

SAR EVALUATION REPORT

IEEE Std 1528-2013

For GSM/WCDMA/LTE/5G Phone with BT, DTS/UNII a/b/g/n/ac/ax, GPS, WPT, & NFC

FCC ID: PY7-03571V

Report Number: R14639470-S1 v3 Issue Date: 3/30/2023

> Prepared for Sony Corporation 1-7-1 Konan Minato-ku Tokyo, 108-0075, Japan

Prepared by UL LLC 12 LABORATORY DR RTP, NC 27709, U.S.A. TEL: (919) 549-1400

Revision History

	-		
Rev.	Date	Revisions	Revised By
V1	3/24/2023	Initial Issue	
V2	3/28/2023	Added note to §10.9 stating that NFC was measured due to too large of a spot check delta. Added note to §9 stating that WWAN output power is leveraged from FCC ID: PY7-12907W.	Sarah Kuhaneck
V3	3/30/2023	Added DL CA to §6.2, CD_41C to §9.4	Richard Jankovics

Table of Contents

1.	Attestation of Test Results	. 5
2.	Test Specification, Methods and Procedures	. 7
3.	Facilities and Accreditation	. 8
4.	SAR Measurement System & Test Equipment	. 9
4.1.	SAR Measurement System	. 9
4.2.	SAR Scan Procedures	10
4.3.	Test Equipment	12
5.	Measurement Uncertainty	14
6.	Device Under Test (DUT) Information	15
6.1.	DUT Description	15
6.2.	Wireless Technologies	16
6.3.	General LTE SAR Test and Reporting Considerations	17
6.4.	LTE (TDD) Considerations	19
6.5.	Power Back-off Operation	20
7.	RF Exposure Conditions (Test Configurations)	21
8.	Dielectric Property Measurements & System Check	22
υ.		
8.1.		
	Dielectric Property Measurements	22
8.1.	Dielectric Property Measurements	22 24
8.1. 8.2.	Dielectric Property Measurements System Check Conducted Output Power Measurements	22 24 26
8.1. 8.2. 9.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM	22 24 26 26
8.1. 8.2. 9. 9.1.	Dielectric Property Measurements System Check. Conducted Output Power Measurements. GSM. W-CDMA	22 24 26 26 29
8.1. 8.2. 9. 9.1. 9.2.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM	22 24 26 29 34
8.1. 8.2. 9. 9.1. 9.2. 9.3.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE LTE Down-Link Carrier Aggregation	22 24 26 29 34 45
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE LTE Down-Link Carrier Aggregation	22 24 26 29 34 45 46
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5.	Dielectric Property Measurements	22 24 26 29 34 45 46 47
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10.	Dielectric Property Measurements System Check	22 24 26 29 34 45 46 47 49
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10.	Dielectric Property Measurements System Check Conducted Output Power Measurements GSM W-CDMA LTE LTE Down-Link Carrier Aggregation WLAN 2.4GHz & WLAN 5GHz & Bluetooth Measured and Reported (Scaled) SAR Results 1. GSM850 2. GSM1900	22 24 26 29 34 45 46 47 49 49
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10. 10.	Dielectric Property Measurements System Check	22 24 26 29 34 45 46 45 46 49 49 49
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10. 10. 10.	Dielectric Property Measurements System Check	22 24 26 29 34 45 46 47 49 49 49 50
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10. 10. 10. 10. 10.	Dielectric Property Measurements System Check. Conducted Output Power Measurements GSM W-CDMA LTE LTE Down-Link Carrier Aggregation WLAN 2.4GHz & WLAN 5GHz & Bluetooth Measured and Reported (Scaled) SAR Results 1. GSM850. 2. GSM1900 3. W-CDMA Band 2. 4. W-CDMA Band 4. 5. W-CDMA Band 5.	22 24 26 29 34 45 46 49 49 49 50 50
8.1. 8.2. 9. 9.1. 9.2. 9.3. 9.4. 9.5. 10. 10. 10. 10. 10. 10.	Dielectric Property Measurements System Check. Conducted Output Power Measurements. GSM W-CDMA LTE LTE Down-Link Carrier Aggregation WLAN 2.4GHz & WLAN 5GHz & Bluetooth. Measured and Reported (Scaled) SAR Results. 1. GSM850. 2. GSM1900. 3. W-CDMA Band 2. 4. W-CDMA Band 4. 5. UTE Band 4 (20MHz Bandwidth)	22 24 26 29 34 45 46 49 49 49 50 50 50

Page 3 of 57

10.9.	LTE Band 13 (10MHz Bandwidth)	. 52
10.10.	LTE Band 41 (20MHz Bandwidth)	. 52
10.11.	WLAN & Bluetooth Spot Check Verification	. 53
10.12.	NFC	. 53
11. SAI	R Measurement Variability	. 54
12. Sim	nultaneous Transmission Conditions	. 55
12.1.	Simultaneous transmission SAR test exclusion considerations	. 55
12.2.	Sum of the SAR for WWAN CELL Main1 & Wi-Fi Normal State & BT	. 56
12.3.	Sum of the SAR for WWAN CELL Main1 & Wi-Fi Simultaneous 2G_5G State	. 56
12.4.	Sum of the SAR for WWAN CELL Main2 & Wi-Fi Normal State & BT	. 56
12.5.	Sum of the SAR for WWAN CELL Main2 & Wi-Fi Simultaneous 2G_5G State	. 56
12.6.	Sum of the SAR for Wi-Fi Normal State & NFC	. 56
Appendix	es	. 57
Appendi	ix A: SAR Setup Photos	. 57
Appendi	ix B: SAR System Check Plots	. 57
Appendi	ix C: SAR Highest Test Plots	. 57
Appendi	ix D: SAR Tissue Ingredients	. 57
Appendi	ix E: SAR Probe Certificates	. 57
Appendi	ix F: SAR Dipole Certificates	. 57

1. Attestation of Test Results

Applicant Name		Sony Corporation					
FCC ID		PY7-03571V					
Applicable Stand	dards	Published RF exposure KDB procedures IEEE Std 1528-2013					
		SAR Limits (W/Kg)					
Exposure Category		Peak spatial-average (1g of tissue)		Extremities (hands, wrists, ankles, etc.) (10g of tissue)			
General popula Uncontrolled ex		1.6		4			
	anditiona	Ē	Equipment Class	- Highest Reporte	ed SAR (W/kg)		
RF Exposure Co	DIIGILIOIIS	PCE	DTS	NII	DSS	NFC	
Head		0.140	0.469	0.241	0.265	N/A	
Body-worn*		0.465	0.077	0.089	0.058	N/A	
Hotspot/BT Tethering		0.465	0.121	0.077	0.093	N/A	
Extremity (10g)		N/A	N/A	0.397	N/A	0.033	
Simultaneous TX	Head/Body- Worn/Hotspot/ BT Tethering (1g)	0.735	<mark>0.686</mark>	<mark>0.735</mark>	<mark>0.735</mark>	N/A	
	Extremity (10g)	N/A	N/A	0.641	N/A	0.641	
Date Tested	*	2/21/2023 to 3/30/2023					
Test Results		Pass					
		paration distance is a separation distanc		both body-worn and	l hotspot RF expo	osure	
to cover variant F two variants. The conditions. Worst	CC ID: PY7-03571 data reuse test pla case SAR results	V. All circuitry and feature on was approved via for WLAN and Bluet	eatures for WLAN manufacturer, wi ooth from referen	907W (UL report #1 and Bluetooth oper th spot check measu ced variant FCC ID: used in this report fo	ations are identic urements on wors PY7-12907W are	al between the t case e listed above.	

(continued next page)

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the U.S. Government, or any agency of the U.S. government.

Approved & Released By:

Senior Test Engineer

UL Verification Services Inc.

Devin Chang

Prepared By: Levies **Richard Jankovics**

Operations Leader

UL LLC

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE Std 1528-2013, the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- o 648474 D04 Handset SAR v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- o 865664 D02 RF Exposure Reporting v01r02
- o 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02

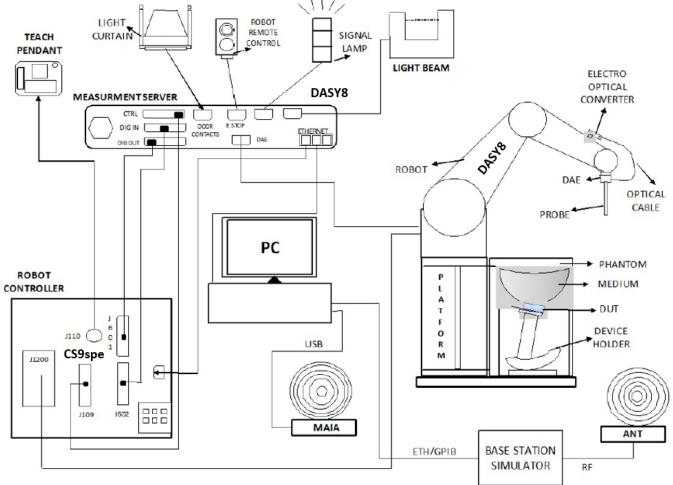
In addition to the above, the following information was used:

- o <u>TCB Workshop</u> October 2014; RF Exposure Procedures (Other LTE Considerations)
- o <u>TCB Workshop</u> April 2015; RF Exposure Procedures (Overlapping LTE Bands)
- TCB Workshop October 2015; RF Exposure Procedures (KDB 941225 D05A)
- TCB Workshop October 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- TCB Workshop October 2016; RF Exposure Procedures (DUT Holder Perturbations)
- TCB Workshop May 2017; RF Exposure Procedures (Broadband Liquid Above 3 GHz)
- TCB Workshop April 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))
- o <u>TCB Workshop</u> April 2019; RF Exposure Procedures (802.11ax SAR Testing)

3. Facilities and Accreditation

UL LLC is accredited by A2LA, cert. # 0751.06 for all testing performed within the scope of this report. Testing was performed at the locations noted below.

The test sites and measurement facilities used to collect data are located at 2800 Perimeter Park Dr, Morrisville, NC, USA.


- SAR Lab 1A
- SAR Lab 2A
- SAR Lab 2B

	Address	ISED CABID	ISED Company Number	FCC Registration
	Building: 12 Laboratory Dr RTP, NC 27709, U.S.A	US0067	2180C	825374
\boxtimes	Building: 2800 Perimeter Park Dr. Suite B Morrisville, NC 27560, U.S.A	US0067	27265	825374

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY8¹ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

¹ DASY8 software used: DASY16.0.2.83 and older generations.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEC/IEEE 62209-1528, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz} \le 12 \text{ mm}$ $4 - 6 \text{ GHz} \le 10 \text{ mm}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$	
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume x, y, z		$ \ge 30 \text{ mm} \qquad \begin{array}{c} 3 - 4 \text{ GHz:} \ge 28 \text{ mm} \\ 4 - 5 \text{ GHz:} \ge 25 \text{ mm} \\ 5 - 6 \text{ GHz:} \ge 22 \text{ mm} \end{array} $		
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE				

P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements						
Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date		
Network Analyzer	Keysight	E5063A	MY54100681	9/30/2023		
Dielectric Probe	SPEAG	DAKS-3.5	1051	10/17/2023		
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 DA	10/17/2023		
Dielectric Probe	SPEAG	DAK-12	1128	1/30/2024		
Shorting Block	SPEAG	DAK-12 Short	N/A	1/30/2024		
Thermometer	Fisher Scientific	15-078-181	210204689	3/31/2023		

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Signal Generator	Keysight	N5181A	MY50140788	1/12/2024
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112236	5/31/2023
3-Path Diode Power Sensor	Rohde & Schwarz	NRP8S	112237	5/31/2023
Amplifier	MITEQ	AMF-4D-00400600-50-30P	N/A	N/A
Directional Coupler	Mini-Circuits	ZUDC10-183+	1438	NA
Dual Directional Coupler	Werlatone	C5100-10	92249	N/A
DC Power Supply	Miteq	PS 15V1	1990186	N/A
RF Power Source	Speag	PowerSource1	4278	6/21/2023

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe	SPEAG	EX3DV4	7709	12/12/2023
E-Field Probe	SPEAG	EX3DV4	7710	2/3/2024
E-Field Probe ¹	SPEAG	EX3DV4	7711	3/11/2023
Data Acquisition Electronics ¹	SPEAG	DAE4	1716	3/8/2023
Data Acquisition Electronics	SPEAG	DAE4	1714	11/23/2023
Data Acquisition Electronics	SPEAG	DAE4	1715	1/23/2024
System Validation Dipole	SPEAG	CLA13	1008	1/12/2024
System Validation Dipole	SPEAG	D750V3	1139	10/12/2023
System Validation Dipole	SPEAG	D900V2	1d180	10/12/2023
System Validation Dipole	SPEAG	D1750V2	1136	10/17/2023
System Validation Dipole	SPEAG	D1900V2	5d202	10/12/2023
System Validation Dipole	SPEAG	D2450V2	963	10/18/2023
System Validation Dipole	SPEAG	D2600V2	1104	10/21/2023
System Validation Dipole	SPEAG	D5GHzV2	1213	10/11/2023
Environmental Indicator	Control Company	06-662-4	200037610	2/24/2024
Environmental Indicator	Control Company	06-662-4	200037635	2/24/2024

Notes:

1. Items past calibration were not used past due date.

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
RF Pow er Meter	Keysight	N1911a	MY 55116002	9/10/2023
RF Pow er Meter	Keysight	N1911a	MY 55116004	9/02/2023
RF Pow er Sensor	Keysight	N1921a	MY 55120011	7/07/2023
RF Pow er Sensor	Keysight	N1921a	MY 55090025	9/27/2023
RF Pow er Sensor	Keysight	N1921a	MY 55090030	6/15/2023
RF Pow er Sensor	Keysight	N1921a	MY 55090023	3/22/2023
RF Pow er Sensor ¹	ETS Lindgren	7002-006	160129	3/11/2023
RF Pow er Sensor	Boonton Electronics	RTP5008	11835	10/20/2023
RF Pow er Sensor ¹	Boonton Electronics	RTP5008	12002	3/11/2023
Base Station Simulator	R&S	CMW 500	170733	12/14/2023
Base Station Simulator	R&S	CMW 500	170732	9/13/2023
Base Station Simulator	R&S	CMW 500	170193	4/29/2023
Base Station Simulator	Anritsu	MT8821C	6262116751	5/14/2023
DC Pow er Supply	Keysight	E3633A	MY 58426145	N/A
DC Pow er Supply	Keysight	E3633A	MY62176088	N/A
DC Pow er Supply	Keysight	E3633A	MY62176089	N/A
DC Pow er Supply	Keysight	E3633A	MY61466084	N/A

 Notes:

 1.
 Items past calibration were not used past due date.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	This is a Phablet Devic Refer to Appendix A	e (display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm)
Back Cover	The Back Cover is not	removable
Battery Options	The rechargeable batte	ry is not user accessible.
Accessory	Headset and wireless p	oower charger
Wireless Router (Hotspot)	Wi-Fi Hotspot mode per ⊠ Mobile Hotspot (Wi-F ⊠ Mobile Hotspot (Wi-F	
Wi-Fi Direct		vices transfer data directly between each other UT support only as a group client and not support as a group owner.
Bluetooth Tethering (Hotspot)	BT Tethering mode perr ⊠ BT Tethering (Blueto	nits the device to share its cellular data connection with other devices. oth 2.4 GHz)
	S/N	Notes
	QV77008AFR	RF/SAR WLAN/BT – 2.4GHz/5GHz (Conducted)
	QV77001HFR	WLAN/BT - 2.4GHz/5GHz (SAR)
Test sample information	QV7700A3FR	FCC SAR #1
rest sample information	QV7700KBFR	FCC SAR #2
	QV7700CSFR	FCC SAR #3
	QV770060FR	FCC SAR #4
	QV7700DUFR	NFC - SpotCheck + FCC Part 15B
Hardware Version	А	
	WLAN Conducted: 0.93	
Software Version	SAR Measurements: 0.8	38
	NFC SAR Measuremen	ts: 0.140

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Оре	rating mode	Duty Cycle used for SAR testing
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EDGE (8PSK)	GSM Class : B Multi-Slot Class: Class 33 - 4 Up, 5 Down	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%
	Does this device support DTM	1 (Dual Transfer Mode)? 🖂	Yes 🗆 No	
W-CDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 (Voice & D HSDPA (Rel. 5) HSUPA (Rel. 6)	ata)	100%
LTE	FDD Band 4 FDD Band 5 FDD Band 12 FDD Band 13 FDD Band 17 TDD Band 41	QPSK 16QAM 64QAM Rel. 15 Carrier Aggregatio	on (1 Uplink and 2 Downlinks)	100% (FDD) 63.3% (TDD) Power Class 3
	2.4 GHz	802.11b 802.11g 802.11n (HT20) 802.11ac (VHT20) 802.11ax (HE20)		99.9% _(802.11b) ¹ 99.1% _(802.11g) ¹
Wi-Fi	5 GHz Does this device support band	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT40) 802.11ac (VHT160) 802.11ac (VHT160) 802.11ax (HE20) 802.11ax (HE40) 802.11ax (HE80) 802.11ax (HE160)	□ No	99.7% (802.11n 40MHz BW) ¹ 99.7% (802.11ac 80MHz BW) ¹ 99.6% (802.11ac 160MHz BW) ¹
	Does this device support Band			
	- see and denote support Durk	= 100 E		
Bluetooth	2.4 GHz	BR, EDR, LE		77.2% ¹

Notes:

2. Duty cycle is referenced from the Section 9.

6.3. General LTE SAR Test and Reporting Considerations

Item	Description										
Frequency range, Channel Bandwidth,			Frequency	range: 1710 - 1	1755 MHz (BV	V = 45 MHz)					
Numbers and Frequencies	Band 4			Channel E	Bandwidth						
·		20 MHz ¹	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz				
	Low	20050/	20025/	20000/	19975/	19965/	19957/				
	Low	1720	1717.5	1715	1712.5	1711.5	1710.7				
	Mid	20175/	20175/	20175/	20175/	20175/	20175/				
		1732.5	1732.5	1732.5	1732.5	1732.5	1732.5				
	High	20300/	20325/	20350/	20375/	20385/	20393/				
		1745	1747.5	1750	1752.5	1753.5	1754.3				
	Devile	Frequency range: 824 - 849 MHz (BW = 25 MHz) Channel Bandwidth									
	Band 5						4 4 5 41 1-				
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz				
	Low			20450/ 829	20425/	20415/ 825.5	20407/				
				20525/	826.5 20525/	20525/	824.7 20525/				
	Mid			836.5	836.5	836.5	836.5				
				20600/	20625/	20635/	20643/				
	High			844	846.5	847.5	848.3				
			Frequency	range: 699 –			•				
	Band 12				Bandwidth	,					
		20 MHz	15 MHz	10 MHz ¹	5 MHz	3 MHz	1.4 MHz				
	1			23060/	23035/	23025/	23017/				
	Low			704	701.5	700.5	699.7				
	Mid			23095/	23095/	23095/	23095/				
	Mild			707.5	707.5	707.5	707.5				
	High			23130/	23155/	23165/	23173/				
	·			711	713.5	714.5	715.3				
	David 40		Frequency	/ range: 777 - 7		= 10 MHz)					
	Band 13				Bandwidth						
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz				
	Low				23205/ 779.5						
				23230/	23230/						
	Mid			782	782						
				102	23255/						
	High				784.5						
			Frequency	/ range: 704 - 1	716 MHz (BW	= 12 MHz)	•				
	Band 17				Sandwidth	,					
		20 MHz	15 MHz	10 MHz ¹	5 MHz ¹	3 MHz	1.4 MHz				
				23780/	23755/						
	Low			709	706.5						
	Mid			23790/	23790/						
	Milu			710	710						
	High			23800/	23825/						
			_	711	713.5						
			Frequency r	ange: 2496 - 2	(= 194 MHz)					
	Band 41 ²				Bandwidth						
		20 MHz	15 `MHz	10 MHz	5 MHz	3 MHz	1.4 MHz				
		Low 39750 / 2506.0									
	Mid- Low										
	Mid										
	Mid-High										
	High		41490	2680.0							
LTE transmitter and antenna	Refer to App										
implementation		JEIIUIX A.									

Maximum power reduction (MPR)	Table 6.2.3	-1: Maxim	um Power	Reducti	on (MPR)	for Power	Class 1, 2	and 3	
	Modulation	Cha	nnel bandv	vidth / Tra	nsmission	bandwidth	(N _{RB})	MPR (dB)	
		1.4	3.0	5	10	15	20		
		MHz	MHz	MHz	Hz MHz	MHz MHz	MHz		
	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
	16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1	
	16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	
	64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2	
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3	
	256 QAM ≥1								
	MPR Built-in by de The manufacturer not follow the defa A-MPR (additional	MPR value ult MPR va	alues.			maximum M	MPR allowa	ance but may	
Power reduction	No								
Spectrum plots for RB configurations	A properly configu	red base s	tation simu	lator was	used for t	he SAR and	l power me	asurements;	
	therefore, spectru	m plots for	each RB a	llocation	and offset	configuratio	n are not ir	ncluded in the	
	SAR report.								

6.4. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

	N	ormal cyclic prefix in	downlink	Ex	tended cyclic prefix i	n downlink
Special	DwPTS	Upl	PTS	DwPTS	Upl	PTS
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	$6592 \cdot T_s$			$7680 \cdot T_s$		
1	$19760 \cdot T_s$			$20480 \cdot T_s$	$(1+X) \cdot 2192 \cdot T_s$	$(1+X) \cdot 2560 \cdot T_s$
2	$21952 \cdot T_s$	$(1+X) \cdot 2192 \cdot T_s$	$(1+X) \cdot 2560 \cdot T_s$	$23040 \cdot T_s$	$(1+\Lambda) \cdot 2192 \cdot I_s$	$(1+\Lambda)^{\cdot} 2500^{\cdot} I_{s}$
3	$24144 \cdot T_s$	-		$25600 \cdot T_s$	*	
4	$26336 \cdot T_s$	-		$7680 \cdot T_s$		
5	$6592 \cdot T_s$			$20480 \cdot T_s$	$(2+X) \cdot 2192 \cdot T_{\epsilon}$	$(2 + \mathbf{V})$ 2560 T
6	$19760 \cdot T_s$	-		$23040 \cdot T_s$	$(2+\Lambda)\cdot 2192\cdot I_s$	$(2+\Lambda) \cdot 2300 \cdot I_s$
7	$21952 \cdot T_s$	$(2+X) \cdot 2192 \cdot T_s$	$(2+X) \cdot 2560 \cdot T_s$	$12800 \cdot T_s$	*	
8	$24144 \cdot T_s$	-		-	-	-
9	$13168 \cdot T_s$	Ť		-	-	-
10	$13168 \cdot T_s$	$13152 \cdot T_s$	$12800 \cdot T_s$	-	-	-

 Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS)

Table 4.2-2: Uplink-downlink configurations & Calculated Duty Cycle

Uplink-	Uplink- Downlink Downlink			Subframe Number									
Configuration	point Periodicity	0	1	2	3	4	5	6	7	8	9	Cycle (%)	
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.3%	
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.3%	
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.3%	
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.7%	
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.7%	
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.7%	
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.3%	

Calculated Duty Cycle = Extended cyclic prefix in uplink * (Ts) * # of S + # of U / period

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle.

Power Back-off Operation 6.5.

The DUT supports power reduction when Simultaneous WLAN transmission is active (i.e. WLAN WiFi Main and WiFi Sub Antenna transmitting simultaneously).

	Power	Technologies		Exposure	Conditions	Active
	Back-off mode	Supported	Head	Body-worn	Hotspot	Phablet SAR (Extremity 10g)
	WLAN Simultaneous Tx	Wi-Fi 2.4GHz Wi-Fi 5GHz	\checkmark	~	~	\checkmark
N	ote(s):					

Tune-Up Limits for WLAN (Simultaneous 2G_5G state) is Reduced Average Power. Please refer to §9 for all conducted power measurements.

Phablet SAR (Extremity 10g):

When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Antenna	Band	Head	Rear	Front	Edge 1	Edge 2	Edge 3	Edge 4	Extremity
Antenna	Banu	nead	Real	FIOIL	(Top Edge)	(Right Edge)	(Bottom Edge)	(Left Edge)	(0 mm)
Cellular Main Antenna 1	GSM 850 WCDMA B5 LTE B5/12/13	Yes	Yes	Yes	No	No	Yes	Yes	No
Cellular Main Antenna 2	GSM 1900 WCDMA B2/4 LTE B4/41	Yes	Yes	Yes	No	Yes	Yes	No	No
Wi-Fi Main Antenna	Wi-Fi 2.4GHz Wi-Fi 5GHz Bluetooth	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Wi-Fi Sub Antenna	Wi-Fi 2.4GHz Wi-Fi 5GHz Bluetooth	Yes	Yes	Yes	No	No	Yes	Yes	Yes

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

2. The Body-worn minimum separation distance is 10 mm. To cover both body-worn and hotspot RF exposure conditions testing was performed at a separation distance of 10 mm.

3. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg. When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

4. Please note that Wi-Fi Main Antenna is also referred to as WLAN Chain0/GPS/BT Antenna

5. Please note that Wi-Fi Sub Antenna is also referred to as WLAN Chain 1/BT Antenna

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to

be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ad	Bo	dy
Target Frequency (MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

Dielectric Property Measurements Results:

					Relativ	e Permittivity	(er)	Co	nductivity (σ)	
SAR Lab	Date	Band (MHz)	Tissue Type	Frequency (MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
				1750	39.41	40.08	-1.68	1.38	1.37	1.10
1A	2023-02-20	1750	Head	1710	39.43	40.15	-1.78	1.36	1.35	1.01
				1755	39.41	40.08	-1.66	1.39	1.37	1.04
				5600	35.90	35.53	1.03	5.10	5.06	0.81
1A	2023-02-24	5600	Head	5500	36.17	35.65	1.46	4.98	4.96	0.36
				5725	35.62	35.39	0.65	5.26	5.19	1.29
				5600	34.23	35.53	-3.67	4.97	5.06	-1.80
1A	2023-03-13	5600	Head	5500	34.41	35.65	-3.47	4.86	4.96	-2.02
				5725	33.99	35.39	-3.96	5.12	5.19	-1.37
				13	57.60	55.00	4.73	0.74	0.75	-1.99
1A	2023-03-23	13	Head	12	57.60	55.00	4.73	0.74	0.75	-1.99
				14	57.58	55.00	4.69	0.74	0.75	-1.99
				900	42.96	41.50	3.52	0.96	0.97	-1.35
2A	2023-02-20	900	Head	825	43.16	41.58	3.81	0.93	0.90	3.63
				915	42.93	41.50	3.45	0.97	0.98	-1.44
				750	43.42	41.96	3.48	0.87	0.89	-2.73
2A	2023-02-24	750	Head	700	43.61	42.22	3.30	0.85	0.89	-4.84
				800	43.27	41.71	3.75	0.88	0.90	-1.83
				1900	38.90	40.00	-2.75	1.41	1.40	0.57
2B	2023-02-20	1900	Head	1850	39.09	40.00	-2.27	1.36	1.40	-2.93
				1920	38.84	40.00	-2.90	1.43	1.40	1.93
				2450	41.14	39.20	4.95	1.82	1.80	1.28
2B	2023-02-24	2450	Head	2400	41.22	39.30	4.89	1.78	1.75	1.73
				2480	41.11	39.16	4.97	1.84	1.83	0.58
				2600	40.92	39.01	4.89	1.94	1.96	-1.08
2B	2023-02-24	2600	Head	2495	41.08	39.14	4.95	1.85	1.85	0.29
				2690	40.78	38.90	4.84	2.02	2.06	-2.16

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 50 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within $\pm 10\%$ of the manufacturer calibrated dipole SAR target. Refer to Appendix B for the SAR System Check Plots.

						M	easured Resul	ts for 1g SAR		Me	asured Result	s for 10g SAR		
SAR Lab	Date	Tissue Type	Dipole Type_Serial #	Dipole Cal. Due Data	Dipole Power (dBm)	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Plot No.
1A	2/20/2023	Head	D1750V2 SN: 1136	10/17/2023	17.0	1.780	35.52	36.10	-1.62	0.948	18.92	19.10	-0.97	1
1A	2/24/2023	Head	D5GHzV2 SN: 1213 (5.60 GHz)	10/11/2023	17.0	3.850	76.82	82.40	-6.77	1.090	21.75	23.50	-7.45	2
1A	3/13/2023	Head	D5GHzV2 SN: 1213 (5.60 GHz)	10/11/2023	17.0	3.950	78.81	82.40	-4.35	1.110	22.15	23.50	-5.76	
1A	3/23/2023	Head	CLA13 SN: 1008	1/12/2024	16.5	0.024	0.54	0.54	-1.23	0.015	0.34	0.34	-0.65	3
2A	2/20/2023	Head	D900V2 SN: 1d180	10/12/2023	17.00	0.523	10.44	10.90	-4.26	0.339	6.76	6.99	-3.23	4
2A	2/24/2023	Head	D750V3 SN: 1139	10/12/2023	17.0	0.396	7.90	8.51	-7.15	0.262	5.23	5.58	-6.32	5
2B	2/20/2023	Head	D1900V2 SN: 5d202	10/12/2023	17.0	1.910	38.11	39.20	-2.78	0.992	19.79	20.40	-2.98	6
2B	2/24/2023	Head	D2450V2 SN: 963	10/18/2023	17.0	2.410	48.09	52.40	-8.23	1.120	22.35	24.50	-8.79	7
2B	2/24/2023	Head	D2600V2 SN: 1104	10/21/2023	17.0	2.730	54.47	56.70	-3.93	1.220	24.34	25.30	-3.79	8

9. Conducted Output Power Measurements

Tune-Up Power Limits provided by the manufacturer are used to scale measured SAR values.

Note: All WWAN Conducted output power was leveraged from FCC ID: PY7-12907W, which is electrically identical to this model (FCC ID: PY7-03571V).

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When different maximum output power applies to GSM voice or GPRS/EDGE time slots, GSM voice and GPRS/EDGE time slots should be tested separately to determine compliance by summing the corresponding reported SAR.

The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance

Per October 2013 TCB Workshop:

When the maximum frame-averaged powers levels are within 0.25 dB of each other, test the configuration with the most number of time slots.

Maximum Output Power (Tune-up Limit) for GSM

SAR is not required for EDGE (8PSK) mode because the maximum output power and tune-up limit is \leq 1/4dB higher than GPRS/EDGE (GMSK) or the adjusted SAR of the highest reported SAR of GPRS/EDGE (GMSK) is \leq 1.2W/kg.

		GSM Burst Power	Tune-up Limit (dBm)		Power Tune-Up Limit 3m)	GSM DTM PS Burst (dB	
RF Air interface	Mode	CELL Main1	CELL Main2	CELL Main1	CELL Main2	CELL Main1	CELL Main2
		Normal	Normal	Normal	Normal	Normal	Normal
	Voice/GPRS (1 slot)	32.9		32.9			
	GPRS 2 slots	29.9		29.9		29.9	
	GPRS 3 slots	28.1		28.1		28.1	
GSM850	GPRS 4 slots	26.9					
GSIM050	EGPRS 1 slot	28.0		32.9			
	EGPRS 2 slot	25.0		29.9		25.0	
	EGPRS 3 slot	23.2		28.1		23.2	
	EGPRS 4 slots	22.0					
	Voice/GPRS (1 slot)		28.0		28.0		
	GPRS 2 slots		25.0		25.0		25.0
	GPRS 3 slots		23.2		23.2		23.2
GSM1900	GPRS 4 slots		22.0				
G3WI 1900	EGPRS 1 slot		27.0		28.0		
	EGPRS 2 slot		24.0		25.0		24.0
	EGPRS 3 slot		22.2		23.2		22.2
	EGPRS 4 slots		21.0				

GSM850 Measured Results

	0	T		-	No	ormal Averag	e Power (dB	lm)
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-u	up Limit
	00000	01010		(11112)	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr
			128	824.2	32.1	23.0		
		1	190	836.6	32.3	23.3	32.9	23.9
			251	848.8	32.3	23.3		
			128	824.2	28.9	22.9		
		2	190	836.6	29.0	23.0	29.9	23.9
GPRS/EDGE	CS1		251	848.8	29.0	23.0		
(GMSK)	031		128	824.2	27.1	22.8		
		3	190	836.6	27.4	23.2	28.1	23.8
			251	848.8	27.3	23.1		
		4	128	824.2	26.0	23.0		
			190	836.6	26.2	23.1	26.9	23.9
			251	848.8	26.1	23.1		
			128	824.2	26.7	17.7		
		1	190	836.6	26.8	17.7	28.0	19.0
			251	848.8	26.7	17.7		
			128	824.2	24.0	17.9		
		2	190	836.6	24.0	18.0	25.0	19.0
EDGE	MCSE		251	848.8	24.0	17.9		
(8PSK)	MCS5		128	824.2	22.1	17.9		
		3	190	836.6	22.1	17.8	23.2	18.9
			251	848.8	22.1	17.8		
			128	824.2	21.1	18.1		
		4	190	836.6	21.0	18.0	22.0	19.0
			251	848.8	21.0	18.0		

GSM1900 Measured Results

				_	No	ormal Averag	e Power (dB	im)	
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-u	ıp Limit	
	Concine	01013		(11112)	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	
			512	1850.2	27.0	17.9			
		1	661	1880.0	27.5	18.4	28.0	19.0	
			810	1909.8	27.6	18.6			
			512	1850.2	24.0	17.9			
		2	661	1880.0	24.1	18.1	25.0	19.0	
GPRS/EDGE	CS1		810	1909.8	24.3	18.3			
(GMSK)	031		512	1850.2	22.2	17.9			
		3	661	1880.0	22.4	18.1	23.2	18.9	
			810	1909.8	22.6	18.3			
		4	512	1850.2	21.1	18.0			
			661	1880.0	21.1	18.1	22.0	19.0	
			810	1909.8	21.4	18.4			
			512	1850.2	26.1	17.0			
		1	661	1880.0	26.2	17.1	27.0	18.0	
			810	1909.8	26.4	17.4			
			512	1850.2	22.9	16.9			
		2	661	1880.0	23.0	17.0	24.0	18.0	
EDGE	MOOF		810	1909.8	23.2	17.2			
(8PSK)	MCS5		512	1850.2	21.0	16.8			
		3	661	1880.0	21.3	17.1	22.2	17.9	
			810	1909.8	21.5	17.2			
			512	1850.2	19.8	16.8			
		4	661	1880.0	19.8	16.8	21.0	18.0	
			810	1909.8	20.0	17.0			

GSM850 DTM Measured Results

							No	rmal Averag	e Power (dB	im)		
Mode	Coding	Time	Ch No.	Freq.		Meas	sured			Tune-u	ıp Limit	
	Scheme	Slots		(MHz)	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr
			128	824.2	32.2	10000:0000000:00000 10000:0000000:00000	23.2	00100000100000000000 001000001000000000		100:0000000:000000 100:0000000:000000		000000 000000 000000 000000 000000 000000
		1	190	836.6	32.3		23.3		32.9		23.9	
			251	848.8	32.4		23.4					
0004 0000/5005		CS1 2 3	128	824.2	28.9	29.1	22.9	23.0				
GSM + GPRS/EDGE (Voice) + (GMSK)	CS1		190	836.6	29.1	29.2	23.0	23.1	29.9	29.9	23.9	23.9
(voice) (emercy			251	848.8	29.1	29.2	23.1	23.2				
			128	824.2	27.0	27.0	22.8	22.8			23.8	23.8
			190	836.6	27.2	27.2	23.0	22.9	28.1	28.1		
			251	848.8	27.2	27.1	22.9	22.9				
			128	824.2	32.2		23.2					
		1	190	836.6	32.3	99999499999999999999999999999999999999	23.2	60(00000)00000000000 60(00000)0000000000	32.9	1001000000000000000000 100100000000000	23.9	00000000000000000000000000000000000000
			251	848.8	32.4		23.4					
GSM EDGE			128	824.2	29.0	23.8	23.0	17.7				
GSM + EDGE (Voice) + (8PSK)	MCS5	2	190	836.6	29.1	23.8	23.1	17.8	29.9	25.0	23.9	19.0
(voice) (8PSK)			251	848.8	29.2	23.9	23.2	17.9				
			128	824.2	27.2	21.8	22.9	17.5				
		3	190	836.6	27.2	21.9	23.0	17.6	6 28.1 23.2	23.2	23.8	18.9
			251	848.8	27.1	21.8	22.9	17.6				

GSM1900 DTM Measured Results

							No	rmal Averag	e Power (dB	m)		
Mode	Coding	Time	Ch No.	Freq.		Meas	sured			Tune-u	up Limit	
	Scheme	Slots		(MHz)	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr	CS Burst Pwr	PS Burst Pwr	CS Frame Pwr	PS Frame Pwr
			512	1850.2	27.2		18.2					
		1	661	1880.0	27.5		18.4		28.0		19.0	
			810	1909.8	27.5		18.5					
0004 0000/5005			512	1850.2	23.6	23.8	17.6	17.8				
GSM + GPRS/EDGE (Voice) + (GMSK)	CS1	2	661	1880.0	23.6	23.7	17.6	17.7	25.0	25.0	19.0	19.0
			810	1909.8	23.7	23.7	17.7	17.7				
			512	1850.2	21.8	21.9	17.6	17.6			18.9	18.9
		3	661	1880.0	22.2	22.2	18.0	17.9	23.2	23.2		
			810	1909.8	22.5	22.5	18.3	18.3				
			512	1850.2	27.2		18.2					
		1	661	1880.0	27.5		18.4		28.0		19.0	
			810	1909.8	27.5		18.5					
0014 5005			512	1850.2	23.8	23.2	17.8	17.1				
· · ·		2	661	1880.0	23.8	23.1	17.7	17.1	25.0	24.0	19.0	18.0
(0.01)			810	1909.8	23.9	23.1	17.9	17.1				
			512	1850.2	21.9	20.8	17.7	16.6				
		3	661	1880.0	22.1	21.0	17.8	16.7	6.7 23.2 22.2	18.9	17.9	
			810	1909.8	21.3	21.1	17.0	16.9				

9.2. W-CDMA

Per KDB 941225 D01 3G SAR Procedures for W-CDMA:

Maximum output power is verified on the high, middle and low channels and using the appropriate 12.2 kbps RMC with TPC (transmit power control) set to all "1's"

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1. A summary of these settings is illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to procedures in table C.10.1.4 of 3GPP TS 34.121-1 A summary of these settings is illustrated below:

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βα	βa	βd (SF)	β₀/β₫	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)			
1	2/15	15/15	64	2/15	4/15	0.0	0.0			
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0			
3	15/15	8/15	64	15/8	30/15	1.5	0.5			
4										
ir		1AA, ∆ _{ACK} a		in clause 5.13.1A D/15 with β_{hs} = 30						
Note 3: CM = 1 for β _o /β _d =12/15, β _{hs} /β _c =24/15. For all other combinations of DPDCH, DPCCH and HS- DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.										
a				the TFC during the terms for the reference of the terms for the reference of the terms for the terms of terms of the terms of term						

HSUPA Setup Procedures used to establish the test signals

The following 5 Sub-tests were completed according to procedures in table C.11.1.3 of 3GPP TS 34.121-1. A summary of these settings is illustrated below:

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βc	βd	β _d (SF)	βc/βd	βнs (Note1)	β _{ec}	β _{ed} (Note 4) (Note 5)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2) (Note 6)	AG Index (Note 5)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	5/15 5/15 47/15 4 1 1.0 0.0 12							12	67		
Note 1 Note 2	5/15 v : CM =	vith β_{hs} = 1 for β_c/β	= 5/15 3 _d =12/	* $β_c$. 15, β _{hs} /β _c	=24/15. I	For all ot	5 with $\beta_{hs} = 30$ her combinations of CM difference	ons of	, ,				
Note 3 Note 4	setting : In cas	For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$. In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25202 Table 5 defined according to											
Note 5 Note 6	100												

DC-HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests for DC-HSDPA were completed according to procedures in table C08.1.12 of 3GPP TS 34.121-1. A summary of subtest settings is illustrated below:

	Parameter	Unit	Value			
Nominal	Avg. Inf. Bit Rate	kbps	60			
Inter-TTI	Distance	TTI's	1			
Number	of HARQ Processes	Proces ses	6			
Informati	on Bit Payload ($N_{{\scriptstyle I\!N\!F}}$)	Bits	120			
Number	Code Blocks	Blocks	1			
Binary C	hannel Bits Per TTI	Bits	960			
Total Ava	ailable SML's in UE	SML's	19200			
Number	of SML's per HARQ Proc.	SML's	3200			
Coding F	late		0.15			
Number	of Physical Channel Codes	Codes	1			
Modulatio	on		QPSK			
 Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table. Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used. 						

Table C.8.1.12: Fixed Reference Channel H-Set 12

HSPA+ Setup Procedures used to establish the test signals

The following 1 Sub-test was completed according to procedures in table C.11.1.4 of 3GPP TS34.121. A summary of these settings is illustrated below:

Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM

Sub- test	β _c (Note3)	βd	βнs (Note1)	β _{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								105
Note 1 Note 2 Note 3 Note 4 Note 5	2: CM = 3: DPD 4: β _{ed} c 5: All th DPD	= 3.5 a CH is an no e sub CH ca	and the MF not config t be set dir -tests requ ategory 7.	PR is bas ured, the ectly; it is uire the U E-DCH T	with $\beta_{hs} = 30/15$ ed on the relative refore the β_c is s is set by Absolute E to transmit 2S TI is set to 2ms allocated. The U	e CM difference et to 1 and βd = Grant Value. F2+2SF4 16QA ITI and E-DCH	0 by defau M EDCH a table index	llt. nd they a (= 2. To :	apply for l support th	nese E-Ď(

Maximum Output Power (Tune-up Limit) for W-CDMA

SAR measurement is not required for the HSDPA, HSUPA. When primary mode and the adjusted SAR is ≤ 1.2 W/kg and secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode

		Tune-up Pow	erLimit (dBm)
RF Air interface	Mode	CELL Main1	CELL Main2
		Normal	Normal
W-CDMA	R99		19.7
Band 2	HSDPA		19.0
Ballu Z	HSUPA		19.0
	R99		18.7
W-CDMA Band 4	HSDPA		18.0
Danu 4	HSUPA		18.0
	R99	22.7	
W-CDMA Band 5	HSDPA	22.0	
Daild 5	HSUPA	22.0	

W-CDMA Band II Measured Results

	ala	UL Ch No.	Freq.	Normal Ave	rage Po	wer (dBm)	
IVIC	de	UL CH NO.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	9262	1852.4	18.8			
Release 99	(RMC, 12.2	9400	1880.0	18.8	N/A	19.7	
	kbps)	9538	1907.6	18.8			
		9262	1852.4	17.8			
	Subtest 1	9400	1880.0	17.8	0	19.0	
		9538	1907.6	17.8			
		9262	1852.4	17.8			
	Subtest 2	9400	1880.0	17.8	0	19.0	
HSDPA		9538	1907.6	17.8			
ISDPA		9262	1852.4	17.3			
	Subtest 3	9400	1880.0	17.3	0.5	18.5	
		9538	1907.6	17.3			
	Subtest 4	9262	1852.4	17.5			
		9400	1880.0	17.3	0.5	18.5	
		9538	1907.6	17.3			
		9262	1852.4	17.8			
	Subtest 1	9400	1880.0	17.8	0	19.0	
		9538	1907.6	17.8			
		9262	1852.4	15.8			
	Subtest 2	9400	1880.0	15.8	2	17.0	
		9538	1907.6	15.8			
		9262	1852.4	16.8			
HSUPA	Subtest 3	9400	1880.0	16.8	1	18.0	
	Gublest 5	9538	1907.6	16.8			
		9262	1852.4	15.8			
	Subtest 4	9400	1880.0	15.8	2	17.0	
		9538	1907.6	15.8			
	Subtest 5	9262	1852.4	17.3			
		9400	1880.0	17.4	0	19.0	
		9538	1907.6	17.4			

W-CDMA Band IV Measured Results

N/-			Freq.	Normal Ave	rage Po	wer (dBm)	
IVIC	ode	UL Ch No.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	1312	1712.4	17.8			
Release 99	(RMC, 12.2	1413	1732.6	17.8	N/A	18.7	
	kbps)	1513	1752.6	17.8			
		1312	1712.4	16.8			
	Subtest 1	1413	1732.6	16.8	0	18.0	
		1513	1752.6	16.8			
		1312	1712.4	16.8			
	Subtest 2	1413	1732.6	16.8	0	18.0	
HSDPA		1513	1752.6	16.8			
ISDPA		1312	1712.4	16.5			
	Subtest 3	1413	1732.6	16.3	0.5	17.5	
		1513	1752.6	16.3			
	Subtest 4	1312	1712.4	16.3			
		1413	1732.6	16.4	0.5	17.5	
		1513	1752.6	16.4			
		1312	1712.4	16.7			
	Subtest 1	1413	1732.6	16.8	0	18.0	
		1513	1752.6	16.8			
		1312	1712.4	14.8			
	Subtest 2	1413	1732.6	14.8	2	16.0	
		1513	1752.6	14.8			
		1312	1712.4	15.8			
HSUPA	Subtest 3	1413	1732.6	15.8	1	17.0	
	Cubicatio	1513	1752.6	15.8			
		1312	1712.4	14.8			
	Subtest 4	1413	1732.6	14.8	2	16.0	
		1513	1752.6	14.8			
		1312	1712.4	16.3			
	Subtest 5	1413	1732.6	16.4	0	18.0	
		1513	1752.6	16.4			

W-CDMA Band V Measured Results

Mode		UL Ch No.	Freq.	Normal Average Power (dBm)			
		UL CH NO.	(MHz)	Measured Pwr	MPR	Tune-up Limit	
	Rel 99	4132	826.4	22.3		22.7	
Release 99	(RMC, 12.2	4183	836.6	22.2	N/A		
	kbps)	4233	846.6	21.6			
		4132	826.4	21.2			
	Subtest 1	4183	836.6	21.2	0	22.0	
		4233	846.6	20.6			
		4132	826.4	21.2			
	Subtest 2	4183	836.6	21.0	0	22.0	
HSDPA		4233	846.6	20.6			
ISUFA		4132	826.4	20.5		21.5	
	Subtest 3	4183	836.6	20.5	0.5		
		4233	846.6	20.1			
	Subtest 4	4132	826.4	20.6		21.5	
		4183	836.6	20.5	0.5		
		4233	846.6	20.1			
		4132	826.4	21.3		22.0	
	Subtest 1	4183	836.6	21.3	0		
		4233	846.6	20.5			
	Subtest 2	4132	826.4	19.3		20.0	
		4183	836.6	19.2	2		
		4233	846.6	18.6			
		4132	826.4	20.3		21.0	
HSUPA	Subtest 3	4183	836.6	20.3	1		
		4233	846.6	19.6			
	Subtest 4	4132	826.4	19.3			
		4183	836.6	19.3	2	20.0	
		4233	846.6	18.6			
		4132	826.4	21.2			
	Subtest 5	4183	836.6	21.3	0	22.0	
		4233	846.6	20.5			

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Channel bandwidth / Transmission bandwidth (NRB)						
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM	≥1						≤ 5

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

Maximum Output Power (Tune-up Limit) for LTE

According to April 2015 TCB workshop, SAR test exclusion can be applied for testing overlapping LTE bands as follows:

- a) The maximum output power, including tolerance, for the smaller band must be ≤ the larger band to qualify for the SAR test exclusion.
- b) The channel bandwidth and other operating parameters for the smaller band must be fully supported by the larger band.
 - LTE Band 17 (704-716 MHz) is covered by LTE Band 12 (699-716 MHz)

For some LTE Bands, certain channel bandwidths do not support at least three non-overlapping channels. When a device supports overlapping channel assignments in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices. Please refer to section 6.3. for a detailed list of LTE test channels

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for the 16QAM and 64QAM. When the highest maximum output power for 16QAM and 64QAM is $\leq \frac{1}{2}$ dB higher than the QPSK or when the reported SAR for the QPSK configuration is \leq 1.45 W/kg.

		Tune-up Pow erLimit (dBm)			
RF Air interface	Mode	CELL Main1	CELL Main2		
		Normal	Normal		
LTE Band 4	QPSK		19.0		
LTE Band 5	QPSK	22.0			
LTE Band 12	QPSK	22.0			
LTE Band 13	QPSK	22.0			
LTE Band 17	QPSK	22.0			
LTE Band 41	QPSK		20.0		

LTE Band 4 Measured Results

	Normal Average Power (dBm)										
BW	Mode	RB	RB	20050	20175	20300		Tune-up			
(MHz)		Allocation	offset	1720 MHz	1732.5 MHz	1745 MHz	MPR	Limit			
		1	0	18.0	18.1	18.0	0	19			
		1	49	18.0	18.1	18.0	0	19			
		1	99	18.0	18.1	18.0	0	19			
	QPSK	50	0	18.0	18.1	18.0	0	19			
		50	24	18.0	18.1	18.0	0	19			
		50	50	18.0	18.1	18.0	0	19			
		100	0	18.0	18.1	18.0	0	19			
		1	0	18.0	18.1	18.0	0	19			
		1	49	18.0	18.1	18.0	0	19			
		1	99	18.0	18.1	18.0	0	19			
20 MHz	16QAM	50	0	18.0	18.1	18.0	0	19			
		50	24	18.0	18.1	18.0	0	19			
		50	50	18.0	18.1	18.0	0	19			
		100	0	18.0	18.1	18.0	0	19			
		1	0	18.2	18.2	18.4	0	19			
		1	49	18.4	18.3	18.4	0	19			
		1	99	18.3	18.3	18.3	0	19			
	64QAM	50	0	17.9	18.0	18.0	0	19			
		50	24	18.0	18.0	18.1	0	19			
		50	50	18.0	18.1	18.1	0	19			
		100	0	18.0	18.0	18.0	0	19			
BW		RB	RB			age Power (dBm)				
(MHz)	Mode	Allocation	offset	20025	20175	20325	MPR	Tune-up			
				1717.5 MHz	1732.5 MHz	1747.5 MHz		Limit			
		1	0	18.0	18.0	18.0	0	19			
		1	37	18.0	18.0	17.9	0	19			
		1	74	18.0	18.0	18.0	0	19			
	QPSK	36	0	18.0	18.0	18.0	0	19			
		36	20	18.0	18.0	18.0	0	19			
		36	39	18.0	18.0	18.0	0	19			
		75	0	18.0	18.0	18.0	0	19			
		1	0	18.0	18.0	18.0	0	19			
		1	37	18.0	18.0	18.0	0	19			
		1	74	18.0	18.0	18.0	0	19			
15 MHz	16QAM	36	0	18.0	18.0	18.0	0	19			
		36	20	18.0	18.0	18.0	0	19			
		36	39	18.0	18.0	18.0	0	19			
		75	0	18.0	18.0	18.0	0	19			
		1	0	18.3	18.2	18.1	0	19			
		1	37	18.3	18.3	18.2	0	19			
		1	74	18.3	18.4	18.2	0	19			
	64QAM	36	0	18.0	18.1	18.0	0	19			
		36	20	18.0	18.0	18.0	0	19			
		36	39	18.0	18.1	18.1	0	19			
		75	0	18.0	18.0	18.0	0	19			
BW	Mode	RB	RB	20000		age Power (dBm	,	-			
(MHz)	Mode	Allocation	offset	20000	20175 1732.5 MHz	20350	MPR	Tune-up Limit			
		4	0	1715 MHz		1750 MHz	0				
	QPSK		1	0 25	18.2 18.2	18.2	18.2	0	19 19		
		QPSK	1 25	49	18.2 18.2	18.2	18.1	0	19 19		
			QPSK	QPSK	-						
			25	12	18.2	18.2	18.1	0	19		
		25	25	18.1	18.2	18.1	0	19			
		50 1	0	18.2 18.2	18.2	18.1 18.1	0	19 19			
10 MHz	16QAM	1			18.2			19			
		1	25 49	18.2 18.2	18.2	18.1 18.1	0	19			
		25	49	18.2	18.2	18.1	0	19			
		25	12	18.2	18.2	18.1	0	19			
		25	25	18.2	18.2	18.1	0	19			
		25 50	0		18.2		0	19			
	64QAM	50	0	18.2		18.1	0	19 19			
		-	25	18.3 18.3	18.5 18.5	18.4		19			
		1	49	18.3	18.5	18.4 18.4	0	19			
		25	49	18.3	18.5	18.4	0	19			
	UHQ/AIVI	25	12	18.2	18.2	18.1	0	19			
1		25	25	18.2	18.2	18.2	0	19			
		25 50	25	18.2	18.3	18.1	0	19			
	I	- UC	U	10.2	10.2	10.1	U	19			

LTE Band 4 Measured Results (continued)

						<u></u>		
BW		RB	RB			age Power (dBm)	
(MHz)	Mode	Allocation	offset	19975	20175	20375	MPR	Tune-up Limit
		1	0	1712.5 MHz 18.1	1732.5 MHz 18.2	1752.5 MHz 18.2	0	19
		1	12	18.1	18.2	18.2	0	19
		1	24	18.1	18.2	18.2	0	19
	QPSK	12	0	18.1	18.2	18.1	0	19
	QF OK	12	7	18.1	18.2	18.2	0	19
		12	13	18.1	18.2	18.2	0	19
			0		18.2	18.2		19
		25		18.1	-	-	0	
		1	0	18.1	18.1	18.2	0	19
		1	12	18.1	18.2	18.2	0	19
		1	24	18.1	18.1	18.2	0	19
5 MHz	16QAM	12	0	18.1	18.1	18.2	0	19
		12	7	18.1	18.2	18.2	0	19
		12	13	18.1	18.2	18.2	0	19
		25	0	18.1	18.2	18.1	0	19
	64QAM		0	18.5	18.4	18.4	0	19
			12	18.6	18.5	18.5	0	19
			24	18.5	18.5	18.4	0	19
			0	18.2	18.2	18.2	0	19
		12	7	18.2	18.2	18.2	0	19
		12	13	18.2	18.3	18.2	0	19
		25	0	18.1	18.1	18.2	0	19
					Normal Aver	age Power (dBm)	
BW	Mode	RB	RB	19965	20175	20385		Tune-up
(MHz)		Allocation	offset	1711.5 MHz	1732.5 MHz	1753.5 MHz	MPR	Limit
		1	0	18.1	18.1	18.1	0	19
		1	8	18.0	18.1	18.1	0	19
		1	14	18.1	18.1	18.1	0	19
	OPSK	8	0	18.0	18.1	18.1	0	19
	QPSK	8	4	18.1	18.0	18.1	0	19
		8	7	18.1	18.1	18.0	0	19
		15	0	18.0	18.1	18.1	0	19
		1	0	18.1	18.1	18.1	0	19
		1	8	18.1	18.1	18.1	0	19
		1	14	18.1	18.1	18.1	0	19
3 MHz	16QAM	8	0	18.1	18.0	18.1	0	19
		8	4	18.1	18.0	18.1	0	19
		8	7	18.1	18.0	18.1	0	19
		15	0	18.1	18.0	18.1	0	19
		1	0	18.1	18.4	18.3	0	19
		1	8	18.3	18.5	18.4	0	19
		1	14	18.2	18.4	18.3	0	19
	64QAM	8	0	18.1	18.2	18.2	0	19
		8	4	18.2	18.2	18.2	0	19
		8	7	18.2	18.3	18.2	0	19
		15	0	18.1	18.3	18.2	0	19
		15	0	10.1		age Power (dBm		15
BW	Mode	RB	RB	19957	20175	20393	,	Turnerum
(MHz)	wode	Allocation	offset	1710.7 MHz	1732.5 MHz	20393 1754.3 MHz	MPR	Tune-up Limit
			0		1702.0 WITZ	1704.0 IVITIZ		
				12.0		18.0	0	10
		1	0	18.0	18.0	18.0	0	19
		1	3	18.0	18.0 18.0	18.0	0	19
	050%	1	3 5	18.0 18.0	18.0 18.0 18.0	18.0 18.0	0	19 19
	QPSK	1 1 3	3 5 0	18.0 18.0 18.0	18.0 18.0 18.0 18.0	18.0 18.0 18.0	0 0 0	19 19 19
	QPSK	1 1 3 3	3 5 0 1	18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0	0 0 0 0	19 19 19 19
	QPSK	1 1 3 3 3	3 5 0 1 3	18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0	0 0 0 0	19 19 19 19 19 19
	QPSK	1 1 3 3 3 6	3 5 0 1 3 0	18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0	0 0 0 0 0	19 19 19 19 19 19 19
	QPSK	1 1 3 3 6 1	3 5 0 1 3 0 0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1	0 0 0 0 0 0	19 19 19 19 19 19 19 19
	QPSK	1 1 3 3 6 1 1	3 5 0 1 3 0 0 3	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0	19 19 19 19 19 19 19 19 19
	QPSK	1 1 3 3 6 1	3 5 0 1 3 0 0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1	0 0 0 0 0 0	19 19 19 19 19 19 19 19
1.4 MHz	QPSK 16QAM	1 1 3 3 6 1 1	3 5 0 1 3 0 0 3	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0	19 19 19 19 19 19 19 19 19
1.4 MHz		1 1 3 3 6 1 1 1	3 5 0 1 3 0 0 3 5	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 1 3 3 6 1 1 1 3	3 5 0 1 3 0 0 3 5 0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 3 3 6 1 1 3 3 3 3	3 5 0 1 3 0 0 3 5 0 1	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 3 3 6 1 1 3 3 3 3	3 5 0 1 3 0 0 3 5 0 1 3	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 3 3 6 1 1 1 3 3 3 6 1	3 5 0 1 3 0 0 3 5 0 1 3 0 0 0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	18.0 18.0	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 1 3 3 6 1 1 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 0 1 3 0 0 3 5 0 1 3 0 0 0 3	18.0 18.0	18.0 18.3 18.4	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.4 18.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz	16QAM	1 1 3 3 6 1 1 1 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 0 1 3 0 0 0 3 5 0 1 1 3 0 0 0 3 5 5	18.0 18.2 18.2 18.2 18.2 18.2	18.0 18.3 18.3 18.3	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.0 18.4 18.4 18.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz		1 1 3 3 6 1 1 1 3 3 6 1 1 1 1 3 3 6 1 1 1 3 3 6 1 1 3 3 6 1 1 3 3 6 1 1 3 3 3 6 1 1 3 3 3 6 1 1 1 1 3 3 3 6 1 1 1 1 3 3 3 6 1 1 1 1 1 3 3 3 6 1 1 1 1 1 1 3 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 0 1 3 0 0 3 5 0 1 3 0 0 3 5 0 0 3 5 0	18.0 18.2 18.3 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	18.0 18.3 18.3 18.4 18.2	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.4 18.4 18.4 18.4 18.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz	16QAM	1 1 3 3 6 1 1 3 3 6 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3	3 5 0 1 3 0 0 3 5 0 0 1 3 3 5 0 0 1	18.0 18.2 18.3 18.2	18.0 18.3 18.4 18.2 18.2 18.2 18.2 18.2 18.4 18.2 18.2 18.2 18.2 18.2	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.0 18.0 18.0 18.1 18.1 18.0 18.0 18.0 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.0 18.0 18.0 18.0 18.0 18.1 18.0 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.2 18.2 18.2 18.2 18.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19
1.4 MHz	16QAM	1 1 3 3 6 1 1 1 3 3 6 1 1 1 1 3 3 6 1 1 1 3 3 6 1 1 3 3 6 1 1 3 3 6 1 1 3 3 3 6 1 1 3 3 3 6 1 1 1 1 3 3 3 6 1 1 1 1 3 3 3 6 1 1 1 1 1 3 3 3 6 1 1 1 1 1 1 3 3 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1	3 5 0 1 3 0 0 3 5 0 1 3 0 0 3 5 0 0 3 5 0	18.0 18.2 18.3 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2	18.0 18.3 18.3 18.4 18.2	18.0 18.0 18.0 18.0 18.0 18.0 18.1 18.1 18.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.4 18.4 18.4 18.4 18.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 19

LTE Band 5 Measured Results

					Normal Aver	age Power (dBm)	
BW (MHz)	Mode	RB Allocation	RB offset	20450	20525	20600	MPR	Tune-up
· · ·				829 MHz	836.5 MHz	844 MHz	WH IX	Limit
		1	0	21.3	21.2	21.3	0	22
		1	25	21.2	21.2	21.3	0	22
	QPSK	1	49	21.3	21.2	21.2	0	22 22
	QPSK	25 25	0	21.2 21.3	21.2 21.3	21.2 21.2	0	22
		25	25	21.3	21.3	21.2	0	22
		50	0	21.3	21.2	21.2	0	22
		1	0	21.6	21.6	21.6	0	22
		1	25	21.6	21.5	21.5	0	22
		1	49	21.6	21.6	21.5	0	22
10 MHz	16QAM	25	0	21.3	21.2	21.3	0	22
		25	12	21.3	21.3	21.3	0	22
		25	25	21.3	21.3	21.3	0	22
		50	0	21.3	21.2	21.2	0	22
		1	0	21.6	21.4	21.6	0	22
		1	25	21.6	21.4	21.6	0	22
	64QAM	1 25	49 0	21.6 21.3	21.4	21.5 21.2	0	22 22
	64QAW							
		25 25	12 25	21.3 21.3	21.3 21.2	21.3 21.3	0	22 22
		50	0	21.3	21.2	21.3	0	22
		50	0	21.5		age Power (dBm		22
BW	Mode	RB	RB	20425	20525	20625		Tune-up
(MHz)		Allocation	offset	826.5 MHz	836.5 MHz	846.5 MHz	MPR	Limit
		1	0	21.2	21.1	21.1	0	22
		1	12	21.3	21.3	21.3	0	22
		1	24	21.1	21.1	21.1	0	22
	QPSK	12	0	21.2	21.1	21.1	0	22
		12	7	21.3	21.2	21.1	0	22
		12	13	21.2	21.2	21.2	0	22
		25	0	21.2	21.2	21.1	0	22
		1	0	21.5	21.5	21.5	0	22
		1	12	21.7	21.7	21.6	0	22
		1	24	21.5	21.5	21.5	0	22
5 MHz	16QAM	12	0	21.3	21.2	21.2	0	22
		12	7	21.4	21.2	21.3	0	22
		12	13	21.3	21.3	21.3	0	22
		25	0	21.2	21.2	21.1	0	22
		1	0	21.4	21.4	21.3	0	22
		1	12	21.5	21.5	21.5	0	22
	64QAM	1 12	24 0	21.5 21.3	21.4 21.1	21.3 21.2	0	22 22
	04QAIVI	12	7	21.3	21.1	21.2	0	22
		12	13	21.3	21.2	21.2	0	22
		25	0	21.0	21.2	21.1	0	22
						age Power (dBm		
BW	Mode	RB	RB	20415	20525	20635		Tune-up
(MHz)		Allocation	offset	825.5 MHz	836.5 MHz	847.5 MHz	MPR	Limit
		1	0	21.1	21.1	21.2	0	22
		1	0 8	21.1 21.2	21.1 21.2		0	22 22
						21.2		
	QPSK	1	8	21.2	21.2	21.2 21.2	0	22
	QPSK	1	8 14	21.2 21.1	21.2 21.1	21.2 21.2 21.1	0	22 22
	QPSK	1 1 8 8 8	8 14 0 4 7	21.2 21.1 21.2 21.2 21.2 21.2	21.2 21.1 21.1 21.2 21.2 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0	22 22 22 22 22 22
	QPSK	1 1 8 8 8 15	8 14 0 4 7 0	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.2	21.2 21.1 21.1 21.2 21.2 21.2 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0	22 22 22 22 22 22 22 22
	QPSK	1 1 8 8 8 15 1	8 14 0 4 7 0 0	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.5	21.2 21.1 21.1 21.2 21.2 21.2 21.2 21.5	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22
	QPSK	1 1 8 8 8 15 1 1 1	8 14 0 4 7 0 0 8	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.2	21.2 21.1 21.1 21.2 21.2 21.2 21.2 21.5 21.6	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22
		1 1 8 8 8 15 1 1 1 1	8 14 0 4 7 0 0 8 8 14	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.5 21.6 21.5	21.2 21.1 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.4	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK 16QAM	1 1 8 8 15 1 1 1 8	8 14 0 4 7 0 0 8 8 14 0	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.6 21.5 21.2	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 15 1 1 1 8 8 8	8 14 0 4 7 0 0 8 8 14 0 4	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.6 21.5 21.6 21.2 21.2 21.3	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.6 21.4 21.2 21.2 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 15 1 1 1 8 8 8 8	8 14 0 4 7 0 0 8 14 0 4 7	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.2 21.2 21.3	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 15 1 1 1 8 8 8 15 15 15 15 15 15 15 15 15 15	8 14 0 4 7 0 0 8 8 14 0 4 7 0	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3 21.2	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.2 21.2 21.2 21.2 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 8 15 1 1 1 8 8 8 8 15 1	8 14 0 4 7 0 0 8 8 14 0 4 7 7 0 0	21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3 21.3 21.2 21.4	21.2 21.1 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.3 21.2 21.3 21.2 21.4	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 15 1 1 1 1 8 8 8 8 15 1 1 1	8 14 0 4 7 0 0 8 14 0 4 7 7 0 0 8	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3 21.3 21.2 21.4 21.4 21.6	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.2 21.3 21.2 21.3 21.2 21.4 21.5	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	16QAM	1 1 8 8 15 1 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	8 14 0 4 7 0 0 8 14 0 4 7 7 0 0 0 8 14	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3 21.3 21.2 21.4 21.4	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.2 21.3 21.2 21.3 21.2 21.4 21.4 21.5 21.4	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		1 1 8 8 8 15 1 1 1 8 8 8 8 8 15 1 1 1 1	8 14 0 4 7 0 0 8 14 0 4 7 7 0 0 8 8 14 0	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.5 21.5 21.5 21.2 21.3 21.3 21.3 21.2 21.4 21.4 21.6 21.4 21.3	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.3 21.2 21.3 21.2 21.4 21.4 21.5 21.4 21.4 21.5 21.4 21.4 21.5	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	16QAM	1 1 8 8 15 1 1 1 8 8 8 15 1 1 1 1 8 8 8 8 15 1 1 1 8 8 8 15 15 1 1 1 8 8 8 15 15 1 1 1 1 8 8 8 15 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1	8 14 0 4 7 0 0 8 14 0 4 4 7 0 0 0 8 8 14 0 0 4	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.6 21.5 21.2 21.3 21.3 21.2 21.4 21.4 21.6 21.4 21.3 21.3	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.2 21.2 21.2 21.2 21.3 21.2 21.4 21.5 21.4 21.5 21.4 21.2 21.2 21.2	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2 21.4 21.5 21.3 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.2 21.3 21.4 21.3 21.2 21.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	16QAM	1 1 8 8 8 15 1 1 1 8 8 8 8 8 15 1 1 1 1	8 14 0 4 7 0 0 8 14 0 4 7 7 0 0 8 8 14 0	21.2 21.1 21.2 21.2 21.2 21.2 21.5 21.6 21.5 21.5 21.5 21.5 21.2 21.3 21.3 21.3 21.2 21.4 21.4 21.6 21.4 21.3	21.2 21.1 21.1 21.2 21.2 21.2 21.5 21.6 21.4 21.4 21.2 21.3 21.2 21.3 21.2 21.4 21.4 21.5 21.4 21.4 21.5 21.4 21.4 21.5	21.2 21.2 21.1 21.2 21.2 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22

LTE Band 5 Measured Results (continued)

BW		RB			Normal Aver	age Power (dBm	1)	
(MHz)	Mode	Allocation	RB offset	20407	20525	20643	MPR	Tune-up
(/ moodulon	011000	824.7 MHz	836.5 MHz	848.3 MHz	WIFK	Limit
		1	0	21.2	21.1	21.1	0	22
		1	3	21.2	21.1	21.1	0	22
		1	5	21.2	21.1	21.1	0	22
	QPSK	3	0	21.2	21.1	21.1	0	22
		3	1	21.2	21.2	21.1	0	22
		3	3	21.2	21.1	21.1	0	22
		6	0	21.2	21.1	21.1	0	22
		1	0	21.5	21.5	21.5	0	22
		1	3	21.6	21.5	21.5	0	22
		1	5	21.5	21.5	21.5	0	22
1.4 MHz	16QAM	3	0	21.4	21.3	21.3	0	22
		3	1	21.4	21.3	21.3	0	22
		3	3	21.4	21.3	21.3	0	22
		6	0	21.3	21.2	21.2	0	22
		1	0	21.4	21.4	21.4	0	22
		1	3	21.5	21.4	21.4	0	22
		1	5	21.4	21.4	21.4	0	22
	64QAM	3	0	21.3	21.2	21.3	0	22
		3	1	21.3	21.3	21.3	0	22
		3	3	21.3	21.3	21.3	0	22
		6	0	21.1	21.3	21.1	0	22

LTE Band 12 Measured Results

					Normal Aver	age Power (dBm	I)	
BW (MHz)	Mode	RB Allocation	RB offset	23060	23095	23130	MPR	Tune-up
(/ mooddon	0.000	704 MHz	707.5 MHz	711 MHz		Limit
		1	0	21.4	21.4	21.2	0	22
		1	25	21.3	21.4	21.3	0	22
		1	49	21.3	21.4	21.1	0	22
	QPSK	25	0	21.1	21.3	21.2	0	22
		25	12	21.2	21.4	21.2	0	22
		25	25	21.2	21.4	21.2	0	22
		50	0	21.1	21.3	21.2	0	22
		1	0	21.7	21.7	21.5	0	22
		1	25	21.7	21.7	21.4	0	22
		1	49	21.5	21.7	21.6	0	22
10 MHz	16QAM	25	0	21.1	21.4	21.1	0	22
		25	12	21.1	21.4	21.2	0	22
		25	25	21.2	21.5	21.3	0	22
		50	0	21.0	21.3	21.2	0	22
		1	0	21.3	21.6	21.4	0	22
		1	25	21.5	21.6	21.4	0	22
		1	49	21.5	21.6	21.5	0	22
	64QAM	25	0	21.2	20.9	21.1	0	22
		25	12	21.2	20.9	21.2	0	22
		25	25	21.3	20.9	21.3	0	22
		50	0	21.3	20.9	21.2	0	22
Ditt					Normal Aver	age Power (dBm)	
BW (MHz)	Mode	RB Allocation	RB offset	23035	23095	23155	MPR	Tune-up
(12)		- mooution	CSOL	701.5 MHz	707.5 MHz	713.5 MHz	WIPK	Limit
		1	0	21.3	21.3	21.3	0	22
		1	12	21.4	21.5	21.5	0	22
		1	24	21.3	21.3	21.4	0	22
	QPSK	12	0	21.4	21.3	21.3	0	22
		12	7	21.4	21.3	21.4	0	22
		12	13	21.4	21.4	21.4	0	22
		25	0	21.4	21.3	21.4	0	22
ľ		1	0	21.7	21.7	21.8	0	22
		1	12	21.8	21.8	21.9	0	22
		1	24	21.7	21.7	21.8	0	22
5 MHz	16QAM	12	0	21.5	21.4	21.4	0	22
		12	7	21.5	21.5	21.4	0	22
		12	13	21.5	21.5	21.5	0	22
		25	0	21.4	21.3	21.4	0	22
		1	0	21.7	21.6	21.7	0	22
		1	12	21.8	21.7	21.7	0	22
		1	24	21.7	21.6	21.7	0	22
	64QAM	12	0	21.0	20.8	20.9	0	22
		12	-					
			7	21.0	20.8	21.0		
		12	7	21.0 21.0	20.8	21.0 21.0	0	22
		12 25	13	21.0	20.9	21.0	0	22 22
BW		12 25			20.9 20.8	21.0 20.9	0 0 0	22
(MHz)	Mode	25 RB	13 0 RB	21.0	20.9 20.8	21.0 20.9 age Power (dBm	0 0 0	22 22 22
	Mode	25	13 0	21.0 20.9 23025	20.9 20.8 Normal Aver 23095	21.0 20.9 age Power (dBm 23165	0 0 0	22 22
	Mode	25 RB Allocation	13 0 RB offset	21.0 20.9 23025 700.5 MHz	20.9 20.8 Normal Aver 23095 707.5 MHz	21.0 20.9 age Power (dBm 23165 714.5 MHz	0 0 0) MPR	22 22 22 Tune-up Limit
	Mode	25 RB Allocation 1	13 0 RB	21.0 20.9 23025 700.5 MHz 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3	0 0 0) MPR 0	22 22 22 Tune-up Limit 22
	Mode	25 RB Allocation 1 1	13 0 RB offset 0 8	21.0 20.9 23025 700.5 MHz 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5	0 0 0 • MPR 0 0	22 22 22 Tune-up Limit 22 22
		25 RB Allocation 1 1 1	13 0 RB offset 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.3	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3	0 0 0 0 0 0 0 0	22 22 Tune-up Limit 22 22 22 22
	Mode	25 RB Allocation 1 1 1 8	13 0 RB offset 0 8 14 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.3 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.3 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.3	0 0 0 0 0 0 0 0 0	22 22 Tune-up Limit 22 22 22 22 22 22
		25 RB Allocation 1 1 8 8 8	13 0 RB offset 0 8 14 0 4	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.3 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.3 21.3 21.4	0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up Limit 22 22 22 22 22 22 22 22
		25 RB Allocation 1 1 8 8 8 8 8	13 0 RB offset 0 8 14 0 4 7	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.3 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.3 21.4 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.3 21.3 21.4 21.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up Limit 22 22 22 22 22 22 22 22 22
		25 RB Allocation 1 1 1 8 8 8 8 15	13 0 RB offset 0 8 14 0 4 7 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.3	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.3 21.4 21.4 21.4 21.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up Limit 22 22 22 22 22 22 22 22 22 22 22
·		25 RB Allocation 1 1 1 8 8 8 15 1	13 0 RB offset 0 8 14 0 4 7 0 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.3 21.7	21.0 20.9 3ge Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up Limit 22 22 22 22 22 22 22 22 22 22 22 22 22
		25 RB Allocation 1 1 1 8 8 8 8 15 1 1 1	13 0 RB offset 0 8 14 0 4 7 0 0 8	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.3 21.7 21.9	21.0 20.9 age Power (dBm 23165 21.5 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.3 21.7 21.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up Limit 22 22 22 22 22 22 22 22 22 22 22 22 22
3 Mil-	QPSK	25 RB Allocation 1 1 1 8 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 4 7 0 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.3 21.7 21.9 21.7	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.3 21.3 21.3 21.4 21.4 21.4 21.4 21.4 21.3 21.7 21.8 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz		25 RB Allocation 1 1 1 8 8 8 15 1 1 1 1 8	13 0 RB offset 0 8 14 0 4 7 0 0 8 8 14 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.7 21.8 21.7 21.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 8 15 1 1 1 1 8 8 8 8 8 15 1 1 1 8 8 8 8 15 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	13 0 RB offset 0 8 14 0 4 7 0 0 8 8 14 0 4	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.8 21.7 21.5 21.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 8 8 8 8	13 0 RB offset 0 8 14 0 4 7 0 0 8 14 0 0 8 14 0 0 4 7	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.3 21.7 21.9 21.7 21.9 21.7 21.5 21.5	21.0 20.9 age Power (dBm 23165 21.5 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.8 21.7 21.5 21.5 21.5 21.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-Up Limit 22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 8 15 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 0 8 14 0 0 8 14 0 4 7 7 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.3 21.7 21.9 21.7 21.9 21.7 21.4 21.5 21.5 21.4	21.0 20.9 3ge Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.7 21.8 21.7 21.5 21.5 21.5 21.5 21.6 21.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 Tune-up 22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 4 7 0 0 8 8 14 0 8 4 4 7 7 0 0 0 0	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.7 21.9 21.7 21.9 21.7 21.5 21.5 21.5 21.5	21.0 20.9 3ge Power (dBm 23165 21.5 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.7 21.8 21.7 21.5 21.5 21.5 21.6 21.6 21.4 21.4 21.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 4 7 0 0 8 8 14 0 0 4 7 0 0 8 8 14 0 0 8 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.5 21.5 21.5 21.5 21.5 21.6 21.4 21.7 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK 16QAM	25 RB Allocation 1 1 1 8 8 8 15 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 7 0 0 8 14 0 0 8 4 7 0 0 8 14 0 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.5 21.7 21.5 21.5 21.5 21.6 21.7 21.5	21.0 20.9 age Power (dBm 23165 711-5 MHz 21.3 21.5 21.3 21.3 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.5 21.5 21.5 21.5 21.6 21.4 21.7 21.5 21.5 21.6 21.4 21.7 21.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 8 15 1 1 1 1 1 8 8 8 15 1 1 1 1 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	21.0 20.9 age Power (dBm 23165 714.5 MHz 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.5 21.5 21.5 21.5 21.5 21.6 21.4 21.7 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK 16QAM	25 RB Allocation 1 1 1 8 8 15 1 1 8 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 7 0 0 8 14 0 0 8 4 7 0 0 8 14 0 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.4 21.4 21.5 21.7 21.5 21.5 21.5 21.6 21.7 21.5	21.0 20.9 age Power (dBm 23165 711-5 MHz 21.3 21.5 21.3 21.3 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.5 21.5 21.5 21.5 21.6 21.4 21.7 21.5 21.5 21.6 21.4 21.7 21.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
3 MHz	QPSK 16QAM	25 RB Allocation 1 1 1 8 8 15 1 1 1 8 8 8 8 15 1 1 1 1 1 8 8 8 15 1 1 1 1 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 8 8 8 15 1 1 1 1 1 8 8 8 15 1 1 1 1 1 1 1 1 1 1 1 1 1	13 0 RB offset 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14 0 0 8 14	21.0 20.9 23025 700.5 MHz 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	20.9 20.8 Normal Aver 23095 707.5 MHz 21.3 21.4 21.3 21.4 21.4 21.4 21.4 21.3 21.7 21.7 21.9 21.7 21.7 21.5 21.5 21.6 21.7 21.5 20.9	21.0 20.9 age Power (dBm 23165 21.5 21.3 21.5 21.3 21.4 21.4 21.4 21.4 21.4 21.7 21.5 21.5 21.5 21.5 21.5 21.6 21.7 21.7 21.7 21.6 21.7 21.7 21.7 21.6 20.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22

LTE Band 12 Measured Results (continued)

BW		RB	RB		Normal Aver	age Power (dBm	1)	
(MHz)	Mode	Allocation	offset	23017	23095	23173	MPR	Tune-up
(/ moodulon	011000	699.7 MHz	707.5 MHz	715.3 MHz		Limit
		1	0	21.3	21.4	21.4	0	22
		1	3	21.4	21.4	21.4	0	22
		1	5	21.3	21.4	21.4	0	22
	QPSK	3	0	21.3	21.4	21.4	0	22
		3	1	21.4	21.4	21.4	0	22
		3	3	21.4	21.4	21.4	0	22
		6	0	21.3	21.4	21.4	0	22
		1	0	21.5	21.7	21.7	0	22
		1	3	21.6	21.7	21.8	0	22
		1	5	21.6	21.7	21.7	0	22
1.4 MHz	16QAM	3	0	21.5	21.5	21.6	0	22
		3	1	21.6	21.5	21.6	0	22
		3	3	21.5	21.6	21.6	0	22
		6	0	21.4	21.4	21.5	0	22
		1	0	21.6	21.5	21.6	0	22
		1	3	21.7	21.6	21.7	0	22
		1	5	21.6	21.6	21.6	0	22
	64QAM	3	0	21.4	21.5	21.5	0	22
		3	1	21.4	21.5	21.5	0	22
		3	3	21.5	21.5	21.5	0	22
		6	0	21.0	21.0	20.8	0	22

BW		RB	RB		Normal Aver	age Power (dBm	I)	
(MHz)	Mode	Allocation	offset		23230		MPR	Tune-up
(782 MHz		WIF IX	Limit
		1	0		21.4		0	22
		1	25		21.4		0	22
		1	49		21.3		0	22
	QPSK	25	0		21.3		0	22
		25	12		21.3		0	22
		25	25		21.4		0	22
		50	0		21.3		0	22
		1	0		21.7		0	22
		1	25		21.7		0	22
		1	49		21.7		0	22
10 MHz	16QAM	25	0		21.4		0	22
		25	12		21.4		0	22
		25	25		21.4		0	22
		50	0		21.4		0	22
		1	0		21.7		0	22
		1	25		21.6		0	22
		1	49		21.6		0	22
	64QAM	25	0		21.0		0	22
		25	12		21.0		0	22
		25	25		21.0		0	22
		50	0		21.0		0	22
-					Normal Aver	age Power (dBm	ı)	
BW (MHz)	Mode	RB Allocation	RB offset	23205	23230	23255	MPR	Tune-up
(/ mooddon	0	779.5 MHz	782 MHz	784.5 MHz	WER	Limit
		1						
			0	21.1	21.3	21.0	0	22
		1	0 12	21.1 21.1	21.3 21.5		0	22 22
						21.0		
	QPSK	1	12	21.1	21.5	21.0 21.1	0	22
	QPSK	1	12 24	21.1 21.0	21.5 21.3	21.0 21.1 20.9	0	22 22
	QPSK	1 1 12	12 24 0	21.1 21.0 21.1	21.5 21.3 21.3	21.0 21.1 20.9 20.9	0 0 0	22 22 22
	QPSK	1 1 12 12	12 24 0 7	21.1 21.0 21.1 21.1	21.5 21.3 21.3 21.3 21.3	21.0 21.1 20.9 20.9 21.0	0 0 0 0	22 22 22 22 22
	QPSK	1 1 12 12 12	12 24 0 7 13	21.1 21.0 21.1 21.1 21.0	21.5 21.3 21.3 21.3 21.3 21.4	21.0 21.1 20.9 20.9 21.0 21.0 21.0	0 0 0 0	22 22 22 22 22 22 22
	QPSK	1 1 12 12 12 12 25	12 24 0 7 13 0	21.1 21.0 21.1 21.1 21.0 21.1	21.5 21.3 21.3 21.3 21.3 21.4 21.3	21.0 21.1 20.9 20.9 21.0 21.0 20.9	0 0 0 0 0	22 22 22 22 22 22 22 22
	QPSK	1 1 12 12 12 25 1	12 24 0 7 13 0 0	21.1 21.0 21.1 21.1 21.0 21.1 21.4	21.5 21.3 21.3 21.3 21.4 21.4 21.3 21.7	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4	0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22
5 MHz	QPSK 16QAM	1 12 12 12 12 25 1 1	12 24 0 7 13 0 0 12	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5	21.5 21.3 21.3 21.3 21.4 21.3 21.4 21.3 21.7 21.8	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4 21.4	0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 12 12 12 12 25 1 1 1 1	12 24 0 7 13 0 0 12 24	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3	21.5 21.3 21.3 21.3 21.4 21.3 21.7 21.8 21.7	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4 21.4 21.4	0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 12 12 12 25 1 1 1 1 12	12 24 0 7 13 0 0 12 24 0	21.1 21.0 21.1 21.1 21.1 21.1 21.4 21.5 21.3 21.2	21.5 21.3 21.3 21.4 21.3 21.4 21.3 21.7 21.8 21.7 21.4	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4 21.4 21.4 21.4 21.4 21.0	0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 12 12 12 25 1 1 1 12 12 12	12 24 0 7 13 0 0 12 24 0 7	21.1 21.0 21.1 21.1 21.1 21.1 21.1 21.4 21.5 21.3 21.2 21.2	21.5 21.3 21.3 21.4 21.7 21.7 21.8 21.7 21.8 21.7 21.4 21.4	21.0 21.1 20.9 20.9 21.0 20.9 21.0 20.9 21.4 21.4 21.4 21.4 21.0 21.0	0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 12 12 12 25 1 1 1 12 12 12 12	12 24 0 7 13 0 0 12 24 0 7 13	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3 21.2 21.2 21.1	21.5 21.3 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4	21.0 21.1 20.9 21.0 21.0 20.9 21.0 20.9 21.4 21.4 21.4 21.4 21.0 21.0 21.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 1 12 12 25 1 1 1 12 12 12 12 12 12 12 1	12 24 0 7 13 0 0 12 24 0 7 7 13 0	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.4 21.5 21.3 21.2 21.2 21.2 21.1 21.0	21.5 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4 21.4 21.3	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4 21.4 21.4 21.4 21.4 21.0 21.0 21.0 21.1 21.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 12 12 12 25 1 1 1 1 12 12 12 12 12 25 1	12 24 0 7 13 0 0 12 24 0 7 7 13 0 0	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3 21.2 21.2 21.2 21.1 21.0 21.3	21.5 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4 21.3 21.6	21.0 21.1 20.9 20.9 21.0 21.0 20.9 21.4 21.4 21.4 21.4 21.4 21.0 21.0 21.1 21.0 21.1 21.0 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz		1 1 12 12 25 1 1 1 1 12 12 12 12 25 1 1	12 24 0 7 13 0 0 12 24 0 7 7 13 0 0 0 12	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3 21.2 21.2 21.2 21.2 21.1 21.0 21.3 21.3	21.5 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4 21.4 21.4 21.6 21.6	21.0 21.1 20.9 20.9 21.0 20.9 21.4 21.4 21.4 21.4 21.4 21.0 21.0 21.1 21.0 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz	16QAM	1 1 12 12 25 1 1 1 12 12 12 12 12 12 12 1	12 24 0 7 13 0 0 12 24 0 7 13 0 0 0 12 24	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3 21.2 21.2 21.2 21.1 21.0 21.3 21.3 21.3 21.3 21.2	21.5 21.3 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4 21.4 21.4 21.6 21.6 21.6	21.0 21.1 20.9 20.9 21.0 20.9 21.0 20.9 21.4 21.4 21.4 21.4 21.0 21.0 21.0 21.1 21.0 21.2 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22
5 MHz	16QAM	1 1 12 12 12 25 1 1 12 12 12 12 12 12 12 12	12 24 0 7 13 0 0 12 24 0 7 13 0 7 13 0 0 12 24 0	21.1 21.0 21.1 21.1 21.0 21.1 21.4 21.5 21.3 21.2 21.2 21.2 21.2 21.1 21.3 21.3	21.5 21.3 21.3 21.3 21.4 21.7 21.8 21.7 21.8 21.7 21.4 21.4 21.4 21.4 21.4 21.4 21.6 21.6 21.6 20.9	21.0 21.1 20.9 20.9 21.0 20.9 21.4 21.4 21.4 21.4 21.4 21.0 21.0 21.0 21.1 21.0 21.1 21.2 21.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22 22 22 22 22 22 22 22 22 22 22 22

LTE Band 41 Measured Results

						Normal Avera	ge Power (dBm)		
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490		Tune-up
(11112)		Allocation	Unser	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	19.3	19.2	19.3	19.3	19.3	0	20
		1	49	19.3	19.2	19.3	19.3	19.2	0	20
		1	99	19.2	19.2	19.4	19.4	19.2	0	20
	QPSK	50	0	19.3	19.2	19.2	19.4	19.3	0	20
		50	24	19.4	19.3	19.3	19.4	19.3	0	20
		50	50	19.4	19.3	19.4	19.4	19.3	0	20
		100	0	19.4	19.3	19.3	19.4	19.2	0	20
		1	0	19.4	19.4	19.3	19.4	19.4	0	20
		1	49	19.7	19.5	19.7	19.5	19.5	0	20
		1	99	19.4	19.3	19.4	19.5	19.3	0	20
20 MHz	16QAM	50	0	19.3	19.2	19.2	19.4	19.3	0	20
		50	24	19.4	19.3	19.3	19.4	19.3	0	20
		50	50	19.4	19.2	19.3	19.4	19.3	0	20
		100	0	19.4	19.3	19.3	19.4	19.2	0	20
		1	0	19.2	19.2	19.3	19.4	19.2	0	20
		1	49	19.3	19.3	19.4	19.5	19.3	0	20
		1	99	19.1	19.1	19.5	19.5	19.3	0	20
	64QAM	50	0	19.3	19.2	19.2	19.4	19.2	0	20
		50	24	19.4	19.3	19.4	19.4	19.2	0	20
		50	50	19.4	19.2	19.3	19.4	19.3	0	20
		100	0	19.4	19.3	19.3	19.4	19.2	0	20
BW		RB	RB			Normal Avera	ge Power (dBm)		
BW (MHz)	Mode	Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up
(0.000	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	WPR	Limit
		1	0	19.3	19.2	19.2	19.3	19.2	0	20
		1	37	19.3	19.2	19.3	19.3	19.2	0	20
		1	74	19.2	19.3	19.3	19.4	19.3	0	20
	QPSK	36	0	19.3	19.2	19.2	19.4	19.3	0	20
		36	20	19.4	19.3	19.3	19.4	19.2	0	20
		36	39	19.3	19.3	19.3	19.4	19.3	0	20
		75	0	19.4	19.3	19.3	19.4	19.2	0	20
		1	0	19.3	19.2	19.2	19.2	19.3	0	20
		1	37	19.2	19.2	19.3	19.3	19.3	0	20
		1	74	19.1	19.3	19.3	19.3	19.3	0	20
15 MHz	16QAM	36	0	19.3	19.2	19.2	19.4	19.3	0	20
		36	20	19.4	19.3	19.3	19.4	19.3	0	20
		36	39	19.4	19.3	19.3	19.4	19.3	0	20
		75	0	19.4	19.3	19.3	19.4	19.2	0	20
		1	0	19.3	19.3	19.2	19.3	19.3	0	20
		1	37	19.3	19.3	19.2	19.3	19.3	0	20
		1	74	19.3	19.4	19.3	19.4	19.3	0	20
	64QAM	36	0	19.3	19.2	19.2	19.4	19.3	0	20
		36	20	19.4	19.3	19.3	19.4	19.3	0	20
		36	39	19.4	19.3	19.3	19.4	19.3	0	20
		75	0	19.4	19.3	19.3	19.4	19.2	0	20
						Normal Avera	ge Power (dBm)		
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up
(2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	19.4	19.4	19.4	19.4	19.4	0	20
		1	25	19.5	19.4	19.4	19.5	19.5	0	20
		1	49	19.4	19.3	19.4	19.5	19.4	0	20
	QPSK	25	0	19.5	19.4	19.4	19.5	19.5	0	20
		25	12	19.6	19.5	19.5	19.6	19.6	0	20
		25	25	19.5	19.4	19.5	19.6	19.5	0	20
		50	0	19.5	19.5	19.5	19.6	19.5	0	20
		1	0	19.6	19.2	19.3	19.5	19.6	0	20
		1	25	19.6	19.3	19.4	19.6	19.6	0	20
		1	49	19.6	19.2	19.3	19.5	19.6	0	20
10 MHz	16QAM	25	0	19.6	19.4	19.4	19.5	19.6	0	20
		25	12	19.6	19.5	19.5	19.6	19.6	0	20
		25	25	19.6	19.4	19.4	19.5	19.6	0	20
		50	0	19.5	19.4	19.5	19.5	19.5	0	20
		1	0	19.5	19.4	19.3	19.4	19.4	0	20
		1	25	19.5	19.4	19.5	19.5	19.5	0	20
		1	49	19.5	19.3	19.4	19.4	19.4	0	20
	64QAM	25	0	19.6	19.4	19.4	19.5	19.4	0	20
		25	12	19.6	19.4	19.5	19.6	19.4	0	20
		25	25	19.6	19.4	19.5	19.6	19.5	0	20
		50	0	19.5	19.4	19.5	19.5	19.4	0	20
	1		,	.3.5		.3.5	.3.5		, v	20

LTE Band 41 Measured Results (continued)

BW Mode						Normal Avera	ge Power (dBm)		
	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up
(7 thood ton	0	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	IVIP IX	Limit
		1	0	19.4	19.3	19.4	19.4	19.4	0	20
		1	12	19.6	19.5	19.5	19.6	19.5	0	20
		1	24	19.5	19.4	19.4	19.5	19.4	0	20
	QPSK	12	0	19.5	19.4	19.4	19.5	19.4	0	20
		12	7	19.5	19.4	19.5	19.5	19.4	0	20
		12	13	19.6	19.4	19.4	19.5	19.5	0	20
		25	0	19.5	19.4	19.4	19.5	19.4	0	20
-		1	0	19.4	19.5	19.5	19.4	19.4	0	20
		1	12	19.5	19.6	19.6	19.5	19.6	0	20
		1	24	19.5	19.5	19.6	19.4	19.4	0	20
5 MHz	16QAM	12	0	19.5	19.4	19.4	19.5	19.3	0	20
		12	7	19.5	19.5	19.5	19.5	19.4	0	20
		12	13	19.5	19.4	19.5	19.5	19.4	0	20
		25	0	19.5	19.4	19.4	19.5	19.3	0	20
		1	0	19.5	19.3	19.4	19.5	19.3	0	20
		1	12	19.5	19.4	19.5	19.7	19.5	0	20
		1	24	19.5	19.3	19.4	19.6	19.5	0	20
	64QAM	12	0	19.4	19.2	19.3	19.4	19.4	0	20
		12	7	19.5	19.3	19.4	19.4	19.5	0	20
		12	13	19.4	19.2	19.4	19.4	19.5	0	20
		25	0	19.5	19.4	19.4	19.5	19.4	0	20

9.4. LTE Down-Link Carrier Aggregation

This device supports LTE downlink carrier aggregation (CA) CA_41C.

Power measurements were performed on the channel with the highest maximum output power from Tune-up Procedure on CELL Main2.

When carrier aggregation is limited to downlink only, uplink maximum output power (single carrier) is measured for the supported combinations of downlink carrier aggregation listed in the table below. In applying the power measurement procedures of KDB 941225 D05A and April 2018 TCB workshop for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the subset in each row with the largest combination of frequency bands and CCs (far right most configuration highlighted in the table below).

In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the CA configuration with the largest aggregated DL CA BW in each frequency band, independently for contiguous and non-contiguous CA; however, if the same frequency band is used for both contiguous and non-contiguous CA, power measurement was performed using the configuration with the largest aggregated BW and maximum output power among contiguous and non-contiguous CA.

2CC DL CA Measured Results

ſ	E-UTRA CA			CC1 (L	L)			CC2 (DL		A	CA	CA Astive		
	configuration	Mode	BW (MHz)	Channel	Freq (MHz)	RB, Offset	BW (MHz)	Channel	Freq (MHz)	Aggregated BW	Inactive (dBm)	CA Active (dBm)	Delta	2CC #
	CA_41C	QPSK	20	40521	2583.1	1,0	20	40719	2602.9	40	19.13	19.28	0.15	15

9.5. WLAN 2.4GHz & WLAN 5GHz & Bluetooth

Data Reuse Testing Rational

This application is using the data reuse procedure from TCB workshop April 2021; RF Exposure Procedures (Remarks on Test Reductions via Data Referencing for Closely Related Products). WLAN and Bluetooth SAR data is referenced from FCC ID: PY7-12907W and is leveraged to cover variant FCC ID: PY7-03571V. All circuitry and features for WLAN and Bluetooth operations are identical between the two variants. The data reuse test plan was approved via manufacturer KDB inquiry.

Data Reuse SAR Test Approach

Full RF exposure testing was performed for WLAN and Bluetooth on the parent variant (FCC ID: PY7-12907W). The configurations with the highest SAR values for each equipment class were identified. These configurations were then tested on the variant model (FCC ID: PY7-03571V).

The variation in SAR values were well within the uncertainty budget of the SAR test equipment. The variant SAR results and worst case parent SAR values are summarized in section 1.

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN and Bluetooth = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g Extremity SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

10.1. GSM850

RF Exposure			Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	190	836.6	26.9	26.2	0.076	0.089	
Head	CDDS 4 Slota	CELL Main 1	0	Left Tilt	190	836.6	26.9	26.2	0.037	0.043	
neau	Head GPRS 4 Slots	CELL Main 1	0	Right Cheek	190	836.6	26.9	26.2	0.107	0.126	1
				Right Tilt	190	836.6	26.9	26.2	0.039	0.046	
Body-Worn &	GPRS 4 Slots	CELL Main 1	10	Back	190	836.6	26.9	26.2	0.307	0.361	2
Hotspot	GPR3 4 31015		10	Front	190	836.6	26.9	26.2	0.249	0.293	
Hotspot	GPRS 4 Slots	CELL Main 1	10	Edge Bottom	190	836.6	26.9	26.2	0.122	0.143	
	-		10	Edge Left	190	836.6	26.9	26.2	0.046	0.054	
Body-Worn & Hotspot	DTM Edge 2 Slots	CELL Main 1	10	Back	190	836.6	29.9	29.2	0.396	0.465	3

10.2. GSM1900

RF Exposure			Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	810	1909.8	22.0	21.4	0.018	0.021	
Used	GPRS 4 Slots	CELL Main 2	0	Left Tilt	810	1909.8	22.0	21.4	0.014	0.016	
Head	GPR5 4 51015	CELL Main 2	U	Right Cheek	810	1909.8	22.0	21.4	0.024	0.028	4
				Right Tilt	810	1909.8	22.0	21.4	0.010	0.011	
Body-Worn &	GPRS 4 Slots	CELL Main 2	10	Back	810	1909.8	22.0	21.4	0.139	0.160	5
Hotspot	GPR3 4 31015	CELL Main 2	10	Front	810	1909.8	22.0	21.4	0.115	0.132	
Hotopot	GPRS 4 Slots	CELL Main 2	10	Edge Right	810	1909.8	22.0	21.4	0.048	0.055	
Hotspot	GPR3 4 51015	CELL Main 2	10	Edge Bottom	810	1909.8	22.0	21.4	0.202	0.232	6
Body-Worn & Hotspot	DTM Edge 2 Slots	CELL Main 2	10	Edge Bottom	810	1909.8	25.0	23.7	0.196	0.264	7

10.3. W-CDMA Band 2

RF Exposure			Dist.				Power	(dBm)	1-g SAR (W/kg)		Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	9400	1880.0	19.7	18.8	0.035	0.043	
Head	Head Rel. 99 RMC 12.2 kbps CE	CELL Main 2	0	Left Tilt	9400	1880.0	19.7	18.8	0.026	0.032	
neau		CELL Main 2	0	Right Cheek	9400	1880.0	19.7	18.8	0.044	0.054	8
				Right Tilt	9400	1880.0	19.7	18.8	0.020	0.025	
Body-Worn &	Rel. 99 RMC	CELL Main 2	10	Back	9400	1880.0	19.7	18.8	0.183	0.225	
Hotspot	12.2 kbps		10	Front	9400	1880.0	19.7	18.8	0.188	0.231	9
Hotspot	Rel. 99 RMC	CELL Main 2	10	Edge Right	9400	1880.0	19.7	18.8	0.090	0.111	
Hotspot	12.2 kbps		10	Edge Bottom	9400	1880.0	19.7	18.8	0.305	0.375	10

10.4. W-CDMA Band 4

RF Exposure			Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	1413	1732.6	18.7	17.8	0.022	0.027	
Head	Rel. 99 RMC	CELL Main 2	0	Left Tilt	1413	1732.6	18.7	17.8	0.014	0.017	
neau	12.2 kbps		0	Right Cheek	1413	1732.6	18.7	17.8	0.027	0.033	11
				Right Tilt	1413	1732.6	18.7	17.8	0.012	0.015	
Body-Worn &	Rel. 99 RMC	CELL Main 2	10	Back	1413	1732.6	18.7	17.8	0.146	0.180	12
Hotspot	12.2 kbps		10	Front	1413	1732.6	18.7	17.8	0.128	0.157	
Hotspot	Rel. 99 RMC	CELL Main 2	10	Edge Right	1413	1732.6	18.7	17.8	0.069	0.085	
Hoispoi	12.2 kbps		10	Edge Bottom	1413	1732.6	18.7	17.8	0.150	0.185	

10.5. W-CDMA Band 5

RF Exposure			Dist.				Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	4183	836.6	22.7	22.2	0.092	0.103	
Head	Rel. 99 RMC	CELL Main 1	0	Left Tilt	4183	836.6	22.7	22.2	0.055	0.062	
neau	12.2 kbps		0	Right Cheek	4183	836.6	22.7	22.2	0.125	0.140	13
				Right Tilt	4183	836.6	22.7	22.2	0.056	0.063	
Body-Worn &	Rel. 99 RMC	CELL Main 1	10	Back	4183	836.6	22.7	22.2	0.323	0.362	14
Hotspot	12.2 kbps		10	Front	4183	836.6	22.7	22.2	0.237	0.266	
Hotspot	Rel. 99 RMC	CELL Main 1	10	Edge Bottom	4183	836.6	22.7	22.2	0.180	0.202	
Hotspot	12.2 kbps		10	Edge Left	4183	836.6	22.7	22.2	0.070	0.079	

10.6. LTE Band 4 (20MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	20175	1732.5	1	0	19.0	18.1	0.019	0.023	
				Leit Cheek	20175	1732.5	50	0	19.0	18.1	0.015	0.018	
				Left Tilt	20175	1732.5	1	0	19.0	18.1	0.012	0.015	
Head	QPSK	CELL Main2	0	Leit Tiit	20175	1732.5	50	0	19.0	18.1	0.009	0.011	
Tieau	QFOR		0	Right Cheek	20175	1732.5	1	0	19.0	18.1	0.025	0.031	15
				Right Cheek	20175	1732.5	50	0	19.0	18.1	0.020	0.025	
				Right Tilt	20175	1732.5	1	0	19.0	18.1	0.009	0.011	
				Right Hit	20175	1732.5	50	0	19.0	18.1	0.006	0.007	
				Back	20175	1732.5	1	0	19.0	18.1	0.100	0.123	16
Body-worn &	QPSK	CELL Main2	10	Dack	20175	1752.5	50	0	19.0	18.1	0.079	0.097	
Hotspot	QI OIX		10	Front	20175	1732.5	1	0	19.0	18.1	0.094	0.116	
				FIOIR	20175	1732.5	50	0	19.0	18.1	0.074	0.091	
				Edge Right	20175	1732.5	1	0	19.0	18.1	0.055	0.068	
Hotspot	QPSK	CELL Main2	10	Luge Right	20175	1732.5	50	0	19.0	18.1	0.044	0.054	
notspot			10	Edge Bottom	20175	1732.5	1	0	19.0	18.1	0.176	0.217	17
				Eage Boltom	20175	1732.5	50	0	19.0	18.1	0.142	0.175	

10.7. LTE Band 5 (10MHz Bandwidth)

RF Exposure			Dist.			_	RB	RB		(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	20525	836.5	1	0	22.0	21.2	0.068	0.082	
				Leit Oneek	20323	000.0	25	12	22.0	21.3	0.053	0.062	
				Left Tilt	20525	836.5	1	0	22.0	21.2	0.036	0.043	
Head	QPSK	CELL Main 1	0	Leit Int	20323	000.0	25	12	22.0	21.3	0.029	0.034	
Ticad			Ū	Right Cheek	20525	836.5	1	0	22.0	21.2	0.084	0.101	18
				Night Oneek	20323	000.0	25	12	22.0	21.3	0.066	0.078	
				Right Tilt	20525	836.5	1	0	22.0	21.2	0.039	0.047	
				rught filt	20020	000.0	25	12	22.0	21.3	0.031	0.036	
				Back	20525	836.5	1	0	22.0	21.2	0.254	0.305	19
Body-worn &	QPSK	CELL Main 1	10	Buok	20020	000.0	25	12	22.0	21.3	0.200	0.235	
Hotspot			10	Front	20525	836.5	1	0	22.0	21.2	0.200	0.240	
				TIOIR	20020	000.0	25	12	22.0	21.3	0.157	0.184	
				Edge Bottom	20525	836.5	1	0	22.0	21.2	0.136	0.164	
Hotspot	QPSK	CELL Main 1	10	Lugo Bottom	20020	000.0	25	12	22.0	21.3	0.107	0.126	
notopot			10	Edge Left	20525	836.5	1	0	22.0	21.2	0.069	0.083	
				Lugo Lon	20020	000.0	25	12	22.0	21.3	0.056	0.066	

10.8. LTE Band 12 (10MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	23095	707.5	1	0	22.0	21.4	0.037	0.042	
				Leit Cheek	23095	101.5	25	12	22.0	21.4	0.029	0.033	
				Left Tilt	23095	707.5	1	0	22.0	21.4	0.017	0.020	
Head	QPSK	CELL Main 1	0	Leit Tiit	23095	101.5	25	12	22.0	21.4	0.013	0.015	
Tieau	QFOR		0	Right Cheek	23095	707.5	1	0	22.0	21.4	0.041	0.047	20
				Tright Oneek	23035	101.5	25	12	22.0	21.4	0.033	0.038	
				Right Tilt	23095	707.5	1	0	22.0	21.4	0.016	0.018	
				Night filt	23035	101.5	25	12	22.0	21.4	0.012	0.014	
				Back	23095	707.5	1	0	22.0	21.4	0.122	0.140	21
Body-worn &	QPSK	CELL Main 1	10	Buok	20000	101.0	25	12	22.0	21.4	0.100	0.115	
Hotspot			10	Front	23095	707.5	1	0	22.0	21.4	0.117	0.134	
				TION	23035	101.5	25	12	22.0	21.4	0.095	0.109	
				Edge Bottom	23095	707.5	1	0	22.0	21.4	0.052	0.060	
Hotspot	QPSK	CELL Main 1	10	Edge Bottom	23035	101.0	25	12	22.0	21.4	0.043	0.049	
notapot			.0	Edge Left	23095	707.5	1	0	22.0	21.4	0.066	0.076	
				Luge Leit	20090	101.5	25	12	22.0	21.4	0.050	0.057	

10.9. LTE Band 13 (10MHz Bandwidth)

RF Exposure			Dist.				RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	Freq. (MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	23230	782.0	1	0	22.0	21.4	0.048	0.055	
				Leit Cheek	23230	782.0	25	25	22.0	21.4	0.042	0.048	
				Left Tilt	23230	782.0	1	0	22.0	21.4	0.024	0.028	
Head	QPSK	CELL Main 1	0	Leit Tiit	23230	782.0	25	25	22.0	21.4	0.021	0.024	
Tieau	QFOR		0	Right Cheek	23230	782.0	1	0	22.0	21.4	0.057	0.065	22
				Right Cheek	23230	782.0	25	25	22.0	21.4	0.049	0.056	
				Right Tilt	23230	782.0	1	0	22.0	21.4	0.022	0.025	
				right hit	23230	782.0	25	25	22.0	21.4	0.020	0.023	
				Back	23230	782.0	1	0	22.0	21.4	0.165	0.189	23
Body-worn &	QPSK	CELL Main 1	10	Dack	23230	702.0	25	25	22.0	21.4	0.142	0.163	
Hotspot	QFOR		10	Front	23230	782.0	1	0	22.0	21.4	0.148	0.170	
				FIOR	23230	782.0	25	25	22.0	21.4	0.126	0.145	
				Edge Bottom	23230	782.0	1	0	22.0	21.4	0.085	0.098	
Hotspot	QPSK	CELL Main 1	10	Edge Bottom	23230	702.0	25	25	22.0	21.4	0.072	0.083	
noispoi			10	Edge Left	23230	782.0	1	0	22.0	21.4	0.059	0.068	
				Luge Leit	20200	102.0	25	25	22.0	21.4	0.050	0.057	

10.10. LTE Band 41 (20MHz Bandwidth)

RF Exposure			Dist.			Freq.	RB	RB	Pow er	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	Antenna	(mm)	Test Position	Ch #.	(MHz)	Allocation	offest	Tune-up Limit	Meas.	Meas.	Scaled	No.
				Left Cheek	40620	2593.0	1	99	20.0	19.4	0.011	0.013	
				Left Gleek	40020	2393.0	50	50	20.0	19.4	0.008	0.009	
				Left Tilt	40620	2593.0	1	99	20.0	19.4	0.010	0.011	
Head	QPSK	CELL Main 2	0	Lent fill	40020	2393.0	50	50	20.0	19.4	0.007	0.008	
neau	QF3K	CELL IVIAIIT 2	0	Right Cheek	40620	2593.0	1	99	20.0	19.4	0.022	0.025	24
				Nghi Cheek	40020	2393.0	50	50	20.0	19.4	0.016	0.018	
				Right Tilt	40620	2593.0	1	99	20.0	19.4	0.003	0.003	
				Nght hit	40020	2393.0	50	50	20.0	19.4	0.003	0.003	
				Back	40620	2593.0	1	99	20.0	19.4	0.074	0.085	
Body-worn &	QPSK	CELL Main 2	10	Dack	40020	2393.0	50	50	20.0	19.4	0.058	0.067	
Hotspot	QFOR	CELL IVIAIIT Z	10	Front	40620	2593.0	1	99	20.0	19.4	0.118	0.135	25
				FIOR	40020	2393.0	50	50	20.0	19.4	0.095	0.109	
				Edge Right	40620	2593.0	1	99	20.0	19.4	0.036	0.041	
Hotspot	QPSK	CELL Main 2	10	Edge Nghi	40020	2393.0	50	50	20.0	19.4	0.028	0.032	
riotspot		OLLE IVIAIITZ	10	Edge Bottom	40620	2593.0	1	99	20.0	19.4	0.089	0.102	
				Luge Bollom	40020	2000.0	50	50	20.0	19.4	0.070	0.080	

10.11. WLAN & Bluetooth Spot Check Verification

WLAN Spot Check Results for Variant FCC ID: PY7-03571V

									Douror	(dBm)	FCC ID: PY	7-12907W	FCC ID: P	77-03571V		
Technology	RF Exposure	Mode	Antenna	Dist.	Test Position	Ch #.	Freq.	Duty Cycle	Power	(ubili)	1-g SAF	R (W/kg)	1-g SA	R (W/kg)	Delta	Plot
	Conditions			(mm)			(MHz)		Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		NO.
WLAN 2.4 GHz	Head	802.11b	WiFi Main	0	Right Cheek	1	2412	99.9%	14.0	13.4	0.387	0.445	0.408	0.469	5%	26
WLAN 5.5 GHz	Head	802.11ac (VHT160)	WiFi Main	0	Right Cheek	114	5570	99.6%	11.5	10.4	0.186	0.241	0.167	0.216	-10%	

WLAN Spot Check Results for Variant FCC ID: PY7-03571V (Extremity)

									Power	(dBm)	FCC ID: PY	7-12907W	FCC ID: P	Y7-03571V		
Technology	RF Exposure	Mode	Antenna	Dist.	Test Position	Ch #.	Freq.	Duty Cycle	Fower	(dbill)	10-g SA	R (W/kg)	10-g SA	R (W/kg)	Delta	Plot
	Conditions			(mm)			(MHz)		Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		INO.
WLAN 5.5 GHz	Extremity	802.11ac (VHT160)	WiFi Main	0	Edge Left	114	5570	99.6%	11.5	10.4	0.262	0.339	0.307	0.397	17%	27

Bluetooth Spot Check Results for Variant FCC ID: PY7-03571V

									Downer	r (dBm)	FCC ID: PY	7-12907W	FCC ID: P	77-03571V		
Technolog	RF Exposure	Mode	Antenna	Dist.	Test Position	Ch #.	Freq.	Duty Cycle	Power	(ubili)	1-g SAF	R (W/kg)	1-g SAI	R (W/kg)	Delta	Plot
_	Conditions			(mm)			(MHz)		Tune-up Limit	Meas.	Meas.	Scaled	Meas.	Scaled		INO.
Bluetooth	Head	GFSK	WiFI Main	0	Right Cheek	78	2480	N/A	14.0	14	0.265	0.265	0.263	0.263	-1%	

10.12. NFC

RF Exposure	Mode	Dist.	Freq. (MHz)	Tolerance	Test	10-g SA	R (W/kg)	Plot
Conditions	WIDde	(mm)		Scaling ¹ (dB)	Position	Meas.	Scaled	No.
				2	Rear	0.021	0.033	28
Extremity	Type A PRBS9 106k	0	13.56	2	Front	0.000	0.000	
				2	Left	0.000	0.000	

Note(s):

- The SAR values for the NFC are not scaled for maximum production power because measurements of actual output power are not practical. The values were measured with the device operated within expected tolerances of the transmitter specifications and after accounting for production tolerances the contribution to the RF exposure budget from the NFC transmitter would remain negligible.
- 2. The data reuse KDB inquiry test plan indicated the leveraging of NFC data, however the delta between the leveraged data and spot check measurements exceeded the approved 30%. Therefore, full testing was performed on PY7-03571V.

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note(s):

Repeated measurement is not required since the original highest measured SAR is <0.8 W/kg (1-g) or 2 W/kg (10-g).

12. Simultaneous Transmission Conditions

RF Exposure	Tx Mode	WW	/AN		WiFi Main			Wi-Fi Sub		NFC
Condition	TX IVIOUE	CELL Main1	CELL Main2	2.4 GHz Wi-Fi	5 GHz Wi-Fi	Bluetooth	2.4 GHz Wi-Fi	5 GHz Wi-Fi	Bluetooth	NFC
	1	\checkmark		\checkmark			\checkmark			
	2	\checkmark			\checkmark			\checkmark		
	3	\checkmark			\checkmark	\checkmark		\checkmark		
Head	4	\checkmark			\checkmark			\checkmark	\checkmark	
Head,	5	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark		
Body-worn, &	6		\checkmark	\checkmark			\checkmark			
Hotspot	7		\checkmark		\checkmark			\checkmark		
	8		\checkmark		\checkmark	\checkmark		\checkmark		
	9		\checkmark		\checkmark			\checkmark	\checkmark	
	10		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
Extremity	11				\checkmark			\checkmark		\checkmark
Note(s):										
-WLAN 2.4 GHz ar	d Bluetoot	h radio cann	ot transmit	simultaneously	Y					
-WLAN 2.4 GHz ar	d WLAN 5	GHz radio ca	n transmit si	multaneously						
-10-g extremity S	AR is not re	equired since	hotspot mo	de 1-g reporte	ed SAR < 1.2 \	N/kg for all	bands that sup	port hotspo	t	

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

12.2. Sum of the SAR for WWAN CELL Main1 & Wi-Fi Normal State & BT

			Stand	lalone SAR (\	N/kg)			Σ 1-g SAR (W/kg)			
RF Exposure	WWAN	WLAN 2.4 GHz		WLAN 5 GHz		BT		WWAN + WLAN 2.4 GHz	WWAN + WLAN 5 GHz	WWAN + WLAN 5 GHz + BT	WWAN + WLAN 5 GHz + BT
	CELL Main1	WiFi Main	WiFi Sub ③	WiFi Main ④	WiFi Sub	WiFi Main 6	WiFi Sub	1+2+3	1+4+5	(1) + (4) + (5) + (6)	(1) + (4) + (5) + (7)
Head	0.140	0.469	0.077	0.241	0.089	0.265	0.058	0.686	0.470	0.735	0.528
Body	0.465	0.074	0.077	0.041	0.089	0.036	0.058	0.616	0.595	0.631	0.653
Hotspot	0.465	0.121	0.077	0.077	0.070	0.093	0.002	0.663	0.612	0.705	0.614

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

12.3. Sum of the SAR for WWAN CELL Main1 & Wi-Fi Simultaneous 2G_5G State

		Stan	dalone SAR (V	Σ 1-g SAR (W/kg)		
	WWAN	WLAN :	2.4 GHz	WLAN	5 GHz	WWAN + WLAN 2.4 GHz + WLAN 5 GHz
RF Exposure Conditions	CELL Main1	WiFi Main ②	WiFi Sub ③	WiFi Main ④	WiFi Sub 5	1 + 2 + 3 + 4 + 5
Head	0.140	0.145	0.036	0.164	0.050	0.535
Body	0.465	0.031	0.036	0.034	0.050	0.616
Hotspot	0.465	0.056	0.036	0.058	0.041	0.656

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

12.4. Sum of the SAR for WWAN CELL Main2 & Wi-Fi Normal State & BT

			Stand	lalone SAR (\	V/kg)			Σ 1-g SAR (W/kg)			
RF Exposure Conditions	WWAN	WLAN 2.4 GHz		WLAN 5 GHz		BT		WWAN + WLAN 2.4 GHz	WWAN + WLAN 5 GHz	WWAN + WLAN 5 GHz + BT	WWAN + WLAN 5 GHz + BT
	CELL Main2	WiFi Main	WiFi Sub	WiFi Main ④	WiFi Sub	WiFi Main 6	WiFi Sub	(1) + (2) + (3)	1+4+5	1+4+5+6	(1) + (4) + (5) + (7)
Head	0.054	0.469	0.077	0.241	0.089	0.265	0.058	0.600	0.384	0.649	0.442
Body	0.264	0.074	0.077	0.041	0.089	0.036	0.058	0.415	0.394	0.430	0.452
Hotspot	0.375	0.121	0.077	0.077	0.070	0.093	0.002	0.573	0.522	0.615	0.524

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

12.5. Sum of the SAR for WWAN CELL Main2 & Wi-Fi Simultaneous 2G_5G State

		Stand	alone SAR (N	Σ 1-g SAR (W/kg)		
05.5	WWAN	WLAN	2.4 GHz	WLAN	5 GHz	WWAN + WLAN 2.4 GHz + WLAN 5 GHz
RF Exposure Conditions	CELL Main2	WiFi Main ②	WiFi Sub ③	WiFi Main ④	WiFi Sub	1+2+3+4+5
Head	0.054	0.145	0.036	0.164	0.050	0.449
Body	0.264	0.031	0.036	0.034	0.050	0.415
Hotspot	0.375	0.056	0.036	0.058	0.041	0.566

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 1-g SAR is < 1.6 W/kg or the SPLSR is < 0.04 for all circumstances that require SPLSR calculation.

12.6. Sum of the SAR for Wi-Fi Normal State & NFC

	Star	ndalone SAR (Σ 10-g SAR (W/kg)	
RF Exposure	WLAN	5 GHz	NFC	WLAN 5 GHz + NFC
Conditions	WiFi Main	WiFi Sub	NFC ③	1+2+3
Extremity	0.397	0.211	0.033	0.641

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because either the sum of the 10-g SAR is < 4.0 W/kg or the SPLSR is < 0.1 for all circumstances that require SPLSR calculation.

Page 56 of 57

Appendixes

Refer to separated files for the following appendixes.

- **Appendix A: SAR Setup Photos**
- Appendix B: SAR System Check Plots
- Appendix C: SAR Highest Test Plots
- Appendix D: SAR Tissue Ingredients
- Appendix E: SAR Probe Certificates
- Appendix F: SAR Dipole Certificates

END OF REPORT