

FCC RF Test Report

APPLICANT	: Sony Mobile Communications Inc.
EQUIPMENT	: GSM/WCDMA/LTE Phone+Bluetooth,
	DTS/UNII a/b/g/n and NFC
BRAND NAME	: Sony
FCC ID	: PY7-08618V
STANDARD	: FCC Part 15 Subpart C §15.247
CLASSIFICATION	: (DTS) Digital Transmission System

The product was received on Dec. 29, 2016 and testing was completed on Jan. 16, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V

Page Number : 1 of 41 Report Issued Date : Mar. 03, 2017 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 1.3

TABLE OF CONTENTS

RE\	EVISION HISTORY		
SUI	MMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Modification of EUT	.6
	1.5	Testing Location	.7
	1.6	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Descriptions of Test Mode	.9
	2.3	Test Mode	-
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Peak Output Power Measurement	17
	3.3	Power Spectral Density Measurement	
	3.4	Conducted Band Edges and Spurious Emission Measurement	
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	39
5	UNCE	RTAINTY OF EVALUATION	41
AP	PENDI	X A. CONDUCTED TEST RESULTS	
APF	PENDI	X B. RADIATED SPURIOUS EMISSION	

APPENDIX C. RADIATED SPURIOUS EMISSION PLOTS

APPENDIX D. DUTY CYCLE PLOTS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR6D2925B	Rev. 01	Initial issue of report	Mar. 03, 2017

SUMMARY	OF TEST	RESULT
---------	---------	--------

Report Section	FCC Rule	FCC Rule Description		Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 5.36 dB at 46.470 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.80 dB at 3.246 MHz and 3.534 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.2 Manufacturer

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.3 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, DTS/UNII a/b/g/n, NFC, and GPS

Standards-related Product Specification				
Antenna Type / Gain PIFA Antenna type with gain 0.40 dBi				
EUT Information List				
HW Version	SW Version	S/N Performed Test Item		
		0123456789ABCDEF	RF conducted measurement	
А	1.21	WUJ01NNJAG	Radiated Spurious Emission	
		WUJ01NNPAN	Conducted Emission	

Accessory List			
	Model No. : EP800		
AC Adapter	S/N :		
	3015W41600900 (for radiated spurious emission)		
	3015W42100643 (for conducted emission)		
Earphone	Model No. : MH410c		
	S/N: N/A		
USB Cable	Model No. : UCB20		
	S/N :		
	1635A91C00314D8 (for radiated spurious emission)		
	1635A9100031498 (for conducted emission)		

Note:

- 1. Above EUT list and accessory list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test.
- 3. For other wireless features of this EUT, test report will be issued separately.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,		
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.		
	TEL: +886-3-327-3456		
	FAX: +886-3-328-4978		
Toot Site No	Sporton	Site No.	
Test Site No.	TH05-HY	CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd Rd. Guishan Dist,	
	Taoyuan City, Taiwan (R.O.C.)	
	TEL: +886-3-327-0868	
	FAX: +886-3-327-0855	
Toot Site No	Sporton Site No.	
Test Site No.	03CH12-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Descriptions of Test Mode

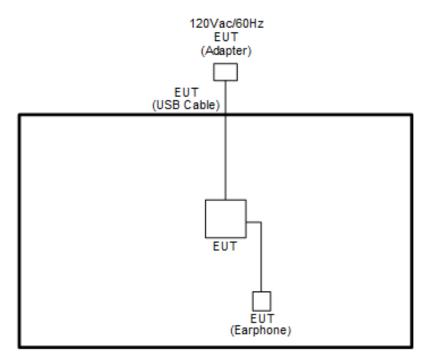
	Freeseware	Bluetooth – LE RF Output Power
Channel		Data Rate / Modulation
Channel Frequency		GFSK
		1Mbps
Ch00	2402MHz	1.52 dBm
Ch19	2440MHz	<mark>2.33</mark> dBm
Ch39	2480MHz	1.30 dBm

The RF output power was recorded in the following table:

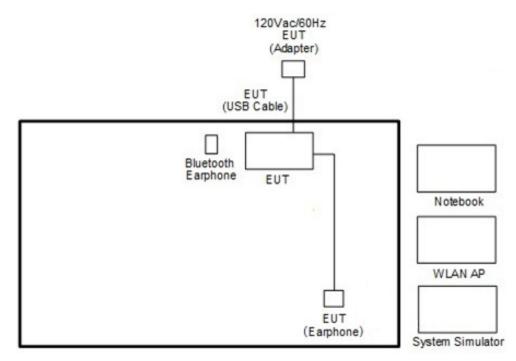
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.

b. AC power line Conducted Emission was tested under maximum output power.

2.3 Test Mode


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases
Test Item	Data Rate / Modulation
rest item	Bluetooth – LE / GFSK
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Dediated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
AC	Mode 1 :GSM1900 Idle + Bluetooth Link + WLAN (2.4GHz) Link + MP3 + Earphone +
Conducted	
Emission	Battery + USB Cable (Charging from Adapter)



2.4 Connection Diagram of Test System

<Bluetooth – LE Tx Mode>

<AC Conducted Emission Mode>

2.5 Support Unit used in test configuration and s

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.6 EUT Operation Test Setup

For RF test items, an engineering test program was provided and enabled to make EUT transmitting signals.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

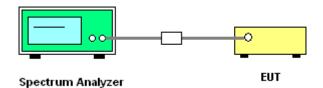
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

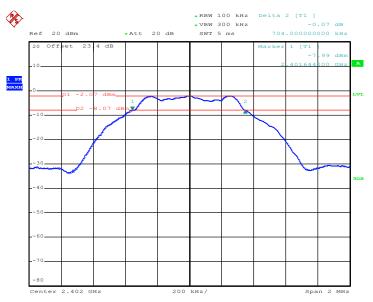
The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

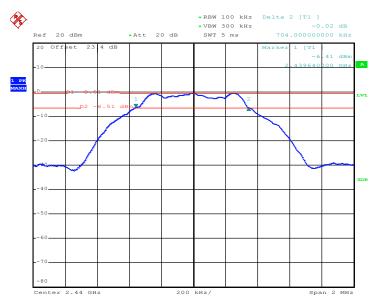
The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

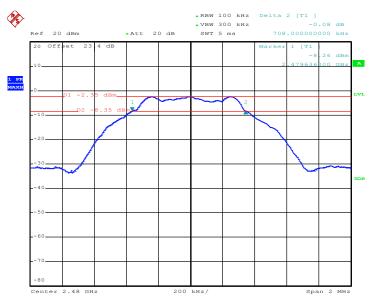

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth


Test data refer to Appendix A.

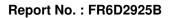
6 dB Bandwidth Plot on Channel 00

Date: 4.JAN.2017 16:51:49



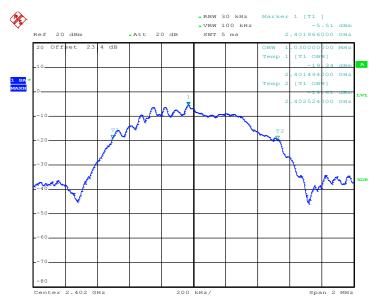
6 dB Bandwidth Plot on Channel 19

Date: 4.JAN.2017 17:00:16

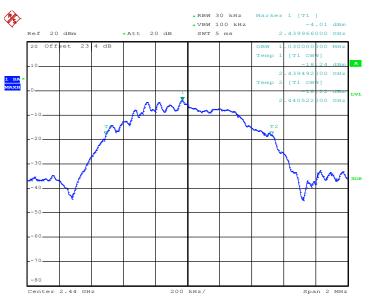

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V

6 dB Bandwidth Plot on Channel 39

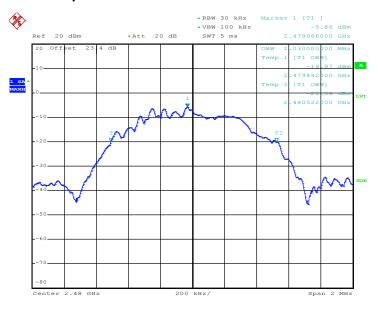
Date: 4.JAN.2017 17:09:28



3.1.6 Test Result of 99% Occupied Bandwidth


Test data refer to Appendix A.

99% Bandwidth Plot on Channel 00


Date: 4.JAN.2017 16:57:30

99% Occupied Bandwidth Plot on Channel 19

Date: 4.JAN.2017 17:03:09

99% Occupied Bandwidth Plot on Channel 39

Date: 4.JAN.2017 17:13:55

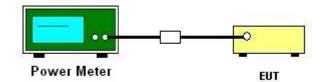
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r05 section 9.1.2 PKPM1 Peak power meter method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

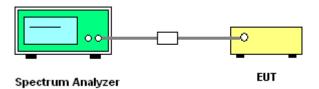
3.2.5 Test Result of Peak Output Power

Test data refers to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

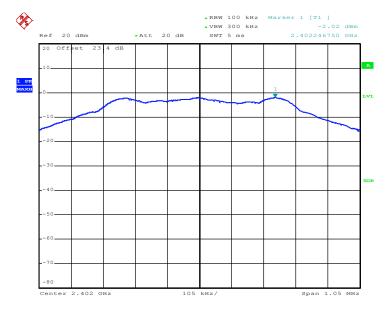

3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

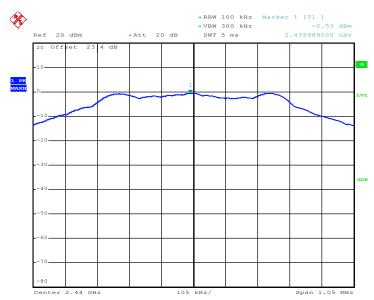
3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup


3.3.5 Test Result of Power Spectral Density

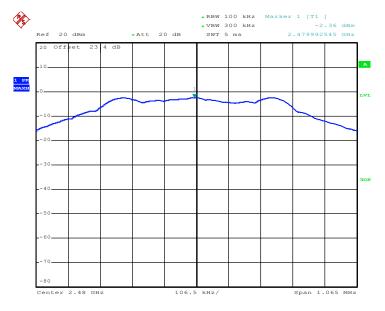
Test data refers to Appendix A.



3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

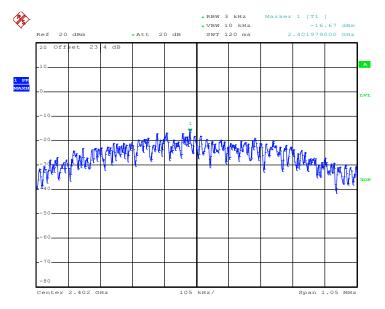
Date: 4.JAN.2017 16:56:06



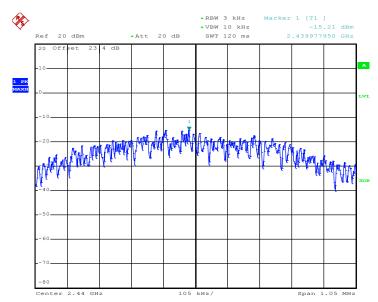
PSD 100kHz Plot on Channel 19

Date: 4.JAN.2017 17:01:05

PSD 100kHz Plot on Channel 39



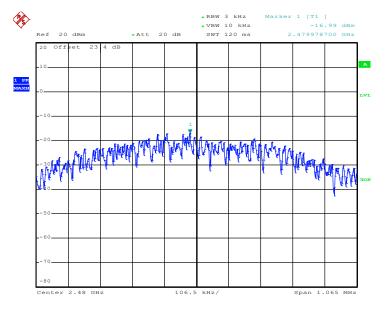
Date: 4.JAN.2017 17:10:52



3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 4.JAN.2017 16:55:47



PSD 3kHz Plot on Channel 19

Date: 4.JAN.2017 17:00:46

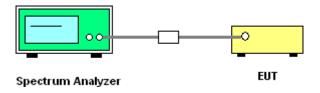
PSD 3kHz Plot on Channel 39

Date: 4.JAN.2017 17:10:31

3.4 Conducted Band Edges and Spurious Emission Measurement

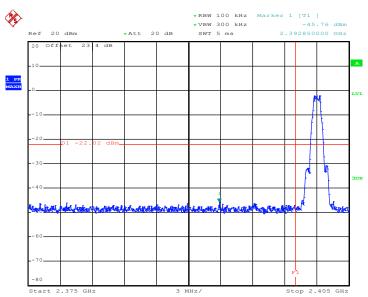
3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

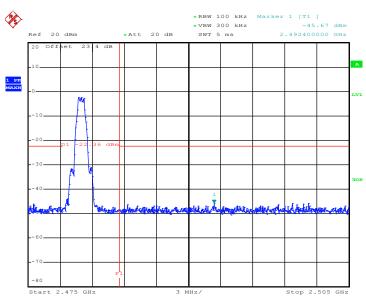

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure


- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup


3.4.5 Test Result of Conducted Band Edges Plots

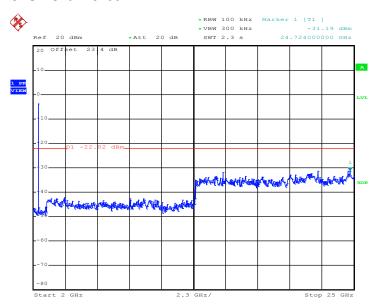
Low Band Edge Plot on Channel 00

Date: 4.JAN.2017 16:56:26

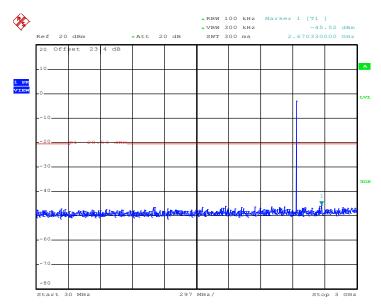
High Band Edge Plot on Channel 39

Date: 4.JAN.2017 17:11:18

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V

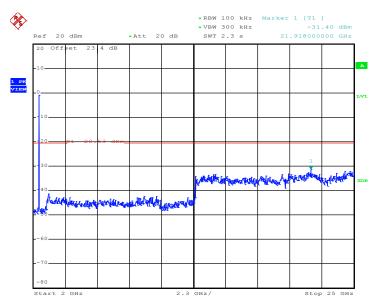

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00


Date: 4.JAN.2017 16:56:39

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

Date: 4.JAN.2017 16:56:48



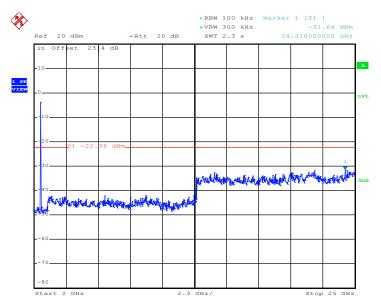
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 4.JAN.2017 17:02:00


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 4.JAN.2017 17:02:09

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 4.JAN.2017 17:12:23

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 4.JAN.2017 17:12:31

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V

3.5 Radiated Band Edges and Spurious Emission Measurement

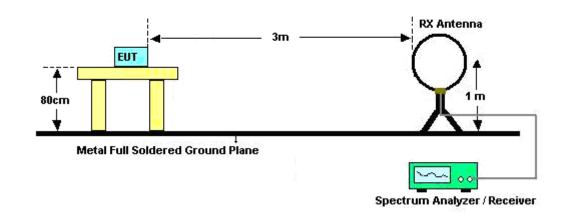
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

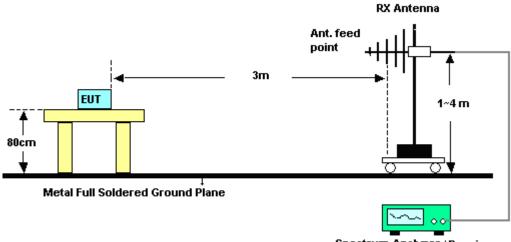
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

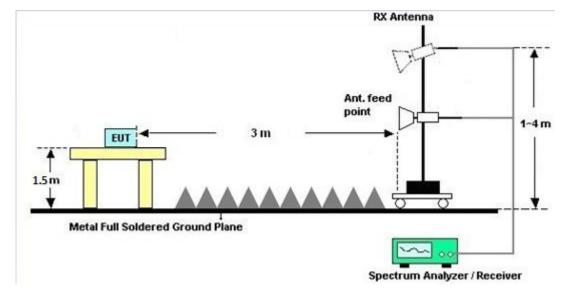

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 AC Conducted Emission Measurement

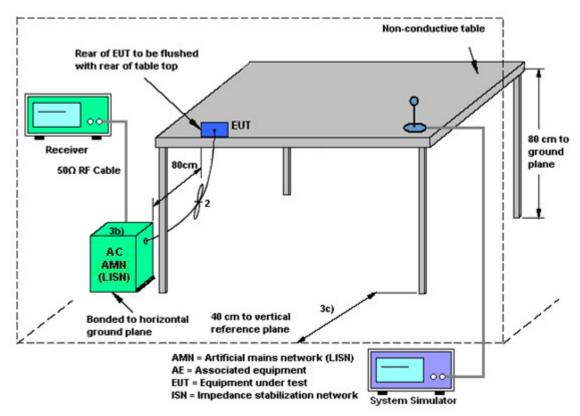
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (Minz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

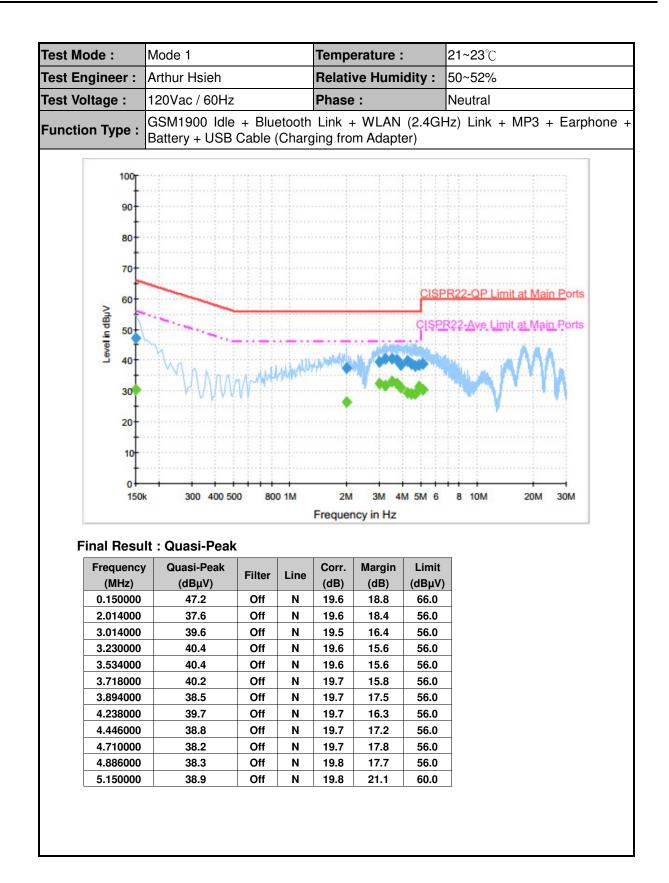
3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

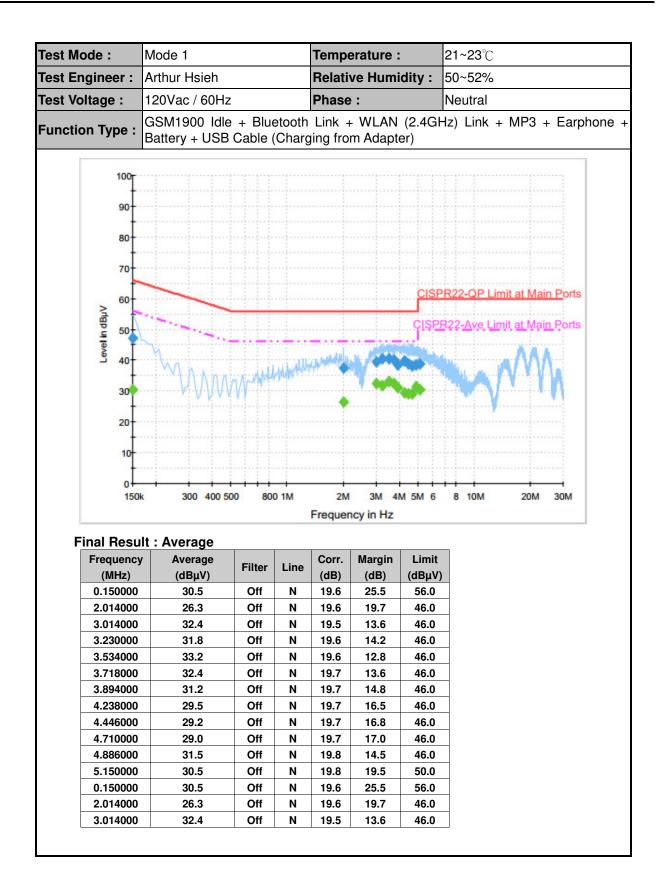
3.6.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup


3.6.5 Test Result of AC Conducted Emission

	le :	Mode 1			Tempe	rature :		21~23 ℃		
Test Engi	ineer :	Arthur Hsieh			Relativ	e Humi	dity :	50~52%		
Test Volta		120Vac / 60Hz			Phase	:		Line		
Function		GSM1900 Idle Battery + USB						lz) Link	+ MP3 + I	Earphone +
	100					1				1
	90									3
	-									
	80-							· · · · · · · · · · · · · · · · · · ·		
	70-									
	-						CISP	R22-QP Li	mit at Main F	Ports
	3 60									
	8 50 -						CISP	22-Ave Li	mit at Main F	orts
	VudBh dBy V			*****		17.00	44.			
	- 40	VIAA.		Mush						
		V UI/IAA	WWW	which the	r.e				ATM.	
	30	A A.A.A			**		~			
	20									
	10-									
	10									
		x 300 400 50	0 80	0 1M	2M		M 5M 6	8 10M	20M 3	H.
	10	< 300 400 50	0 80	0 1M	2M Frequence		M 5M 6	8 10M	1 20M 3	н
Fina	10- 0	300 400 50		0 1M			M 5M 6	8 10M	20M 3	-i IoM
	10 0 1500	lt : Quasi-Peak				cy in Hz	M 5M 6	8 10M	20M 3	H IOM
	10- 0	lt : Quasi-Peak		0 1M	Frequend				20M 3	H.
F	al Resu	It : Quasi-Peak			Frequence Corr.	cy in Hz Margin	Limit		20M 3	-i IoM
F (al Resu requency (MHz) 0.158000 1.726000	It : Quasi-Peak Quasi-Peak (dBµV) 48.4 41.1	Filter	Line	Frequence Corr. (dB)	cy in Hz Margin (dB)	Limit (dBµV)		20M 3	H IOM
(al Resu requency (MHz) 0.158000 1.726000 1.886000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0	Filter Off Off Off	Line L1 L1 L1	Corr. (dB) 19.6 19.6	Margin (dB) 17.2 14.9 16.0	Limit (dBµV) 65.6 56.0 56.0		20M 3	H.
F () 	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1	Filter Off Off Off	Line L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5	Margin (dB) 17.2 14.9 16.0 15.9	Limit (dBµV) 65.6 56.0 56.0 56.0		20M 3	-i IoM
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8	Filter Off Off Off Off	Line L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5	Margin (dB) 17.2 14.9 16.0 15.9 16.2	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0		20M 3	H IOM
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5 19.5 19.6	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0		20M 3	-i IoM
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.910000 3.062000 3.246000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5 19.5 19.6 19.6	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	H.
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.246000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5 19.5 19.5 19.6 19.6 19.5 19.6	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	-i IOM
	al Resu requency (MHz) 0.158000 1.726000 1.726000 2.790000 2.910000 3.062000 3.246000 3.246000 3.218000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1	Filter Off Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5 19.6 19.5 19.5 19.6 19.6 19.7	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	H IOM
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.246000 3.470000 3.718000 3.806000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1 42.3	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.5 19.5 19.6 19.5 19.5 19.6 19.7 19.7	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9 13.7	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	-i IoM
	al Resu requency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.062000 3.246000 3.470000 3.718000 3.718000 4.118000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1 42.3 40.8	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.6 19.5 19.5 19.6 19.6 19.7 19.7 19.7	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9 13.7 15.2	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	-i IoM
	al Resu requency (MHz) 0.158000 1.726000 1.726000 2.910000 3.062000 3.062000 3.246000 3.470000 3.718000 3.806000 4.118000 4.374000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1 42.3 40.8 41.1	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. Corr. (dB) 19.6 19.6 19.6 19.5 19.5 19.6 19.5 19.5 19.5 19.6 19.7 19.7 19.7 19.7 19.7	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9 13.7 15.2 14.9	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	H.
	al Resu requency (MHz) 0.158000 1.726000 1.726000 2.910000 3.062000 3.062000 3.246000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.26000 3.270000 3.26000 3.2700000 3.26000 3.2700000 3.27000000000000000000000000000000000000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1 42.3 40.8 41.1 39.9	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. (dB) 19.6 19.6 19.6 19.6 19.5 19.5 19.6 19.5 19.5 19.6 19.6 19.7 19.7 19.7 19.8 19.8	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9 13.7 15.2 14.9 16.1	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	-i IOM
	al Resu requency (MHz) 0.158000 1.726000 1.726000 2.910000 3.062000 3.062000 3.246000 3.470000 3.718000 3.806000 4.118000 4.374000	It : Quasi-Peak Quasi-Peak (dBμV) 48.4 41.1 40.0 40.1 39.8 40.5 43.2 40.9 42.1 42.3 40.8 41.1	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Corr. Corr. (dB) 19.6 19.6 19.6 19.5 19.5 19.6 19.5 19.5 19.5 19.6 19.7 19.7 19.7 19.7 19.7	Margin (dB) 17.2 14.9 16.0 15.9 16.2 15.5 12.8 15.1 13.9 13.7 15.2 14.9	Limit (dBµV) 65.6 56.0 56.0 56.0 56.0 56.0 56.0 56.0		20M 3	-i IoM



Test Mode :	Mode 1		Temp	erature :		21~23 ℃		
Test Engineer :	Arthur Hsieh		Relat	ive Humi	dity :	50~52%		
Test Voltage :	120Vac / 60Hz	2	Phase	e :		Line		
Function Type :	GSM1900 Idle Battery + USB					lz) Link +	MP3 + E	arphone
100								
90-								
-								
80-						· · · · · · · · · · · · · · · · · · ·		
t								
70								
60-					CISP	R22-QP Lin	nit at Main Po	orts
								100
Vudburger					CISPI	R22-Ave Lin	<u>tit at Main Po</u>	orts
ave 1	Λ		mital		U.S.			
⊐ 40†	V MAA						4/14 .	
30	VUTINA	MANAN					A AVE	
50	a h a i			.		i		
-			*			· · · · · · · · · · · · · · · · · · ·		
20-			*			¥		
-	, , , , , , , , , , , , , , , , , , ,		*			· · · · · · · · · · · · · · · · · · ·		
20-						· · · · · · · · · · · · · · · · · · ·		
20- 10-			**			. 101	2014 20	
20-	k 300 400 5	00 800 1			M 5M 6	8 10M	20M 30	м
20- 10-	k 300 400 5	00 800 1		4 3M 4I ncy in Hz	M 5M 6	8 10M	20M 30	м
20- 10- 0- 150	k 300 400 5	00 800 1			M 5M 6	8 10M	20M 30	м
20 10 150 Final Resu Frequency	It : Average		Freque		M 5M 6	8 10M	20M 30	м
20 10 150 Final Resu Frequency (MHz)	It : Average Average (dBµV)	Filter L	Freque Line Corr. (dB)	Margin (dB)	Limit (dBµV)	1	20M 30	м
20- 10- 150 Final Resu Frequency (MHz) 0.158000	It : Average Average (dBµV) 36.1	Filter L Off	Line Corr. (dB) (dB)	Margin (dB) 19.5	Limit (dBµV) 55.6	1	20M 30	м
20- 10- 150 Final Resu Frequency (MHz) 0.158000 1.726000	It : Average / Average (dBµV) 36.1 26.3	Filter L Off Off	Freque Line Corr. (dB) L1 19.6 L1 19.6	Margin (dB) 19.5 19.7	Limit (dBµV) 55.6 46.0	1	20M 30	М
20 10 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000	It : Average / Average (dBμV) 36.1 26.3 26.3	Filter L Off Off Off	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.6	Margin (dB) 19.5 19.7 19.7	Limit (dBµV) 55.6 46.0 46.0	1	20M 30	М
20 10 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000	It : Average ν Average (dBμV) 36.1 26.3 26.3 26.9 26.9	Filter L Off 0 Off 0 Off 0 Off 0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5	Margin (dB) 19.5 19.7 19.7 19.1	Limit (dBµV) 55.6 46.0 46.0 46.0	1	20M 30	М
20- 10- 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9	FilterLOff0Off0Off0Off0Off0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5 L1 19.5	Margin (dB) 19.5 19.7 19.7 19.1 16.1	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0	1	20M 30	М
20- 10- 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000	It : Average / Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3	FilterLOff0Off0Off0Off0Off0Off0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.5 L1 19.5	Margin (dB) 19.5 19.7 19.7 19.1 16.1 16.7	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0	1	20M 30	М
20 10 0 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000	It : Average Λ (dBμV) 36.1 26.3 26.3 26.9 29.9 30.5	FilterLOff0Off0Off0Off0Off0Off0Off0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.5 L1 19.5 L1 19.5	Margin (dB) 19.5 19.7 19.7 19.1 16.1 16.7 15.5	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0	1	20M 30	М
20 10 0 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.470000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5	FilterLOff0Off0Off0Off0Off0Off0Off0Off0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.5 L1 19.6 L1 19.6 L1 19.6	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.7 15.5 16.5	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0	1	20M 30	М
20 10 10 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.246000 3.470000 3.718000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5 30.4	Filter L Off 0	Freque Corr. (dB) L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.6 L1 19.5 L1 19.6 L1 19.5 L1 19.6 L1 19.6 L1 19.6 L1 19.6 L1 19.6 L1 19.6 L1 19.7	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.1 16.7 15.5 16.5 15.6	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0 46.0	1	20M 30	м
20 10 0 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.470000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5	Filter L Off 0	Freque Line Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.5 L1 19.6 L1 19.6 L1 19.6	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.7 15.5 16.5	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0 46.0	1	20M 30	М
20 10 10 0 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.470000 3.470000 3.806000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5 30.4 32.1	Filter L Off 0	Freque Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.6 L1 19.5 L1 19.6 L1 19.6 L1 19.6 L1 19.6 L1 19.7	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.7 15.5 16.5 15.6 13.9	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	1	20M 30	М
20 10 10 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 2.910000 3.062000 3.246000 3.246000 3.718000 3.806000 4.118000	It : Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5 30.4 31.3	Filter L Off 0 Off 0	Freque Corr. (dB) L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.6 L1 19.6 L1 19.6 L1 19.7 L1 19.7 L1 19.7	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.7 15.5 16.5 15.6 13.9 14.7	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	1	20M 30	М
20 10 10 10 150 Final Resu Frequency (MHz) 0.158000 1.726000 1.886000 2.790000 3.062000 3.246000 3.246000 3.470000 3.806000 4.118000 4.374000	It : Average (Average (dBμV) 36.1 26.3 26.3 26.9 29.9 29.3 30.5 29.5 30.4 32.1 31.3 31.4	Filter L Off 0 Off 0	Freque Corr. (dB) L1 19.6 L1 19.6 L1 19.6 L1 19.5 L1 19.5 L1 19.6 L1 19.6 L1 19.5 L1 19.6 L1 19.6 L1 19.7 L1 19.7 L1 19.7 L1 19.7 L1 19.7	Margin (dB) 19.5 19.7 19.7 19.7 19.1 16.1 16.1 16.7 15.5 16.5 15.6 13.9 14.7 14.6	Limit (dBµV) 55.6 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46	1	20M 30	м

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz-40GHz	Jul. 17, 2016	Jan. 03, 2017 ~ Jan. 09, 2017	Jul. 16, 2017	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Dec. 26, 2016	Jan. 03, 2017 ~ Jan. 09, 2017	Dec. 25, 2017	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Dec. 26, 2016	Jan. 03, 2017 ~ Jan. 09, 2017	Dec. 25, 2017	Conducted (TH02-HY)
Hygrometer	Testo	608-H2	41410069	N/A	Aug. 28, 2016	Jan. 03, 2017 ~ Jan. 09, 2017	Aug. 27, 2017	Conducted (TH02-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY842095 21	1GHz~26GHz	Dec. 02, 2016	Jan. 03, 2017 ~ Jan. 09, 2017	Dec. 01, 2017	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 09, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Jan. 09, 2017	Aug. 29, 2017	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Apr. 19, 2016	Jan. 09, 2017	Apr. 18, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Jan. 09, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 05, 2017	Jan. 09, 2017	Jan. 04, 2018	Conduction (CO05-HY)
Test Software	N/A	EMC32	8.40.0	N/A	N/A	Jan. 09, 2017	N/A	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Oct. 20, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Oct. 19, 2018	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 15, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Oct. 14, 2017	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Oct. 25, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Oct. 24, 2017	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 576	18GHz ~ 40GHz	Apr. 15, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Apr. 14, 2017	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9030A	MY523502 76	3Hz~44GHz	Mar. 21, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Mar. 20, 2017	Radiation (03CH12-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Nov. 10, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Nov. 09, 2017	Radiation (03CH12-HY)
Preamplifier	MITEQ	TTA0204	1872107	2GHz~40GHz	Feb. 15, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Feb. 14, 2017	Radiation (03CH12-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1815698	1GHz~18GHz	Dec. 01, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Nov. 30, 2017	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 24, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Aug. 23, 2017	Radiation (03CH12-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303B	TP140349	N/A	Nov. 14, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Nov. 13, 2017	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/ 4,MY2865 3/4,MY983 9/4PE	26GHz~40GHz	Jan. 10, 2017	Jan. 12, 2017 ~ Jan. 16, 2017	Jan. 09, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/ 4,MY2865 3/4,MY983 9/4PE	1GHz~26GHz	Jan. 10, 2017	Jan. 12, 2017 ~ Jan. 16, 2017	Jan. 09, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/ 4,MY2865 3/4,MY983 9/4PE	30MHz~1GHz	Jan. 10, 2017	Jan. 12, 2017 ~ Jan. 16, 2017	Jan. 09, 2018	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24958/ 4,MY2865 3/4,MY983 9/4PE	9K~30MHz	Jan. 10, 2017	Jan. 12, 2017 ~ Jan. 16, 2017	Jan. 09, 2018	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Jan. 12, 2017 ~ Jan. 16, 2017	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Jan. 12, 2017 ~ Jan. 16, 2017	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jan. 12, 2017 ~ Jan. 16, 2017	N/A	Radiation (03CH12-HY)
Test Software	Audix	E3	6.2009-8-2 4	N/A	N/A	Jan. 12, 2017 ~ Jan. 16, 2017	N/A	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2G Low Pass	Sep. 19, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Sep. 18, 2017	Radiation (03CH12-HY)
Filter	Microwave	H3G018G1	SN477220	3.0G High Pass	Aug. 25, 2016	Jan. 12, 2017 ~ Jan. 16, 2017	Aug. 24, 2017	Radiation (03CH12-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.70

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.10
of 95% (U = 2Uc(y))	5.10

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.70
of 95% (U = 2Uc(y))	4.70

Appendix A. Conducted Test Results

Report Number : FR6D2925B

Bluetooth Low Energy

Test Engineer	Tommy Lee and Aking Chang	Temperature:	21~25	°C
Test Date:	2017/1/9	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail				
BLE	1Mbps	1	0	2402	1.03	0.70	0.50	Pass				
BLE	1Mbps	1	19	2440	1.03	0.70	0.50	Pass				
BLE	1Mbps	1	39	2480	1.03	0.71	0.50	Pass				

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	1.52	30.00	0.40	1.92	36.00	Pass	
BLE	1Mbps	1	19	2440	2.33	30.00	0.40	2.73	36.00	Pass	
BLE	1Mbps	1	39	2480	1.30	30.00	0.40	1.70	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>									
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
BLE	1Mbps	1	0	2402	2.23	-0.96				
BLE	1Mbps	1	19	2440	2.23	0.43				
BLE	1Mbps	1	39	2480	2.23	-1.31				

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	-2.02	-16.67	0.40	8.00	Pass		
BLE	1Mbps	1	19	2440	-0.53	-15.21	0.40	8.00	Pass		
BLE	1Mbps	1	39	2480	-2.36	-16.99	0.40	8.00	Pass		
ote: P	SD (dBr	n/ 1(00kHz) i	is a refe	rence level u	ised for Con	ducted Ban	d Edges and	Conducted		

Appendix B. Radiated Spurious Emission

Test Engineer :	Nick Yu, Karl Hou, Peter Liao, and Citta Ke.	Temperature :	20~23°C	
rest Engineer.		Relative Humidity :	58~63%	

2.4GHz 2400~2483.5MHz

	[.	,		ſ	r	F		Ī
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		2382.87	55.73	-18.27	74	52.72	27.05	7.45	31.49	187	105	Р	Н
		2383.92	45.18	-8.82	54	42.17	27.05	7.45	31.49	187	105	A	Н
	*	2402	91.91	-	-	88.84	27.11	7.45	31.49	187	105	Р	Н
	*	2402	91	-	-	87.93	27.11	7.45	31.49	187	105	А	Н
BLE													Н
CH 00													Н
2402MHz		2311.785	55.84	-18.16	74	53.22	26.84	7.3	31.52	154	196	Ρ	V
2402111112		2384.445	45.44	-8.56	54	42.43	27.05	7.45	31.49	154	196	А	V
	*	2402	89.26	-	-	86.19	27.11	7.45	31.49	154	196	Ρ	V
	*	2402	88.58	-	-	85.51	27.11	7.45	31.49	154	196	А	V
													V
													۷
		2373.7	55.79	-18.21	74	52.89	27.02	7.37	31.49	126	104	Ρ	Н
		2359.98	45.42	-8.58	54	42.57	26.98	7.37	31.5	126	104	А	Н
	*	2440	95.05	-	-	91.82	27.22	7.49	31.48	126	104	Ρ	Н
	*	2440	94.08	-	-	90.85	27.22	7.49	31.48	126	104	А	Н
DI C		2493.28	56.01	-17.99	74	52.56	27.38	7.53	31.46	126	104	Ρ	Н
BLE CH 19		2496.5	45.66	-8.34	54	42.2	27.39	7.53	31.46	126	104	А	Н
2440MHz		2377.48	56.47	-17.53	74	53.56	27.03	7.37	31.49	121	215	Ρ	۷
2440101112		2383.08	45.33	-8.67	54	42.32	27.05	7.45	31.49	121	215	А	٧
	*	2440	92.02	-	-	88.79	27.22	7.49	31.48	121	215	Ρ	٧
	*	2440	91.05	-	-	87.82	27.22	7.49	31.48	121	215	А	V
		2498.11	56.46	-17.54	74	53	27.39	7.53	31.46	121	215	Ρ	V
		2499.58	45.67	-8.33	54	42.2	27.4	7.53	31.46	121	215	А	V

BLE (Band Edge @ 3m)

Report No. : FR6D2925B

	*	2480	92.84	-	-	89.44	27.34	7.53	31.47	148	103	Р	Н
	*	2480	91.87	-	-	88.47	27.34	7.53	31.47	148	103	Α	Н
		2494.4	56.65	-17.35	74	53.2	27.38	7.53	31.46	148	103	Р	Н
		2499.84	45.52	-8.48	54	42.05	27.4	7.53	31.46	148	103	Α	Н
													Н
BLE CH 39 2480MHz													Н
	*	2480	91.8	-	-	88.39	27.35	7.53	31.47	100	217	Р	V
240011112	*	2480	90.7	-	-	87.3	27.34	7.53	31.47	100	217	А	V
		2496.24	56.35	-17.65	74	52.89	27.39	7.53	31.46	100	217	Р	V
		2486.56	45.58	-8.42	54	42.16	27.36	7.53	31.47	100	217	Α	V
													V
													V
Remark		o other spurio I results are P		st Peak	and Averag	ge limit lin	e.						

2.4GHz 2400~2483.5MHz

BLE	(Harmor	nic @	3m)
-----	---------	-------	-----

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	37.83	-36.17	74	53.24	32.15	10.59	58.15	100	0	Р	Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	38.35	-35.65	74	53.76	32.15	10.59	58.15	100	0	Ρ	V
													V
													V
													V
		4880	38.3	-35.7	74	53.23	32.28	10.89	58.1	100	0	Ρ	Н
		7320	43.7	-30.3	74	51.62	37	14.18	59.1	100	0	Р	Н
													Н
BLE													Н
CH 19 2440MHz		4880	38.42	-35.58	74	53.35	32.28	10.89	58.1	100	0	Р	V
2440101112		7320	43.03	-30.97	74	50.95	37	14.18	59.1	100	0	Р	V
													V
													V
		4960	38.61	-35.39	74	53.02	32.43	11.19	58.03	100	0	Р	Н
		7440	43.78	-30.22	74	51.3	37.33	14.32	59.17	100	0	Ρ	Н
													Н
BLE													Н
CH 39		4960	38.75	-35.25	74	53.16	32.43	11.19	58.03	100	0	Р	V
2480MHz		7440	43.8	-30.2	74	51.32	37.33	14.32	59.17	100	0	Р	V
													V
													V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	е.						

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		102.09	25.72	-17.78	43.5	40.5	16.22	1.43	32.43			Р	Н
		147.99	32.61	-10.89	43.5	45.73	17.55	1.75	32.42			Ρ	Н
		244.11	26.8	-19.2	46	39.29	18.01	1.83	32.33			Ρ	Н
		340.6	29.89	-16.11	46	39.03	20.71	2.44	32.29			Ρ	Н
		746.6	35.41	-10.59	46	36.22	27.53	3.97	32.31	100	0	Ρ	Н
		943.3	33.58	-12.42	46	29.88	30.14	4.75	31.19			Ρ	н
													Н
													Н
													Н
													Н
0.4011-													Н
2.4GHz BLE													Н
LF		46.47	34.64	-5.36	40	49.69	16.63	0.78	32.46	100	0	Ρ	V
LF		100.2	28.95	-14.55	43.5	43.95	16	1.43	32.43			Ρ	V
		149.88	29.18	-14.32	43.5	42.35	17.5	1.75	32.42			Р	V
		729.8	38.12	-7.88	46	39.47	27.11	3.89	32.35			Р	V
		745.9	37.38	-8.62	46	38.21	27.51	3.97	32.31			Р	V
		910.4	33.18	-12.82	46	30.86	29.2	4.6	31.48			Р	V
													V
													V
													V
													V
													V
													V

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	($dB\mu V/m$)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

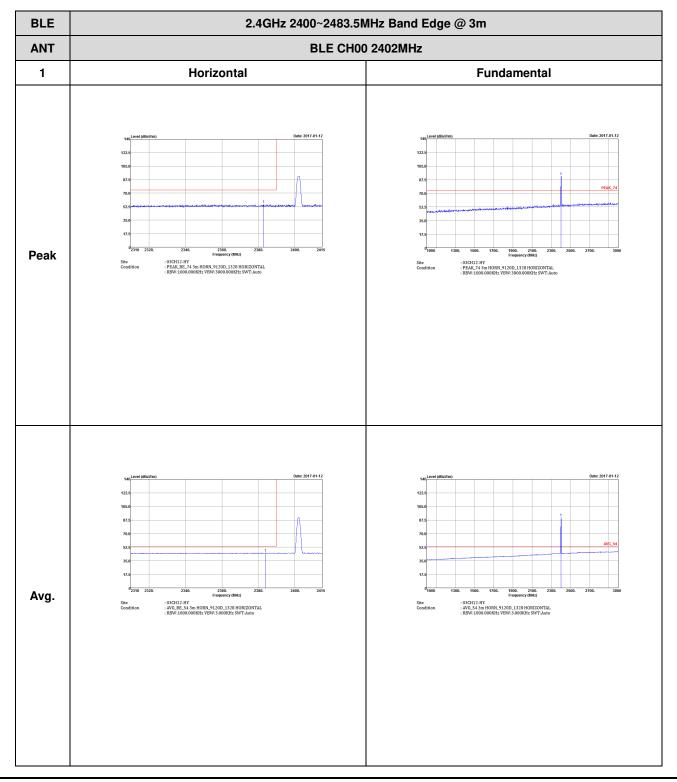
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

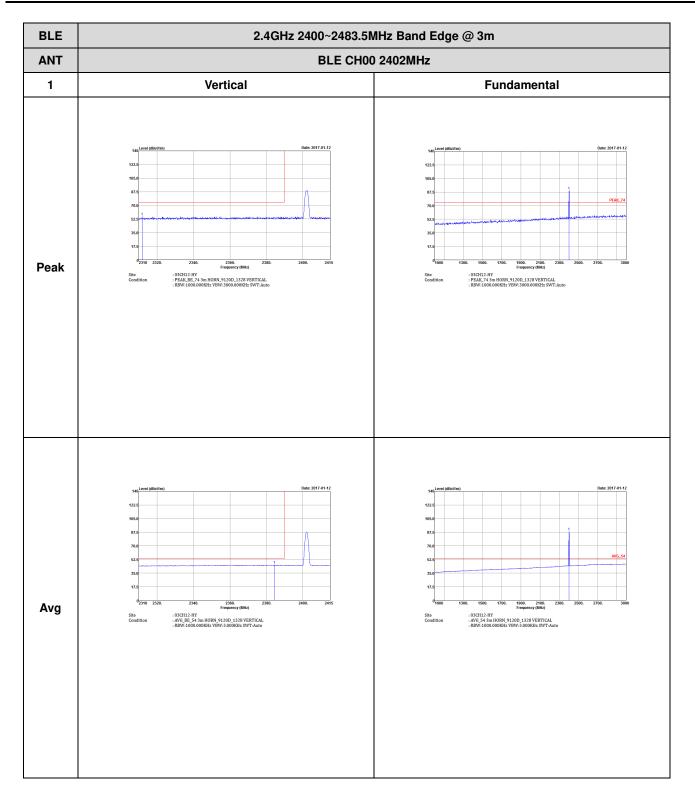
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission

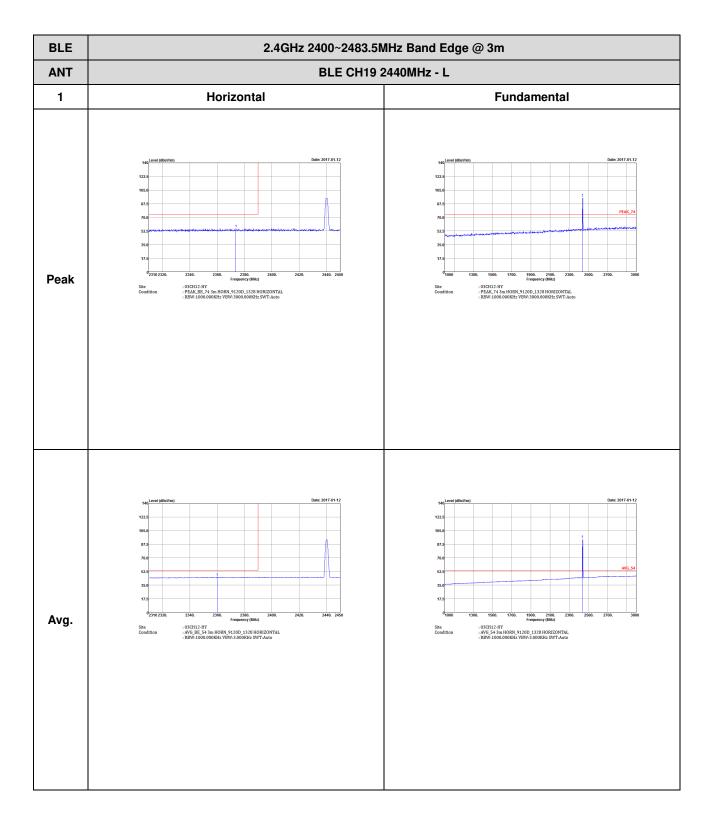
Test Engineer :	Nick Yu, Karl Hou, Peter Liao, and Citta Ke.	Temperature :	20~23°C
rest Engineer .		Relative Humidity :	58~63%

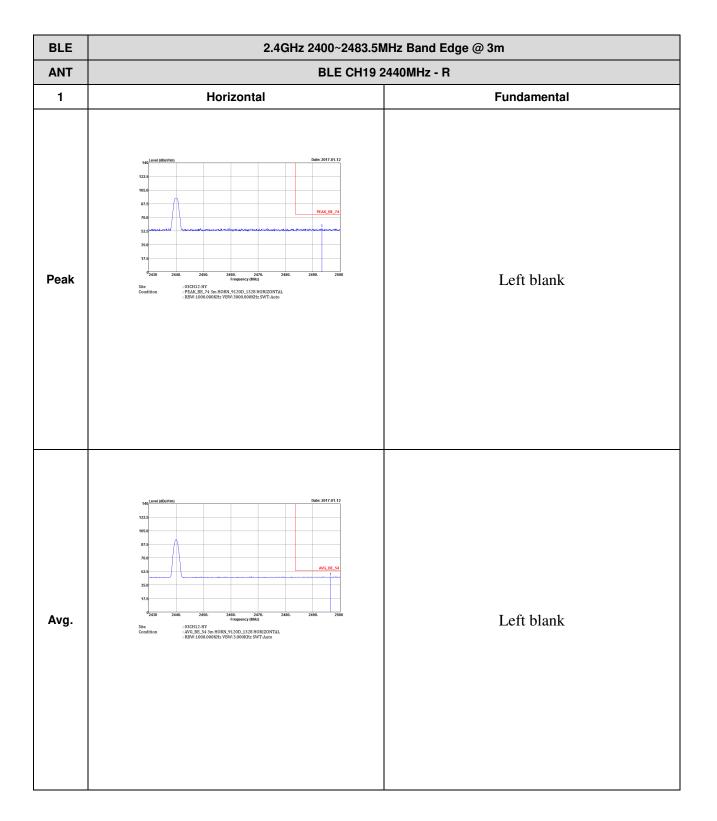

Note symbol

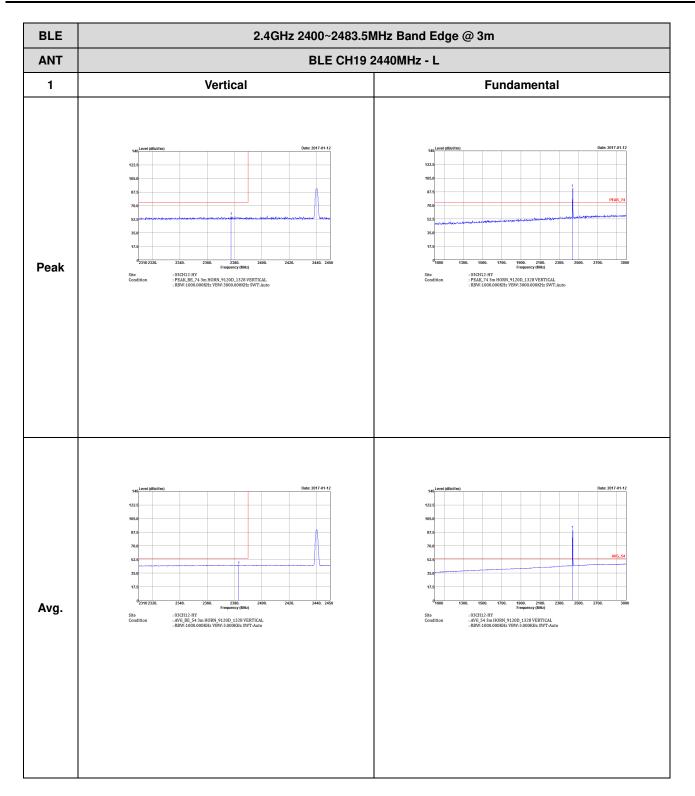
-L	Low channel location
-R	High channel location

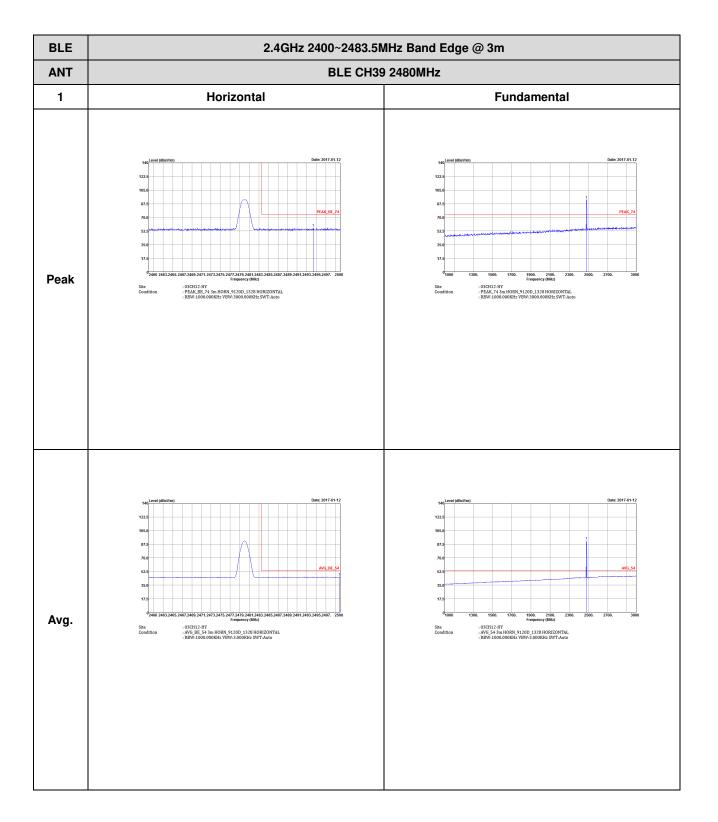


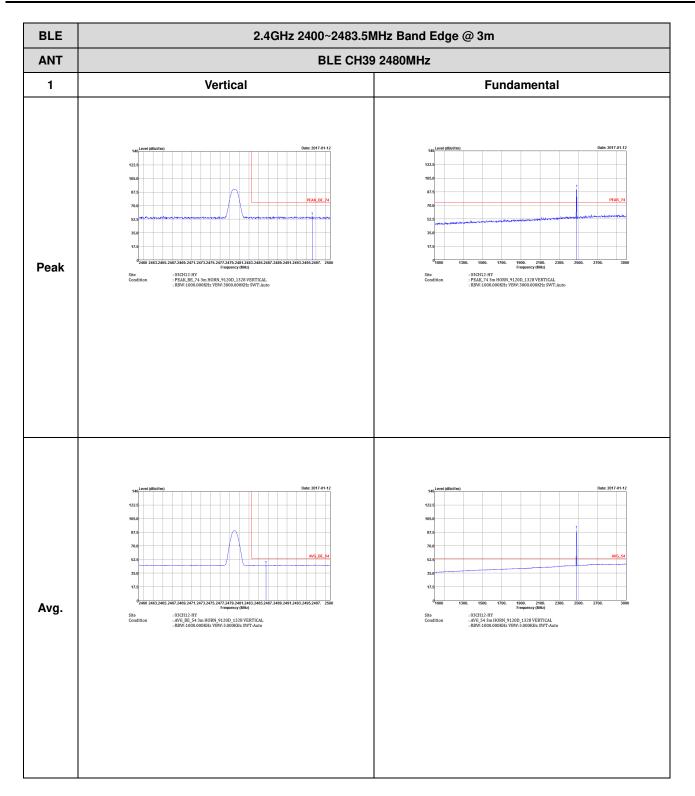
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

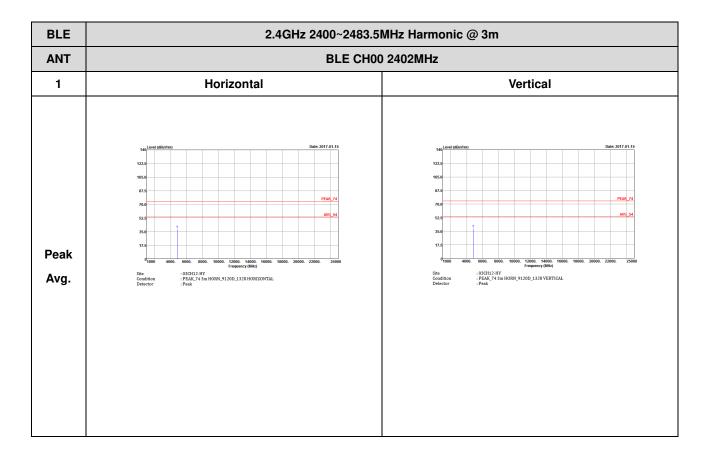


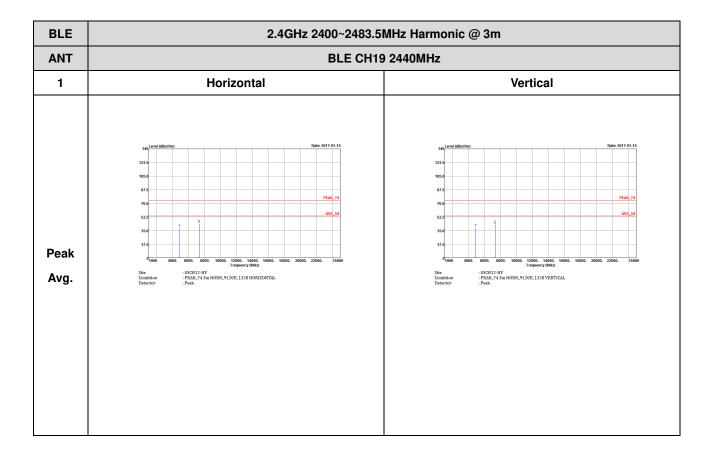






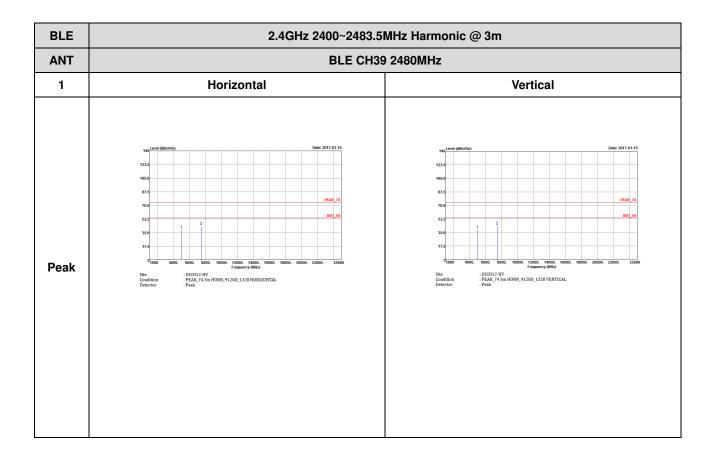
BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
ANT	BLE CH19 2440	MHz - R
1	Vertical	Fundamental
Peak	140 Level (dBaVm) Detr. 2017.61.12 122.6 105.0 104.0 103.0 104.0 104.0 104.0 104.0 104.0 105.0 104.0 104.0 104.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 104.0 105.0 104.0 <th>Left blank</th>	Left blank
Avg.	100 Level (db/m) Dbf: 2017-01-12 120 100 100 100 120 100 100 100 120 100 100 100 100 120 100 100 100 100 100 120 100 100 100 100 100 100 120 100 100 100 100 100 100 100 120 100 <td< th=""><th>Left blank</th></td<>	Left blank

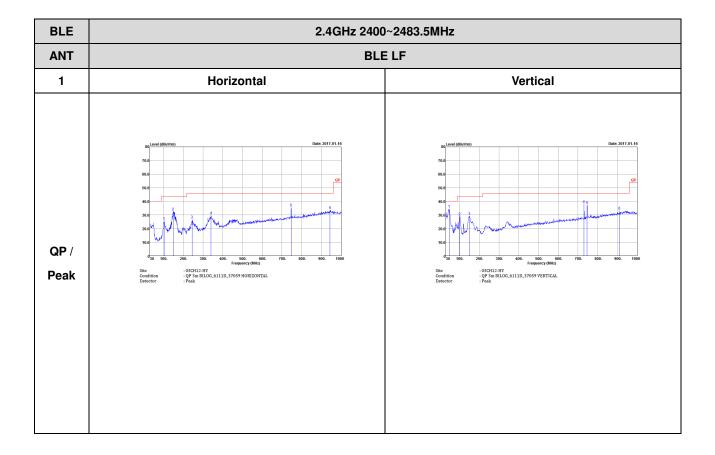




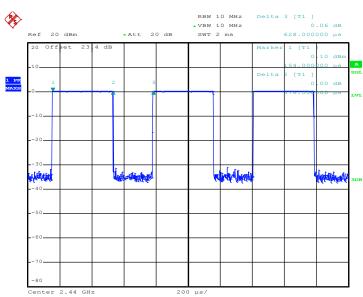
2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)





Emission below 1GHz


2.4GHz BLE (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE	66.5	376.00	2.66	3kHz

Bluetooth - LE

Date: 3.JAN.2017 14:28:38