

FCC Test Report

APPLICANT	: Sony Mobile Communications Inc.
EQUIPMENT	: Wireless Headset
BRAND NAME	: Sony
FCC ID	: PY7-13007N
STANDARD	: FCC Part 15 Subpart C
CLASSIFICATION	: Low Power Communication Device Transmitter (DXX)

The product was received on Oct. 06, 2017 and completely tested on Nov. 13, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-13007N

Page Number	: 1 of 20
Report Issued Date	: Jan. 16, 2018
Report Version	: Rev. 03

TABLE OF CONTENTS

RE	VISION	I HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1.	GENE	RAL DESCRIPTION	5
	1.1.	Applicant	5
	1.2.	Manufacturer	
	1.3.	Feature of Equipment Under Test	5
	1.4.	Product Specification of Equipment Under Test	5
	1.5.	Modification of EUT	5
	1.6.	Test Location	6
	1.7.	Applied Standards	6
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1.	Test Mode	7
	2.2.	Connection Diagram of Test System	
	2.3.	Support Unit used in test configuration and system	7
3.	TEST	RESULT	
	3.1.	20dB and 99% Occupied Bandwidth Measurement	8
	3.2.	Radiated Emission	
	3.3.	Antenna Requirements	18
4.	LIST	OF MEASURING EQUIPMENT	19
5.	UNCE	RTAINTY OF EVALUATION	20

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR700620-01C	Rev. 01	Initial issue of report	Jan. 04, 2018
FR7O0620-01C	Rev. 02	Revising the test description in section 2.1 and 3.2.7, and add accessories in section 2.3.	Jan. 09, 2018
FR7O0620-01C	Rev. 03	Add test panels description in section 2.1 and remover support equipment test data.	Jan. 16, 2018

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049	20dB Bandwidth	-	-	Reporting Only
3.1	-	99% Occupied Bandwidth	-	-	Reporting Only
3.2	15.209	Radiated Emission	15.209(a)	Pass	Under limit 10.50 dB at 953.800 MHz
3.3	15.203	Antenna Requirements	Non Standard Type	Pass	-

1. General Description

1.1. Applicant

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.2. Manufacturer

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.3. Feature of Equipment Under Test

10.579MHz

Product Specification subjective to this standard			
Antenna Type	Coil Antenna		

EUT Information List					
HWSWPerformedVersionVersionTest Item					
A	0.0.26	N/A	RF conducted measurement Radiated Spurious Emission		

1.4. Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range 10.579MHz				
Channel Number	1			
Type of Modulation	ADPCM			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
	TH03-HY	03CH07-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.7. Applied Standards

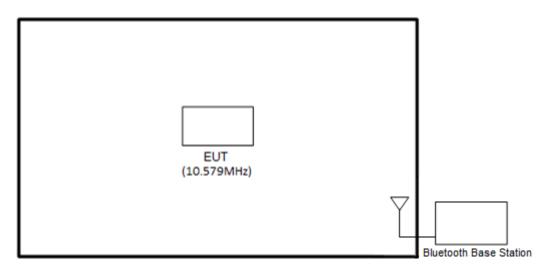
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

2.1. Test Mode


The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: radiation (9 kHz to the 1000MHz).

For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report

Test Items	Function Type					
Radiated Emission Mode 1: 10.579 MHz Link with between the EUT and support equipn						
Remark: For radiated emission test items, Bluetooth base station link with the EUT, and EUT use 10.579 MHz technology to connect with support equipment for continuous transmitting.						

2.2. Connection Diagram of Test System

Note: Bluetooth base station is only use support equipment for 10.579 MHz link

2.3. Support Unit used in test configuration and system

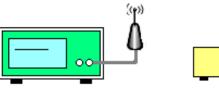
Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	Wireless Headset	Sony	N/A	PY7-37030I	N/A	N/A

3. Test Result

3.1. 20dB and 99% Occupied Bandwidth Measurement

3.1.1 Limit of 20dB and 99% Occupied Bandwidth

Reporting only


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

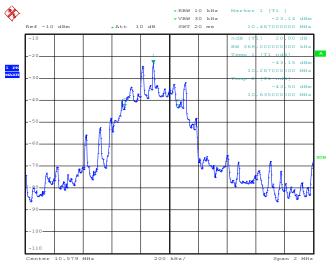
3.1.3 Test Procedures

- 1. The 20dB bandwidth is measured with a spectrum analyzer connected via a receiver antenna placed near the EUT in peak Max hold mode.
- 2. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
- 3. For Bandwidth measurement, the RBW= 10kHz, and VBW = 30kHz. Sweep = 20ms;
- 4. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

		-


EUT


3.1.5 Test Result of 20dB and 99% Bandwidth

Test Engineer :	Shiming Liu	Temperature :	21~25 ℃
rest Engineer :		Relative Humidity :	51~54%

20 dB Bandwidth Plot

Date: 27.0CT.2017 10:01:51

99% Occupied Bandwidth Plot

Date: 27.0CT.2017 10:00:47

3.2. Radiated Emission

3.2.1. Limit of Radiated Emission

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3. Measuring Instrument Setting

The following table is the setting of receiver.

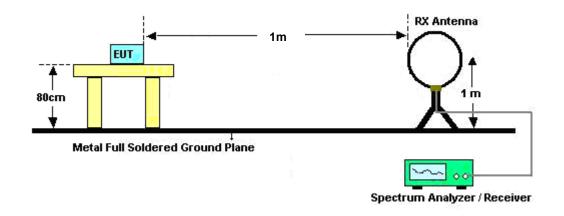
Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

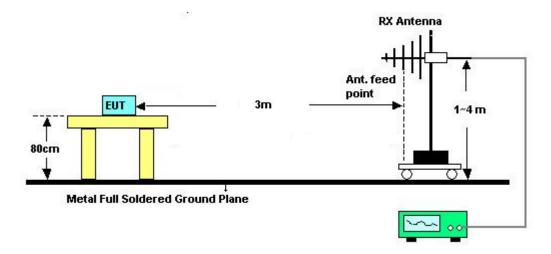
3.2.4. Test Procedures

<9kHz-30MHz>

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 1 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.


<30MHz-1GHz>

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.


3.2.5. Test Setup of Radiated Emission

For radiated emissions below 30MHz

Note: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

For radiated emissions above 30MHz

3.2.6. Test Result of Radiated Emission (9kHz ~ 30MHz)

Test Engineer : Test Distance :	Jesse				-	Temperature :			22~24°C				
Fest Distance :		Wang a	and Sta	an Hsieł	Relat	Relative Humidity : 51~53%							
	1m				Pola	Polarization : Horizontal							
Function Type :	10.579	10.579 MHz Link with between the EUT and support equipment											
Remark:	#7 is f	undame	ental si	gnal.									
	l (dBuV/m))								Date: 201	7-11-13		
130													
110													
90										15.2	09_1M		
70													
50 ⁶				7									
50						8		9		1	0		
30													
10													
-10													
-200.009)	6.007	,	12.0		1 ncy (MHz)	8.004		24.002		3	0	
Site		03CH07	7_HV		Treque	110y (11112)							
Condition				OOP-AN	IT(H)10	0488 H(TAL					
Project		700620	-01										
Mode	:	1	0ver	Limit	Road	ntonno	Cable	A /Pos	T /Poc				
	Freq	Level			Level		Loss	AFUS	1/FUS	Remark			
	MHZ	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	CM	deg				
1				146.34						Average			
2 3	0.06 0.09			130.82 127.38			0.72 0.72			Average	2		
4				127.56		20.01	0.72			Average			
5				123.02			0.72			Average			
6				92.88			0.72						
7				88.58		20.12	0.72			-			
8				88.58			0.72						
9				88.58			1.71						
10	28.06	38.56	-50.02	88.58	16.59	20.26	1.71	100	0	QP			

	Mode 1				Temp	Temperature :			22~24°C			
Test Engineer :	Jesse Wang and Stan Hsieh				Relat	Relative Humidity : 51~53%			53%			
Fest Distance :	1m				Pola	Polarization : Vertical						
Function Type :	10.579 MHz Link with between the EUT and support equipment											
Remark:	#7 is f	undam	ental si	gnal.								
140 Leve	l (dBuV/m))								Date: 2017-	11-1:	
130												
110												
90										15.209	<u>_1M</u>	
70												
70												
50				7								
304 0						8	9				10	
30												
10												
10												
10												
-10												
)	6.007	7	12.0			8.004		24.002			
-10 -20 <mark>0.009</mark>				12.0		1 ncy (MHz)	8.004		24.002		:	
-10 -20 0.009 Site	:	03CH07	7-НУ		Freque	ncy (MHz)			24.002			
-10 -20 <mark>0.009</mark>	: 1 :	03CH07	7-HY _1M 3m l	12.0 _OOP-AN	Freque	ncy (MHz)			24.002		:	
-10 -20 0.009 Site Condition	n :	03CH07 15.209_	7-HY _1M 3m L)-01	_OOP-AN	Freque	ncy (MHz) 0488 VE	RTICAL				;	
-10 -20 Site Condition Project	n : :	03CH07 15.209 <u>-</u> 7₀0620 1	7-HY _1M 3m l 1-01 Over	_OOP-AN	Freque JT(V)10 ReadA	ncy (MHz) 0488 VE Intenna	RTICAL Cable					
-10 -20 0.009 Site Condition Project	n : :	03CH07 15.209 <u>-</u> 7₀0620 1	7-HY _1M 3m L -01 Over Limit	_OOP-AN Limit Line	Freque JT(V)10 ReadA	ncy (MHz) 0488 VE Intenna	RTICAL			Remark		
-10 -20 0.009 Site Condition Project	n : Freq	03CH07 15.209 <u>-</u> 7₀0620 1	7-HY _1M 3m L -01 Over Limit	_OOP-AN	Freque JT(V)10 ReadA	ncy (MHz) 0488 VE Intenna	RTICAL Cable			Remark		
-10 -20 0.009 Site Condition Project	n : Freq MHz	03CH07 15.209_ 7o0620 1 Level dBuV/m	7-HY _1M 3m L 0-01 Over Limit dB	_OOP-AN Limit Line	Freque JT(V)10 ReadA Level dBuV	ncy (MHz) 0488 VE ntenna Factor dB/m	RTICAL Cable Loss	A/Pos	T/Pos deg	Remark		
-10 -20 0.009 Site Condition Project Mode	1 : Freq MHz 0.01 0.06	03CH07 15.209_ 700620 1 Level dBuV/m 47.27 46.31	7-HY _1M 3m l -O1 	Limit Line dBuV/m 147.29 131.07	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06	RTICAL Cable Loss dB 0.72 0.72	A/Pos cm 	T/Pos deg	Remark Average Average		
-10 -20 0.009 Site Condition Project Mode	n : Freq MHz 0.01 0.06 0.09	03CH07 15.209_ 700620 1 Level dBuV/m 47.27 46.31 46.37	7-HY 1M 3m l -01 Uver Limit dB -100.02 -84.76 -81.06	Limit Line dBuV/m 147.29 131.07 127.43	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01	Cable Loss dB 0.72 0.72 0.72	A/Pos 	T/Pos deg 	Average Average QP		
-10 -20 0.009 Site Condition Project Mode	n : Freq MHz 0.01 0.06 0.09 0.11	03CH07 15.209_ 700620 1 Level 47.27 46.31 46.37 45.32	7-HY 1M 3m l -01 Uver Limit dB -100.02 -84.76 -81.06 -80.52	Limit Line dBuV/m 147.29 131.07 127.43 125.84	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64 24.60	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01 20.00	Cable Loss dB 0.72 0.72 0.72 0.72 0.72	A/Pos 	T/Pos deg 	Average Average QP Average		
-10 -20 0.009 Site Condition Project Mode	n : Freq MHz 0.01 0.06 0.09 0.11 0.15	03CH07 15.209_ 700620 1 Level 47.27 46.31 46.37 45.32 46.25	7-HY 1M 3m l -01 0ver Limit dB -100.02 -84.76 -81.06 -80.52 -76.91	Limit Line dBuV/m 147.29 131.07 127.43	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64 24.60 25.54	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01 20.00 19.99	Cable Loss dB 0.72 0.72 0.72 0.72 0.72	A/Pos 	T/Pos deg 	Remark Average Average QP Average Average		
-10 -20 0.009 Site Condition Project Mode 1 2 3 4 5 6 7	Freq MHz 0.01 0.06 0.09 0.11 0.15 0.75	03CH07 15.209_ 700620 1 Level 47.27 46.31 46.37 45.32 46.25 45.82	7-HY 1M 3m l -01 0ver Limit dB -100.02 -84.76 -81.06 -80.52 -76.91 -43.43	Limit Line dBuV/m 147.29 131.07 127.43 125.84 123.16	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64 24.60 25.54 25.54	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01 20.00 19.99 19.98	Cable Loss dB 0.72 0.72 0.72 0.72 0.72 0.72	A/Pos	T/Pos deg 	Remark Average Average QP Average Average QP		
-10 -20 0.009 Site Condition Project Mode 1 2 3 4 5 6 7 8	Freq MHz 0.01 0.06 0.09 0.11 0.15 0.75 10.58 15.79	03CH07 15.209_ 700620 1 Level 47.27 46.31 46.37 45.32 46.25 45.82 47.50 36.39	7-HY 1M 3m l -01 0ver Limit dB -100.02 -84.76 -81.06 -80.52 -76.91 -43.43 -41.08 -52.19	Limit Line dBuV/m 147.29 131.07 127.43 125.84 123.16 89.25 88.58 88.58	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64 24.60 25.54 25.55 25.54 25.55	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01 20.00 19.99 19.98 20.12 20.18	Cable Loss dB 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	A/Pos cm 	T/Pos deg 	Remark Average Average QP Average QP QP QP QP		
-10 -20 0.009 Site Condition Project Mode 1 2 3 4 5 6 7	Freq MHz 0.01 0.06 0.09 0.11 0.15 0.75 10.58 15.79 18.04	03CH07 15.209_ 700620 1 Level 47.27 46.31 46.37 45.32 46.25 45.82 47.50 36.39 37.79	7-HY 1M 3m l -01 0ver Limit dB -100.02 -84.76 -81.06 -80.52 -76.91 -43.43 -41.08 -52.19 -50.79	Limit Line dBuV/m 147.29 131.07 127.43 125.84 123.16 89.25 88.58	Freque IT(V)100 ReadA Leve1 dBuV 26.50 25.53 25.64 24.60 25.54 25.65 25.54 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.65 25.64	ncy (MHz) 0488 VE ntenna Factor dB/m 20.05 20.06 20.01 20.00 19.99 19.98 20.12 20.18 20.25	RTICAL Cable Loss dB 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72	A/Pos cm 	T/Pos deg 	Remark Average Average QP Average QP QP QP QP QP		

3.2.7. Test Result of Radiated Emission (30MHz ~ 1000MHz)

Test Mode :	Mode	1			Temp	Temperature :			22~24°C			
Test Engineer :	Jesse	Wang	and Sta	n Hsieh	Relat	Relative Humidity : 5			51~53%			
Test Distance :	3m				Polar	Polarization : Horizontal						
Function Type :	10.579) MHz I	_ink wit	h betwe	en the	EUT ar	nd supp	ort equ	iipment			
Remark :	#4, 5 and 6 are test site noise floor.											
80Leve	l (dBuV/m)									Date: 201	17-11-13	
70												
60												
50											QP	
50												
40									4	5	6	
30						. has d		down the particular	help the house have	numeror	Contraction of the second	
2	3		Acres Acres	unavariantilit	dearly the same and	With And Concerned						
20	proven	Wern all white man	and the opposite of the second									
10												
0 <mark>30</mark>		224.		418		ncy (MHz)	612.		806.		1000	
Site		03CH07		25410///								
Condition Project		700620		-35419(6)	HURL		L					
Mode	:	1	Over	Limit	RoadA	ntonno	Cable	Decomp	A /Pos	T /Pos		
	Freq	Level	Limit						A/FUS	17F05	Remark	
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	cm	deg		
1	30.00	28.10	-11.90	40.00	33.02	24.72	1.71	31.35			Peak	
				40.00			1.71	31.55			Peak	
3 4				40.00 46.00				30.60			Peak Peak	
5	884.50	33.41	-12.59	46.00	29.67	29.00	5.27	30.53			Peak	
6	951.70	35.47	-10.53	46.00	30.01	30.57	5.40	30.51	100	0	Peak	

	Mode 1				Temperature :			22~2	22~24°C			
Test Engineer :	Jesse	Wang a	and Sta	Relat	Relative Humidity : 51~53				~53%			
Test Distance :	3m				Polar	Polarization : Vertical						
unction Type : 10.579 MHz Link with between the EUT and support equipment												
Remark :	#4, 5 a	and 6 ar	re test s	site nois	e floor.							
80	l (dBuV/m)									Date: 201	7-11-13	
70												
60											QP	
50												
40											6	
								4	a streak with with the	numperly ram	No. A. S.	
30				Alterlandulang	مصلعاتهما أذرون	weller ter to make	shandow for some how	and a state of the second	Par internation			
20	3		monthing	All and	Walnut at .							
	3 Mundin Manaka	Mr. w. W. W. W. W. W.										
10	+											
0 <mark></mark> 30		224.		418			612.		806.		1000	
Site		03CH07			Freque	ncy (MHz)						
Condition				35419(6)	VERTI	CAL						
Project		700620										
Mode	:	1	Over	1.4	D 44		C-1-1-	D	A (D	т (П		
	Freq	Level		Limit Line		Factor	Cable Loss	Freamp Factor	A/Pos	1/Pos	Remark	
		10.14										
	MHZ	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	CM	deg		
			10 00	10 00	32 00	24.72	1.71	31.35			Peak	
1		27.17									D = - l -	
2	45.39	21.36	-18.64	40.00	34.97	16.24		31.56			Peak Peak	
	45.39 79.95	21.36 19.29	-18.64 -20.71	40.00 40.00	34.97 35.57	16.24 13.19	2.11	31.58			Peak Peak Peak	
2 3 4 5	45.39 79.95 750.10 883.80	21.36 19.29 33.05 33.00	-18.64 -20.71 -12.95 -13.00	40.00 40.00	34.97 35.57 30.90 29.25	16.24 13.19 27.90 29.01	2.11 4.88 5.27				Peak	

3.3. Antenna Requirements

3.3.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP30	101067	9kHz~30GHz	Jun. 26, 2017	Oct. 27, 2017	Jun. 25, 2018	Conducted (TH03-HY)
Hygrometer	Testo	608-H1	34893241	N/A	Nov. 16, 2016	Oct. 27, 2017	Nov. 15, 2017	Conducted (TH03-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY842095 21	1GHz~26GHz	Dec. 02, 2016	Oct. 27, 2017	Dec. 01, 2017	Conducted (TH03-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	35419&03	30MHz to 1GHz	Jan. 07, 2017	Nov. 13, 2017	Jan. 06, 2018	Radiation (03CH07-HY)
Hygrometer	Testo	HTC-2	1	N/A	Jun. 27, 2017	Nov. 13, 2017	Jun. 26, 2018	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 14, 2017	Nov. 13, 2017	Mar. 13, 2018	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	Y8420952 1+MY8420 9521	9KHz~30MHz	Jan. 03, 2017	Nov. 13, 2017	Jan. 02, 2018	Radiation (03CH07-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY842095 21	30MHz~1GHz	Jan. 03, 2017	Nov. 13, 2017	Jan. 02, 2018	Radiation (03CH07-HY)
Controller	ChainTek	Chaintek 3000	N/A	Control Turn table	N/A	Nov. 13, 2017	N/A	Radiation (03CH07-HY)
Controller	Max-Full	MF7802	MF780208 368	Control Ant Mast	N/A	Nov. 13, 2017	N/A	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Nov. 13, 2017	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Nov. 13, 2017	N/A	Radiation (03CH07-HY)
Loop Cable	Rohde & Schwarz	N/A	N/A	9KHz~30MHz	Jan. 03, 2017	Nov. 13, 2017	Jan. 02, 2018	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Nov. 13, 2017	Oct. 19, 2018	Radiation (03CH07-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY532900 53	20Hz to 26.5GHz	Jan. 12, 2017	Nov. 13, 2017	Jan. 11, 2018	Radiation (03CH07-HY)

5. Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	5.70
Confidence of 95% (U = 2Uc(y))	5.70