

FCC Test Report

APPLICANT	:	Sony Mobile Communications Inc.
EQUIPMENT	:	GSM/WCDMA/LTE Phone+Bluetooth, DTS/UNII
		a/b/g/n and NFC
BRAND NAME	:	Sony
FCC ID	:	PY7-08618V
STANDARD	:	FCC 47 CFR FCC Part 15 Subpart B
CLASSIFICATION	:	FCC Class B personal computers and peripherals

The product was received on Dec. 29, 2016 and testing was completed on Mar. 02, 2017. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Louis Wu

Reviewed by: Louis Wu / Manager

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7-08618V Page Number: 1 of 21Report Issued Date: Mar. 03, 2017Report Version: Rev. 01Report Template No.: BU5-FD15B Version 1.3

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1.	GENE	ERAL DESCRIPTION	5
	1.1.	Applicant	5
	1.2.	Manufacturer	
	1.3.	Product Feature of Equipment Under Test	5
	1.4.	Modification of EUT	6
	1.5.	Test Location	
	1.6.	Applicable Standards	7
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1.	Test Mode	8
	2.2.	Connection Diagram of Test System	9
	2.3.	Support Unit used in test configuration and system	10
	2.4.	EUT Operation Test Setup	
3.	TEST	RESULT	
	3.1.	Test of AC Conducted Emission Measurement	11
	3.2.	Test of Radiated Emission Measurement	15
4.	LIST	OF MEASURING EQUIPMENT	20
5.	UNCE	ERTAINTY OF EVALUATION	21

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC6D2925	Rev. 01	Initial issue of report	Mar. 03, 2017

Report Section	FCC Rule	Rule Description Limit		Result	Remark
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	Under limit
0.1	10.107				14.60 dB at 0.166 MHz
2.0	15 100	Radiated Emission	< 15.109 limits	PASS	Under limit
3.2	15.109		< 15.109 1111115	L422	8.73 dB at 720.000 MHz

SUMMARY OF TEST RESULT

1. General Description

1.1. Applicant

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.2. Manufacturer

Sony Mobile Communications Inc.

4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan

1.3. Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, DTS/UNII a/b/g/n, NFC, and GPS

Product Specification subjective to this standard					
	WWAN: Coupling type (LDS) Antenna				
	WLAN: PIFA Antenna				
Antenna Type	Bluetooth: PIFA Antenna				
	GPS/Glonass: PIFA Antenna				
	NFC: Loop Antenna				

EUT Information List								
HW Version	HW Version SW Version		Performed Test Item					
А	1.21	WUJ01NNPAN	Conducted Emission Radiated Spurious Emission					

Accessory List				
Fornhono	Model No. : MH410c			
Earphone	S/N : N/A			
	Model No. : UCB20			
USB Cable	S/N : 1635A9190031260			

Note:

- 1. Above EUT list and accessory list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test.
- 3. For other wireless features of this EUT, test report will be issued separately.

1.4. Modification of EUT

No modifications are made to the EUT during all test items.

1.5. Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,				
Test Site Location	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Test Sile Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Toot Site No	Sporton	Site No.			
Test Site No.	CO05-HY	03CH06-HY			

1.6. Applicable Standards

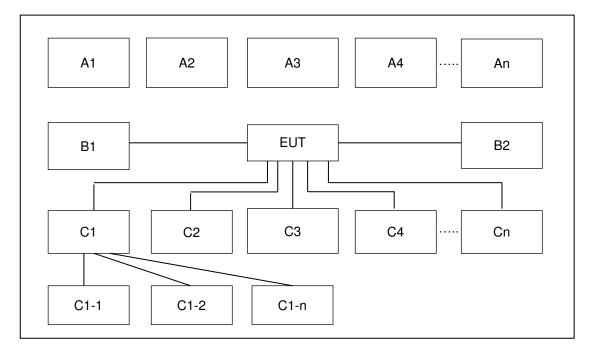
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC 47 CFR FCC Part 15 Subpart B
- ANSI C63.4-2014

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. For FCC 15 Subpart B Unintentional Radiators, device supporting USB interface or similar peripherals (defined as the Section 15.3 (r) Peripheral device) acting as a peripheral for personal computers shall be authorized as "The Class B personal computers and peripherals" per the Section 15.101 (a) Equipment authorization of unintentional radiators.
- 3. For other Unintentional Radiators features of this EUT, test reports are be issued separately. Per the Note of the Section 15.101, when device supports features (USB, FM Radio, digital devices...etc) more than one category of authorization, type of authorization shall be appropriately chosen for FCC 15B compliance rule, and the Section 15.101 (b), only those receivers that operate (tune) within the frequency range of 30-960 MHz, CB receivers and radar detectors are subject to the authorizations shown in paragraph (a) of the Section 15.101. However, receivers indicated as being subject to Declaration of Conformity that are contained within a transceiver, the transmitter portion of which is subject to certification, shall be authorized under the verification procedure.

2. Test Configuration of Equipment Under Test


2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (30MHz to the 5th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Test Items	Function Type							
AC Conducted Emission	Mode 1: Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone							
Radiated Emissions	Mode 1 : Flight Mode + USB Cable (Data Link with Notebook) + Battery + Earphone							
Remark: Data Link with Notebook means data application transferred mode between EUT and								
Notebook.	Notebook.							

2.2. Connection Diagram of Test System

	Test Setup								
Ne	Wireless Station			Test Mode					
No.		Connection Type	1	-	-	-	-	-	-
C1	Notebook	USB cable	Х						
C1-1	IPod	USB Cable to C1	Х						
C1-2	WLAN AP	RJ-45 Cable to C1	Х						
C2	Earphone	Earphone jack	Х						
C3	SD card	SD I/O interface without cable	Х						

2.3.	Support Unit used in test conf	iguration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
2.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	iPod	Apple	A1285	FCC DoC	Shielded, 1.0 m	N/A
4.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4. EUT Operation Test Setup

The data application (each file size is greater than 30Mbytes) is continuously transferred between the EUT and Notebook connected via USB cable, while Flight mode.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

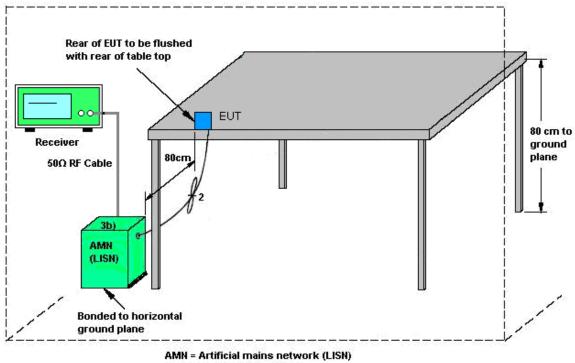
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup

- AE = Associated equipment
- EUT = Equipment under test
- ISN = Impedance stabilization network

3.1.5 Test Result of AC Conducted Emission

Fest Mode :	Mode : Mode 1					21∼24 ℃		
Fest Enginee	er: A	rthur Hsieh			Relativ	ve Humi	dity :	50~53%
Fest Voltage	: 1	120Vac / 60Hz				:		Line
Function Typ	e:F	light Mode + l	Data Lir	nk with N	otebool	k) + Battery + Earphone		
	100 90 80 70 60 71 90 90 40 30 20			•	****			2-OP Limit at Main Ports 2-Ave Limit at Main Ports
	10 0 1	50k 300 400	500 8	00 1M	2M Frequen		5M 6 8	10M 20M 30M
Final R	0			00 1M			5M 6 8	10M 20M 30M
Freque	o 1 esult ency	50k 300 400 : Quasi-Peak Quasi-Peak		00 1M	Frequen	cy in Hz Margin	Limit	3 10M 20M 30M
Freque (MH	o 1 esult ency tz)	50k 300 400 : Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	cy in Hz Margin (dB)	Limit (dBµV)	10M 20M 30M
Freque (MH 0.150	o 1 esult ency tz)	50k 300 400 : Quasi-Peak Quasi-Peak (dBµV) 48.6	Filter	Line L1	Frequen Corr. (dB) 19.6	Margin (dB) 17.4	Limit (dBµV) 66.0	3 10M 20M 30M
Freque (MH 0.150 0.166	0 1 esult ency Hz) 0000 5000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6	Filter Off Off	Line L1 L1	Frequen Corr. (dB) 19.6 19.6	Margin (dB) 17.4 14.6	Limit (dBµV) 66.0 65.2	10M 20M 30M
Freque (MH 0.150 0.166 0.182	0 1 esult ency tz) 0000 5000 2000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0	Filter Off Off	Line L1 L1 L1	Corr. (dB) 19.6 19.6	Margin (dB) 17.4 14.6 16.4	Limit (dBµV) 66.0 65.2 64.4	10M 20M 30M
Freque (MH 0.150 0.166 0.182 0.246	0 1 esult ency 1z) 0000 5000 5000 5000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6	Filter Off Off Off	Line L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3	Limit (dBµV) 66.0 65.2 64.4 61.9	10M 20M 30M
Freque (MH 0.150 0.166 0.182 0.246 0.534	0 1 esult ency tz) 0000 5000 5000 5000 5000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6	Filter Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Frequen Corr. (dB) 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0	10M 20M 30M
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886	0 1 ency 4z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0	3 10M 20M 30M
Freque (MH 0.150 0.166 0.182 0.246 0.534	0 1 esuit ency tz) 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4	Filter Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0	10M 20M 30M
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246	0 1 esult ency tz) 0000 2000 2000 2000 2000 2000 2000 20	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246	0 1 ency tz) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re	0 1 ency 1z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 56.0 60.0	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re Freque	0 1 esult ency 1z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average Average	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re Freque (MH	0 1 ency 4z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV)	Filter Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin (dB)	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 56.0 60.0 Limit (dBµV)	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re Freque (MH 0.150	0 1 ency tz) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV) 33.3	Filter Off Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 20.4 Margin (dB) 22.7	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0 Limit (dBµV) 56.0	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Ro Freque (MH 0.150 0.166	0 1 ency 1z) 0000 0000 0000 0000 0000 0000 esult ency 1z) 0000 0000 0000 2000	50k 300 400 : Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV) 33.3 38.3	Filter Off Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin (dB) 22.7 16.9	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0 Limit (dBµV) 56.0 55.2	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re (MH 0.150 0.166 0.182	0 1 ency 1z) 0000 0000 0000 0000 0000 0000 esult ency 1z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV) 33.3 38.3 29.0	Filter Off Off Off Off Off Off Off Filter	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin (dB) 22.7 16.9 25.4	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0 Limit (dBµV) 56.0 55.2 54.4	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re Final Re (MH 0.150 0.166 0.182 0.246	0 1 ency 1z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 : Quasi-Peak Quasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV) 33.3 38.3 29.0 25.6	Filter Off Off Off Off Off Off Off Filter Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin (dB) 22.7 16.9 25.4 26.3	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0 56.0 60.0 Limit (dBµV) 56.0 55.2 54.4 51.9	
Freque (MH 0.150 0.166 0.182 0.246 0.534 0.886 3.854 6.246 Final Re Final Re (MH 0.150 0.166 0.182 0.246 0.534	0 1 ency 4z) 0000 0000 0000 0000 0000 0000 0000	50k 300 400 50k 300 400 Cuasi-Peak (dBμV) 48.6 50.6 48.0 40.6 35.6 28.4 36.4 39.6 : Average (dBμV) 33.3 38.3 29.0 25.6 26.4 26.4	Filter Off Off Off Off Off Off Off Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Frequen (dB) 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 17.4 14.6 16.4 21.3 20.4 27.6 19.6 20.4 Margin (dB) 22.7 16.9 25.4 26.3 19.6	Limit (dBµV) 66.0 65.2 64.4 61.9 56.0 56.0 56.0 60.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 56.0 55.2 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 54.4 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51.951.9 51.9 51.9 51.951.9 51.9 51.9 51.951.9 51.9 51.951.9 51.9 51.951.9 51.9 51.951.9 51.951.9 51.9 51.951.9 51.9 51.951.9 51.9 51.951.9 51.951.951.9 51.951.9 51.951.951.951.951.951.951.951.951.951.951.951.951.951.951.951.951.951	

st Mode :	Mode 1 Arthur Hsieh			Temperature : Relative Humidity :			21~24℃ 50~53%	
st Engineer :								
st Voltage :	Voltage: 120Vac / 60Hz			Phase	:		Neutral	
nction Type	tion Type : Flight Mode + USB Cable		able (C	Data Lir	nk with N	oteboo	k) + Battery + Earphone	
L evel in (RuV	100 90 80 70 60 50 40 30 20			475,7404			2-OP Limit at Main Ports 2-Ave Limit at Main Ports	
Einel Dec			00 1M	2M Frequen	3M 4M cy in Hz	5M 6	3 10M 20M 30M	
Frequen	sult : Quasi-Peak		Line	Frequen	ncy in Hz Margin	Limit		
Frequen (MHz)	sult : Quasi-Peak (dBµV)	C Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)		
Frequen (MHz) 0.15000	0 300 40 sult : Quasi-Peak Quasi-Peak (dBμV) 0 51.0 51.0	Filter Off	Line	Frequent Corr. (dB) 19.6	Margin (dB) 15.0	Limit (dBµV) 66.0		
Frequen (MHz) 0.15000 0.19800	sult : Quasi-Peak (dBμV) 0 51.0 0 48.9	Filter Off Off	Line	Frequent Corr. (dB) 19.6 19.5	Margin (dB) 15.0 14.8	Limit (dBµV) 66.0 63.7		
Frequen (MHz) 0.15000 0.19800 0.26200	oult 300 40 sult Quasi-Peak (dBμV) o 51.0 o 48.9 o 39.0	Filter Off	Line N N N	Frequen (dB) 19.6 19.5 19.5	Margin (dB) 15.0 14.8 22.4	Limit (dBµV) 66.0 63.7 61.4		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200	ould be address Out of the second seco	Filter Off Off Off Off	Line N N	Frequen (dB) 19.6 19.5 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6	Limit (dBµV) 66.0 63.7 61.4 56.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600	ο 300 40 sult : Quasi-Peak (dBμV) (dBμV) 0 51.0 0 48.9 0 39.0 0 36.4 0 36.2	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800	ο 300 40 sult : Quasi-Peak (dBμV) (dBμV) 0 51.0 0 48.9 0 39.0 0 36.4 0 39.2	C Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000	ο 300 40 sult : Quasi-Peak (dBμV) 0 51.0 0 51.0 0 0 39.0 0 0 36.4 0 0 39.2 0 0 40.9 0	Filter Off Off Off Off Off	Line N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res	oult Quasi-Peak (dBμV) 0 51.0 0 48.9 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 500 39.2 0 39.2 0 40.9 500 39.2	C Filter Off Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1	Limit (dBμV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen	oult Quasi-Peak (dBμV) 0 51.0 0 48.9 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 sult Average	C Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 19.6 Corr.	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 Margin	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 Limit		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen (MHz)	oult 200 400 cy Quasi-Peak (dBμV) o 51.0 o 48.9 o 39.0 o 36.4 o 36.2 o 39.2 o 40.9 sult : Average (dBμV)	Filter Off Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 Corr. (dB)	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 Margin (dB)	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 Limit (dBµV)		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen (MHz) 0.15000	out 300 40 sult Quasi-Peak (dBμV) 0 51.0 0 48.9 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 sult : Average (dBμV) 0 35.9	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 19.6 (dB) 19.6	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 Margin (dB) 20.1	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 Limit (dBµV) 56.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen (MHz) 0.15000 0.19800	out 300 40 sult : Quasi-Peak (dBμV) 300 40 o 51.0 0 51.0 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 sult : Average (dBμV) 0 35.9 0 31.0	Filter Off Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 19.6 (dB) 19.6 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 Margin (dB) 20.1 22.7	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 Climit (dBµV) 56.0 53.7		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen (MHz) 0.15000 0.19800 0.26200	out 300 40 sult : Quasi-Peak (dBμV) 300 40 o 51.0 0 51.0 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 sult : Average (dBμV) 0 35.9 0 31.0 0 26.4	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 (dB) 19.6 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 20.8 19.1 (dB) 20.1 22.7 25.0	Limit (dBμV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 60.0 Limit (dBμV) 56.0 53.7 51.4		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Ress Frequen (MHz) 0.15000 0.19800 0.26200 0.58200	oult 300 40 sult Quasi-Peak (dBμV) o 51.0 o 48.9 o 39.0 o 36.4 o 36.2 o 39.2 o 40.9 sult : Average (dBμV) o 35.9 o 31.0 o 26.4 o 25.9	Filter Off Off Off Off Off Off Off Off Filter Off Off Off Off Off Off	Line N N N N N N Line N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 19.6 (dB) 19.6 19.5 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 20.1 20.1 22.7 25.0 20.1	Limit (dBµV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 Climit (dBµV) 56.0 53.7 51.4 46.0		
Frequen (MHz) 0.15000 0.19800 0.26200 0.58200 3.76600 5.51800 6.15000 Final Res Frequen (MHz) 0.15000 0.19800 0.26200	oult Quasi-Peak (dBμV) 0 51.0 0 40.9 0 39.0 0 36.4 0 36.2 0 39.2 0 40.9 sult : Average (dBμV) 0 35.9 0 31.0 0 26.4 0 25.9 0 28.4	Filter Off Off Off Off Off Off Off Off Filter	Line N N N N N N Line N N N N N	Frequen (dB) 19.6 19.5 19.5 19.5 19.6 19.6 19.6 (dB) 19.6 19.5 19.5	Margin (dB) 15.0 14.8 22.4 19.6 19.8 20.8 19.1 20.8 19.1 (dB) 20.1 22.7 25.0	Limit (dBμV) 66.0 63.7 61.4 56.0 56.0 60.0 60.0 60.0 Limit (dBμV) 56.0 53.7 51.4		

3.2. Test of Radiated Emission Measurement

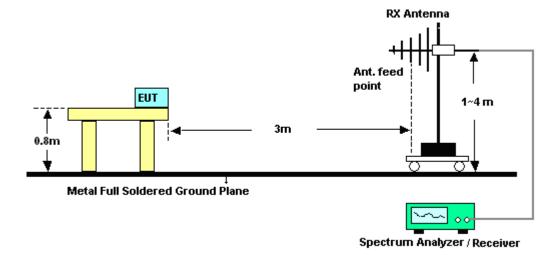
3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

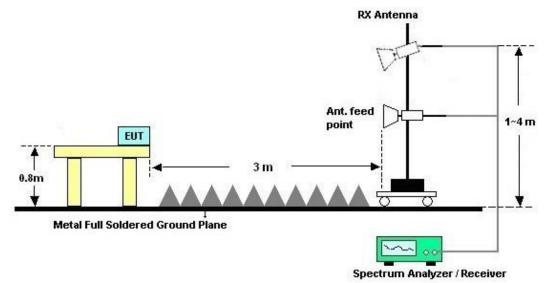
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

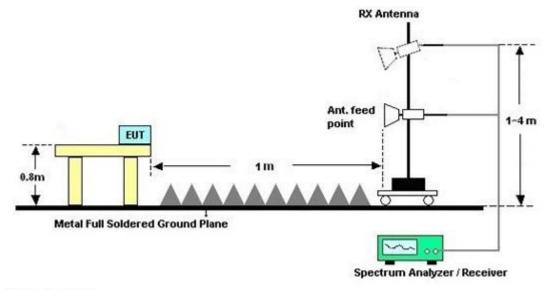

3.2.3. Test Procedures

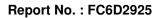
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level.



3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz




For radiated emissions from 1GHz to 18GHz

3.2.5. Test Result of Radiated Emission

Test Mode :	Mode	Mode 1				Temperature :			24~26°C		
Test Engineer :	Derrec	k Chen	ı		Relati	ve Hun	nidity: 58~60%		1%		
Test Distance :	3m				Polari	zation	:	Horiz	ontal		
Function Type :	Flight	Mode +	USB (Cable (D	Data Lir	nk with I	Noteboo	ok) + B	attery +	Earph	none
117	l (dBuV/m)									Date: 201	7-03-02
105.3											
93.6											
81.9										FCC CLA	SS-B
70.2									FCC C	LASS-B (AVG)
58.5										`	
			10	11 12			13		14		15
46.8	7 8	9	10						Ť		Ĩ
35.1 <mark>3 6</mark>											
4											
23.4											
11.7											
0 <mark>11 </mark> 30		6024.		120			8012.		24006.		30000
				120		1 ncy (MHz)	8012.		24006.		30000
Site		03CH06	-НУ		Freque	ncy (MHz)			24006.		30000
Site Condition	n :	03CH06 FCC CLA	-НУ \SS-B	120 _ 1m SHF	Freque	ncy (MHz)		TAL	24006.		30000
Site Condition Project	n : :	03CH06 FCC CLA 6D2925	-НУ ASS-B		Freque	ncy (MHz)		TAL	24006.		30000
Site Condition	n : :	03CH06 FCC CLA	-НУ ASS-B		Freque	ncy (MHz)		TAL	24006.		30000
Site Condition Project Power	n : : :	03CH06 FCC CLA 6D2925 From Sy	o-HY ASS-B o vstem	_ 1m SHF	Freque	ncy (MHz)		TAL	24006.		30000
Site Condition Project Power Memo	n : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1	9-HY ASS-B 9 9 9 9 8 6 Hz:3r 8 6 Hz:1n	_ 1m SHF n n	Freque	ncy (MHz) ORN HC	RIZON				30000
Site Condition Project Power Memo	n : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18	o-HY ASS-B i vstem BGHz:3r BGHz:1n Over	_1m SHF n Limit	Freque -EHF H ReadA	ncy (MHz) ORN HC Intenna	ORIZON Cable	Preamp		T/Pos	
Site Condition Project Power Memo	n : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18	o-HY ASS-B i vstem BGHz:3r BGHz:1n Over	_1m SHF n Limit	Freque	ncy (MHz) ORN HC Intenna	ORIZON Cable			T/Pos	30000 Remark
Site Condition Project Power Memo	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18	o-HY ASS-B vstem BGHz:3r BGHz:1n Over Limit	_1m SHF n Limit	Freque -EHF H ReadA	ncy (MHz) ORN HC Intenna	ORIZON Cable	Preamp		T/Pos deg	
Site Condition Project Power Memo	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m	o-HY ASS-B ystem BGHz:3r BGHz:1n Over Limit dB	_ 1m SHF n Limit Line	Freque E-EHF H ReadA Level dBuV	ncy (MHz) ORN HC ntenna Factor	Cable Loss dB	Preamp Factor	A/Pos	deg	
Site Condition Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07	0-HY ASS-B	1m SHF n Limit dBuV/m 43.50 43.50	Freque E-EHF H ReadA Level dBuV 40.75 48.48	ncy (MHz) ORN HC ntenna Factor dB/m 17.36 15.27	Cable Loss dB 2.12 2.04	Preamp Factor dB 31.71 31.72	A/Pos cm	deg	Remark Peak Peak
Site Condition Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19	0-HY ASS-B	_ 1m SHF n Limit dBuV/m 43.50 43.50 43.50	Freque E-EHF H ReadA Level dBuV 40.75 48.48 47.12	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85	Cable Loss dB 2.12 2.04 1.94	Preamp Factor dB 31.71 31.72 31.72	A/Pos cm 	deg	Remark Peak Peak Peak
Site Condition Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40	0-HY ASS-B	_ 1m SHF n Limit dBuV/m 43.50 43.50 43.50 43.60	Freque E-EHF H ReadA Level dBuV 40.75 48.48 47.12 37.05	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81	Cable Loss dB 2.12 2.04 1.94 2.25	Preamp Factor dB 31.71 31.72 31.72 31.71	A/Pos cm	deg	Remark Peak Peak Peak Peak Peak
Site Condition Project Power Memo Distance 1 2 3 4 5	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27	0-HY ASS-B	1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.60 43.60	Freque E-EHF H ReadA Level dBuV 40.75 48.48 47.12 37.05 38.33	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58	Cable Loss dB 2.12 2.04 1.94 2.25 3.43	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07	A/Pos cm 100	deg 58	Remark Peak Peak Peak Peak Peak Peak
Site Condition Project Power Memo Distance 1 2 3 4 5 6	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01	0-HY ASS-B	1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.60 46.00 46.00	Freque E-EHF H ReadA Level dBuV 40.75 48.48 47.12 37.05	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81	Cable Loss dB 2.12 2.04 1.94 2.25	Preamp Factor dB 31.71 31.72 31.72 31.71	A/Pos cm	deg 58 	Remark Peak Peak Peak Peak Peak
Site Condition Project Power Memo Distance 1 2 3 4 5 6 7	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15	0-HY ASS-B	1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 46.00 46.00 46.00 74.00	Freque E-EHF H Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67	A/Pos cm 100 	deg 58 	Remark Peak Peak Peak Peak Peak Peak Peak
Site Condition Project Power Memo Distance 1 2 3 4 5 6 7 2 8 9	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15 38.46 42.45	-HY ASS-B	_ 1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 46.00 46.00 46.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97 69.45 59.55 55.85	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38 26.71 30.24 34.52	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33 6.39 10.11 11.08	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67 60.40 61.44 59.00	A/Pos cm 100 	deg 58 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power Memo Distance 1 2 3 4 5 6 7 2 8 9 9	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15 38.46 42.45 45.32	-HY ASS-B	_ 1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.50 43.60 43.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97 69.45 59.55 55.85 52.49	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38 26.71 30.24 34.52 38.36	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33 6.39 10.11 11.08 13.67	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67 60.40 61.44 59.00 59.20	A/Pos cm 100 	deg 58 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power Memo Distance 1 2 3 4 5 6 7 2 8 9 9 10 8 11	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15 38.46 42.45 45.32 47.68	-HY ASS-B	_ 1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97 69.45 59.55 55.85 52.49 53.13	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38 26.71 30.24 34.52 38.36 40.64	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33 6.39 10.11 11.08 13.67 14.51	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67 60.40 61.44 59.00 59.20 60.60	A/Pos cm 100 100 	deg 58 	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15 38.46 42.45 45.32 47.68 49.32	-HY ASS-B	_ 1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97 69.45 59.55 55.85 52.49 53.13 49.02	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38 26.71 30.24 34.52 38.36 40.64 42.40	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33 6.39 10.11 11.08 13.67 14.51 15.95	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67 60.40 61.44 59.00 59.20 60.60 58.05	A/Pos cm 100 100 100	deg 58 0	Remark Peak Peak Peak Peak Peak Peak Peak Pea
Site Condition Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 28.52 34.07 32.19 27.40 37.27 32.01 42.15 38.46 42.45 45.32 47.68 49.32 49.27	-HY ASS-B	_ 1m SHF n Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00 74.00	Freque Read/ Level dBuV 40.75 48.48 47.12 37.05 38.33 30.97 69.45 59.55 55.85 52.49 53.13 49.02 42.95	ncy (MHz) ORN HC Antenna Factor dB/m 17.36 15.27 14.85 19.81 27.58 29.38 26.71 30.24 34.52 38.36 40.64 42.40 48.50	Cable Loss dB 2.12 2.04 1.94 2.25 3.43 3.33 6.39 10.11 11.08 13.67 14.51	Preamp Factor dB 31.71 31.72 31.72 31.71 32.07 31.67 60.40 61.44 59.00 59.20 60.60 58.05 57.30	A/Pos cm 100 100 	deg 58 0 0	Remark Peak Peak Peak Peak Peak Peak Peak Pea

Test Mode :	Mode	1			Temp	erature	:	24~2	3°C		
Test Engineer :					,			58~6	58~60% Vertical		
Test Distance :								Vertic			
Function Type :	/pe : Flight Mode + USB Cable (Data					nk with	Notebo	ok) + B	attery -	- Ear	phone
117	el (dBuV/m))				1				Date: 2	2017-03-02
105.3											
93.6											
81.9										FCC C	LASS-B
70.2											
									FCC C	LASS	B (AVG)
58.5	7		40	11 12			13			14	15
46.8	8	9									Ĩ
35.1 5 6 4											
23.4											
11.7											
0 ₃₀		6024		120	18.	1	8012.		24006.		30000
0 <mark>30</mark>		6024		120		1 ncy (MHz)	8012.		24006.		30000
Site		03CH06	5-HY		Freque	ncy (MHz)			24006.		30000
Site Conditio	n :	03CH06 FCC CL/	5-HY 455-B		Freque	ncy (MHz)			24006.		30000
Site Conditio Project	n : :	03CH06 FCC CL/ 6D2925	5-HY ASS-B 5		Freque	ncy (MHz)			24006.		30000
Site Conditio Project Power	n : :	03CH06 FCC CL/ 6D2925 From Sy	5-HY ASS-B 5		Freque	ncy (MHz)			24006.		30000
Site Conditio Project Power Memo	n : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1	5-HY ASS-B 5 ystem	_ 1m SHF	Freque	ncy (MHz)			24006.		30000
Site Conditio Project Power	n : : : 2 :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18	5-HY ASS-B 5 ystem 86Hz:3n	_ 1m SHF	Freque	ncy (MHz)			24006.		30000
Site Conditio Project Power Memo	n : : : 2 :	03CH06 FCC CLA 6D2925 From Sy Mode 1	5-HY ASS-B 5 ystem 8GHz:3n 8GHz:1m	_ 1m SHF n 1	Freque	ncy (MHz) ORN VE	RTICAL	Preamp		T/P	
Site Conditio Project Power Memo	n : : : : :	03CH06 FCC CLA 6D2925 From Sy Mode 1 below 18	5-HY ASS-B 5 ystem 8GHz:3n 8GHz:1m Over	_1m SHF	Freque	ncy (MHz) ORN VE	RTICAL Cable	Preamp Factor		T/Pe	
Site Conditio Project Power Memo	n : : 2 : Freq	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18	6-HY ASS-B ystem 86Hz:3n 86Hz:1m Over Limit	_1m SHF	Freque -EHF H ReadA	ncy (MHz) ORN VE	RTICAL Cable				05
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72	6-HY ASS-B ystem 8GHz:3m 8GHz:1m Over Limit dB -16.78	1m SHF Limit Line dBuV/m 43.50	Freque E-EHF H Read/ Level dBuV 39.02	ncy (MHz) ORN VE Antenna Factor dB/m 17.38	Cable Loss dB 2.03	Factor dB 31.71	A/Pos cm	de	os Remark eg Peak
Site Conditio Project Power Memo Distance 1 2	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50	Freque E-EHF H Read/ Level dBuV 39.02 48.91	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27	Cable Loss dB 2.03 2.04	Factor dB 31.71 31.72	A/Pos 100		os Remark eg Peak 33 Peak
Site Conditio Project Power Memo Distance 1 2 3	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81	Cable Loss dB 2.03 2.04 1.95	Factor dB 31.71 31.72 31.72	A/Pos 100 		os Remark g Peak 33 Peak Peak
Site Conditio Project Power Memo Distance 1 2 3 4	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.60	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81	Cable Loss dB 2.03 2.04 1.95 2.25	Factor dB 31.71 31.72 31.72 31.71	A/Pos 100 	de 3(os Remark Peak 3 Peak Peak Peak
Site Conditio Project Power Memo Distance 1 2 3	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 46.00 46.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58	Cable Loss dB 2.03 2.04 1.95	Factor dB 31.71 31.72 31.72	A/Pos 100 		os Remark g Peak 33 Peak Peak
Site Conditio Project Power Memo Distance 1 2 3 4 5 6	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 46.00 46.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81	Cable Loss dB 2.03 2.04 1.95 2.25 3.43	Factor dB 31.71 31.72 31.72 31.71 32.07	A/Pos 100 		os Remark g Peak Peak Peak Peak Peak
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.60 46.00 46.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27	A/Pos cm 100 		os Remark Peak 3 Peak Peak Peak Peak Peak
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99 44.40	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.50 46.00 46.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43 26.71	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20 6.39	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27 60.40 60.81	A/Pos cm 100 		os Remark Peak 3 Peak Peak Peak Peak Peak Peak Peak
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL/ 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99 44.40 44.00 44.95	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29 68.38 56.39 53.54	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43 26.71 29.07 35.30 37.90	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20 6.39 7.76 11.97 12.71	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27 60.40 60.81 59.66 59.20	A/Pos cm 100 		25 Remark 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99 44.40 44.00 44.95 47.22	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29 68.38 56.39 53.54 52.76	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43 26.71 29.07 35.30 37.90 40.78	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20 6.39 7.76 11.97 12.71 14.28	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27 60.40 60.81 59.66 59.20 60.60	A/Pos cm 100 		25 Remark 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99 44.40 44.95 47.22 48.90	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29 68.38 56.39 53.54 52.76 49.08	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43 26.71 29.07 35.30 37.90 40.78 41.67	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20 6.39 7.76 11.97 12.71 14.28 16.29	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27 60.40 60.81 59.66 59.20 60.60 58.14	A/Pos cm 100 100		25 Remark 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Site Conditio Project Power Memo Distance	n : : : : : : : : : : : : : : : : : : :	03CH06 FCC CL4 6D2925 From Sy Mode 1 below 18 above 18 Level dBuV/m 26.72 34.50 30.95 27.55 34.44 31.14 46.99 44.40 44.95 47.22 48.90 47.01	6-HY ASS-B	1m SHF Limit Line dBuV/m 43.50 43.50 43.50 43.50 43.60 46.00 46.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Freque F-EHF H Read/ Level dBuV 39.02 48.91 45.91 37.20 35.50 28.78 74.29 68.38 56.39 53.54 52.76 49.08 40.69	ncy (MHz) ORN VE Antenna Factor dB/m 17.38 15.27 14.81 19.81 27.58 30.43 26.71 29.07 35.30 37.90 40.78 41.67 48.50	Cable Loss dB 2.03 2.04 1.95 2.25 3.43 3.20 6.39 7.76 11.97 12.71 14.28	Factor dB 31.71 31.72 31.72 31.71 32.07 31.27 60.40 60.81 59.66 59.20 60.60 58.14 57.30	A/Pos cm 100 		25 Remark 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jan. 09, 2017	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2016	Jan. 09, 2017	Aug. 29, 2017	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Apr. 19, 2016	Jan. 09, 2017	Apr. 18, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 29, 2016	Jan. 09, 2017	Nov. 28, 2017	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 06, 2016	Jan. 09, 2017	Dec. 05, 2017	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 05, 2017	Jan. 09, 2017	Jan. 04, 2018	Conduction (CO05-HY)
Test Software	N/A	EMC32	8.40.0	N/A	N/A	Jan. 09, 2017	N/A	Conduction (CO05-HY)
Bilog Antenna	Schaffner	CBL6111C&N- 6-06	2725&AT-N06 01	30MHz~1GHz	Oct. 15, 2016	Mar. 02, 2017	Oct. 14, 2017	Radiation (03CH06-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz ~ 44GHz	Oct. 17, 2016	Mar. 02, 2017	Oct. 16, 2017	Radiation (03CH06-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1156	1GHz~18GHz	Aug. 05, 2016	Mar. 02, 2017	Aug. 04, 2017	Radiation (03CH06-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917058 4	18GHz- 40GHz	Nov. 08, 2016	Mar. 02, 2017	Nov. 07, 2017	Radiation (03CH06-HY)
Preamplifier	SONOMA	310N	186713	9kHz~1GHz	Apr. 19, 2016	Mar. 02, 2017	Apr. 18, 2017	Radiation (03CH06-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1850117	1GHz ~ 18GHz	Jun. 22, 2016	Mar. 02, 2017	Jun. 21, 2017	Radiation (03CH06-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz~40GHz	Jun. 14, 2016	Mar. 02, 2017	Jun. 13, 2017	Radiation (03CH06-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY249564 MY249524 MY283184	30MHz~1GHz	Sep. 30, 2016	Mar. 02, 2017	Sep. 29, 2017	Radiation (03CH06-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 MY28419/4M Y28654/4	9KHz~40GHz	Sep. 12, 2016	Mar. 02, 2017	Sep. 11, 2017	Radiation (03CH06-HY)
Controller	INN-CO	EM1000	060782	Control Turn table & Ant Mast	N/A	Mar. 02, 2017	N/A	Radiation (03CH06-HY)
Antenna Mast	MF	MF-7802	MF78020821 2	1m~4m	N/A	Mar. 02, 2017	N/A	Radiation (03CH06-HY)
Turn Table	INN-CO	DS2000	420/650/00	0-360 degree	N/A	Mar. 02, 2017	N/A	Radiation (03CH06-HY)
Hygrometer	WISEWIND	410	BU5004	N/A	May 03, 2016	Mar. 02, 2017	May 02, 2017	Radiation (03CH06-HY)
Test Software	Audix	E3	6.2009-8-24	N/A	N/A	Mar. 02, 2017	N/A	Radiation (03CH06-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of	2 70
Confidence of 95% (U = 2Uc(y))	2.70

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	
Confidence of 95% (U = 2Uc(y))	3.90

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 30000 MHz)

Measuring Uncertainty for a Level of	4.70
Confidence of 95% (U = 2Uc(y))	4.70