Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

Certificate No: D750V3-1019_Mar17

S

С

S

Dbject	D750V3 - SN:107	19	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	March 13, 2017		
his calibration certificate docum	ents the traceability to nati	ional standards, which realize the physical uni	its of measurements (SI).
he measurements and the unce	ertainties with confidence p	probability are given on the following pages an	d are part of the certificate.
Il calibrations have been condu	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°C	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	I L Unital IVI Calibiation		
	ID #	Cal Date (Certificate No.)	Scheduled Calibration
mary Standards	-	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289)	Scheduled Calibration Apr-17
mary Standards wer meter NRP	ID #		
mary Standards wer meter NRP wer sensor NRP-Z91	ID # SN: 104778	06-Apr-16 (No. 217-02288/02289)	Apr-17
imary Standards wer meter NRP wer sensor NRP-Z91 wer sensor NRP-Z91	ID # SN: 104778 SN: 103244	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288)	Apr-17 Apr-17
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator	ID # SN: 104778 SN: 103244 SN: 103245	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17 Apr-17
imary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	Apr-17 Apr-17 Apr-17 Apr-17
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
rimary Standards ower meter NRP ower sensor NRP-Z91 ower sensor NRP-Z91 eference 20 dB Attenuator ype-N mismatch combination eference Probe EX3DV4 AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-17
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Regenerator R&S SMT-06	ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02288) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02292) 05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16) 04-Jan-17 (No. DAE4-601_Jan17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-16)	Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Dec-17 Jan-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura

S

С

S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	24.82
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.76 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.80 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.4 Ω + 3.2 jΩ
Return Loss	- 23.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω + 0.3 jΩ	
Return Loss	- 34.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.038 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

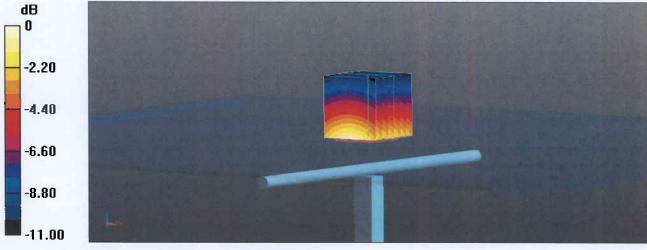
Manufactured by	SPEAG
Manufactured on	November 11, 2010

DASY5 Validation Report for Head TSL

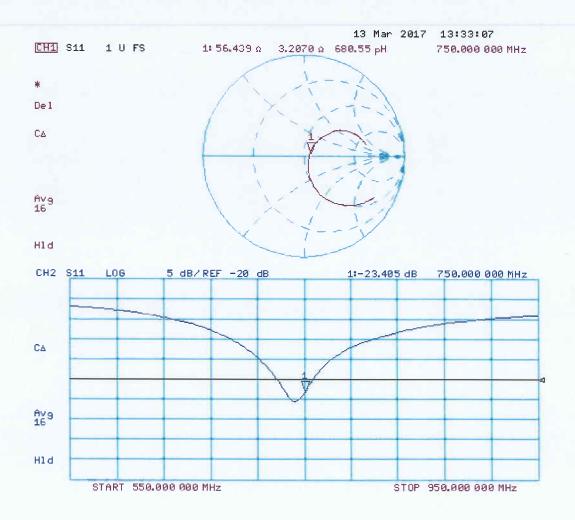
Date: 13.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1019


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.17, 10.17, 10.17); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.81 W/kg

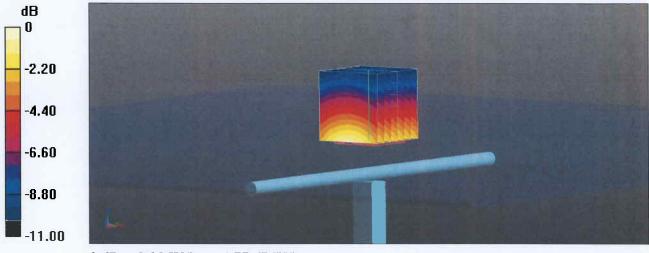
0 dB = 2.81 W/kg = 4.49 dBW/kg

DASY5 Validation Report for Body TSL

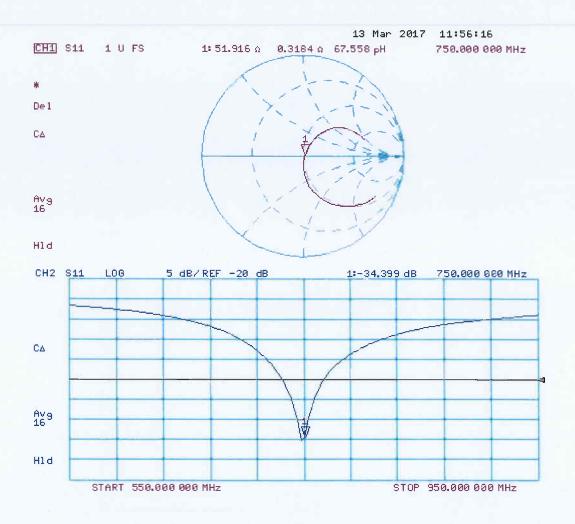
Date: 13.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1019


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 54.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.25 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.36 W/kg SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.48 W/kg Maximum value of SAR (measured) = 3.00 W/kg

0 dB = 3.00 W/kg = 4.77 dBW/kg

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 23/May/2017

CERTIFICATE NUMBER : 11762345JD01B

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	09/May/2017
Manufacturer:	Speag		
Type/Model Number:	D835V2		
Serial Number:	4d117		
Calibration Date:	22/May/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

.....

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	18 Nov 2016	12
A2587	Probe	SPEAG	ES3DV3	3341	29 Aug 2016	12
PRE0159049	Dipole	SPEAG	D835V2	438	28 April 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	09 May 2016	12
M1768	Signal Generator	Rhode & Schwarz	SME06	837633/001	08 Nov 2016	12

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: RX90L	
Robot Serial Number: F00/SD89A1/A/01	
DASY Version:	DASY 4 (v4.7.80)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre: 15 mm (with spacer)	
Frequency:	835 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room Temp Liquid Temp Parameters		Target	Measured	Uncertainty					
	(MHz)	(MHz) Start End Start End	Falameters	Value	Value	(%)					
Head	835	835 21.0 °C 21.0 °C 21.0°C 21.0°C 21.0	°C 21.0 °C 21.0°C 4	21.0%	21.0°C 21.0°C	21.0 °C 21.0°C	21 0°C	٤r	41.50	39.79	± 5%
Head 835	21.0 °C 21.0 °C 2		21.0 C	21.0 C 21.0 C	σ	0.90	0.91	± 5%			

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	2.37 W/Kg	9.43 W/Kg	± 17.57%
neau	SAR averaged over 10g	1.53 W/Kg	6.09 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.5 Ω 1.37 jΩ	± 0.28 Ω ± 0.044 jΩ
neau	Return Loss	31.40	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

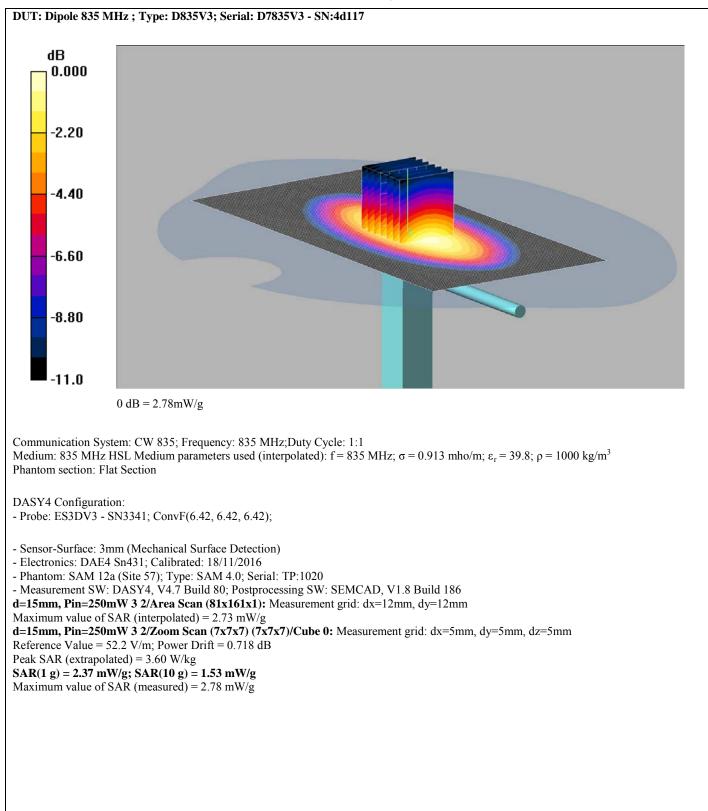
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room Ten		Liquid Temp		Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Body	835	835 21.0 °C 21.0 °C 21.0 °C	21 0°C	c 21.0°C	٤r	55.20	53.58	± 5%	
Bouy	000		21.0°C 21.0°C		σ	0.97	1.00	± 5%	

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Pody	SAR averaged over 1g	2.61 W/Kg	10.39 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.70 W/Kg	6.76 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

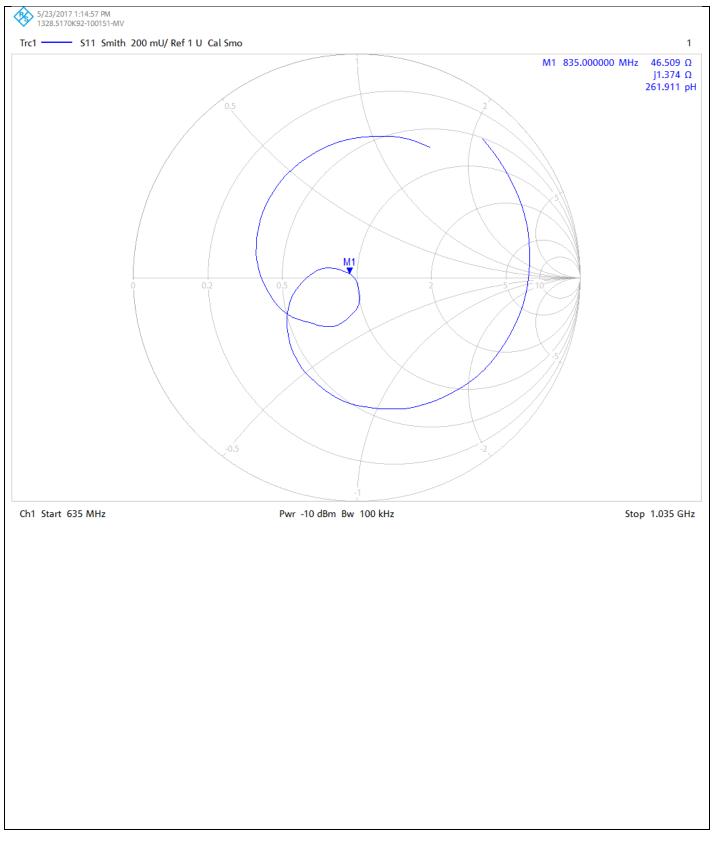

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	45.70 Ω 5.83 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	22.89	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11762345JD01B

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

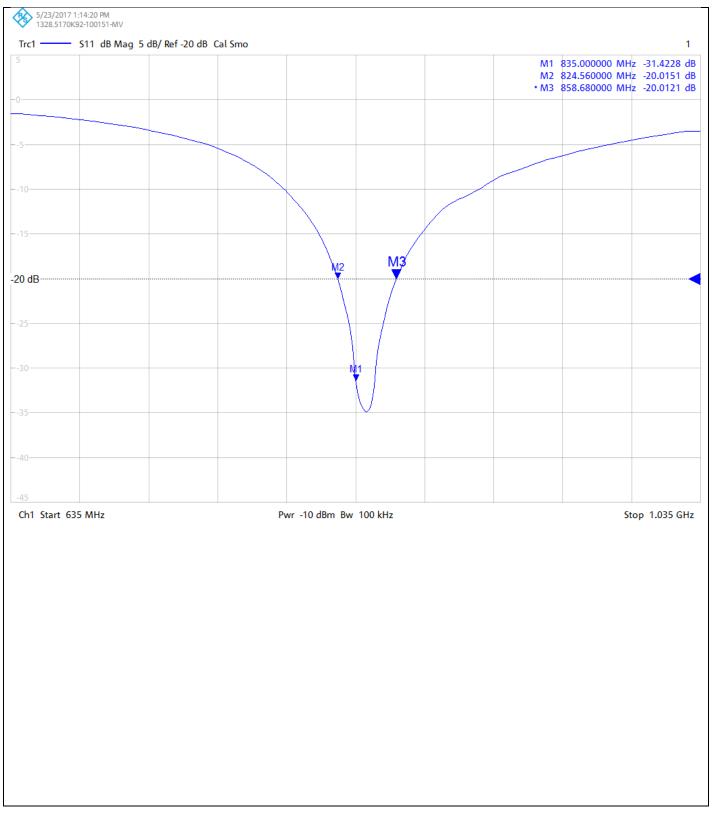


CERTIFICATE NUMBER : 11762345JD01B

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

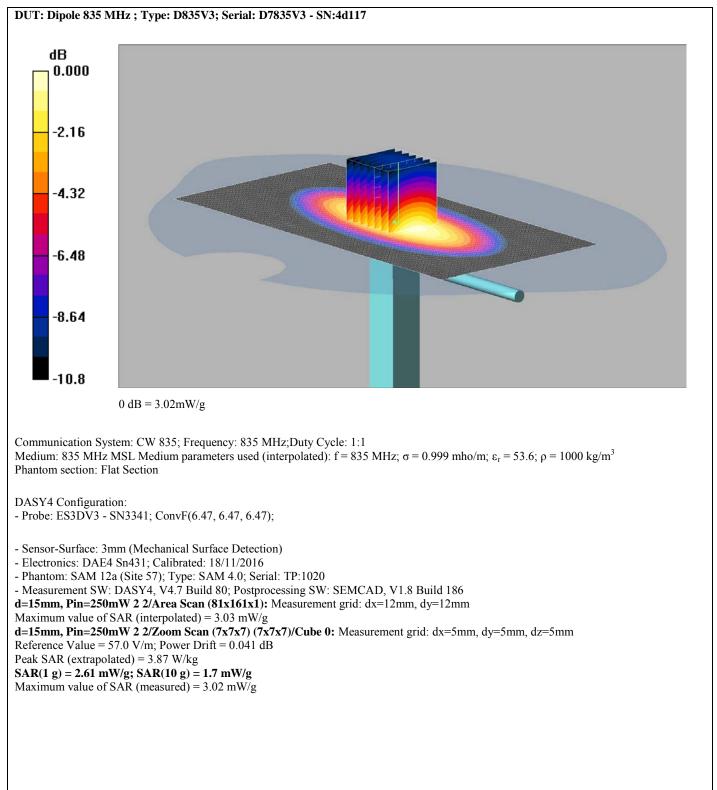


CERTIFICATE NUMBER : 11762345JD01B

UKAS Accredited Calibration Laboratory No. 5248

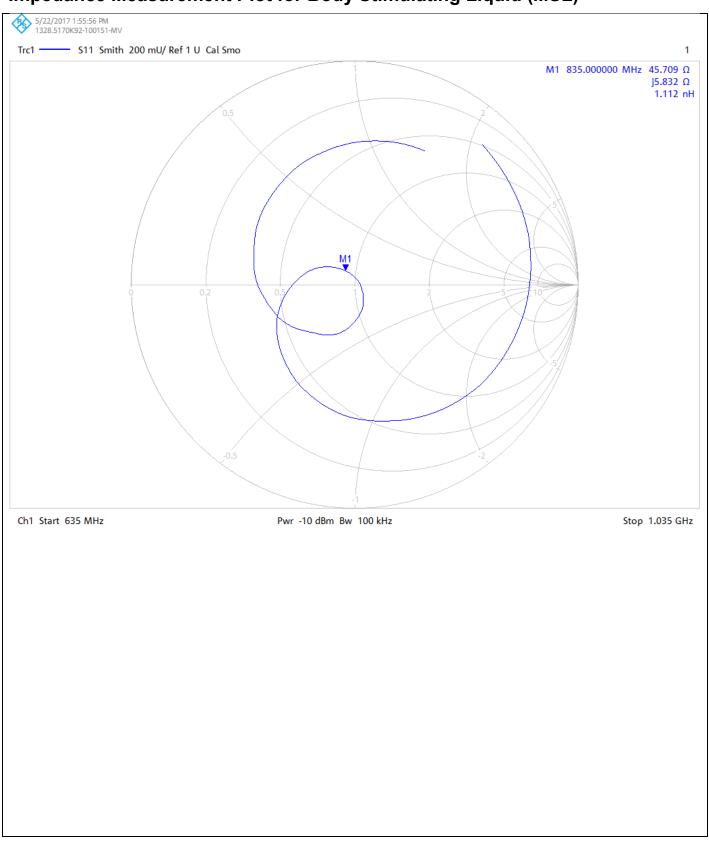
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 11762345JD01B

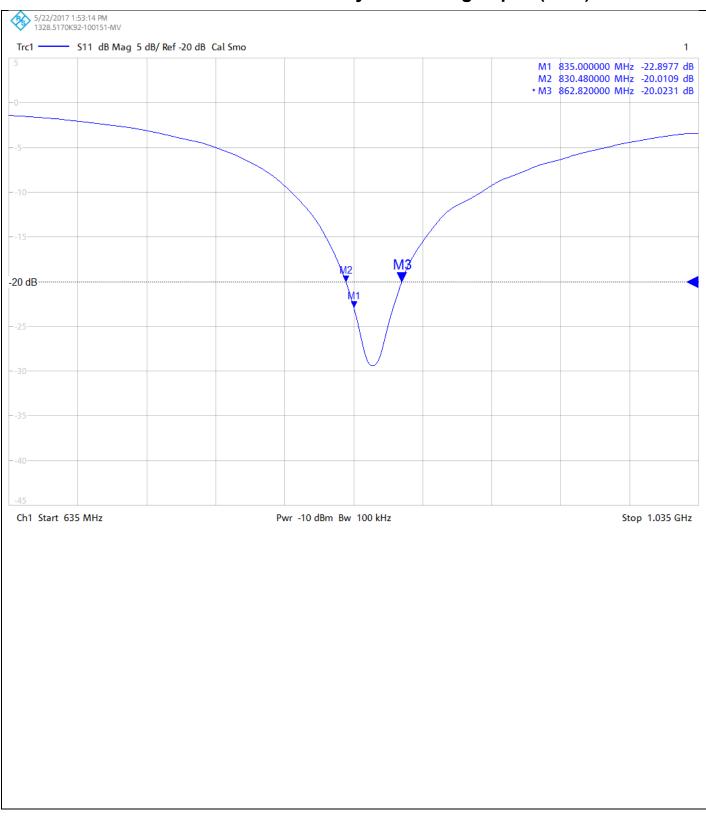
Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



UKAS Accredited Calibration Laboratory No. 5248

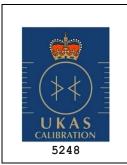
CERTIFICATE NUMBER : 11762345JD01B

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 11762345JD01B
	Instrument ID: 4d117
	Calibration Date: 22/May/2017
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11762345JD01B

Instrument ID: 4d117

Calibration Date: 22/May/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11762345JD01B

Instrument ID: 4d117

Calibration Date: 22/May/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 10/Oct/2017

CERTIFICATE NUMBER : 11903941JD01A

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE **RG23 8BG, UK** TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

Masa

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	29/Sep/2017
Manufacturer:	Speag		
Type/Model Number:	D900V2		
Serial Number:	1d143		
Calibration Date:	05/Oct/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	18 Nov 2016	12
A2587	Probe	SPEAG	ES3DV3	3341	14 Aug 2017	12
A2201	Dipole	SPEAG	D900V2	035	14 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1908	Signal Generator	Rhode & Schwarz	SMIQ 03B	1125.555.03	08 Nov 2016	12

CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L			
Robot Serial Number: F14/5T5ZA1/A/01				
DASY Version:	DASY 52 (v52.8.8.1258)			
Phantom:	Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)			
Frequency:	900 MHz			

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Ginutent Liquid Frequency Room Temp		Liquid Temp Parameters		Parameters	Target	Measured	Uncertainty		
Simulant Liquid (MH	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
	0.00			00.000	٤r	41.50	41.34	± 5%	
Head	900	23.0 °C	22.0 °C	20.0°C	22.0°C	σ	0.97	0.93	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	2.58 W/Kg	10.27 W/Kg	± 17.57%
Head	SAR averaged over 10g	1.66 W/Kg	6.60 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	51.089 Ω 1.01 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	30.67	± 2.03 dB

CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

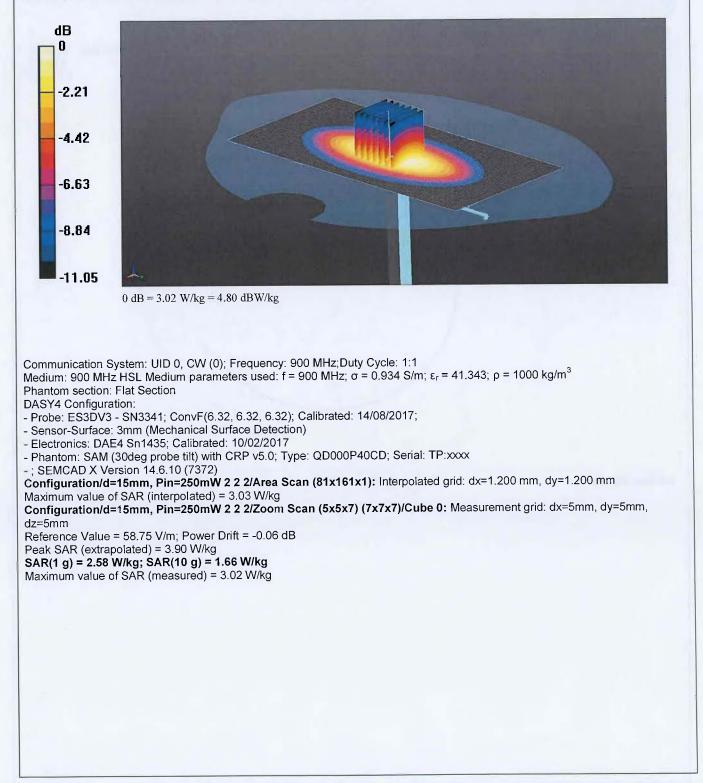
Simulant Liquid	Frequency	Room Temp		Room Temp Liquid Temp		Parameters	Target	Measured	Uncertainty
Simulani Liquid	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Body	900	22.0 °C 2	22.0 °C 22.0°C	0 °C 22 0 °C 22 0	22.0°C 22.0°C	٦3	55.00	53.32	± 5%
Bouy	900	22.0 C	22.0 C	22.0 C	22.0 C	σ	1.05	1.02	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	2.75 W/Kg	10.94 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.79 W/Kg	7.12 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Desta	Impedance	54.09 Ω 2.03 μΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	25.35	± 2.03 dB

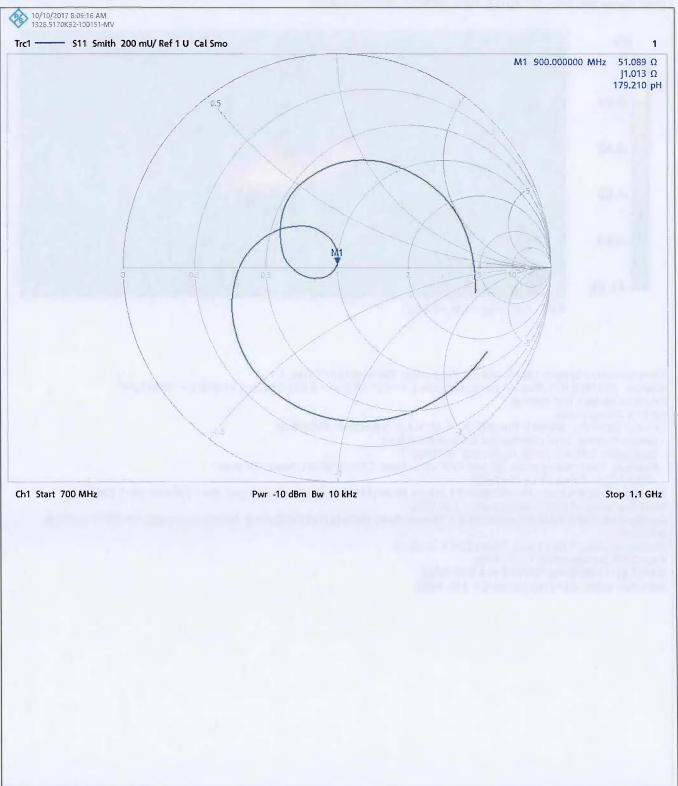

CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: Dipole 900 MHz; SN: 1d143; Type: D900V2; Serial: SN1d143

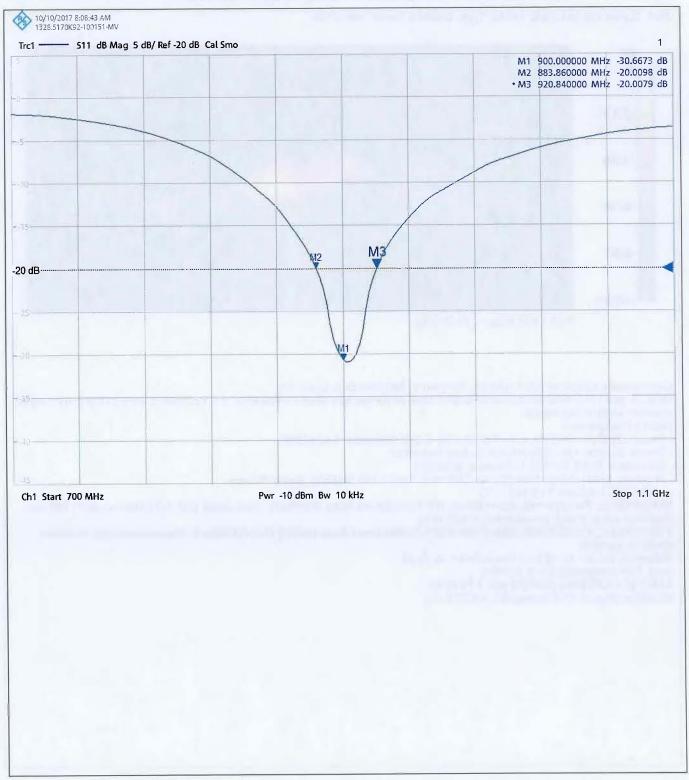


CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)



CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

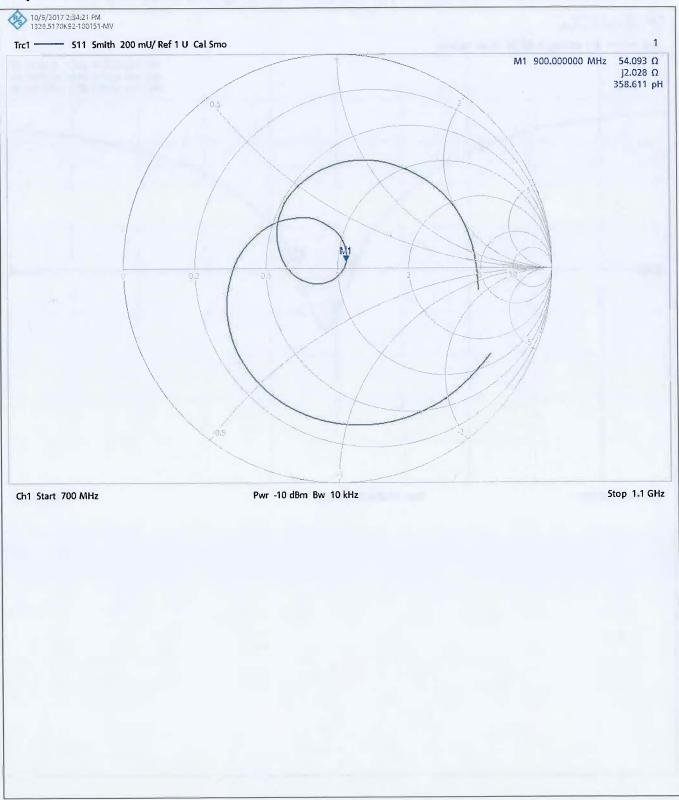
CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: Dipole 900 MHz; SN: 1d143; Type: D900V2; Serial: SN 1d143

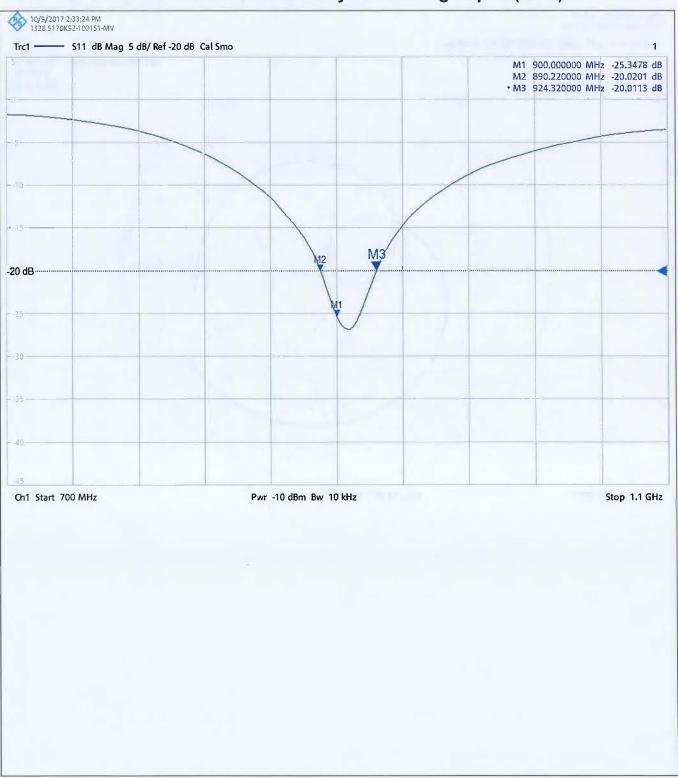

dB 0 -2.13-4.26-6.38 -8.51-10.640 dB = 2.97 W/kg = 4.73 dBW/kgCommunication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1 Medium: 900,1750,1800,1900,2600 MHz MSL Medium parameters used: f = 900 MHz; σ = 1.02 S/m; ϵ_r = 53.317; ρ = 1000 kg/m³ Phantom section: Flat Section **DASY4** Configuration: - Probe: ES3DV3 - SN3341; ConvF(6.24, 6.24, 6.24); Calibrated: 14/08/2017; - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1435; Calibrated: 10/02/2017 - Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx -; SEMCAD X Version 14.6.10 (7372) SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe)/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.00 W/kg SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.18 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 4.12 W/kg SAR(1 g) = 2.75 W/kg; SAR(10 g) = 1.79 W/kg Maximum value of SAR (measured) = 2.97 W/kg

CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903941JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01A

Instrument ID: 1d143

Calibration Date: 05/Oct/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903941JD01A

Instrument ID: 1d143

Calibration Date: 05/Oct/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 21/Apr/2017

CERTIFICATE NUMBER : 11733349JD01A

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: calibration.uk@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL Verification Services Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	13/Apr/2017
Manufacturer:	Schmid & Partner Engineering AG		
Type/Model Number:	D1750V2		
Serial Number:	1050		
Calibration Date:	18/Apr/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	Ą		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

.....

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	18 Nov 2016	12
A2587	Probe	SPEAG	ES3DV3	3341	29 Aug 2016	12
A1236	Dipole	SPEAG	D1800V2	2d009	09 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1768	Signal Generator	Rhode & Schwarz	SME06	837633/001	08 Nov 2016	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: RX90L		
Robot Serial Number: F00/SD89A1/A/01			
DASY Version: DASY 4 (v4.7.80)			
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre: 10 mm (with spacer)			
Frequency:	1750 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Head	1750	22.0 °C	22.0 °C	21.5°C	22.0°C	٤r	40.10	40.52	± 5%
Tieau	1750	22.0 0	22.0 0	21.5 C	22.0 C	σ	1.37	1.39	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	9.19 W/Kg	36.76 W/Kg	± 17.57%
neau	SAR averaged over 10g	4.90 W/Kg	19.60 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	46.35 Ω 1.48 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	28.01	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency (MHz)	Room Temp		Liquid Temp		Parameters	Target	Measured	Uncertainty
		Start	End	Start	End	i alameters	Value	Value	(%)
Body	1750	22.0 °C 21.8 °C	21.0 %	22.0°C	22.0°C	٤r	53.40	53.59	± 5%
			22.0 C	22.0 C	σ	1.49	1.48	± 5%	

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	9.42 W/Kg	37.68 W/Kg	± 18.06%
	SAR averaged over 10g	4.98 W/Kg	19.92 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

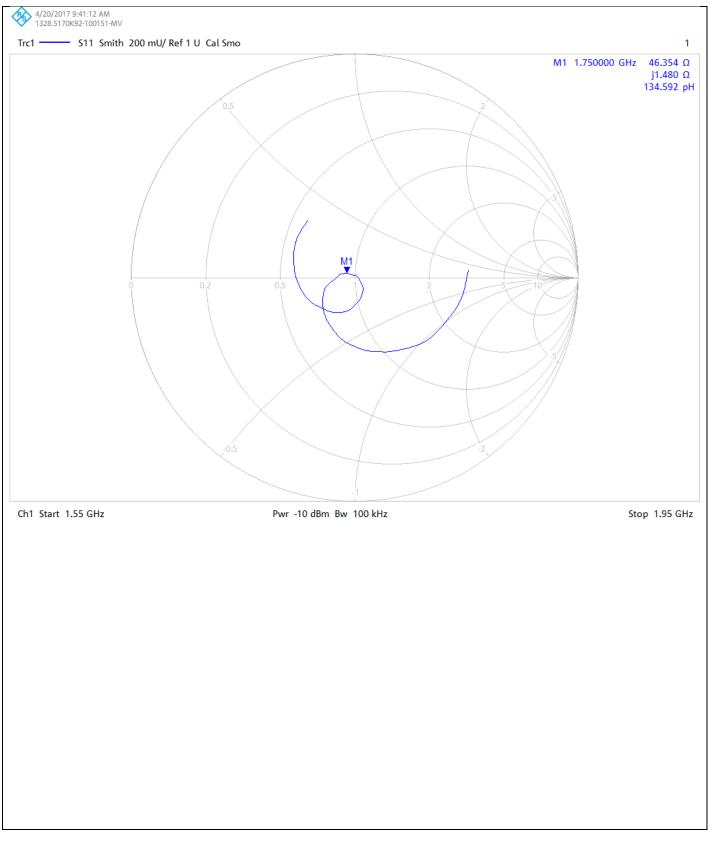
Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	47.15 Ω 4.68 jΩ	± 0.28 Ω ± 0.044 jΩ
	Return Loss	25.13	± 2.03 dB

CERTIFICATE NUMBER : 11733349JD01A

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

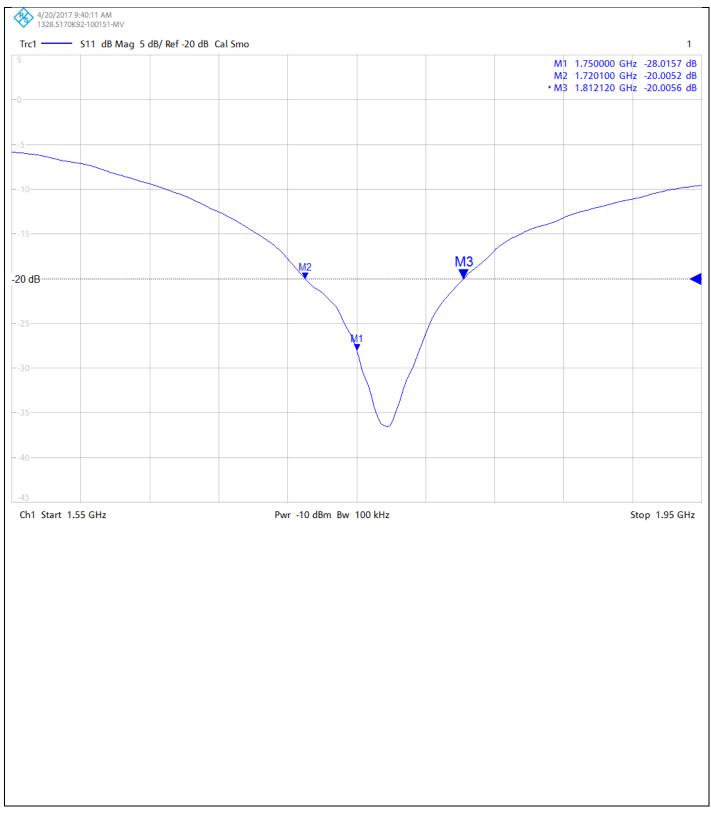


CERTIFICATE NUMBER : 11733349JD01A

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

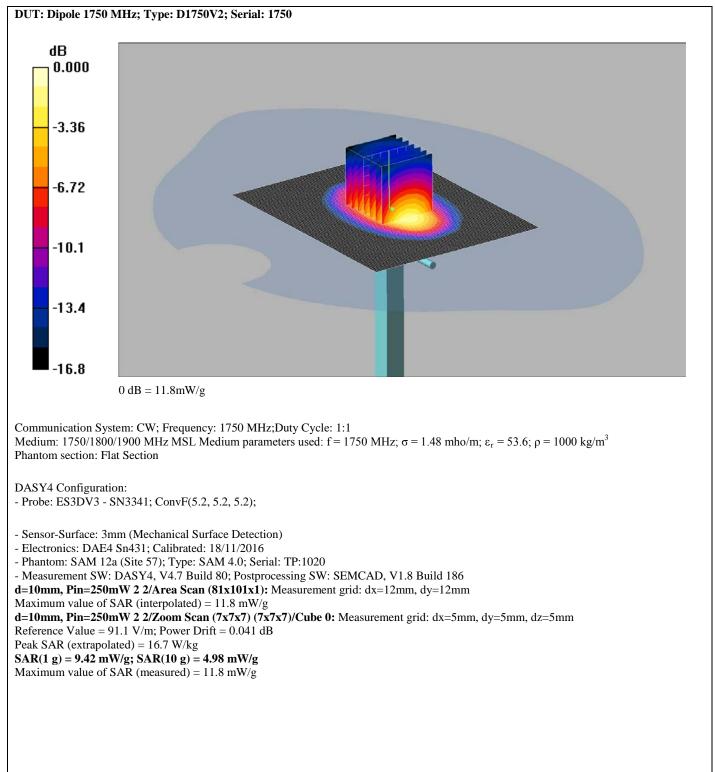


CERTIFICATE NUMBER : 11733349JD01A

UKAS Accredited Calibration Laboratory No. 5248

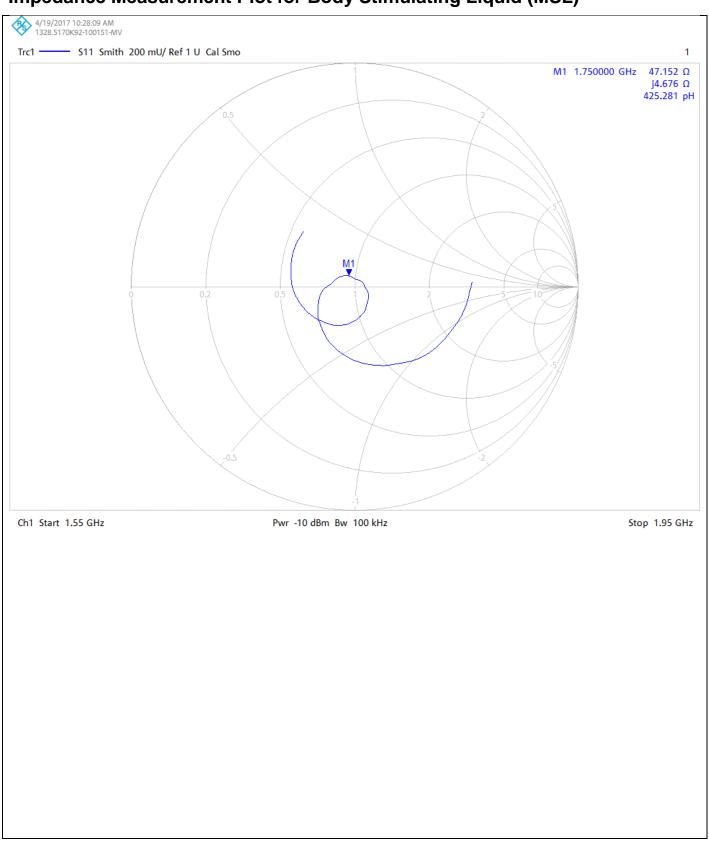
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



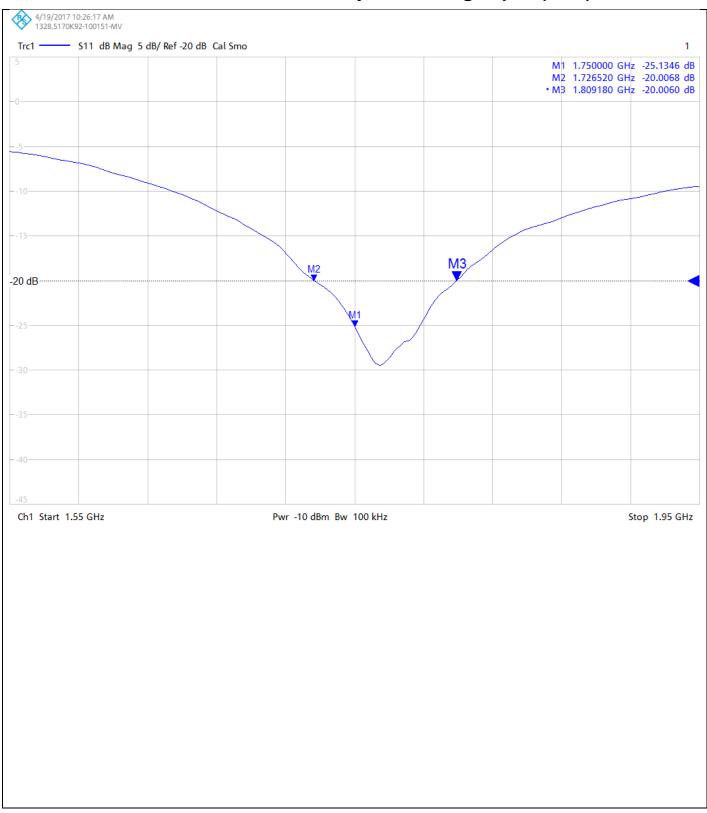
CERTIFICATE NUMBER : 11733349JD01A

Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

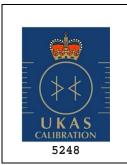
CERTIFICATE NUMBER : 11733349JD01A

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 11733349JD01A
	Instrument ID: 1050
	Calibration Date: 18/Apr/2017
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11733349JD01A

Instrument ID: 1050

Calibration Date: 18/Apr/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11733349JD01A

Instrument ID: 1050

Calibration Date: 18/Apr/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 21/Apr/2017

CERTIFICATE NUMBER : 11733349JD01C

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: calibration.uk@ul.com

Page 1 of 10

APPROVED SIGNATORY

Naseer Mirza

Customer :

UL Verification Services Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	13/Apr/2017
Manufacturer:	Schmid & Partner Engineering AG		
Type/Model Number:	D1900V2		
Serial Number:	5d140		
Calibration Date:	19/Apr/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	Ą		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22 \pm 3) 0 C and humidity < 70%

.....

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

Page 2 of 10

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	18 Nov 2016	12
A2587	Probe	SPEAG	ES3DV3	3341	29 Aug 2016	12
A2200	Dipole	SPEAG	D1900V2	537	09 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1768	Signal Generator	Rhode & Schwarz	SME06	837633/001	08 Nov 2016	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: RX90L
Robot Serial Number:	F00/SD89A1/A/01
DASY Version:	DASY 4 (v4.7.80)
Phantom:	Flat section of SAM Twin Phantom
Distance Dipole Centre:	10 mm (with spacer)
Frequency:	1900 MHz

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Head	1000	22.0 °C	22.0.00	21.9°C	22.0°C	٤r	40.00	41.30	± 5%
Head	1900 22.0 °C 22.0 °C	21.9°C 22.0°C		σ	1.40	1.45	± 5%		

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	10.20 W/Kg	40.80 W/Kg	± 17.57%
neau	SAR averaged over 10g	5.29 W/Kg	21.16 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Llood	Impedance	48.94 Ω -2.80 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	31.55	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

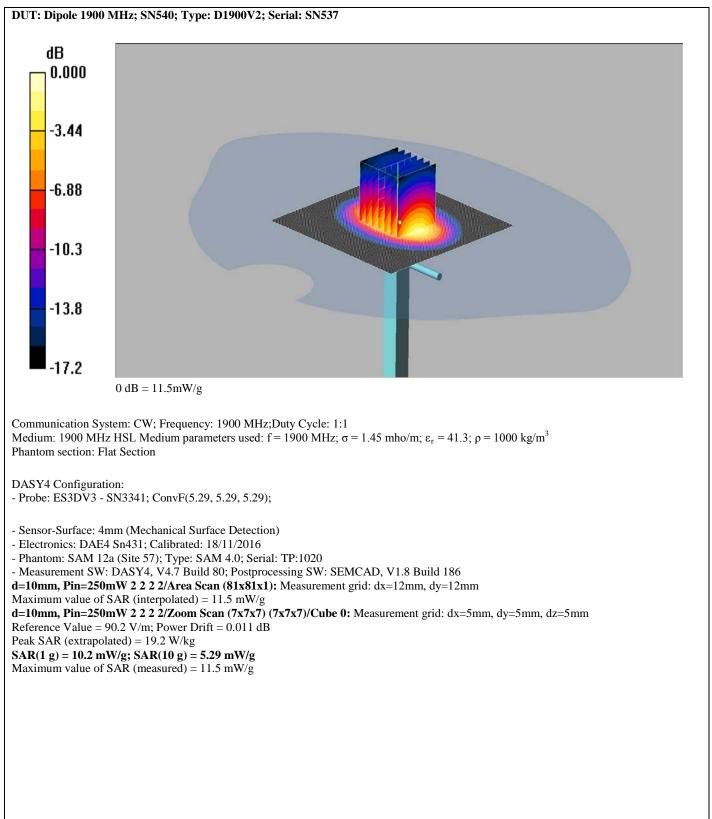
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i alameters	Value	Value	(%)
Body	1900	22.0 °C	21.8 °C	22.0°C	22.0°C	٤r	53.30	53.46	± 5%
Бойу	1900	22.0 0	21.0 0	22.0 C	22.0 C	σ	1.52	1.59	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Bady	SAR averaged over 1g	10.30 W/Kg	41.20 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.38 W/Kg	21.52 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

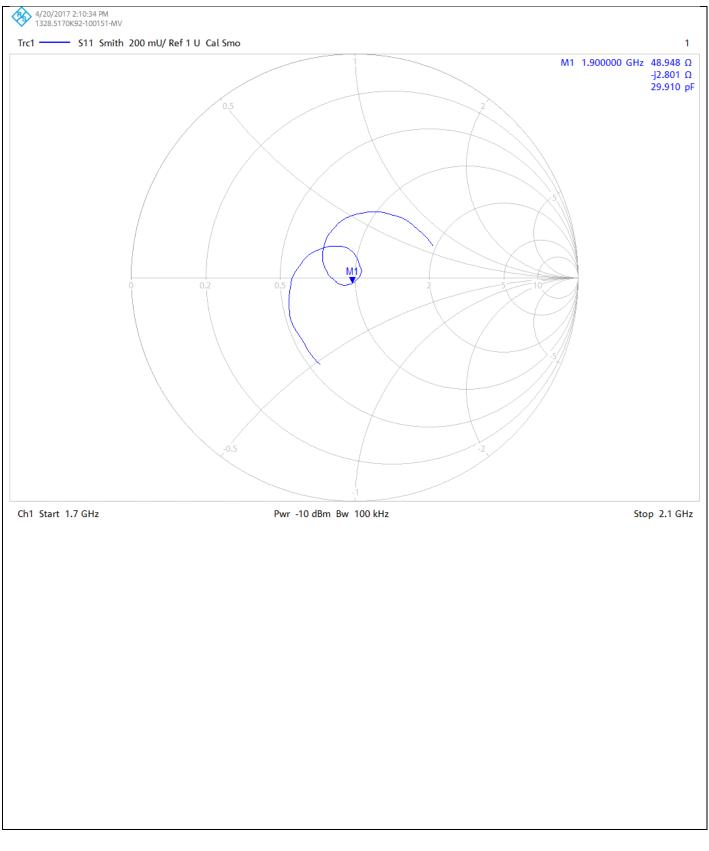

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Body	Impedance	51.84 Ω -4.61 jΩ	± 0.28 Ω ± 0.044 jΩ
БОЦУ	Return Loss	26.74	± 2.03 dB

CERTIFICATE NUMBER : 11733349JD01C

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

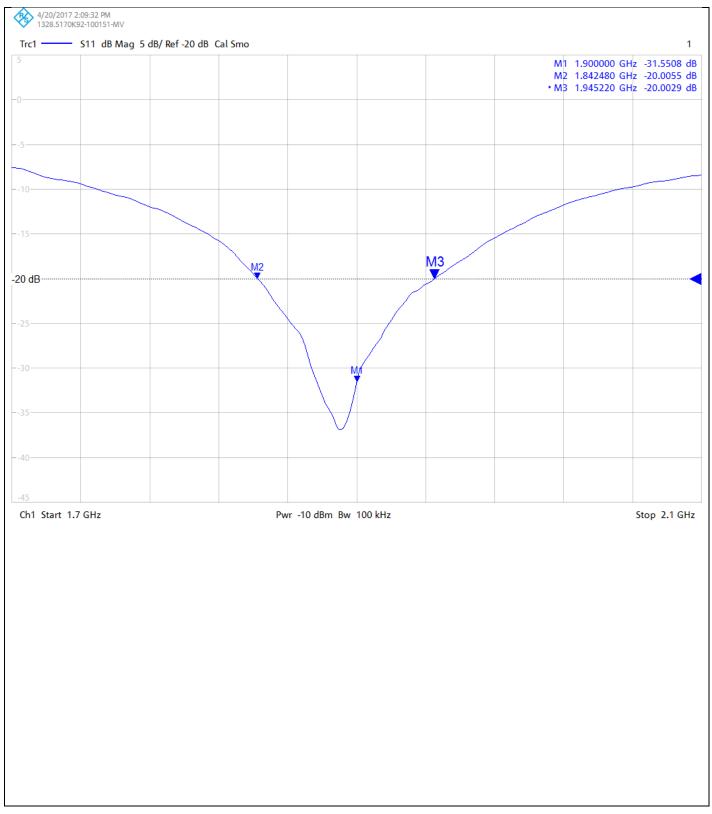


CERTIFICATE NUMBER : 11733349JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

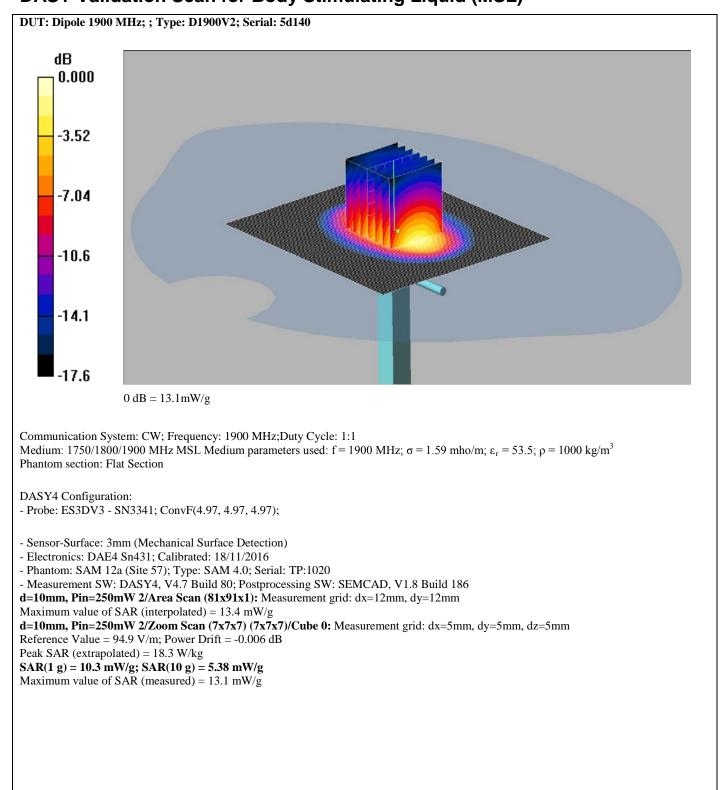


CERTIFICATE NUMBER : 11733349JD01C

UKAS Accredited Calibration Laboratory No. 5248

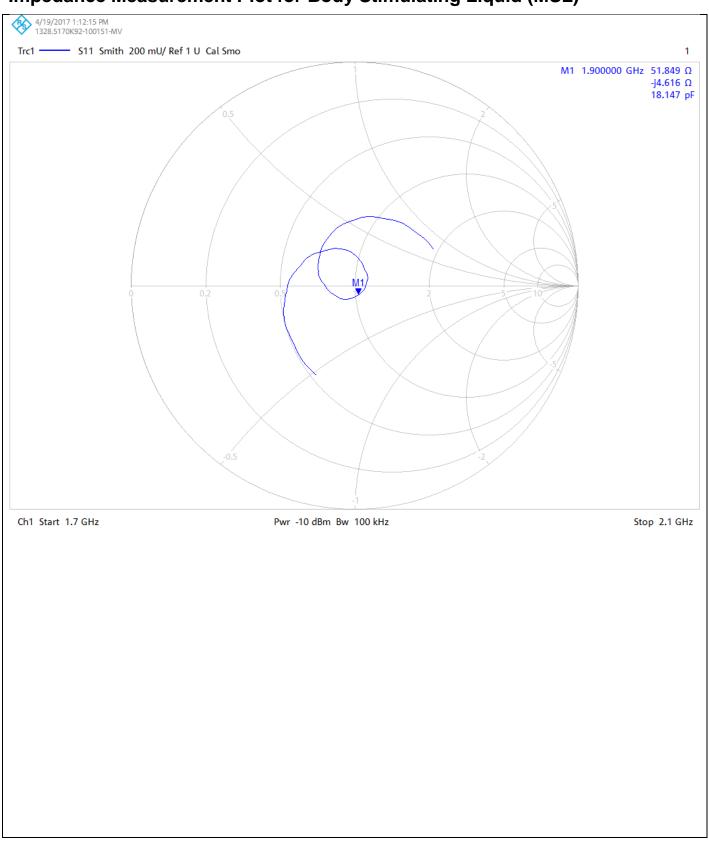
Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



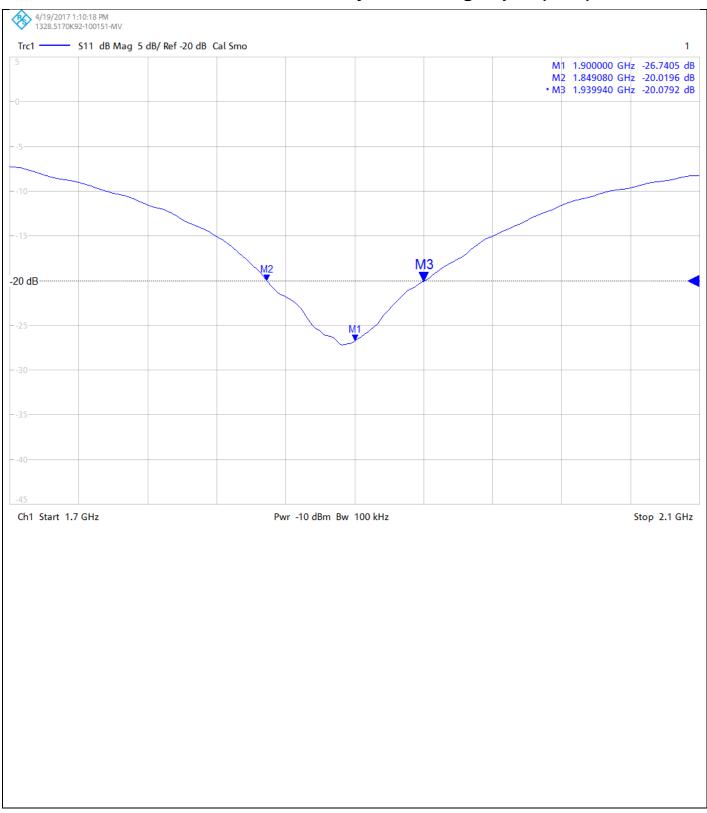
UKAS Accredited Calibration Laboratory No. 5248

CERTIFICATE NUMBER : 11733349JD01C

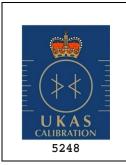

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

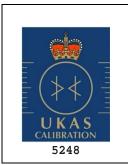
CERTIFICATE NUMBER : 11733349JD01C


Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 11733349JD01C
	Instrument ID: 5d140
	Calibration Date: 19/Apr/2017
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11733349JD01C

Instrument ID: 5d140

Calibration Date: 19/Apr/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11733349JD01C

Instrument ID: 5d140

Calibration Date: 19/Apr/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 29/Nov/2017

CERTIFICATE NUMBER : 11903932JD01E

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

.....

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	20/Nov/2017
Manufacturer:	Speag		
Type/Model Number:	D1900V2		
Serial Number:	5d043		
Calibration Date:	22/Nov/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:	12/2		

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22±3) ⁰C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. IEC 62209-2:2010: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. IEEE 1528: 2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No. Instrument		Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)	
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12	
A2545	Probe	SPEAG	ES3DV4	3395	04 May 2017	12	
A2200	Dipole	SPEAG	D1900V2	537	09 Feb 2017	12	
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12	
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12	
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12	
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	24	
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12	
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mars 2017	12	

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: TX60L				
Robot Serial Number:	F14/5T5ZA1/A/01			
DASY Version: DASY 52 (v52.8.8.1258)				
Phantom:	Flat section of SAM Twin Phantom	den in		
Distance Dipole Centre:	10 mm (with spacer)			
Frequency:	1900 MHz			

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty	
	(MHz)	Start	End	Start	End	r arameters	Value	Value	(%)	
	1000		01000	21.0.%	20 590 21 090	04.000	٤r	40.00	39.91	± 5%
Head	1900	21.0 °C	21.0 ℃	20.5°C	21.0°C	σ	1.40	1.44	± 5%	

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	10.80 W/Kg	42.99 W/Kg	± 17.57%
Head	SAR averaged over 10g	5.57 W/Kg	22.17 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	52.432 Ω -3.49 ϳΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	27.60	± 2.03 dB

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

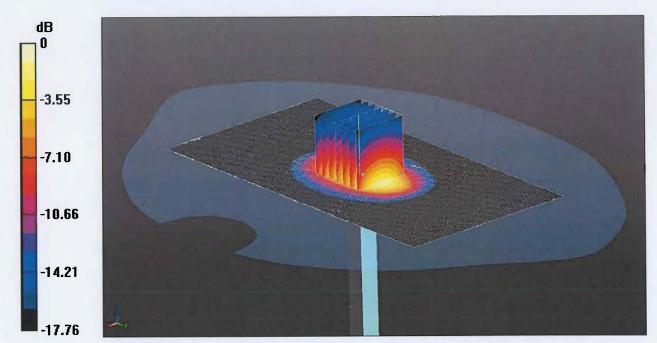
Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	raiameters	Value	Value	(%)
			21.0°C 21.0°C 21.0°C Er	٤r	53.30	52.87	± 5%		
Body	1900	21.0 °C	21.0 °C	21.0°C	21.0°C	σ	1.52	1.56	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	10.30 W/Kg	41.00 W/Kg	± 18.06%
Body	SAR averaged over 10g	5.25 W/Kg	20.90 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	55.43 Ω -4.69 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	23.18	± 2.03 dB


CERTIFICATE NUMBER : 11903932JD01E

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

DUT: D1900V2 - SN: 5D043; Type: D1900V2; Serial: SN: 5D043

0 dB = 13.6 W/kg = 11.34 dBW/kg

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 750,835,900,1800,1900 MHz HSL Medium parameters used: f = 1900 MHz; σ = 1.438 S/m; ϵ_r = 39.91; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(8.37, 8.37, 8.37); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx

-; SEMCAD X Version 14.6.10 (7372)

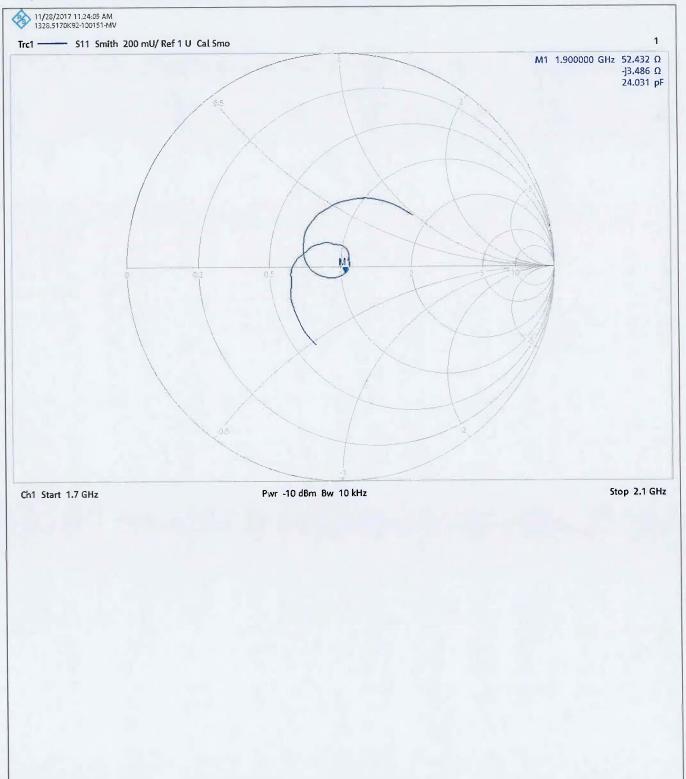
Configuration/d=10mm, Pin=250mW/Area Scan (81x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 14.1 W/kg

Configuration/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.92 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 20.2 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.57 W/kg

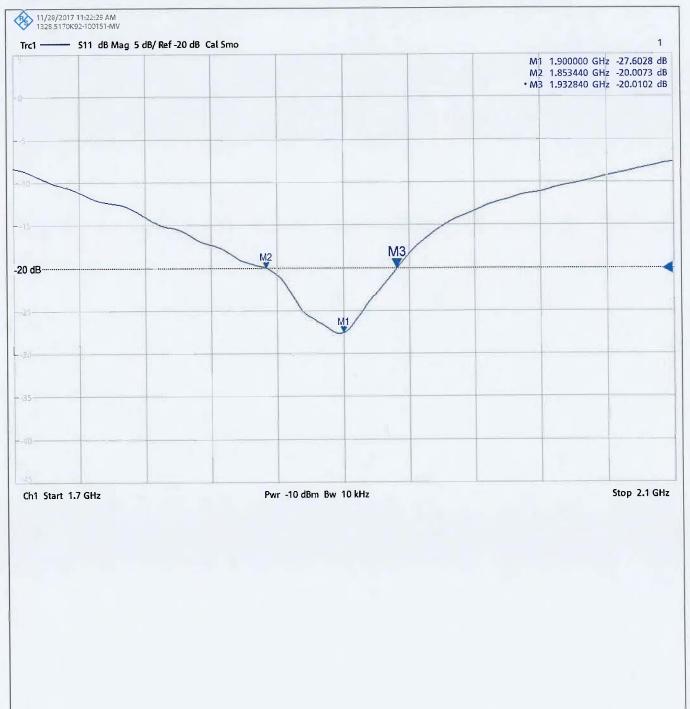

Maximum value of SAR (measured) = 13.6 W/kg

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

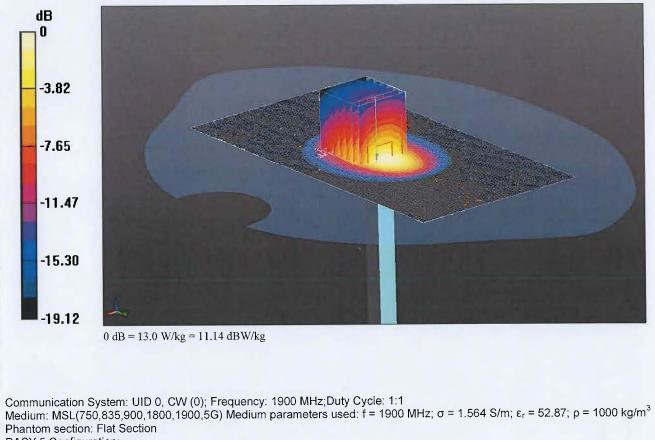


CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)


CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN5d043

DASY 5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(8.04, 8.04, 8.04); Calibrated: 04/05/2017;

- Sensor-Surface: 3mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx

- ; SEMCAD X Version 14.6.10 (7372)

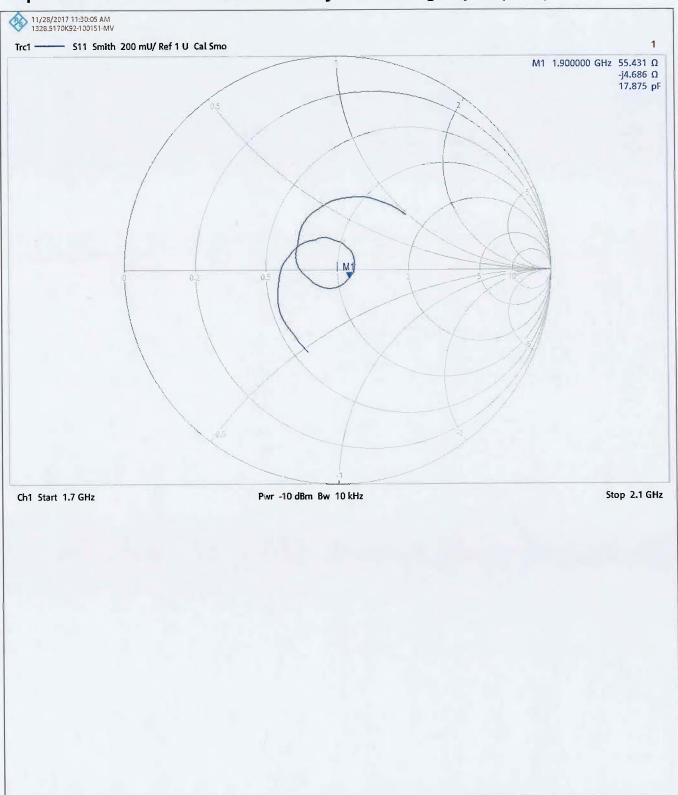
SAR/d=10mm, Pin=250mW/Area Scan (81x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 13.4 W/kg

SAR/d=10mm, Pin=250mW/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.38 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 18.4 W/kg

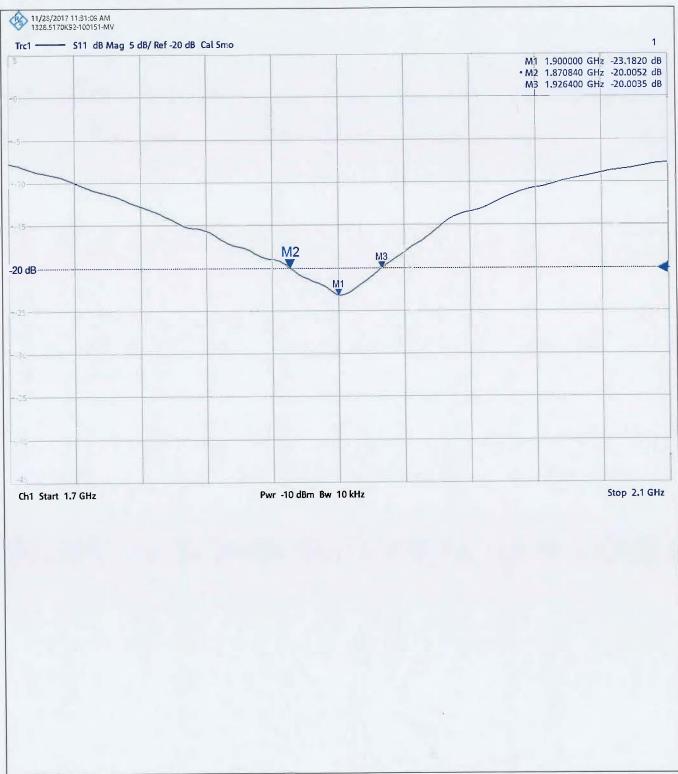

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 13.0 W/kg

CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)



CERTIFICATE NUMBER : 11903932JD01E

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01E

Instrument ID: 5d043

Calibration Date: 22/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01E

Instrument ID: 5d043

Calibration Date: 22/Nov/2017

Calibration Due Date:

CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 18/Sep/2017

CERTIFICATE NUMBER : 11903949JD01D

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001 Email: LST.UK.Calibration@ul.com

Page 1 of 10

APPROVED SIGNATORY

M. Masca

Naseer Mirza

Customer :

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:	Dipole Validation Kit	Date of Receipt:	24/Aug/2017
Manufacturer:	Speag		
Type/Model Number:	D2300V2		
Serial Number:	1058		
Calibration Date:	31/Aug/2017		
Calibrated By:	Chanthu Thevarajah Laboratory Engineer		
Signature:			

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

UKAS Accredited Calibration Laboratory No. 5248

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2110	Data Acquisition Electronics	SPEAG	DAE4	431	18 Nov 2016	12
A2436	Probe	SPEAG	ES3DV3	3335	28 July 2017	12
A2077	Probe	SPEAG	EX3DV4	3814	30 Sep 2016	12
A2489	Dipole	SPEAG	D2300V2	1036	13 Feb 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
PRE0151441	Power Sensor	Rhode & Schwarz	NRP8S	102481	16 Nov 2016	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	26 Sept 2016	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	12
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1768	Signal Generator	Rhode & Schwarz	SME06	837633/001	08 Nov 2016	12

UKAS Accredited Calibration Laboratory No. 5248

SAR System Specification

Robot System Positioner: Stäubli Unimation Corp. Robot Model: RX90L			
Robot Serial Number:	F00/SD89A1/A/01		
DASY Version:	DASY 4 (v4.7.80)		
Phantom:	Flat section of SAM Twin Phantom		
Distance Dipole Centre:	10 mm (with spacer)		
Frequency:	2300 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	Falameters	Value	Value	(%)
Head	2300	22.6 °C	22.5 °C	22.5°C	22.5°C	٤r	39.50	38.3	± 5%
neau	2300	22.0 C	22.5 C	22.5 C	22.0 L	σ	1.67	1.69	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Head	SAR averaged over 1g	13.50 W/Kg	53.74 W/Kg	± 17.57%
neau	SAR averaged over 10g	6.36 W/Kg	25.31 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Hood	Impedance	49.554 Ω 2.25 jΩ	± 0.28 Ω ± 0.044 jΩ
Head	Return Loss	32.74	± 2.03 dB

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

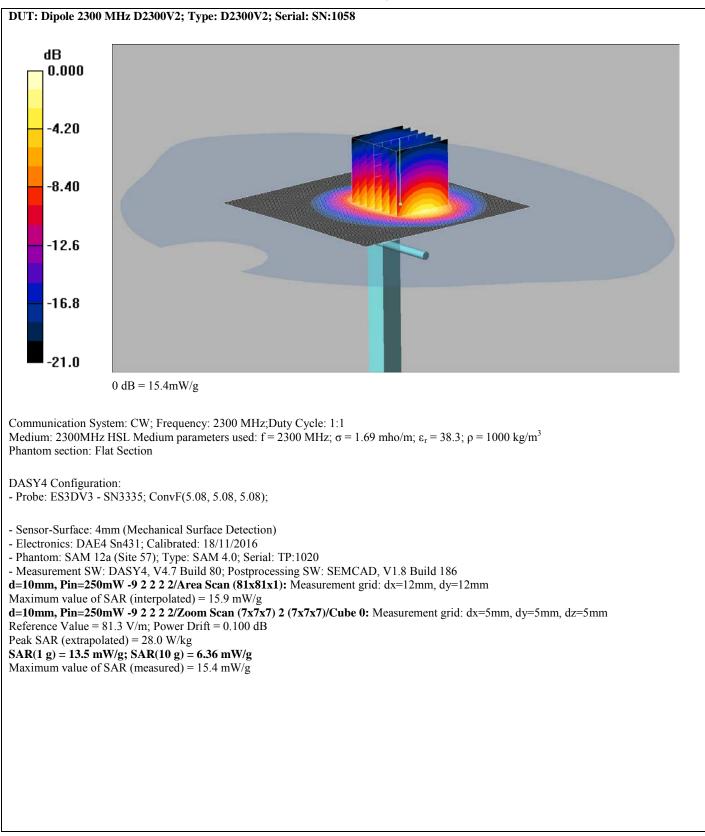
Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target	Measured	Uncertainty
	(MHz)	Start	End	Start	End	i arameters	Value	Value	(%)
Body	2300	22.6 °C	22 0 °C	22.5°C	22.0°C	٤r	52.90	51.9	± 5%
Бойу	2300	22.0 C	22.0 C	22.0 C	22.0 C	σ	1.81	1.86	± 5%

SAR Results – Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
Body	SAR averaged over 1g	13.60 W/Kg	54.14 W/Kg	± 18.06%
BOUY	SAR averaged over 10g	6.25 W/Kg	24.88 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

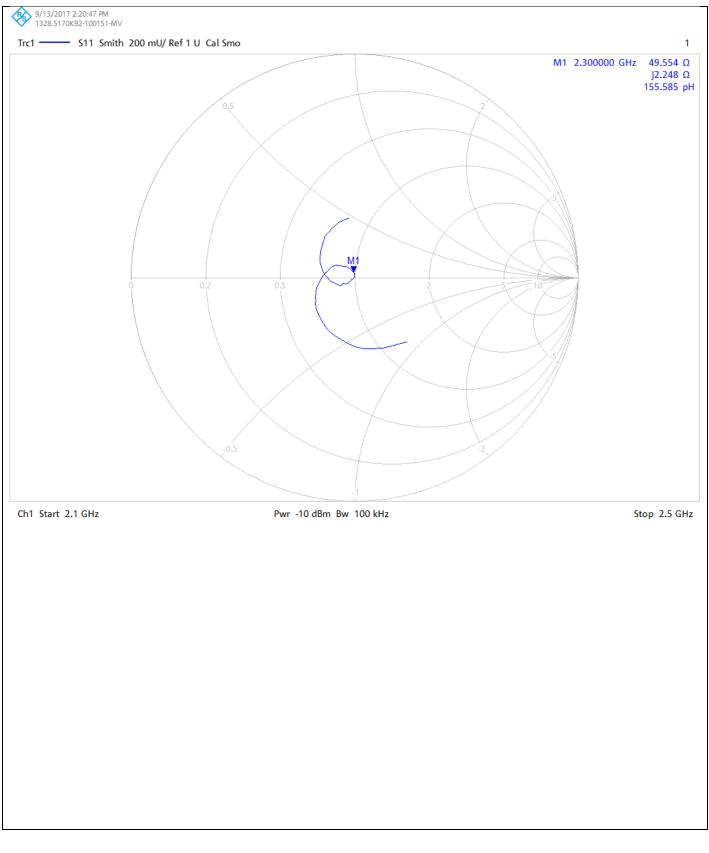

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Dedu	Impedance	52.48 Ω 4.25 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	26.81	± 2.03 dB

CERTIFICATE NUMBER : 11903949JD01D

Page 5 of 10

UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Head Stimulating Liquid (HSL)

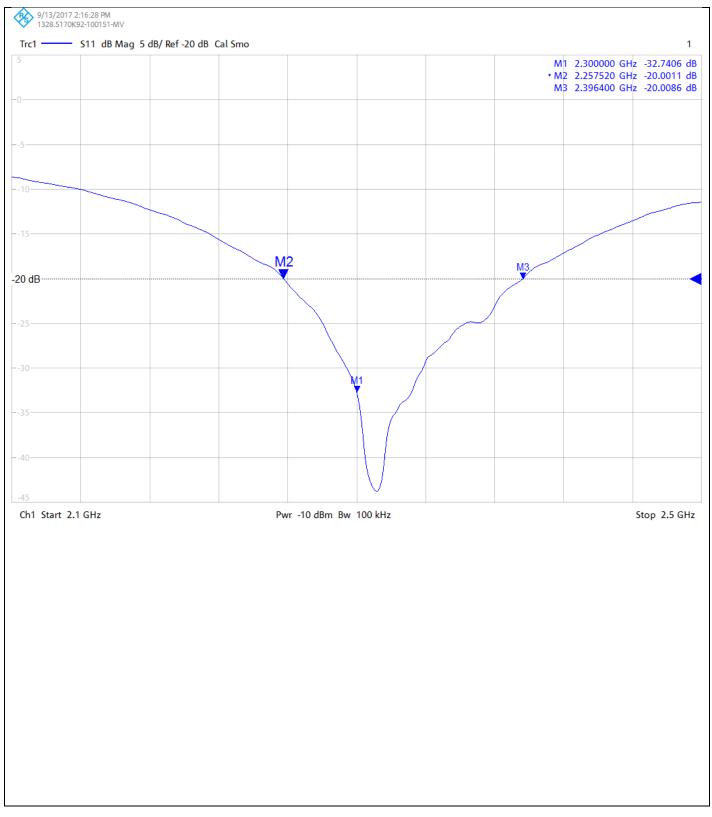


CERTIFICATE NUMBER : 11903949JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

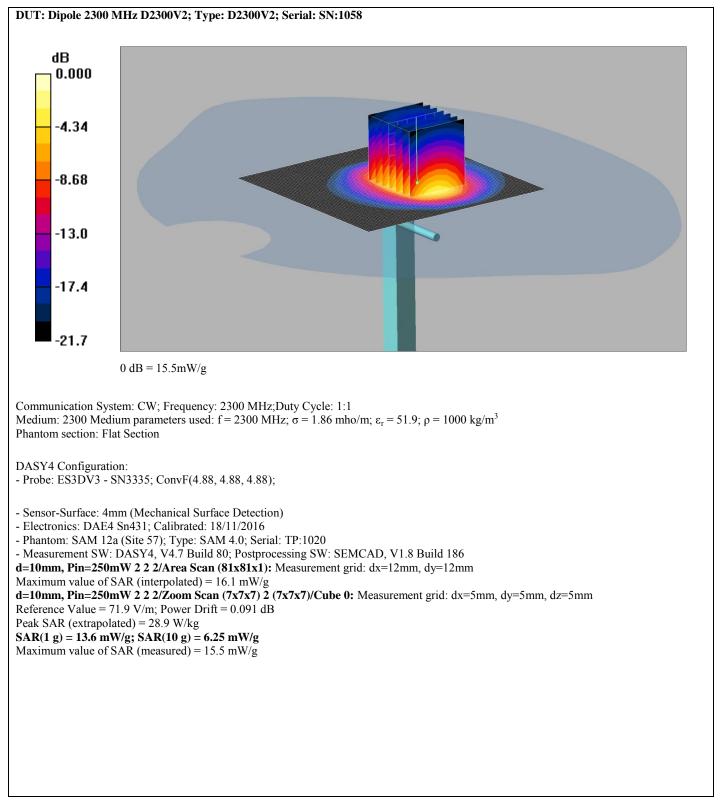


CERTIFICATE NUMBER : 11903949JD01D

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)



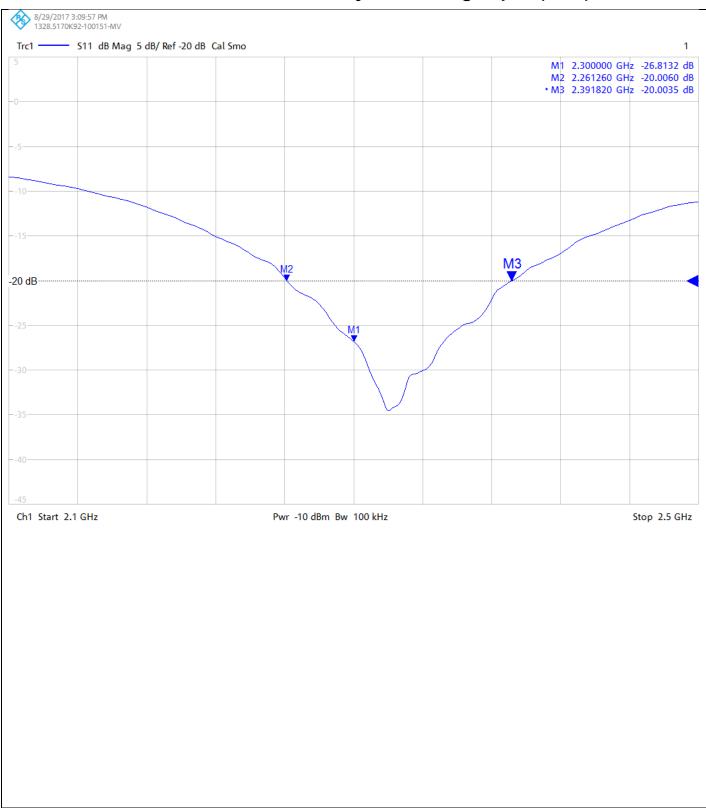
CERTIFICATE NUMBER : 11903949JD01D

Page 8 of 10


UKAS Accredited Calibration Laboratory No. 5248

DASY Validation Scan for Body Stimulating Liquid (MSL)

UKAS Accredited Calibration Laboratory No. 5248


Impedance Measurement Plot for Body Stimulating Liquid (MSL)

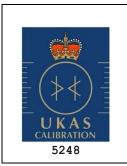
UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

	UL VS LTD - Tel: +44 (0) 1256312000
	Certificate Number: 11903949JD01D
	Instrument ID: 1058
	Calibration Date: 31/Aug/2017
5248	Calibration Due Date:


UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903949JD01D

Instrument ID: 1058

Calibration Date: 31/Aug/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903949JD01D

Instrument ID: 1058

Calibration Date: 31/Aug/2017

Calibration Due Date:

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL CCS USA

1

Certificate No: D2450V2-899_Mar17

S

С

S

Calibration date: M This calibration certificate documents of The measurements and the uncertaint All calibrations have been conducted in Calibration Equipment used (M&TE crinic Primary Standards II Power meter NRP S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Type-N mismatch combination S Reference Probe EX3DV4 S DAE4 S	March 10, 2017 the traceability to nati the swith confidence p in the closed laborator ritical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	edure for dipole validation kits about the physical unprobability are given on the following pages are ry facility: environment temperature (22 ± 3) of Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289) 05-Apr-16 (No. 217-02292)	hits of measurements (SI). Ind are part of the certificate. IC and humidity < 70%. Scheduled Calibration Apr-17 Apr-17 Apr-17 Apr-17
This calibration certificate documents The measurements and the uncertaint All calibrations have been conducted in Calibration Equipment used (M&TE critical) Primary Standards II Power meter NRP S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Reference Probe EX3DV4 S DAE4 S	the traceability to nati ties with confidence p in the closed laborator ritical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Apr-17 Apr-17 Apr-17
The measurements and the uncertaint All calibrations have been conducted in Calibration Equipment used (M&TE critering) Primary Standards II Power meter NRP S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Fype-N mismatch combination S Reference Probe EX3DV4 S DAE4 S Secondary Standards II	ties with confidence p in the closed laborator ritical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Apr-17 Apr-17 Apr-17
Calibration Equipment used (M&TE cription Primary Standards II Power meter NRP S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Type-N mismatch combination S Reference Probe EX3DV4 S DAE4 S	ritical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Scheduled Calibration Apr-17 Apr-17 Apr-17
Power meter NRP S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Type-N mismatch combination S Reference Probe EX3DV4 S DAE4 S	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288/02289) 06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17 Apr-17
Power sensor NRP-Z91 S Power sensor NRP-Z91 S Reference 20 dB Attenuator S Type-N mismatch combination S Reference Probe EX3DV4 S DAE4 S Secondary Standards II	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	06-Apr-16 (No. 217-02288) 06-Apr-16 (No. 217-02289)	Apr-17 Apr-17
Secondary Standards	SN: 7349	05-Apr-16 (No. 217-02295) 31-Dec-16 (No. EX3-7349_Dec16)	Apr-17 Apr-17 Dec-17
	SN: 601	04-Jan-17 (No. DAE4-601_Jan17)	Jan-18
Power sensor HP 8481A S Power sensor HP 8481A S	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16)	Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-16)	In house check: Oct-17
	Name Leif Klysner	Function Laboratory Technician	Signature Seif Illegur
Approved by: K	Katja Pokovic	Technical Manager	Seef They

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.87 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W 52.6 W/kg ± 17.0 %	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR measured		0.25 W/Kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.8 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.97 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.3 Ω + 7.9 jΩ
Return Loss	- 21.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.5 Ω + 9.5 jΩ	
Return Loss	- 20.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.161 ns
Electrical Bellay (one all cotton)	1.101113

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

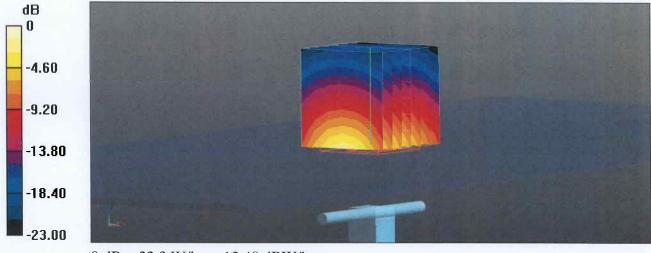
Manufactured by	SPEAG
Manufactured on	June 19, 2012

DASY5 Validation Report for Head TSL

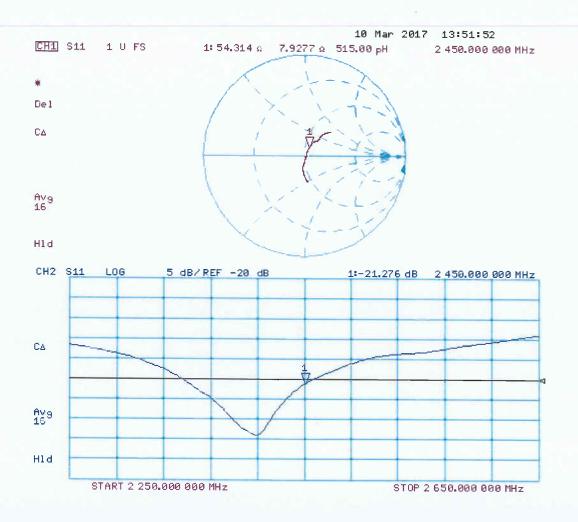
Date: 10.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:899


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.72, 7.72, 7.72); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 116.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.25 W/kg Maximum value of SAR (measured) = 22.3 W/kg

0 dB = 22.3 W/kg = 13.48 dBW/kg

DASY5 Validation Report for Body TSL

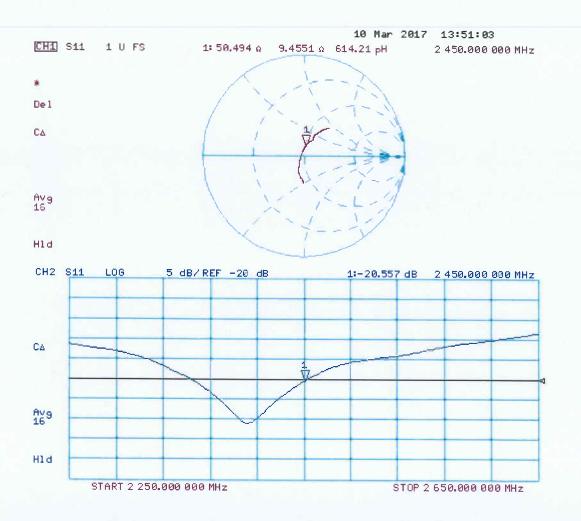
Date: 10.03.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:899

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 53.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.01.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 105.8 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 25.3 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.97 W/kg Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

