DPCCH ibtest 1 t	$B_0 = 12/2$ the MP he β_0/β_0	15, β _{to} /β, PR is bas _e ratio of	ed on the 11/15 for	e relative r the TFC	her combination CM difference during the mice TFC (TF1,	e. Ieasur	ement per	iod (TF1	, TFO) is	achieved	
Sec. 4		e of testi 306 Tab			E-DPDC	H Physic	cal Layer cate	gory 1	Sub-test	3 is omi	tted acco	ording to	
Note 4	1525.												
Note 5 Note 6	β _{ed} ca	n not be	set dire				Grant Value. DCH power so						

HSPA+

DUT supports HSPA+ DL only. Therefore, conducted power measurements is not required. **Notes:**

SAR measurement is not required for the HSDPA and HSUPA. When primary mode and the adjusted SAR is \leq 1.2 W/kg and secondary mode is \leq 1/4 dB higher than the primary mode

W-CDMA Band II Main Ant 2 Measured Results

Ma	de		Freq.	Maximum Av	erage P	ower (dBm)
IVIC	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit
	Rel 99	9262	1852.4	18.5		
Release 99	(RMC, 12.2	9400	1880.0	18.4	N/A	19.7
	kbps)	9538	1907.6	18.5		
		9262	1852.4	17.7		
	Subtest 1	9400	1880.0	17.4	0	19.0
		9538	1907.6	17.5		
		9262	1852.4	17.5		
	Subtest 2	9400	1880.0	17.5	0	19.0
HSDPA		9538	1907.6	17.5		
HSDFA		9262	1852.4	17.4		
	Subtest 3	9400	1880.0	17.0	0.5	18.5
		9538	1907.6	17.0		
		9262	1852.4	17.0		
	Subtest 4	9400	1880.0	16.9	0.5	18.5
		9538	1907.6	17.0		
		9262	1852.4	17.5		
	Subtest 1	9400	1880.0	17.5	0	19.0
		9538	1907.6	17.5		
		9262	1852.4	15.8		
	Subtest 2	9400	1880.0	15.8	2	17.0
		9538	1907.6	15.8		
		9262	1852.4	16.8		
HSUPA	Subtest 3	9400	1880.0	16.8	1	18.0
		9538	1907.6	16.7		
		9262	1852.4	15.8		
	Subtest 4	9400	1880.0	15.7	2	17.0
		9538	1907.6	15.8		
		9262	1852.4	17.5		
	Subtest 5	9400	1880.0	17.8	0	19.0
		9538	1907.6	17.9		

W-CDMA Band IV Main Ant 2 Measured Results

			Freg.	Maximum Av	erage P	ower (dBm)
Мс	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit
	Rel 99	1312	1712.4	17.1		
Release 99	(RMC,	1413	1732.6	17.2	N/A	18.7
	12.2 kbps)	1513	1752.6	17.3		
		1312	1712.4	16.1		
	Subtest 1	1413	1732.6	16.2	0	18.0
		1513	1752.6	16.3		
		1312	1712.4	16.1		
	Subtest 2	1413	1732.6	16.2	0	18.0
		1513	1752.6	16.3		
HSDPA		1312	1712.4	15.6		
	Subtest 3	1413	1732.6	15.7	0.5	17.5
		1513	1752.6	15.8		
		1312	1712.4	15.8		
	Subtest 4	1413	1732.6	15.7	0.5	17.5
		1513	1752.6	15.8		
		1312	1712.4	16.2		
	Subtest 1	1413	1732.6	16.3	0	18.0
		1513	1752.6	16.7		
		1312	1712.4	14.2		
	Subtest 2	1413	1732.6	14.8	2	16.0
		1513	1752.6	14.4		
		1312	1712.4	15.2		
HSUPA	Subtest 3	1413	1732.6	15.4	1	17.0
		1513	1752.6	15.3		
		1312	1712.4	14.2		
	Subtest 4	1413	1732.6	14.7	2	16.0
		1513	1752.6	14.8		
		1312	1712.4	16.7		
	Subtest 5	1413	1732.6	16.8	0	18.0
		1513	1752.6	16.8		

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	Channel bandwidth / Transmission bandwidth (NRB)								
200-0000	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	s 1			
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2			
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3			
256 QAM				1			≤ 5			

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR	Table 6.2.4-1: Additional Maxi	mum Power Reduction (A-MPR)
--	--------------------------------	-----------------------------

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

Maximum Output Power (Tune-up Limit) for LTE

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
 - LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

For some LTE Bands, certain channel bandwidths do not support at least three non-overlapping channels. When a device supports overlapping channel assignments in a channel bandwidth configuration, the middle channel of the group of overlapping channels is selected for testing per KDB 941225 D05 SAR for LTE Devices.

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

Please refer to §6.3. for a detailed list of LTE test channels.

When the highest maximum output power for 16QAM and 64QAM is $\leq \frac{1}{2}$ dB higher than the QPSK or when the reported SAR for the QPSK configuration is ≤ 1.45 W/kg, SAR measurement is not required for 16QAM and 64QAM modes.

LTE Band 2 Main Ant 2 Measured Results

		Maximum Average Power (dBm)							
BW (MHz)	Mode	RB Allocation	RB offset	18700	18900	19100	MPR	Tune-up	
(11112)		Allocation	Unser	1860 MHz	1880 MHz	1900 MHz	MPR	Limit	
		1	0	18.9	19.0	19.1	0	20	
		1	49	19.0	19.0	19.1	0	20	
		1	99	18.9	19.0	19.0	0	20	
	QPSK	50	0	18.9	19.1	19.0	0	20	
		50	24	19.0	19.1	19.0	0	20	
		50	50	19.0	19.1	19.1	0	20	
		100	0	19.0	19.0	19.0	0	20	
		1	0	19.2	19.3	19.2	0	20	
		1	49	19.3	19.4	19.2	0	20	
20 MHz	160414	1	99 0	19.1 19.0	19.2 19.1	19.1 19.1	0	20 20	
	16QAM	50 50	24	19.0	19.1	19.1	0	20	
		50	50	19.0	19.1	19.1	0	20	
		100	0	19.0	19.1	19.1	0	20	
		1	0	19.3	19.3	19.3	0	20	
		1	49	19.3	19.4	19.4	0	20	
		1	99	19.3	19.3	19.4	0	20	
	64QAM	50	0	19.0	19.0	19.1	0	20	
		50	24	19.1	19.1	19.1	0	20	
		50	50	19.1	19.1	19.1	0	20	
		100	0	19.0	19.1	19.1	0	20	
					Maximum Ave	erage Power (dB	m)		
BW (MHz)	Mode	RB Allocation	RB offset	18675	18900	19125	MDD	Tune-up	
(11112)		modation	onset	1857.5 MHz	1880 MHz	1902.5 MHz	MPR	Limit	
		1	0	18.9	18.9	19.0	0	20	
		1	37	19.0	19.0	19.0	0	20	
	QPSK	1	74	19.0	19.0	18.9	0	20	
		36	0	19.0	19.0	19.0	0	20	
		36	20	19.0	19.0	19.1	0	20	
		36	39	19.0	19.1	19.1	0	20	
		75	0	19.0	19.0	19.1	0	20	
		1	0	19.2	19.2	19.2	0	20	
		1	37	19.2	19.4	19.2	0	20	
	16QAM	1	74	19.3	19.2	19.2	0	20	
15 MHz		36	0	18.9	19.0	19.1	0	20	
		36	20	19.0	19.0	19.1	0	20	
		36	39	19.0	19.1	19.1	0	20	
		75	0	19.1	19.0	19.1	0	20	
		1	0	19.2	19.2	19.2	0	20 20	
		1	37 74	19.2 19.3	19.4 19.3	19.3 19.2	0	20	
	64QAM	36	0	19.0	19.3	19.2	0	20	
		36	20	19.0	19.1	19.0	0	20	
		36	39	19.1	19.0	19.1	0	20	
		75	0	19.0	19.1	19.1	0	20	
			-		-	erage Power (dB			
BW (MHz)	Mode	RB	RB	18650	18900	19150		Tune-up	
(MHz)		Allocation	offset	1855 MHz	1880 MHz	1905 MHz	MPR	Limit	
		1	0	19.1	19.1	19.1	0	20	
		1	25	19.1	19.2	19.1	0	20	
		1	49	19.1	19.1	19.1	0	20	
	QPSK	25	0	19.2	19.2	19.2	0	20	
		25	12	19.1	19.2	19.2	0	20	
		25	25	19.1	19.2	19.1	0	20	
		50	0	19.2	19.1	19.1	0	20	
		1	0	19.4	19.5	19.5	0	20	
		1	25	19.4	19.5	19.5	0	20	
		1	49	19.3	19.5	19.5	0	20	
10 MHz	16QAM	25	0	19.1	19.2	19.1	0	20	
		25	12	19.2	19.2	19.1	0	20	
		25	25	19.2	19.3	19.2	0	20	
		50	0	19.1	19.1	19.1	0	20	
				19.3	19.4	19.4	0	20	
		1	0						
		1 1	25	19.3	19.4	19.4	0	20	
		1 1 1	25 49	19.3 19.3	19.5	19.4	0	20	
	64QAM	1 1 1 25	25 49 0	19.3 19.3 19.1	19.5 19.1	19.4 19.1	0	20 20	
	64QAM	1 1 1 25 25	25 49 0 12	19.3 19.3 19.1 19.2	19.5 19.1 19.2	19.4 19.1 19.2	0 0 0	20 20 20	
	64QAM	1 1 1 25	25 49 0	19.3 19.3 19.1	19.5 19.1	19.4 19.1	0	20 20	

Page 29 of 50

LTE Band 2 Main Ant 2 Measured Results (continued)

		Maximum Average Power (dBm)							
BW (MHz)	Mode	RB Allocation	RB offset	18625	18900	19175	MPR	Tune-up	
(10112)		Allocation	Unser	1852.5 MHz	1880 MHz	1907.5 MHz	MPR	Limit	
		1	0	19.1	19.1	19.1	0	20	
		1	12	19.3	19.3	19.2	0	20	
		1	24	19.1	19.1	19.1	0	20	
	QPSK	12	0	19.1	19.1	19.1	0	20	
		12	7	19.2	19.1	19.2	0	20	
		12	13	19.1	19.2	19.2	0	20	
		25	0	19.1	19.1	19.1	0	20	
		1	0	19.4	19.4	19.4	0	20	
		1	12	19.5	19.4	19.6	0	20	
		1	24	19.4	19.4	19.4	0	20	
5 MHz	16QAM	12	0	19.2	19.1	19.2	0	20	
		12	7	19.3	19.2	19.2	0	20	
		12	13	19.2	19.2	19.2	0	20	
		25	0	19.1	19.1	19.2	0	20	
		1	0	19.3	19.4	19.3	0	20	
		1	12	19.4	19.5	19.5	0	20	
		1	24	19.3	19.5	19.4	0	20	
	64QAM	12	0	19.1	19.1	19.3	0	20	
		12	7	19.1	19.2	19.3	0	20	
		12	13	19.1	19.2	19.3	0	20	
		25	0	19.1	19.1	19.2	0	20	
DU					Maximum Ave	erage Power (dB	m)		
BW (MHz)	Mode	RB Allocation	RB offset	18615	18900	19185	MDD	Tune-up	
(, modulion	Chool	1851.5 MHz	1880 MHz	1908.5 MHz	MPR	Limit	
		1	0	18.9	18.9	18.9	0	20	
		1	8	19.0	19.0	19.0	0	20	
	QPSK	1	14	18.8	19.0	18.9	0	20	
		8	0	18.9	19.0	19.0	0	20	
		8	4	19.0	19.0	19.1	0	20	
		8	7	19.0	19.1	19.0	0	20	
		15	0	19.0	18.9	19.0	0	20	
		1	0	19.3	19.3	19.3	0	20	
		1	8	19.4	19.5	19.4	0	20	
		1	14	19.3	19.3	19.3	0	20	
3 MHz	16QAM	8	0	19.1	19.1	18.9	0	20	
0 10112		8	4	19.1	19.1	19.0	0	20	
		8	7	19.1	19.2	19.0	0	20	
		15	0	19.0	19.0	18.9	0	20	
		1	0	19.2	19.1	19.2	0	20	
		1	8	19.3	19.3	19.3	0	20	
		1	14	19.5	19.3	19.3	0	20	
	64QAM	8	0	19.1	19.2	19.3	0	20	
	64QAM	8	4	19.0	19.0	19.1	0	20	
		0 8	7	19.0	19.0	19.2	0	20	
		0 15	0	19.1	19.0	19.2	0	20	
		10	5	13.0		erage Power (dB		20	
BW	Mode	RB	RB	18607	18900	19193	,	Tuno un	
(MHz)	Mode	Allocation	offset	1850.7 MHz	18900 1880 MHz	19193 1909.3 MHz	MPR	Tune-up Limit	
		1	0	19.0	19.0	1909.3 MHZ	0	20	
		1	3	19.0	19.0	19.0	0	20	
		1	5	19.0	19.0	19.0	0	20	
	OPSK	3	0	19.0	19.0	19.0	0	20	
	QPSK		1	19.0	19.0	19.0	0	20	
			3			13.0	13.0	U	
		3			10.0	10.0	0	20	
		3	3	19.0	19.0 19.0	19.0 19.0	0	20	
		3 6	3 0	19.0 19.0	19.0	19.0	0	20	
		3 6 1	3 0 0	19.0 19.0 19.1	19.0 19.2	19.0 19.3	0	20 20	
		3 6 1 1	3 0 0 3	19.0 19.0 19.1 19.2	19.0 19.2 19.3	19.0 19.3 19.3	0 0 0	20 20 20	
1 4 144	160.444	3 6 1 1 1	3 0 0 3 5	19.0 19.0 19.1 19.2 19.2	19.0 19.2 19.3 19.2	19.0 19.3 19.3 19.3	0 0 0 0	20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 1 3	3 0 0 3 5 0	19.0 19.0 19.1 19.2 19.2 19.1	19.0 19.2 19.3 19.2 19.2	19.0 19.3 19.3 19.3 19.2	0 0 0 0 0	20 20 20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 1 3 3	3 0 0 3 5 0 1	19.0 19.0 19.1 19.2 19.1 19.2 19.1	19.0 19.2 19.3 19.2 19.2 19.2 19.2	19.0 19.3 19.3 19.3 19.2 19.2	0 0 0 0 0	20 20 20 20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 3 3 3 3	3 0 3 5 0 1 3	19.0 19.0 19.1 19.2 19.2 19.1 19.1 19.1 19.1	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2	19.0 19.3 19.3 19.3 19.2 19.2 19.2	0 0 0 0 0 0	20 20 20 20 20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 3 3 3 6	3 0 3 5 0 1 3 0	19.0 19.1 19.2 19.2 19.1 19.1 19.1 19.1 19.1 19.1 19.1	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.1	19.0 19.3 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.1	0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 3 3 6 1	3 0 3 5 0 1 3 0 0 0	19.0 19.1 19.2 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.5	19.0 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2	0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20	
1.4 MHz	16QAM	3 6 1 1 3 3 6 1 1	3 0 3 5 0 1 3 0 0 0 3	19.0 19.1 19.2 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3 19.4	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.5	19.0 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.3	0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20	
1.4 MHz		3 6 1 1 3 3 3 6 1 1 1 1	3 0 3 5 0 1 3 0 0 0 3 5	19.0 19.0 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3 19.3	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.5 19.5 19.4	19.0 19.3 19.3 19.2 19.2 19.2 19.1 19.2 19.3	0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20	
1.4 MHz	16QAM 64QAM	3 6 1 1 3 3 3 6 1 1 1 1 3	3 0 3 5 0 1 3 0 0 0 3 5 0	19.0 19.0 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3 19.4 19.3	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.5 19.5 19.4	19.0 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.1 19.3 19.3 19.1 19.3 19.3 19.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20	
1.4 MHz		3 6 1 1 3 3 3 6 6 1 1 1 1 3 3 3	3 0 3 5 0 1 3 0 0 0 3 5 0 1	19.0 19.0 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3 19.4 19.3 19.1	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.5 19.5 19.4 19.2	19.0 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.3 19.1 19.3 19.3 19.3 19.3 19.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	
1.4 MHz		3 6 1 1 3 3 3 6 1 1 1 1 3	3 0 3 5 0 1 3 0 0 0 3 5 0	19.0 19.0 19.1 19.2 19.1 19.1 19.1 19.1 19.1 19.3 19.4 19.3	19.0 19.2 19.3 19.2 19.2 19.2 19.2 19.2 19.2 19.5 19.5 19.4	19.0 19.3 19.3 19.2 19.2 19.2 19.2 19.2 19.1 19.3 19.3 19.1 19.3 19.3 19.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20	

Page 30 of 50

LTE Band 4 Main Ant 2 Measured Results

MoteNote20002017202010201020102014017.8<18.118.0010.919.914017.818.118.1010.919.919917.918.019.219.119.9500.017.918.019.019.919.9500.017.918.019.019.919.9500.017.918.019.119.119.9100.017.918.019.119.119.91149018.219.319.219.119.91149018.219.319.219.119.9100.017.919.119.119.119.91149017.919.119.119.119.11149017.919.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.119.11119.119.119.119.119.119.1		Maximum Average Power (dBm)							
Image in the stand of the st	BW (MHz)	Mode		RB offset	20050	20175	20300	MDD	Tune-up
PartIndIndIndIndIndIndIndInd10017.018.017.018.017.018.019.0500017.018.018.010.019.010017.018.018.010.019.010017.017.018.018.010.019.0110017.017.018.010.019.010017.017.018.010.019.019.010017.918.018.010.019.019.010017.918.018.010.019.019.011017.918.018.010.019.019.011017.917.017.017.019.019.0100017.917.017.019.019.0100017.917.017.019.019.0100017.917.017.019.019.0100017.917.017.017.019.0100017.917.017.017.017.01117.017.017.017.017.017.017.01117.017.017.017.017.017.017.01117.117.017.017.017.017.0 </th <th>(</th> <th></th> <th>/ moodilon</th> <th>0</th> <th>1720 MHz</th> <th>1732.5 MHz</th> <th>1745 MHz</th> <th>IVIPR</th> <th>Limit</th>	(/ moodilon	0	1720 MHz	1732.5 MHz	1745 MHz	IVIPR	Limit
Part Image: Image: Image: Image: Image: Image: 			1	0	17.8	18.1	18.0	0	19
<td></td> <td></td> <td>1</td> <td>49</td> <td>17.8</td> <td>18.1</td> <td>18.1</td> <td>0</td> <td>19</td>			1	49	17.8	18.1	18.1	0	19
9010024017318.018.018.00.019.01000.017.918.018.018.00.019.010018.218.118.1018.218.318.219.3119.018.218.218.318.219.219.11000.018.218.218.218.319.219.11000.017.917.918.00.019.11000.017.917.918.00.019.1110.018.218.218.310.019.1110.018.218.218.310.019.1110.017.917.917.917.917.9110.018.318.218.310.019.11000.117.917.917.917.917.91000.22.417.917.917.917.9110.717.917.917.917.917.91117.917.917.917.917.917.91117.917.917.917.917.917.91117.917.917.917.917.917.91117.917.917.917.917.917.91117.917.917.917.917.917.91218.017.917.917.917.917.913 </td <td></td> <td></td> <td>1</td> <td>99</td> <td>17.9</td> <td>18.2</td> <td>18.2</td> <td>0</td> <td>19</td>			1	99	17.9	18.2	18.2	0	19
Note Note <th< td=""><td></td><td>QPSK</td><td>50</td><td>0</td><td>17.8</td><td>18.0</td><td>17.9</td><td>0</td><td>19</td></th<>		QPSK	50	0	17.8	18.0	17.9	0	19
20 MHz100017.917.917.90191018.218.118.218.3101919918.318.218.218.301950017.817.918.01019502.417.917.918.01019505017.917.917.9101960100017.917.917.91019610017.917.917.910196119918.318.218.3019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019502.417.917.917.91019503.617.917.917.91019503.617.917.917.91019503.617.917.917.91019503.618.017.917.91019503.618.017			50	24	17.9	18.0	18.0	0	19
1100000014918.218.318.318.3019150017.817.918.01019505017.918.018.31019100017.918.018.31019100017.918.018.3101910017.918.018.3101910017.918.018.3101910017.918.018.31019505017.918.018.31019505017.918.018.01919505017.918.018.01919100017.918.018.019191001017.917.9101919101017.917.9101919117418.017.917.910191275018.017.917.91019137518.017.917.9101919147418.017.917.910191518.018.017.917.91019147418.017.917.910191518.018.017.917.9 <td< td=""><td></td><td></td><td>50</td><td>50</td><td>17.9</td><td>18.0</td><td>18.0</td><td>0</td><td>19</td></td<>			50	50	17.9	18.0	18.0	0	19
20 Mrt14918.218.318.310.41950017.417.918.0019502.417.917.918.0019502.417.917.918.0019505017.917.917.817.91019505017.917.917.91019601017.918.218.218.3019505017.918.218.3019502.417.917.910.11919502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119502.417.917.917.910.119503.62.017.917.917.910.119503.62.018.017.917.910.119503.62.018.017.917.910.119503.62.018.017.917.910.1 <td></td> <td></td> <td>100</td> <td>0</td> <td>17.9</td> <td>17.9</td> <td>17.9</td> <td>0</td> <td>19</td>			100	0	17.9	17.9	17.9	0	19
1 1 99 98.3 18.2 18.2 9.3 18.3 19.2 160 0 17.8 17.9 18.0 0 19 50 50 17.9 18.0 18.0 19 100 0 17.9 18.0 18.3 19 100 17.9 18.0 18.3 10.1 19 11 90 18.2 18.2 18.3 10.1 19 50 0 17.9 17.9 17.9 10.1 19 50 0 17.9 17.9 17.9 10.1 19 50 50 17.9 18.0 18.0 19 19 50 50 17.9 18.0 18.0 19 19 60 17.9 17.9 10.1 19 19 19 61 37 18.0 17.9 17.9 10 19 61 7 19.0			1	0	18.2	18.1	18.2	0	19
20 h 1 0 17.8 17.9 18.0 0 19 50 2.4 17.9 17.9 18.0 0 19 50 0.0 17.9 17.9 18.0 0 19 50 17.9 17.9 17.9 10.0 19 19 640 17.9 17.9 18.2 18.3 0.0 19 640 0.0 17.9 17.9 18.1 0.0 19 640 0.0 17.9 17.9 18.0 10 19 650 2.4 17.9 17.9 17.9 10 19 650 2.4 17.9 17.9 17.9 10 19 660 17.9 17.9 17.9 17.9 10 19 7<7			1	49	18.2	18.3	18.3	0	19
902417.917.918.00191006017.918.018.00191001018.218.118.30191018.218.118.301919918.318.218.3019602417.917.917.910.019605017.917.917.910.019100017.917.918.1019100017.917.917.9019100017.917.917.901910017.917.917.910.019117418.017.917.9019127.817.917.910.01919137418.017.917.91019147.418.017.917.9101915363018.017.917.91019167.418.018.017.910.019167.418.018.017.910.0191718.018.018.018.018.019167.418.018.018.018.019177.418.018.018.018.0191836018.018.018.019 <td></td> <td></td> <td>1</td> <td>99</td> <td>18.3</td> <td>18.2</td> <td>18.2</td> <td>0</td> <td>19</td>			1	99	18.3	18.2	18.2	0	19
50505017.918.018.018.018.019100017.917.901914018.218.118.301914918.218.118.301950017.917.917.310.019502417.917.917.9019502417.917.918.018.010502417.917.917.90195010017.917.90195077.717.917.90195077.717.917.90195011.717.917.910.0195011.717.917.910.0195011.717.917.910.0195018.017.917.917.9196017.917.917.910.019562018.017.917.9106018.017.917.910.01957018.017.917.9019582018.018.018.018.0196018.018.018.017.917.9019562018.018.017.917.9019563917.918.018.018	20 MHz	16QAM	50	0	17.8	17.9	18.0	0	19
Int Int <thint< th=""> <thint< th=""> <thint< th=""></thint<></thint<></thint<>			50	24	17.9	17.9	18.0	0	19
110182181183019640AM1918.218.118.3019640AM50017.917.917.9019506017.917.918.0019505017.918.018.0019505017.917.918.018.0196071.917.917.9019197071.917.917.90191071.971.917.917.910.01971.971.917.917.910.01971.971.917.917.9191971.975018.017.917.9075018.017.917.901975018.017.917.901975018.017.917.901975018.017.917.901975018.018.018.018.01975018.018.018.0191975018.018.018.0191975018.017.917.901975018.017.917.901975018.018.018.018.019760 <td></td> <td></td> <td>50</td> <td>50</td> <td>17.9</td> <td>18.0</td> <td>18.0</td> <td>0</td> <td>19</td>			50	50	17.9	18.0	18.0	0	19
1 40 18.2 18.2 18.3 0 19 640AM 50 0 17.9 17.9 17.9 18.0 18.0 19 50 24 17.9 17.9 18.0 18.0 0 19 50 24 17.9 17.9 18.0 18.0 0 19 60 0 17.9 17.9 17.9 17.9 0 19 10 0 0 17.9 17.9 17.9 0 19 11 74 18.0 17.9 17.9 0 19 11 74 18.0 17.9 17.9 0 19 36 39 18.0 17.9 17.9 0 19 36 39 18.0 17.9 17.9 0 19 36 39 18.0 18.0 18.0 18.0 19 36 39 18.0 18.0 18.			100	0	17.9	17.9	17.9	0	19
640AM 1 99 18.3 18.2 18.3 0 19 50 0 17.9 17.9 17.9 18.1 0 19 50 50 17.9 18.0 18.1 0 19 60 0 17.9 18.0 18.0 0 19 60 0 17.9 18.0 18.0 0 19 60 0 17.9 17.9 17.9 0 19 1 37 18.0 17.9 17.9 0 19 1 37 18.0 17.9 17.9 0 19 36 0 17.9 17.9 0 19 19 36 18.0 18.0 17.9 18.0 18.0 19 1 37 18.2 18.0 18.0 18.0 19 19 36 20 18.0 18.0 18.0 18.0 19 19			1	0	18.2	18.1	18.3	0	19
640AM 50 0 17.9 1 0 19 BW Adocation 0 17.0 17.7 18.0 17.9 1.0 1 17.0 17.9 1.0 1 17.0 17.0 17.9 17.9 1.0 19 1 17 18.0 17.9 17.9 1.0 19			1	49	18.2	18.2	18.3	0	19
Image: bord state in the state in			1	99	18.3	18.2	18.3	0	19
BW (M+2) Mode 50 50 17.9 18.0 18.0 18.0 18.0 19 BW (M+2) Mode RB Allocition RB offset RB off		64QAM	50	0	17.9	17.9	17.9	0	19
Image: base of the state of			50	24	17.9	17.9	18.1	0	19
BW (M+2) RB Allocation RB offset RB 20025 Maximum Average Power (dB-// 20075 Tone-up 20025 1 0 1717.5 MHz 1732.5 MHz 1747.5 MHz 1747.5 MHz 1747.5 MHz 19 1 37 18.0 17.9 17.9 0 19 1 37 18.0 17.9 17.9 0 19 36 0 17.9 17.9 17.9 0 19 36 0 17.9 17.9 10 19 19 36 39 18.0 18.0 18.0 19 19 75 0 18.0 17.9 17.9 0 19 1 74 18.4 18.2 18.2 0 19 1 74 18.4 18.2 18.0 19 19 1 74 18.0 18.0 17.9 0 19 1 74 18.4 18.0 18.0 19			50	50	17.9	18.0	18.0	0	19
BW (MHz)ModeRBs Allocation200252017520325MPR 100Tune-up Limit110017.91732.5 MHz1747.5 MHz1723.5 MHz1745.001913718.017.917.90191913718.017.917.901913718.017.917.901936017.917.917.9019363018.017.917.9019363018.018.018.018.019363018.018.018.0191913718.218.218.2019136018.018.018.0019363018.018.018.00191936363918.018.018.0019363918.018.018.001919363918.018.018.001919363917.917.917.917.91019363917.918.018.00191937018.018.018.0191919363917.917.917.917.91019371017.917.917.910 <td></td> <td></td> <td>100</td> <td>0</td> <td>17.9</td> <td>17.9</td> <td>17.9</td> <td>0</td> <td>19</td>			100	0	17.9	17.9	17.9	0	19
BW (MHz)ModeRBs Allocation200252017520325MPR 100Tune-up Limit110017.91732.5 MHz1747.5 MHz1723.5 MHz1745.001913718.017.917.90191913718.017.917.901913718.017.917.901936017.917.917.9019363018.017.917.9019363018.018.018.018.019363018.018.018.0191913718.218.218.2019136018.018.018.0019363018.018.018.00191936363918.018.018.0019363918.018.018.001919363918.018.018.001919363917.917.917.917.91019363917.918.018.00191937018.018.018.0191919363917.917.917.917.91019371017.917.917.910 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>erage Power (dB</th> <th>m)</th> <th></th>							erage Power (dB	m)	
(init)(init)(init)(init)(init)(init)(init)1017.517.917.917.901913718.017.917.901917418.017.918.001936017.917.918.0019362018.017.917.9019363918.018.018.0019363918.018.018.0019363918.018.018.00191517418.418.218.201913718.218.318.201919136018.018.018.0019362018.018.018.001919362018.018.018.0191919362018.018.018.0191919362018.018.018.0191919362017.917.917.9019362017.917.917.9019362017.918.018.018.019363917.918.018.018.019363917.918.018.0191936 <th></th> <th>Mode</th> <th></th> <th></th> <th>20025</th> <th></th> <th></th> <th></th> <th>Tune-up</th>		Mode			20025				Tune-up
Image: space	(10112)		Allocation	Unset	1717.5 MHz	1732.5 MHz	1747.5 MHz	MPR	
Image: space of the system of the s			1	0	17.9	17.9	17.9	0	19
Method 36 0 17.9 17.9 17.9 0 19 36 20 18.0 17.9 17.9 0 19 36 39 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 36 39 18.0 18.2 18.2 0 19 1 37 18.2 18.2 18.2 0 19 1 36 0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 19 36 39 18.0 18.0 18.0 0 19 19 11 37 18.2 18.1 18.2 0 19 1 75 0 17.9 17.9 17.9 19 19 13 36 0 19 19 36 0 19			1	37	18.0	17.9	17.9	0	19
15 MHz 36 20 18.0 17.9 17.9 0 19 36 39 18.0 18.0 18.0 18.0 0 19 75 0 18.0 17.9 17.9 0 19 75 0 18.0 17.9 17.9 0 19 1 37 18.2 18.3 18.2 0 19 1 36 0 18.0 18.0 18.0 19 19 36 39 18.0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 18.0 0 19 75 0 18.0 18.0 18.2 0 19 1 37 18.2 18.2 18.2 0 19 36 0 17.9 18.0 18.0 19 19 36 39 17.9 18.0 18.0 19		QPSK	1	74	18.0	17.9	18.0	0	19
15 MHz 36 20 18.0 17.9 17.9 0 19 15 MHz 160AM 18.0 18.0 18.2 18.2 0 19 15 MHz 160AM 36 39 18.0 18.0 18.2 0 19 160AM 36 0 18.0 18.2 18.2 0 19 36 20 18.0 18.0 18.0 0 19 36 20 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 1 37 18.2 18.2 18.2 0 19 36 20 17.9 18.0 18.0 0 19 36 20 17.9 18.0 18.0 0 19 36 20 17.9 18.0 18.0									
Image: space									19
10 Hz 75 0 18.0 17.9 17.9 0 19 1 0 18.2 18.2 18.2 0 19 1 37 18.2 18.2 18.2 0 19 1 74 18.4 18.2 18.2 0 19 36 0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 17.9 0 19 36 39 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 1 74 18.1 18.2 18.2 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
1 0 18.2 18.2 18.2 0 19 1 37 18.2 18.3 18.2 0 19 1 74 18.4 18.2 18.2 0 19 1 74 18.0 18.0 18.0 0 19 36 0 18.0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 18.0 0 19 1 0 18.2 18.2 18.2 0 19 1 75 0 17.8 17.9 17.9 0 19 36 20 17.9 18.0 18.0 18.0 19 19 36 20 17.9 17.9 17.9 0 19 19 36 20 17.9 18.0 18.0 18.0			-						
15 MHz 1 37 18.2 18.3 18.2 0 19 15 MHz 160AM 36 0 18.0 18.0 18.0 18.0 19 36 20 18.0 18.0 18.0 17.9 0 19 36 39 18.0 18.0 18.0 17.9 0 19 36 39 18.0 18.0 17.9 0 19 36 39 18.0 18.0 18.0 18.0 19 1 75 0 18.2 18.2 18.2 0 19 1 74 18.1 18.2 18.2 0 19 19 36 20 17.9 18.0 18.0 0 19 36 20 17.9 18.0 18.0 19 19 75 0 17.9 17.9 17.9 10 19 19 16 18.0									
15 MHz 1 74 18.4 18.2 18.2 0 19 15 MHz 36 0 18.0 18.0 18.0 18.0 0 19 36 20 18.0 18.0 18.0 17.9 0 19 36 39 18.0 18.0 18.0 18.0 0 19 36 39 18.0 18.0 17.9 0 19 75 0 18.2 18.1 18.2 0 19 1 37 18.2 18.2 18.2 0 19 1 74 18.1 18.2 18.2 0 19 36 0 17.8 17.9 17.9 0 19 36 39 17.9 18.0 18.0 18.0 18 164QM Mode RB 1750 MHz 1									
15 MHz 16QAM 36 0 18.0 18.0 18.0 18.0 19 36 20 18.0 18.0 18.0 17.9 0 19 36 39 18.0 18.0 17.9 0 19 36 39 18.0 17.9 17.9 0 19 1 0 18.2 18.1 18.2 0 19 1 74 18.1 18.2 18.2 0 19 36 0 17.8 17.9 17.9 0 19 36 20 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 17.9 17.9 0 19 36 20 17.9 17.9 18.0 18.0 18.0 18.0 Mode RB RB OFSE 2000 20175									
BW (MHz) 36 20 18.0 18.0 17.9 0 19 36 39 18.0 18.0 18.0 18.0 0 19 75 0 18.0 17.9 17.9 0 19 1 37 18.2 18.2 18.2 0 19 1 37 18.2 18.2 18.2 0 19 1 74 18.1 18.2 18.2 0 19 36 0 17.9 18.0 18.0 0 19 36 39 17.9 17.9 17.9 0 19 75 0 17.9 17.9 17.9 0 19 75 0 17.9 17.9 17.9 10 19 75 0 17.9 17.9 17.9 10 19 75 0 17.9 17.9 2035 10 10 19	15 MU7	16QAM							
BW (MHz) 36 39 18.0 18.0 18.0 18.0 18.0 19.0 19 1 0 18.0 17.9 17.9 0 19 1 37 18.2 18.1 18.2 0 19 1 74 18.1 18.2 18.2 0 19 36 0 17.8 17.9 17.9 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 18.0 18.0 19 36 20 17.9 17.9 17.0 19 11 19 11 17.5 MHz 1732.5 MHz 1750 MHz 170 19<									
Image: Part of the second se							-		-
Image: bit									
Image: base of the second se									
1 74 18.1 18.2 18.2 0 19 64QAM 36 0 17.8 17.9 17.9 0 19 36 20 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 17.9 17.9 0 19 75 0 17.9 17.9 17.9 0 19 70 17.9 17.9 17.9 17.9 0 19 70 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9 18.1 18.1 18.1 17.9 18.1 18.1 17.9 18.1 18.1 17.9 18.3 18.2 18.1 0 19 19 19 19 19			-						
64QAM 36 0 17.8 17.9 17.9 0 19 36 20 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 36 39 17.9 17.9 17.9 17.9 0 19 BW (MHz) Mode RB Allocation RB offset RB offset Maximum Average Power (dBm) Tune-up Limit 1 0 18.1 18.1 18.1 0 19 1 25 18.0 18.2 18.2 0 19 1 25 18.0 18.2 18.1 0 19 1 25 12 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 25 25 18.1 18.2 18.4									
36 20 17.9 18.0 18.0 0 19 36 39 17.9 18.0 18.0 0 19 75 0 17.9 17.9 17.9 0 19 8W Mode RB Allocation 0 17.9 17.9 0 19 10 MHz RB Allocation 0 17.9 17.9 20350 MPR Tune-up 1 0 18.1 18.1 18.1 18.1 18.1 0 19 1 25 18.0 18.2 18.2 0 19 19 1 49 18.0 18.2 18.1 0 19 19 25 12 18.1 18.0 18.1 0 19 19 25 12 18.1 18.0 18.1 0 19 19 25 12 18.1 18.2 18.1 0 19 19		640414							
$10 {\rm MHz} = 10 {\rm Mote} = 10 {\rm Mote}$		04QAM							
Image: base weight of the system is a syste									-
BW (MHz) Mode RB Allocation RB offset RB offset Maximum Average Power (dBm) 1 20000 20175 20350 MPR Tune-up Limit 1 0 18.1 1732.5 MHz 1750 MHz MPR Tune-up Limit 1 0 18.1 18.1 18.1 0 19 1 25 18.0 18.2 18.2 0 19 25 0 18.1 18.0 18.1 0 19 25 12 18.1 18.0 18.1 0 19 25 12 17.9 18.3 18.2 0 19 25 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 1 1 18.3 18.4 18.4 0 19 1 1 1 1 1 19 18.3 18.2 1									-
BW (MHz) Mode RB Allocation RB offset 20000 20175 20350 MPR Tune-up limit 1 0 18.1 1732.5 MHz 1750 MHz 0 19 1 25 18.0 18.2 18.2 0 19 1 49 18.0 18.2 18.1 0 19 25 0 18.1 18.0 18.2 18.1 0 19 25 12 18.1 18.0 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 0 18.1 18.0 18.0 0 19 25 0 18.1 18.0 18.0 0 19 10 MHz 14 0 18.3 18.3 18.4 0 19 10 MHz 16QAM 25 0 18.1 18.2 18.1 0 19 1 25 18.3			75	0	17.9				19
(MHz) Mode Allocation offset 20000 20175 20350 MPR Tune-up Limit 1 0 18.1 1732.5 MHz 1750 MHz 0 19 1 25 18.0 18.1 18.1 18.1 0 19 1 25 18.0 18.2 18.2 0 19 1 49 18.0 18.2 18.1 0 19 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 1 0 18.3 18.3 18.4 18.4 0 19 1 25 18.3 18.4 18.2	BW		RB	RB					
1 0 18.1 18.1 18.1 0 19 1 25 18.0 18.2 18.2 0 19 1 49 18.0 18.2 18.1 0 19 25 0 18.1 18.0 18.2 18.1 0 19 25 12 18.1 18.0 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 19 1 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 25 12 18.1 18.2 18.1 0 19 25 12 18.		Node						MPR	
1 25 18.0 18.2 18.2 0 19 1 49 18.0 18.2 18.1 0 19 25 0 18.1 18.0 18.2 18.1 0 19 25 12 18.1 18.0 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 25 18.3 18.4 18.4 0 19 25 12 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 1				-					
1 49 18.0 18.2 18.1 0 19 QPSK 25 0 18.1 18.0 18.1 0 19 25 12 18.1 18.0 18.1 0 19 25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 0 19 50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 25 12 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.1 0 19 1 0 18.									
QPSK 25 0 18.1 18.0 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 0 19 50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 1 49 18.4 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.1 0 19 25 25 18.3 18.4 18.5 0 19 1 25 18									
25 12 18.1 18.2 18.1 0 19 25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 0 19 50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 1 49 18.4 18.5 18.4 0 19 25 0 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 25 25 18.1 18.2 18.3 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4		0001							
25 25 17.9 18.3 18.2 0 19 50 0 18.1 18.0 18.0 0 19 50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 1 49 18.4 18.5 18.4 0 19 1 49 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.3 0 19 1 49 18.4 18.4<		QPSK							
50 0 18.1 18.0 18.0 0 19 1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 1 49 18.4 18.5 18.4 0 19 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.4 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-						
1 0 18.3 18.3 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.4 0 19 1 49 18.4 18.5 18.4 0 19 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 1 25 18.3 18.4 18.4 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2									
1 25 18.3 18.4 18.4 0 19 10 MHz 1 49 18.4 18.5 18.4 0 19 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 1									
10 MHz 1 49 18.4 18.5 18.4 0 19 10 MHz 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 50 0 18.0 18.1 18.2 0 19 1 25 18.3 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25									
10 MHz 16QAM 25 0 18.1 18.2 18.1 0 19 25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19									
25 12 18.1 18.2 18.1 0 19 25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 12 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19									
25 25 18.1 18.2 18.3 0 19 50 0 18.0 18.1 18.2 0 19 50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.2 0 19	10 MHz	16QAM							
50 0 18.0 18.1 18.2 0 19 1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.5 0 19 1 49 18.4 18.4 18.3 0 19 64QAM 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19			-						
1 0 18.2 18.4 18.5 0 19 1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19			25	25	18.1	18.2	18.3	0	
1 25 18.3 18.4 18.4 0 19 1 49 18.4 18.4 18.3 0 19 64QAM 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19			50	0	18.0	18.1	18.2	0	19
1 49 18.4 18.4 18.3 0 19 64QAM 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.2 0 19			1	0	18.2	18.4	18.5	0	19
64QAM 25 0 18.1 18.2 18.2 0 19 25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19			1	25	18.3	18.4	18.4	0	19
25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19			1	49	18.4	18.4	18.3	0	19
25 12 18.2 18.2 18.2 0 19 25 25 18.0 18.2 18.3 0 19		64QAM	25	0	18.1	18.2	18.2	0	19
25 25 18.0 18.2 18.3 0 19									
			50	0	18.1	18.1	18.2	0	19

LTE Band 4 Main Ant 2 Measured Results (continued)

	Maximum Average Power (dBm)							
BW (MHz)	Mode	RB Allocation	RB offset	19975	20175	20375	MPR	Tune-up
× /				1712.5 MHz	1732.5 MHz	1752.5 MHz		Limit
		1	0	18.0	18.1	18.1	0	19
		1	12	18.2	18.3	18.2	0	19
	QPSK	1 12	24 0	18.0 18.1	18.2 18.1	18.1 18.2	0	19 19
	QFSK	12	7	18.1	18.1	18.2	0	19
		12	13	18.1	18.2	18.2	0	19
		25	0	18.1	18.1	18.2	0	19
		1	0	18.3	18.4	18.5	0	19
		1	12	18.3	18.6	18.6	0	19
		1	24	18.4	18.5	18.4	0	19
5 MHz	16QAM	12	0	18.2	18.2	18.3	0	19
		12	7	18.2	18.2	18.4	0	19
		12	13	18.1	18.3	18.3	0	19
		25	0	18.1	18.2	18.2	0	19
		1	0	18.3	18.5	18.4	0	19
		1	12	18.3	18.6	18.4	0	19
		1	24	18.4	18.3	18.4	0	19
	64QAM	12	0	18.1	18.2	18.2	0	19
		12	7	18.2	18.2	18.1	0	19
		12 25	13 0	18.2 18.2	18.3 18.2	18.2 18.2	0	19 19
		20	0	10.2	I	rage Power (dB		19
BW	Mode	RB	RB	19965	20175	20385		Tune-up
(MHz)		Allocation	offset	1711.5 MHz	1732.5 MHz	1753.5 MHz	MPR	Limit
		1	0	18.1	18.2	18.2	0	19
		1	8	18.1	18.2	18.3	0	19
	QPSK	1	14	18.1	18.2	18.1	0	19
		8	0	18.1	18.2	18.3	0	19
		8	4	18.2	18.2	18.3	0	19
		8	7	18.2	18.3	18.3	0	19
		15	0	18.1	18.2	18.2	0	19
		1	0	18.2	18.2	18.5	0	19
		1	8	18.3	18.2	18.3	0	19
		1	14	18.4	18.5	18.2	0	19
3 MHz	16QAM	8	0	18.3	18.3	18.4	0	19
		8	4	18.2	18.2	18.4	0	19
		8	7	18.3	18.4	18.4	0	19
		15	0	18.2	18.1	18.3	0	19
		1	0	18.3	18.4	18.5	0	19
		1	8	18.3	18.4	18.3	0	19
		1	14	18.4	18.5	18.4	0	19
	64QAM	8	0	18.2	18.3	18.4	0	19
		8	4	18.2	18.4	18.4	0	19
		8	7	18.1	18.4	18.4	0	19
		15	0	18.2	18.2	18.3	0	19
BW		RB	RB	10055		erage Power (dB	m)	
(MHz)	Mode	Allocation	offset	19957 1710.7 MHz	20175 1732.5 MHz	20393 1754 3 MHz	MPR	Tune-up Limit
		1	0	1710.7 MHz 18.0	1732.5 MHZ 18.2	1754.3 MHz 18.1	0	19
		1	3	18.0	18.2	18.1	0	19
		1	5	18.1	18.2	18.2	0	19
	QPSK	3	0	18.1	18.2	18.1	0	19
	on	3	1	18.1	18.2	18.2	0	19
		3	3	18.1	18.2	18.1	0	19
		6	0	18.1	18.1	18.2	0	19
		-	-				0	10
		1	0	18.3	18.2	18.5		
		1	0	18.3 18.3	18.1	18.5	0	19
							0	19 19
1.4 MHz	16QAM	1	3	18.3	18.1	18.2		
1.4 MHz	16QAM	1	3 5	18.3 18.2	18.1 18.2	18.2 18.4	0	19
1.4 MHz	16QAM	1 1 3	3 5 0	18.3 18.2 18.3	18.1 18.2 18.4	18.2 18.4 18.4	0	19 19
1.4 MHz	16QAM	1 1 3 3	3 5 0 1	18.3 18.2 18.3 18.3	18.1 18.2 18.4 18.3	18.2 18.4 18.4 18.4	0 0 0	19 19 19
1.4 MHz	16QAM	1 1 3 3 3	3 5 0 1 3	18.3 18.2 18.3 18.3 18.3	18.1 18.2 18.4 18.3 18.4	18.2 18.4 18.4 18.4 18.4 18.4	0 0 0 0	19 19 19 19
1.4 MHz	16QAM	1 1 3 3 3 6	3 5 0 1 3 0	18.3 18.2 18.3 18.3 18.3 18.3 18.2	18.1 18.2 18.4 18.3 18.4 18.2	18.2 18.4 18.4 18.4 18.4 18.4 18.4 18.3	0 0 0 0 0	19 19 19 19 19
1.4 MHz	16QAM	1 1 3 3 6 1	3 5 0 1 3 0 0	18.3 18.2 18.3 18.3 18.3 18.3 18.3 18.3 18.3	18.1 18.2 18.4 18.3 18.4 18.2 18.4 18.4	18.2 18.4 18.4 18.4 18.4 18.3 18.4	0 0 0 0 0	19 19 19 19 19 19 19
1.4 MHz	16QAM 64QAM	1 1 3 3 6 1 1	3 5 0 1 3 0 0 3	18.3 18.2 18.3 18.3 18.3 18.3 18.3 18.2 18.3 18.2 18.3	18.1 18.2 18.4 18.3 18.4 18.2 18.4 18.2 18.4 18.2	18.2 18.4 18.4 18.4 18.4 18.3 18.4	0 0 0 0 0 0 0	19 19 19 19 19 19 19 19
1.4 MHz		1 1 3 3 6 1 1 1	3 5 0 1 3 0 0 3 5	18.3 18.2 18.3 18.3 18.3 18.3 18.2 18.3 18.4	18.1 18.2 18.4 18.3 18.4 18.2 18.4 18.2 18.4 18.2 18.5	18.2 18.4 18.4 18.4 18.4 18.3 18.4 18.3 18.3	0 0 0 0 0 0 0 0	19 19 19 19 19 19 19 19 19
1.4 MHz		1 1 3 3 6 1 1 1 3	3 5 0 1 3 0 0 3 5 0	18.3 18.2 18.3 18.3 18.3 18.2 18.3 18.2 18.3 18.4 18.3	18.1 18.2 18.4 18.3 18.4 18.2 18.4 18.2 18.4 18.5 18.3	18.2 18.4 18.4 18.4 18.3 18.4 18.3 18.4 18.3 18.4	0 0 0 0 0 0 0 0 0 0	19 19 19 19 19 19 19 19 19 19

LTE Band 12 Main Ant 1 Measured Results

				Maximum Average Power (dBr				
BW	Mode	RB	RB	23060	23095	23130	m) 	Tung up
(MHz)		Allocation	offset	704 MHz	707.5 MHz	711 MHz	MPR	Tune-up Limit
		1	0	21.2	21.1	21.2	0	22
		1	25	21.2	21.1	21.2	0	22
		1	49	21.2	21.1	21.2	0	22
	QPSK	25	49	21.2	21.1	21.1	0	22
	GION	25	12	21.1	21.1	21.3	0	22
		25	25	21.2	21.1	21.2	0	22
		50	0	21.3	21.2	21.2	0	22
		1	0	21.2	21.2	21.2	0	22
		1	25	21.5	21.5	21.6	0	22
		1	49	21.6	21.3	21.6	0	22
10 MHz	16QAM	25	49	21.0	21.4	21.0	0	22
10 10112	1000/1111	25	12	21.2	21.2	21.2	0	22
		25	25	21.3	21.2	21.2	0	22
		50	0	21.2	21.2	21.0	0	22
		1	0	21.2	21.5	21.5	0	22
		1	25	21.5	21.3	21.5	0	22
		1	49	21.3	21.4	21.5	0	22
	64QAM	25	49	21.4	21.3	21.3	0	22
	64QAIVI	25	12	21.2	21.2	21.3	0	22
		25	25	21.2	21.3	21.3	0	22
		50	0	21.2	21.1	21.2	0	22
BW		RB	RB	00005		erage Power (dB	m)	
(MHz)	Mode	Allocation	offset	23035	23095	23155	MPR	Tune-up Limit
				701.5 MHz	707.5 MHz	713.5 MHz		
		1	0	21.2	21.2	21.3	0	22
		1	12	21.3	21.2	21.3	0	22
		1	24	21.1	21.2	21.1	0	22
	QPSK	12	0	21.2	21.2	21.2	0	22
		12	7	21.2	21.1	21.2	0	22
		12	13	21.2	21.3	21.2	0	22
		25	0	21.1	21.2	21.2	0	22
		1	0	21.5	21.6	21.6	0	22
		1	12	21.5	21.6	21.7	0	22
		1	24	21.4	21.5	21.6	0	22
5 MHz	16QAM	12	0	21.2	21.2	21.3	0	22
		12	7	21.2	21.2	21.3	0	22
		12	13	21.3	21.2	21.3	0	22
		25	0	21.2	21.2	21.2	0	22
		1	0	21.3	21.4	21.6	0	22
		1	12	21.5	21.6	21.6	0	22
		1	24	21.3	21.5	21.5	0	22
	64QAM	12	0	21.2	21.2	21.1	0	22
		12	7	21.1	21.1	21.2	0	22
		12	13	21.2	21.3	21.2	0	22
		25	0	21.2	21.2	21.1	0	22
					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	23025	23095	23165	MDD	Tune-up
(10112)		Anocation	Giaet	700.5 MHz	707.5 MHz	714.5 MHz	MPR	Limit
		1	0	21.1	21.2	21.2	0	22
		1	8	21.2	21.3	21.3	0	22
		1	14	21.1	21.2	21.2	0	22
	QPSK	8	0	21.2	21.1	21.2	0	22
		8	4	21.2	21.2	21.2	0	22
		8	7	21.2	21.2	21.3	0	22
		15	0	21.2	21.2	21.1	0	22
		1	0	21.5	21.5	21.4	0	22
		1	8	21.6	21.6	21.6	0	22
		1	14	21.4	21.5	21.4	0	22
3 MHz	16QAM	8	0	21.2	21.3	21.2	0	22
		8	4	21.2	21.2	21.4	0	22
		8	7	21.3	21.2	21.4	0	22
		15	0	21.2	21.4	21.0	0	22
		15	0	21.2	21.2	21.2	0	22
		1	8	21.5	21.5	21.5	0	22
		1	0 14		21.4	21.5	0	22
	64QAM	1 8	0	21.3			0	22
	04QAW			21.2	21.3	21.2		
		8	4	21.2	21.3	21.4	0	22
1		8	7	21.2	21.4	21.4	0	22
		15	0	21.2	21.2	21.2	0	22

LTE Band 12 Main Ant 1 Measured Results (continued)

5144					Maximum Ave	erage Power (dB	m)	
BW (MHz)	Mode	RB Allocation	RB offset	23017	23095	23173	MPR	Tune-up
(7 moodalon		699.7 MHz	707.5 MHz	715.3 MHz		Limit
		1	0	21.2	21.2	21.2	0	22
		1	3	21.1	21.3	21.1	0	22
		1	5	21.2	21.3	21.2	0	22
	QPSK	3	0	21.2	21.2	21.2	0	22
		3	1	21.1	21.2	21.2	0	22
		3	3	21.2	21.2	21.2	0	22
		6	0	21.1	21.1	21.2	0	22
		1	0	21.4	21.5	21.5	0	22
		1	3	21.6	21.6	21.6	0	22
		1	5	21.5	21.6	21.5	0	22
1.4 MHz	16QAM	3	0	21.3	21.4	21.4	0	22
		3	1	21.3	21.4	21.3	0	22
		3	3	21.3	21.4	21.4	0	22
		6	0	21.2	21.2	21.2	0	22
		1	0	21.3	21.5	21.5	0	22
		1	3	21.3	21.6	21.5	0	22
		1	5	21.3	21.5	21.5	0	22
	64QAM	3	0	21.3	21.3	21.3	0	22
		3	1	21.3	21.3	21.2	0	22
		3	3	21.2	21.2	21.4	0	22
		6	0	21.2	21.1	21.2	0	22

9.4. Wi-Fi 2.4GHz (DTS Band)

Maximum Output Power (Tune-up Limit) for Wi-Fi 2.4 GHz

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11g/n/ac/ax mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

The Tune-Up Limits are the same between both MIMO and SISO transmission.

Wi-Fi 2.4GHz Normal State Measured Results

		Mode Ch #		Freq.	Chain 0	Average Pow	er (dBm)	Chain 1 Average Power (dBm)		
Band Mode	Ch #		(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
5000		1	2412	13.9	14.5		12.1	12.7		
DSSS 2.4 GHz	802.11b	6	2437	14.3	14.5	Yes	12.2	12.7	Yes	
2.4 0112		11	2462	14.1	14.5		12.2	12.7	ſ	

Duty Factor Measured Results

Mode	Туре	T on (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11b	1 Mb	12.4	12.410	99.92%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

WLAN 2.4GHz Duty Cycle

802.11b

Keysight Spectrum Analyzer - AP2022.3 A	1,84740/44389,MOR-COND	1	22	21 S	
RL RE 50.0 DC		SENSE:INT	#Avg Type: RMS	05:09:26 PM Jul 20, 2022 TRACE 3 4 5 6	Frequency
	PNO: Fast	Trig: Free Run #Atten: 30 dB	Avg Hold: 1/1	DET P HNNN	81.2
Ref Offset 10.3 dE dB/div Ref 30.30 dBm			4	Mkr3 12.41 ms 1.460 dB	Auto Tune
^{og}		3A2			Center Free
0.0					2.442000000 GH
9.7					Start Free 2.442000000 GH
97					2.44200000 011
19.7					Stop Free 2.442000000 GH
79.7					
enter 2.442000000 GHz es BW 8 MHz	#VBW	50 MHz	Sweep 3	Span 0 Hz 0.40 ms (8001 pts)	CF Step 8.000000 MH
$1 \Delta 2$ t (Δ)	12.40 ms (Δ)	-0.344 dB	FUNCTION FUNCTION WOTH	FUNCTION VALUE	<u>Auto</u> Mar
2 Ν t Δ2 t (Δ) 4	2.858 ms 12.41 ms (Δ)	18.290 dBm 1.460 dB			Freq Offse 0 H
6 7 8					
9 0 1					
a		18	STATU	*	

9.5. Wi-Fi 5GHz (U-NII Bands)

Maximum Output Power (Tune-up Limit) for Wi-Fi 5 GHz

When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/n/ac/ax modes, the channel in the lower order/sequence 802.11 transmission mode is selected.

The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures.

SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/n/ac/ax mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is \leq 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR. Hotspot mode is supported in U-NII Band 1. Therefore, Hotspot mode was tested separately for SAR for U-NII Band 1.

The Tune-Up Limits are the same between both MIMO and SISO transmission.

Wi-Fi 5 GHz Normal State Measured Results

			Freq.	Chain 0	Average Pow	er (dBm)	Chain 1	Average Powe	er (dBm)	
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
UNII-1 & 2A	802.11ac (VHT160)	50	5250	11.5	11.5	Yes	11.2	11.5	Yes	
			Freq.	Chain 0	Average Pow	er (dBm)	Chain 1	Average Power (dBm)		
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
UNII-2C 5.5 GHz	802.11ac (VHT160)	114	5570	11.1	11.5	Yes	10.9	11.5	Yes	
			Freq.	Chain 0	Average Pow	er (dBm)	Chain 1	Average Powe	er (dBm)	
Band	Mode	Ch #	(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)	
UNII-3 5.8 GHz	802.11ac (VHT80)	155	5775	10.9	11.5	Yes	11.0	11.5	Yes	

Duty Factor Measured Results

Mode	Туре	Ton (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
802.11ac VHT80	MCS0	5.425	5.445	99.63%	1.00
802.11ac VHT160	MCS0	5.427	5.446	99.65%	1.00

Note(s):

Duty Cycle = (T on / period) * 100%

WLAN 5GHz Duty Cycle

802.11ac VHT80

		0		002.11					
Charles and					Noviedsez,	- AFJULLSA,84		ny print Se	d to
Frequency	12:01:52 AM Jun 23, 2022	ALIAN AUTO		SENSE:IN	-	50.0 pc .		1	_
2	TYPE A WANNAW DET P NIKS NIK		AvgiHe	Trig: Free Run #Atten: 40 dB	PNO: Fast +++ IFGein:Low	0000000	req 5,25	iter F	Sen
Auto Tun	Mkr3 5.446 ms 0.729 dB	۵				00 dBm	Ref 30.	Bidiv	to d
Center Fre								-	0g 200
	and a second state of the	in the second	362	indu turinter bi	Lie ann taidt	(Station	-	-	0.00
Start Fre 5.25000000 GH								1.000	10.0 20.0
Stop Fre						1.			111
5.25000000 GH									0.0
CF Ste 8.000000 MH	Span 0 Hz 3.33 ms (8001 pts)	Sweep 13		50 MHz	#VBW	00 GHz	2500000 8 MHz		
<u>Auto</u> Ma	· · · · · · · · · · · · · · · · · · ·	HIGHWARDEN	PONCTION			×		9002 I	25
Freq Offse 0 F				2.366 dB -9.545 dBm 0.729 dB	5.427 ms (Δ) 2.215 ms 5.446 ms (Δ)		t (Δ) t t (Δ)	Δ2 Ν Δ2	12346
									6789
				N.					10
		STATUS							56

802.11ac VHT160

9.6. Bluetooth

Maximum Output Power (Tune-up Limit) for Bluetooth

From October 2016 TCB workshop, Power and SAR measurements were performed with test software using DH5 modulation. The duty cycle value from the device is taken from the Duty Cycle plot below.

Bluetooth Measured Results

			Freq.	Chain 0	Average Pow	er (dBm)	Chain 1	Average Pow	er (dBm)											
Band	Band Mode		(MHz)	Meas Pwr	Tune-up	SAR Test (Yes/No)	Meas Pwr	Tune-up	SAR Test (Yes/No)											
	PD		2402	13.6	14.0		13.3	14.0												
2.4	2.4 BR	BR GFSK											39	2441	13.0	14.0	Yes	13.6	14.0	Yes
GFS	Gron	GFSK 78 2480 13.8 14.0			12.3	14.0														
	•	•		•		•														

Note(s):

SAR measurement is not required for the EDR and LE. When the secondary mode is ≤ ¼ dB higher than the primary mode.

Duty Factor Measured Results

Mode	Туре	Ton (ms)	Period (ms)	Duty Cycle	Crest Factor (1/duty cycle)
GFSK	DH1	2.88	3.750	76.80%	1.30

Note(s):

Duty Cycle = (T on / period) * 100%

Bluetooth Duty Cycle

GFSK

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

10.1. GSM 850

Marta	Antenna	Antenna Dist. Test Ch #. Freq. Pow er (dBm)				(dBm)	1-g SAI	R (W/kg)	Plot		
IVIODE	Antenna	(mm)	Position	Cn #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.	
			Left Touch	251	848.8	27.2	26.5	0.160	0.188	1	
GPRS 4 Slots Main A		0	Left Tilt	251	848.8	27.2	26.5	0.050	0.059		
Head Slots	IVIAIIT ATIL T	0	Right Touch	251	848.8	27.2	26.5	0.121	0.142		
			Right Tilt	251	848.8	27.2	26.5	0.047	0.055		
GPRS 4	Main Ant 1	10	Back	251	848.8	27.2	26.5	0.147	0.173	2	
Slots	IVIAIIT ATIL T	10	Front	251	848.8	27.2	26.5	0.129	0.152		
GPRS 4	Main Ant 1	Main Ant 1	10	Edge Bottom	251	848.8	27.2	26.5	0.034	0.040	
Hotspot Slots		10	Edge Left	251	848.8	27.2	26.5	0.190	0.224	3	
DTM (CS + 1 PS slot)	Main Ant 1	10	Edge Left	251	848.8	30.2	29.3	0.185	0.230	4	
	Slots GPRS 4 Slots GPRS 4 Slots DTM (CS +	GPRS 4 SlotsMain Ant 1GPRS 4 SlotsMain Ant 1GPRS 4 SlotsMain Ant 1DTM (CS + Main Ant 1	ModeAntenna(mm)GPRS 4 SlotsMain Ant 10GPRS 4 SlotsMain Ant 110GPRS 4 SlotsMain Ant 110DTM (CS + Main Ant 110	ModeAntenna(mm)PositionGPRS 4 SlotsMain Ant 10Left TouchGPRS 4 SlotsMain Ant 10Left TiltGPRS 4 SlotsMain Ant 110BackGPRS 4 SlotsMain Ant 110Edge BottomGPRS 4 SlotsMain Ant 110Edge Left	$ \begin{array}{ c c c c } \hline \mbox{Mode} & \mbox{Antenna} & \mbox{(mm)} & \mbox{Position} & \mbox{Ch \#.} \\ \hline \mbox{Position} & \mbox{Position} & \mbox{Ch \#.} \\ \hline \mbox{Position} & \mbox{Position} & \mbox{Ch \#.} \\ \hline \mbox{Position} & \mbox{Position} & \mbox{251} \\ \hline \mbox{Left Tilt} & \mbox{251} \\ \hline \mbox{Right Touch} & \mbox{251} \\ \hline \mbox{Right Tilt} & \mbox{251} \\ \hline \mbox{Right Tilt} & \mbox{251} \\ \hline \mbox{Slots} & \mbox{Main Ant 1} & \mbox{10} & \mbox{Right Position} & \mbox{251} \\ \hline \mbox{GPRS 4} & \mbox{Slots} & \mbox{Main Ant 1} & \mbox{10} & \mbox{Edge Bottom} & \mbox{251} \\ \hline \mbox{GPRS 4} & \mbox{Main Ant 1} & \mbox{10} & \mbox{Edge Left} & \mbox{251} \\ \hline \mbox{DTM (CS +} & \mbox{Main Ant 1} & \mbox{10} & \mbox{Edge Left} & \mbox{251} \\ \hline \mbox{Edge Left} & \mbox{Edge Left} & \mbox{251} \\ \hline \mbox{Edge Left} & \mbox{Edge Left} & \mbox{251} \\ \hline \mbox{Edge Left} & \mbox$	$ \begin{array}{ c c c c c } \hline Mode & Antenna & (mm) & Position & Ch \ \texttt{\#}. & (MHz) \\ \hline Position & Position & Ch \ \texttt{\#}. & (MHz) \\ \hline GPRS4 & \\ Slots & Main \ Ant1 & Position & Left \ Touch & 251 & 848.8 \\ \hline Right \ Touch & 251 & 848.8 \\ \hline Right \ Touch & 251 & 848.8 \\ \hline Right \ Tilt & 251 & 848.8 \\ \hline Right \ Tilt & 251 & 848.8 \\ \hline Right \ Tilt & 251 & 848.8 \\ \hline Right \ Tilt & 251 & 848.8 \\ \hline Right \ R$	Mode Antenna Dist. (mm) Test Position Ch #. Position Freq. (MHz) Tune-up (MHz) GPRS 4 Slots Antana Ant 1 0 Left Touch 251 848.8 27.2 GPRS 4 Slots Main Ant 1 0 Left Tilt 251 848.8 27.2 GPRS 4 Slots Main Ant 1 10 Edge Bottom 251 848.8 27.2 GPRS 4 Slots Main Ant 1 10 Edge Bottom 251 848.8 27.2 GPRS 4 Slots Main Ant 1 10 Edge Left 251 848.8 27.2 GPRS 4 Slots Main Ant 1 10 Edge Left 251 848.8 27.2 DTM (CS + Main Ant 1 10 Edge Left 251 848.8 30.2	ModeAntennaDist. (mm)Test PositionCh #. Ch #.Freq. (MHz)Tune-up LimitMeas.GPRS 4 SlotsMain Ant 10Left Touch251848.827.226.5Image: GPRS 4 SlotsMain Ant 10Left Tilt251848.827.226.5Image: GPRS 4 SlotsMain Ant 110Back251848.827.226.5GPRS 4 SlotsMain Ant 110Edge Left251848.827.226.5GPRS 4 SlotsMain Ant 110Edge Left251848.827.226.5DTM (CS + Main Ant 110Edge Left251848.830.229.3	Mode Antenna Dist. (mm) Iest Position $Ch #.$ Hreq. (MHz) Tune-up Limit Meas. Meas. GPRS 4 Slots Main Ant 1 0 Left Touch 251 848.8 27.2 26.5 0.160 Left Tilt 251 848.8 27.2 26.5 0.050 Right Touch 251 848.8 27.2 26.5 0.050 Right Touch 251 848.8 27.2 26.5 0.047 Right Touch 251 848.8 27.2 26.5 0.047 GPRS 4 Slots Main Ant 1 10 Back 251 848.8 27.2 26.5 0.147 GPRS 4 Slots Main Ant 1 10 Edge Bottom 251 848.8 27.2 26.5 0.147 GPRS 4 Slots Main Ant 1 10 Edge Left 251 848.8 27.2 26.5 0.034 GPRS 4 Slots Main Ant 1 10 Edge Left 251 848.8 27.2 26.5 0.	Mode Antenna Dist. (mm) Test Position $Ch #.$ Freq. (MHz) Tune-up Limit Meas. Meas. Scaled GPRS 4 Slots $Antenna$ $Antenna$ $Left$ Touch 251 848.8 27.2 26.5 0.160 0.188 GPRS 4 Slots $Antenna$ $Antenna$ $Left$ Tilt 251 848.8 27.2 26.5 0.050 0.059 GPRS 4 Slots $Right$ Touch 251 848.8 27.2 26.5 0.121 0.142 Right Touch 251 848.8 27.2 26.5 0.047 0.059 GPRS 4 Slots Main Ant 1 10 Back 251 848.8 27.2 26.5 0.147 0.173 GPRS 4 Slots Main Ant 1 10 Edge Bottom 251 848.8 27.2 26.5 0.147 0.173 GPRS 4 Slots Main Ant 1 10 Edge Bottom 251 848.8 27.2 26.5 0.034 0.040 DTM (CS + Main Ant 1<	

Notes: 10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.2. GSM 1900

RF Exposure			Dist.			Freq.	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	661	1880.0	21.7	20.9	0.025	0.030	5
Head	GPRS 4	Main Ant 2	0	Left Tilt	661	1880.0	21.7	20.9	0.011	0.013	
neau	Slots	IVIAIIT ATIL Z	0	Right Touch	661	1880.0	21.7	20.9	0.022	0.027	
				Right Tilt	661	1880.0	21.7	20.9	0.012	0.015	
Body-Worn	GPRS 4	Main Ant 2	10	Back	661	1880.0	21.7	20.9	0.221	0.268	6
& Hotspot	Slots	Main Ant 2	10	Front	661	1880.0	21.7	20.9	0.149	0.181	
Hotspot	GPRS 4	Main Ant 2	10	Edge Right	661	1880.0	21.7	20.9	0.099	0.120	
Πυισροι	Slots	IVIAIIT ATIL 2	10	Edge Bottom	661	1880.0	21.7	20.9	0.237	0.288	7
Hotspot	DTM (CS + 1 PS slot)	Main Ant 2 10		Edge Bottom	661	1880.0	24.7	24.6	0.333	0.343	8
Notes:	,										

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.3. W-CDMA Band II

Mode	A	Dist.			Freq.	FOWEI	(dBm)	I-g SAF	R (W/kg)	Plot
	Antenna	(mm)	Test Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
			Left Touch	9400	1880.0	19.7	18.4	0.030	0.040	
Rel 99 RMC	Main Ant 2	0	Left Tilt	9400	1880.0	19.7	18.4	0.023	0.031	
12.2 kbps	IVIAIIT ATTL 2	0	Right Touch	9400	1880.0	19.7	18.4	0.040	0.054	9
			Right Tilt	9400	1880.0	19.7	18.4	0.014	0.019	
Rel 99 RMC	Main Ant 2	10	Back	9400	1880	19.7	18.4	0.429	0.575	10
12.2 kbps	IVIAIIT ATTL 2	10	Front	9400	1880	19.7	18.4	0.301	0.403	
Hotspot	Main Ant 2	10	Edge Right	9400	1880	19.7	18.4	0.188	0.252	
12.2 kbps	iviain Ant 2	10	Edge Bottom	9400	1880	19.7	18.4	0.471	0.631	11
1 R R	12.2 kbps tel 99 RMC 12.2 kbps tel 99 RMC	12.2 kbps Main Ant 2 12.2 kbps Main Ant 2 12.2 kbps Main Ant 2 tel 99 RMC Main Ant 2	tel 99 RMC 12.2 kbpsMain Ant 20tel 99 RMC 12.2 kbpsMain Ant 210tel 99 RMC tel 99 RMCMain Ant 210	tel 99 RMC 12.2 kbps Main Ant 2 12.2 kbps Main Ant 2 10 Hain Ant 2 10 Hain Ant 2 10 Edge Right Edge Right Edge Right Edge Right	$ \begin{array}{c} \text{Hel 99 RMC} \\ 12.2 \text{ kbps} \end{array} \begin{array}{c} \text{Main Ant 2} \end{array} \begin{array}{c} 0 \end{array} \\ \begin{array}{c} \text{Left Touch} & 9400 \\ \hline \text{Left Tilt} & 9400 \\ \hline \text{Right Touch} & 9400 \\ \hline \text{Right Touch} & 9400 \\ \hline \text{Right Tilt} & 9400 \\ \hline \text{Right Touch} & 9400 \\ \hline \text{Right Touch} & 9400 \\ \hline \text{Right Tilt} & 9400 \\ \hline \text{Right Touch} & 9400 \\ \hline \ \ \text{Right Touch} & 9400 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Left Touch 9400 1880.0 12.2 kbps Main Ant 2 0 Left Tilt 9400 1880.0 Right Touch 9400 1880.0 1880.0 1880.0 Right Touch 9400 1880.0 1880.0 Right Touch 9400 1880.0 1880.0 Right Tilt 9400 1880.0 1880.0 Right Tilt 9400 1880.0 1880.0 Itel 99 RMC Main Ant 2 10 Back 9400 1880 Itel 99 RMC Main Ant 2 10 Edge Right 9400 1880 Ledge 9400 1880 1880 1880 1880	Main Ant 2 0 Left Touch 9400 1880.0 19.7 12.2 kbps Main Ant 2 0 Left Tilt 9400 1880.0 19.7 Right Touch 9400 1880.0 19.7 Right Touch 9400 1880.0 19.7 Right Touch 9400 1880.0 19.7 Right Tilt 9400 1880.0 19.7 Right Tilt 9400 1880.0 19.7 I2.2 kbps Main Ant 2 10 Back 9400 1880 19.7 I2.2 kbps Main Ant 2 10 Edge Right 9400 1880 19.7 I2.2 kbps Main Ant 2 10 Edge Right 9400 1880 19.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Main Ant 2 Back 9400 1880.0 19.7 18.4 0.030 0.040 12.2 kbps Main Ant 2 0 Left Tilt 9400 1880.0 19.7 18.4 0.023 0.031 12.2 kbps Main Ant 2 0 Right Touch 9400 1880.0 19.7 18.4 0.040 0.054 Right Touch 9400 1880.0 19.7 18.4 0.040 0.054 Right Tilt 9400 1880.0 19.7 18.4 0.040 0.054 12.2 kbps Main Ant 2 10 Back 9400 1880 19.7 18.4 0.429 0.575 12.2 kbps Main Ant 2 10 Edge Right 9400 1880 19.7 18.4 0.429 0.575 12.2 kbps Main Ant 2 10 Edge Right 9400 1880 19.7 18.4 0.188 0.252 12.2 kbps Main Ant

Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.4. W-CDMA Band IV

RF Exposure			Dist.	Test		Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Position	Ch #.	(MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	1413	1732.6	18.7	17.2	0.026	0.036	
Head	Head Rel 99 RMC		0	Left Tilt	1413	1732.6	18.7	17.2	0.016	0.022	
Tiedu	Head 12.2 kbps		0	Right Touch	1413	1732.6	18.7	17.2	0.030	0.042	12
				Right Tilt	1413	1732.6	18.7	17.2	0.015	0.021	
Body-Worn	Rel 99 RMC	Main Ant 2	10	Back	1413	1732.6	18.7	17.2	0.235	0.329	13
& Hotspot	12.2 kbps	IVIAIIT ATIL 2	10	Front	1413	1732.6	18.7	17.2	0.212	0.297	
Rel 99 RMC			Edge Right	1413	1732.6	18.7	17.2	0.135	0.189		
Hotspot	12.2 kbps	Main Ant 2	10	Edge Bottom	1413	1732.6	18.7	17.2	0.281	0.393	14

Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.5. LTE Band 2 (20MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	18900	1880	50	50	20.0	19.1	0.027	0.033	
				Leit Touch	19100	1900	1	0	20.0	19.1	0.027	0.034	
				Left Tilt	18900	1880	50	50	20.0	19.1	0.020	0.024	
Head	QPSK	Main Ant 2	0	Leit IIIt	19100	1900	1	0	20.0	19.1	0.020	0.025	
Heau	QFSK	IVIAIIT ATIL 2	0	Right Touch	18900	1880	50	50	20.0	19.1	0.037	0.045	
				Right Touch	19100	1900	1	0	20.0	19.1	0.039	0.048	15
				Right Tilt	18900	1880	50	50	20.0	19.1	0.018	0.022	
				Right Hit	19100	1900	1	0	20.0	19.1	0.017	0.021	
				Back	18900	1880	50	50	20.0	19.1	0.227	0.277	
Body-Worn &	QPSK	Main Ant 2	10	Dack	19100	1900	1	0	20.0	19.1	0.228	0.283	16
Hotspot	QPSK	wan Ant 2	10	Front	18900	1880	50	50	20.0	19.1	0.198	0.241	
				FION	19100	1900	1	0	20.0	19.1	0.210	0.261	
				Edge Right	18900	1880	50	50	20.0	19.1	0.120	0.146	
Hotspot	QPSK	Main Ant 2	10	Euge Right	19100	1900	1	0	20.0	19.1	0.127	0.158	
Ποιομοι	Qr SN	wan An z	10	Edge Dettern	18900	1880	50	50	20.0	19.1	0.473	0.577	
				Edge Bottom	19100	1900	1	0	20.0	19.1	0.491	0.610	17

Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.6. LTE Band 4 (20MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	20175	1732.5	1	99	19.0	18.2	0.032	0.038	
				Leit Touch	20175	1752.5	50	50	19.0	18.0	0.032	0.040	
				Left Tilt	20175	1732.5	1	99	19.0	18.2	0.017	0.020	
Head	QPSK	Main Ant 2	0	Leit Int	20175	1732.5	50	50	19.0	18.0	0.017	0.021	
neau	Gron		0	Right Touch	20175	1732.5	1	99	19.0	18.2	0.036	0.043	
				Right Touch	20175	1732.5	50	50	19.0	18.0	0.038	0.048	18
				Right Tilt	20175	1732.5	1	99	19.0	18.2	0.017	0.020	
				кіўні ніі	20175	1732.5	50	50	19.0	18.0	0.018	0.023	
				Back	20175	1732.5	1	99	19.0	18.2	0.225	0.271	
Body-Worn &	QPSK	Main Ant 2	10	Dack	20175	1752.5	50	50	19.0	18.0	0.226	0.285	19
Hotspot	Gron		10	Front	20175	1732.5	1	99	19.0	18.2	0.172	0.207	
				TION	20175	1752.5	50	50	19.0	18.0	0.173	0.218	
				Edge Right	20175	1732.5	1	99	19.0	18.2	0.134	0.161	
Hotspot	QPSK	Main Ant 2	10	Luge Right	20175	17.52.5	50	50	19.0	18.0	0.135	0.170	
notopot		main Ant 2	10	Edge Bottom	20175	1732.5	1	99	19.0	18.2	0.301	0.362	
				Luge Bollom	20175	1732.5	50	50	19.0	18.0	0.298	0.375	20
Notes:													

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.7. LTE Band 12 (10MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Touch	23095	707.5	1	25	22.0	21.1	0.064	0.078	
				Leit Touch	23095	707.5	25	25	22.0	21.2	0.068	0.082	21
				Left Tilt	23095	707.5	1	25	22.0	21.1	0.031	0.038	
Head	QPSK	Main Ant 1	0	Leit Int	23095	707.5	25	25	22.0	21.2	0.033	0.040	
neau	QPSK	Main Ant T	0	Right Touch	23095	707.5	1	25	22.0	21.1	0.060	0.073	
				Right Touch	23095	707.5	25	25	22.0	21.2	0.062	0.075	
				Right Tilt	00005	707 5	1	25	22.0	21.1	0.039	0.048	
				Right fill	23095	707.5	25	25	22.0	21.2	0.037	0.045	
				Back	23095	707.5	1	25	22.0	21.1	0.122	0.149	
Body-Worn &	QPSK	Main Ant 1	10	Dack	23095	101.5	25	25	22.0	21.2	0.127	0.154	22
Hotspot	QPSK	Main Ant T	10	Front	23095	707.5	1	25	22.0	21.1	0.105	0.128	
				FION	23095	707.5	25	25	22.0	21.2	0.108	0.131	
				Edgo Bottom	23095	707.5	1	25	22.0	21.1	0.038	0.046	
Hotopot	QPSK	Main Ant 1	10	Edge Bottom	23095	101.5	25	25	22.0	21.2	0.041	0.050	
Hotspot	UL SV	iviani Ant i	10	Edge Left	23095	707.5	1	25	22.0	21.1	0.114	0.139	
				Edge Left	23095	101.5	25	25	22.0	21.2	0.117	0.142	

Notes:

10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg

10.8. WLAN & Bluetooth Spot Check Verification

WLAN Spot Check Verification (1g)

	RF				.	Ch #.	Freq. (MHz)		Power (dBm)		FCC ID: PY7-93060R		FCC ID: PY7-17565F			
	Exposure	Mode	Antenna	Dist. (mm)	Test Position			Duty Cycle			1-g SAR (W/kg)		1-g SAR (W/kg)		% Delta	Plot No.
	Conditions								Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		
WLAN 2.4 GHz	Head	802.11b	Chain 0	0	Right Touch	6	2437	99.92%	14.5	14.3	0.505	0.580	0.473	0.498	15.22%	23
WLAN 5.3 GHz	Head	802.11ac VHT160	Chain 0	0	Right Touch	50	5250	99.65%	11.5	11.5	0.277	0.284	0.235	0.238	17.62%	

WLAN Spot Check Verification (10g)

RF Exposure	RF				Test				Power (dBm)		FCC ID: PY7-93060R		FCC ID: PY7-17565F			
		de Antenna	Dist. (mm)	Position	Ch #.	Freq. (MHz)	Duty Cycle			10-g SAR (W/kg)		10-g SAR (W/kg)		% Delta	Plot No.	
	Conditions								Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		
WLAN 5.5 GHz	Extremity	802.11ac (VHT160)		0	Back	114	5570	99.65%	11.5	10.9	0.400	0.44	0.331	0.378	9.37%	24

Bluetooth Spot Check Verification (1g)

	RF				Test	Ch #.		Power	Power (dBm)		FCC ID: PY7-93060R		FCC ID: PY7-17565F		
	Exposure Conditions	Mode	Antenna	Dist. (mm)	Position		Freq. (MHz)			1-g SAR (W/kg)		1-g SAR (W/kg)		% Delta	Plot No.
	Conditions							Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		
Bluetooth	Head	GFSK	Chain 0	0	Right Touch	39	2441	14.0	13.0	0.191	0.195	0.166	0.210	7.61%	

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

SAR Measurement Variability

Repeated measurement is not required since the original highest measured SAR is <0.8 W/kg (1-g) or 2 W/kg (10-g).

12. Simultaneous Transmission Conditions

RF Exposure	Тх	WWAN	W	LAN/BT Chair	n 0	W	LAN/BT Chair	n 1
Conditions	Mode	ain Ant 1/ Ant	2.4 GHz	5 GHz	BT	2.4 GHz	5 GHz	BT
	1	х	Х			х		
Head & Body-worn & Hotspot	2	х		х			х	
	3	х		х	х		х	
	4	х		х			х	х
	5	х	х	х		х	х	
	6	х	Х			х		
	7	х		х			х	
Extremity	8	х		х	х		x	
	9	х		х			х	х
	10	х	х	х		х	х	

Note(s):

- Cellular Main Antenna 1 and Cellular Main Antenna 2 can not transmit simultaneously

- WLAN 2.4GHz and Bluetooth radio can not transmit simultaneously

- WLAN 2.4GHz and WLAN 5GHz radio can transmit simultaneously

- 10-g extremity SAR is not required since hotspot mode 1-g reported SAR < 1.2 W/kg for all bands that supports hotspot

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

				Stan	dalone SAR (V	V/kg)			∑ 1-g SAR (W/kg)					
RF Exposure conditions	Test Position	WWAN	D	TS	U-NII		B	зт	WWAN+ DTS	WWAN+ U-NII	WWAN + UNII + BT	WWAN + UNII + BT		
conditions		Main Ant 1	Chain 0 ②	Chain 1 ③	Chain 0 ④	Chain 1 ⑤	Chain 0 6	Chain 1 ⑦	1+2+3	1+4+5	1+4+5+6	1+4+5+7		
	Left Touch	0.188	0.147	0.001	0.284	0.001	0.040	0.001	0.336	0.473	0.513	0.474		
Head	Left Tilt	0.059	0.147	0.001	0.284	0.001	0.007	0.001	0.207	0.344	0.351	0.345		
пеац	Right Touch	0.142	0.580	0.001	0.284	0.001	0.210	0.001	0.723	0.427	0.637	0.428		
	Right Tilt	0.055	0.147	0.001	0.284	0.001	0.039	0.001	0.203	0.340	0.379	0.341		
Body-worn &	Back	0.173	0.122	0.121	0.050	0.099	0.045	0.036	0.416	0.322	0.367	0.358		
Hotspot	Front	0.152	0.122	0.121	0.050	0.099	0.027	0.001	0.395	0.301	0.328	0.302		
	Edge Top		0.232		0.050		0.002		0.232	0.050	0.052	0.050		
Hotspot	Edge Bottom	0.050		0.121		0.099		0.001	0.171	0.149	0.149	0.150		
	Edge Left	0.230	0.232	0.121	0.116	0.099	0.070	0.004	0.583	0.445	0.515	0.449		
Hotspot				-	0.116				-					

12.2. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Normal State & BT

Note(s):

• WLAN and Bluetooth SAR results from UL report # 14311585-S1 are listed above. Refer to note in §1.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR is < 1.6 W/kg.

12.3. Sum of the SAR for WWAN Main Ant 1 & Wi-Fi Simultaneous 2G_5G State

Touch	WWAN Main Ant 1 ① 0.188	D Chain 0 ②	FS Chain 1 (3)	U- Chain 0	NII Chain 1	WWAN + DTS + UNII	
	1			Chain 0	Chain 1		
	0.188		3	4	5	1+2+3+4+5	
6 TH		0.073	0.001	0.176	0.001	0.439	
eft Tilt	0.059	0.073	0.001	0.176	0.001	0.310	
nt Touch	0.142	0.415	0.001	0.176	0.001	0.735	
ght Tilt	0.055	0.073	0.001	0.176	0.001	0.306	
Back	0.173	0.048	0.112	0.029	0.055	0.417	
Front	0.152	0.048	0.112	0.029	0.055	0.396	
де Тор		0.048		0.049		0.097	
Bottom	0.050		0.112		0.055	0.217	
ge Left	0.230	0.119	0.112	0.049	0.055	0.565	
gh Ba Fro ge e E	nt Tilt ack ont e Top Bottom	ack 0.055 ack 0.173 ont 0.152 ack 0.050	It Tilt 0.055 0.073 ack 0.173 0.048 ont 0.152 0.048 ack 0.050 0.048	Int Tilt 0.055 0.073 0.001 ack 0.173 0.048 0.112 ont 0.152 0.048 0.112 o Top 0.050 0.048 0.112	ht Tilt 0.055 0.073 0.001 0.176 ack 0.173 0.048 0.112 0.029 ont 0.152 0.048 0.112 0.029 a Top 0.050 0.048 0.112 0.049	nt Tilt 0.055 0.073 0.001 0.176 0.001 ack 0.173 0.048 0.112 0.029 0.055 ont 0.152 0.048 0.112 0.029 0.055 o Top 0.048 0.112 0.049 0.055 Bottom 0.050 0.112 0.049 0.055	

Note(s):

WLAN and Bluetooth SAR results from UL report # 14311585-S1 are listed above. Refer to note in §1.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR is < 1.6 W/kg.

12.4. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Normal State & BT

				Stan	dalone SAR (V	V/kg)			∑ 1-g SAR (W/kg)					
RF Exposure conditions	Test Position	WWAN	DTS		U-	NII	B	зт	WWAN+ DTS	WWAN+ U-NII	WWAN + UNII + BT	WWAN + UNII + BT		
conditions		Main Ant 2	Chain 0 ②	Chain 1 ③	Chain 0 ④	Chain 1 ⑤	Chain 0 6	Chain 1 ⑦	1+2+3	1+4+5	1+4+5+6	1+4+5+7		
	Left Touch	0.040	0.147	0.001	0.284	0.001	0.040	0.001	0.188	0.325	0.365	0.326		
Head	Left Tilt	0.031	0.147	0.001	0.284	0.001	0.007	0.001	0.179	0.316	0.323	0.317		
неао	Right Touch	0.054	0.580	0.001	0.284	0.001	0.210	0.001	0.635	0.339	0.549	0.340		
	Right Tilt	0.023	0.147	0.001	0.284	0.001	0.039	0.001	0.171	0.308	0.347	0.309		
Body-worn &	Back	0.575	0.122	0.121	0.050	0.099	0.045	0.036	0.818	0.724	0.769	0.760		
Hotspot	Front	0.403	0.122	0.121	0.050	0.099	0.027	0.001	0.646	0.552	0.579	0.553		
	Edge Top		0.232		0.050		0.002		0.232	0.050	0.052	0.050		
Hotspot	Edge Bottom	0.631		0.121		0.099		0.001	0.752	0.730	0.730	0.731		
	Edge Left		0.232	0.121	0.116	0.099	0.070	0.004	0.353	0.215	0.285	0.219		

Note(s):

WLAN and Bluetooth SAR results from UL report # 14311585-S1 are listed above. Refer to note in §1.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR is < 1.6 W/kg.

12.5. Sum of the SAR for WWAN Main Ant 2 & Wi-Fi Simultaneous 2G_5G State

			Stan	dalone SAR (V	V/kg)		∑ 1-g SAR (W/kg)
RF Exposure conditions	Test Position	WWAN	D	rs	U-	NII	WWAN + DTS + UNII
conditions		Main Ant 2	Chain 0 ②	Chain 1 ③	Chain 0 ④	Chain 1 ⑤	1+2+3+4+5
	Left Touch	0.040	0.073	0.001	0.176	0.001	0.291
Head	Left Tilt	0.031	0.073	0.001	0.176	0.001	0.282
пеац	Right Touch	0.054	0.415	0.001	0.176	0.001	0.647
	Right Tilt	0.023	0.073	0.001	0.176	0.001	0.274
Body-worn &	Back	0.575	0.048	0.112	0.029	0.055	0.819
Hotspot	Front	0.403	0.048	0.112	0.029	0.055	0.647
	Edge Top		0.048		0.049		0.097
Hotspot	Edge Bottom	0.631		0.112		0.055	0.798
	Edge Left		0.119	0.112	0.049	0.055	0.335

Note(s):

WLAN and Bluetooth SAR results from UL report # 14311585-S1 are listed above. Refer to note in §1.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1-g SAR is < 1.6 W/kg.

Appendixes

Refer to separated files for the following appendixes.

- Appendix A: SAR Setup Photos
- Appendix B: SAR System Check Plots
- Appendix C: SAR Highest Test Plots
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

END OF REPORT