

Report No. : FR940901-03B

FCC RADIO TEST REPORT

FCC ID	PY7-00532F
Equipment	GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, GPS and NFC
Brand Name	Sony
Applicant	Sony Mobile Communications Inc. 4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
Manufacturer	Sony Mobile Communications Inc. 4-12-3 Higashi-Shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
Standard	FCC Part 15 Subpart C §15.247

The product was received on Jun. 04, 2019 and testing was started from Jun. 11, 2019 and completed on Jun. 29, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Page Number: 1 of 44Issued Date: Jul. 12, 2019Report Version: 01

Table of Contents

Hist	t <mark>ory</mark> o	f this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	18
	3.3	Power Spectral Density Measurement	19
	3.4	Conducted Band Edges and Spurious Emission Measurement	26
	3.5	Radiated Band Edges and Spurious Emission Measurement	35
	3.6	AC Conducted Emission Measurement	39
	3.7	Antenna Requirements	41
4	List o	of Measuring Equipment	42
5	Unce	rtainty of Evaluation	44
App	endix	x A. Conducted Test Results	
App	endix	x B. AC Conducted Emission Test Result	
Арр	endix	x C. Radiated Spurious Emission	

Appendix D. Radiated Spurious Emission Plots

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR940901-03B	01	Initial issue of report	Jul. 12, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 10.86 dB at 2483.520 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 17.24 dB at 0.596 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Yimin Ho

1 General Description

1.1 Product Feature of Equipment Under Test

GSM/WCDMA/LTE, Bluetooth, DTS/UNII a/b/g/n/ac, NFC, and GNSS.

Standards-related Product Specification						
Antenna Type / Gain Loop Antenna with gain -2.6 dBi						
EUT Information List						
HW Version	SW Version	S/N	Performed Test Item			
	0_77003_A_28_2	BH93002SH0	RF conducted measurement			
А	0.400	BH9300RAGX	Radiated Spurious Emission			
	3.122	BH93011VGX	AC Conducted Emission			
	A	ccessory List				
AC Adapter AC Adapter 6218W30200106 (for radiated emission) 6218W30200197 (for conducted emission)						
Earphone	Model Name. S/N : N/A	: MH750				
USB Cable	Model Name. S/N : N/A	: UCB24				
2 in 1 USB Audio Cab	ble Model Name.	: EC270				
	S/N : N/A	S/N : N/A				

Note:

- 1. Above EUT list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test, and the serial number of each type of accessories is listed in each section of this report.
- 3. For other wireless features of this EUT, test report will be issued separately.
- 4. The firmware installed in the EUT during testing was 0_77003_A_28_2.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EN Laboratory	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory					
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978						
Tost Sito No	Sporton	Site No.					
Test Site No. TH05-HY CO05-HY							

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Sporton Site No. 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

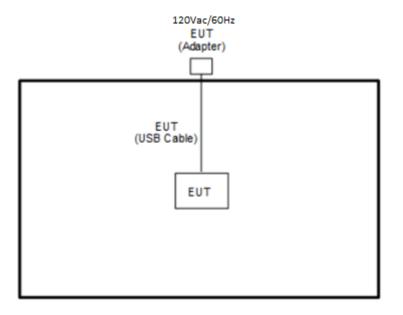
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

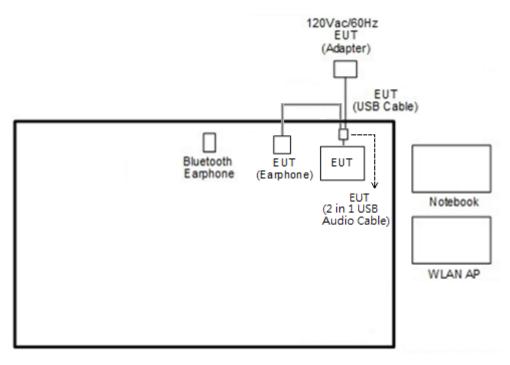
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z and Accessory. The worst cases (X plane with Adapter) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The fellowing even as an it	بممارين مام مارما		trate in compliance with the standard.
The following summary i	anie is snowing	all test modes to demons	trate in compliance with the standard

	Summary table of Test Cases
Test Item	Data Rate / Modulation
lest item	Bluetooth – LE / GFSK
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps
AC	Mode 1 :GSM850 Idle + Bluetooth Link + WLAN (2.4GHz) Link + MPEG4 + USB
Conducted	Audio Cable + USB Cable (Charging from Adapter) + Battery + Earphone
Emission	Addio Gable + GOB Gable (Gharging nom Adapter) + Battery + Laiphone



2.3 Connection Diagram of Test System

<Bluetooth-LE Tx Mode>

<AC Conducted Emission Mode>

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony	SBH82D	PY7-RD0010	N/A	N/A
3.	WLAN AP	ASUS	RT-AC1750	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E3340	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Tera Term" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

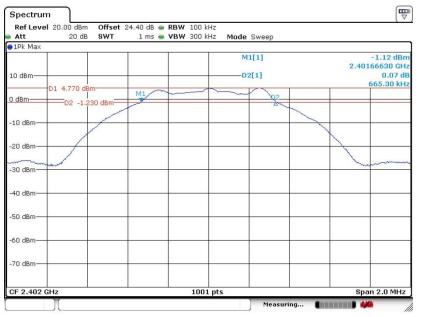
3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

Spectrum Analyzer



3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

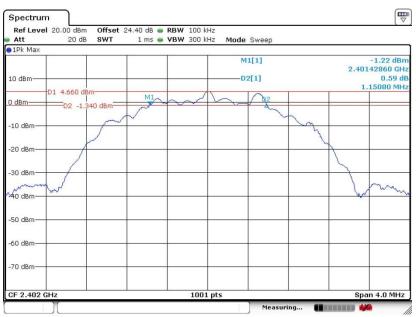

<1 Mbps>

6 dB Bandwidth Plot on Channel 00


Date: 24.JUN.2019 09:34:00

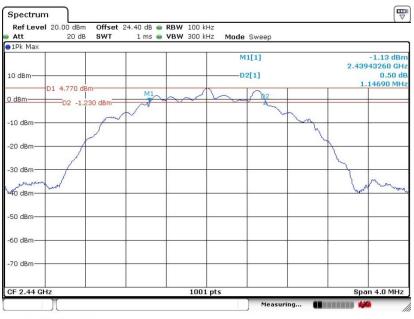
6 dB Bandwidth Plot on Channel 19

Date: 24.JUN.2019 09:37:18



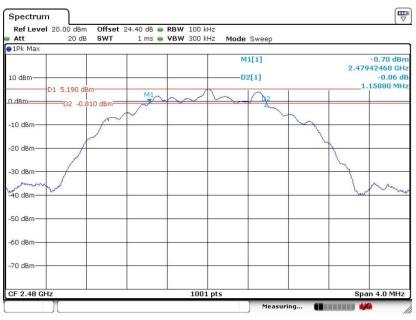
6 dB Bandwidth Plot on Channel 39

Date: 24.JUN.2019 10:05:18


<2 Mbps>

6 dB Bandwidth Plot on Channel 00

Date: 24.JUN.2019 09:49:42

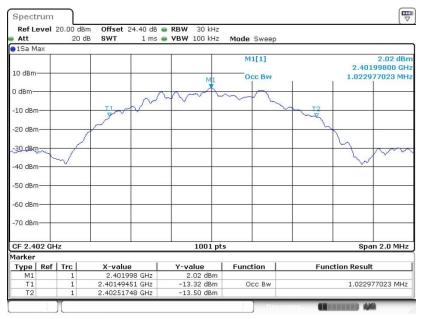


6 dB Bandwidth Plot on Channel 19

Date: 24.JUN.2019 09:52:18

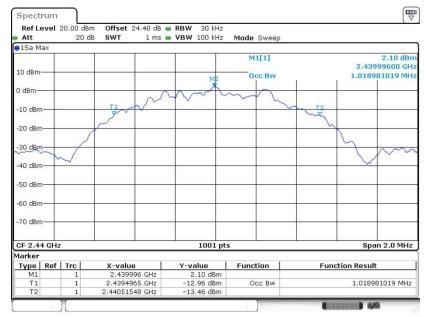
6 dB Bandwidth Plot on Channel 39

Date: 24.JUN.2019 09:54:55

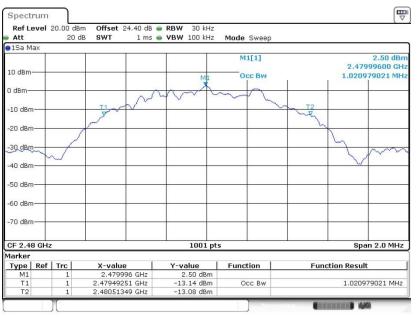


3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

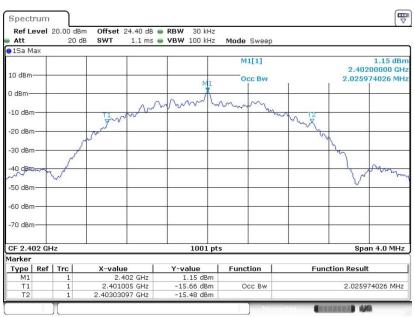

<1 Mbps>

99% Bandwidth Plot on Channel 00


Date: 24.JUN.2019 09:35:24

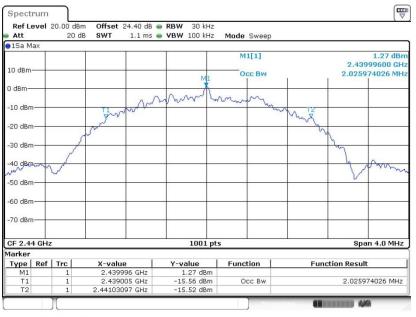
99% Occupied Bandwidth Plot on Channel 19

Date: 24.JUN.2019 09:38:35



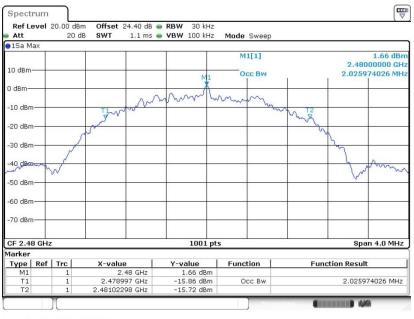
99% Occupied Bandwidth Plot on Channel 39

Date: 24.JUN.2019 10:06:58


<2 Mbps>

99% Bandwidth Plot on Channel 00

Date: 24.JUN.2019 09:51:06



99% Occupied Bandwidth Plot on Channel 19

Date: 24.JUN.2019 09:53:38

99% Occupied Bandwidth Plot on Channel 39

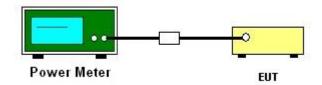
Date: 24.JUN.2019 09:56:13

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

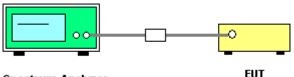
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

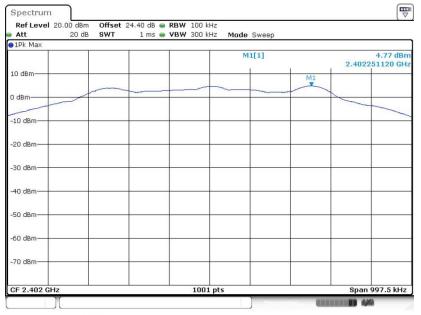
3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

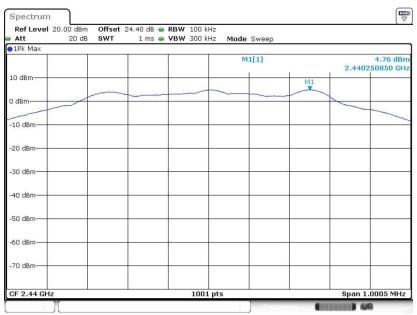
3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

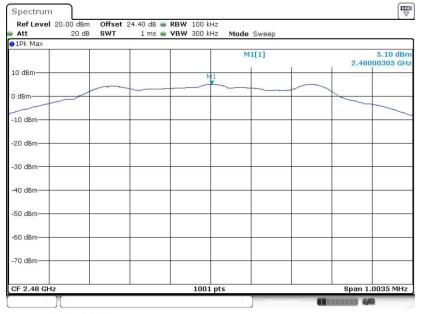

Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

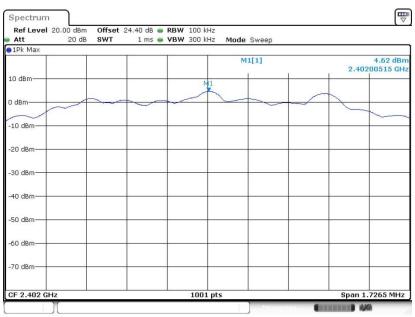


PSD 100kHz Plot on Channel 00

Date: 24.JUN.2019 09:34:23

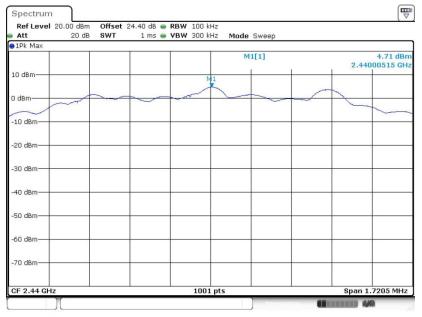

PSD 100kHz Plot on Channel 19

Date: 24.JUN.2019 09:37:42


PSD 100kHz Plot on Channel 39

Date: 24.JUN.2019 10:05:44

<2 Mbps>

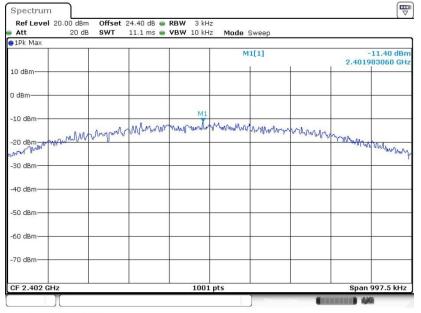

PSD 100kHz Plot on Channel 00

Date: 24.JUN.2019 09:50:07

PSD 100kHz Plot on Channel 19

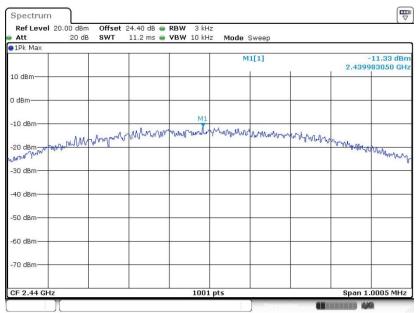
Date: 24.JUN.2019 09:52:53

PSD 100kHz Plot on Channel 39


Ref Level 2	0.00 dBm	Offset	24.40 dB 🖷	RBW 100	<hz< th=""><th></th><th></th><th></th><th></th></hz<>				
Att 🛛	20 dB	SWT	1 ms 🦷	VBW 300	KHz Mod	e Sweep			
●1Pk Max									
						M1[1]	1	2.48	5.13 dBn 000525 GH
10 dBm	20			1	M1				
		~					-		
0 dBm	~		~			~	~	1	
~									
-10 dBm									
-20 dBm									
00 d0									
-30 dBm									2
-40 dBm									
-40 UBIII									
-50 dBm									
-50 0.611									
-60 dBm									
-70 dBm								-	
CF 2.48 GHz				100	1 pts			- Cnan 1	L.7385 MHz
GF 2.40 GHZ	(100	r pts			span .	

Date: 24.JUN.2019 09:55:17

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

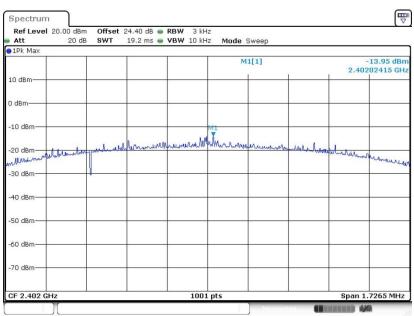


PSD 3kHz Plot on Channel 00

Date: 24.JUN.2019 09:34:12

PSD 3kHz Plot on Channel 19

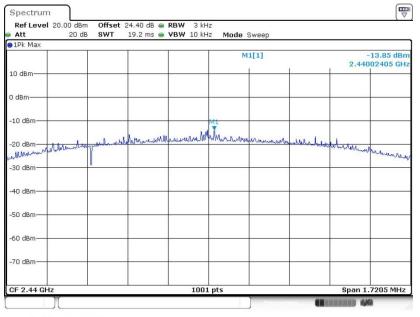
Date: 24.JUN.2019 09:37:31


PSD 3kHz Plot on Channel 39

Ref Level 20			24.40 dB 👄		-				
Att	20 dB	SWT	11.2 ms 👄	VBW 10 kH	z Mode	Sweep			
1Pk Max									
					M	1[1]			10.96 dBn 98295 GH
10 dBm						l	<u> </u>	2.479	90293 GH
D dBm									
				5.01					
-10 dBm				M1	11.1.1.1.1.1.1				
-10 dBm	Ann	Amana	Warman	Man Marsher	manum	Wyumum	whenter		
-20 dBm	Manna	r I	-			-		North March	Male .
wurmer por									marken
-30 dBm						-		-	
-40 dBm									
-50 dBm									
-60 dBm	-								
-70 dBm									
CF 2.48 GHz				1001	pts			Span 1.	0035 MHz

Date: 24.JUN.2019 10:05:34

<2 Mbps>


PSD 3kHz Plot on Channel 00

Date: 24.JUN.2019 09:49:56

PSD 3kHz Plot on Channel 19

Date: 24.JUN.2019 09:52:42

PSD 3kHz Plot on Channel 39

Att	20 dB SWT	19.4 ms 👄	VBW 10 kH	z Mode	Sweep			
●1Pk Max					A Colo			
				M1[1]		-13.49 dBr 2.48002435 GH		
10 dBm							2.480	102435 GH
0 dBm		_						
-10 dBm				MI				
-20 dBm- willing	mbroguestin	Monmand	munant	Muran	hermon	wheel have	Autor	
-30 dBm	I.							m hunner
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.48 GHz			1001	nts			Snan 1.	7385 MHz

Date: 24.JUN.2019 09:55:06

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

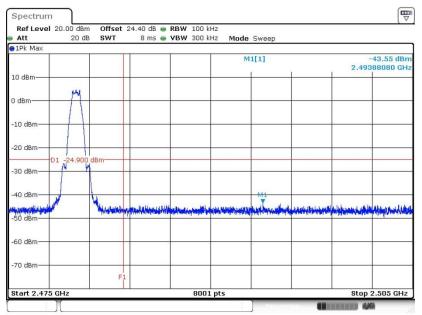
See list of measuring equipment of this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

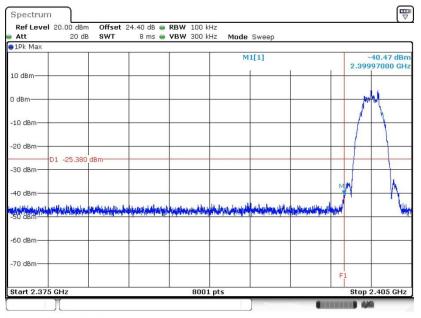
3.4.5 Test Result of Conducted Band Edges Plots


<1 Mbps>

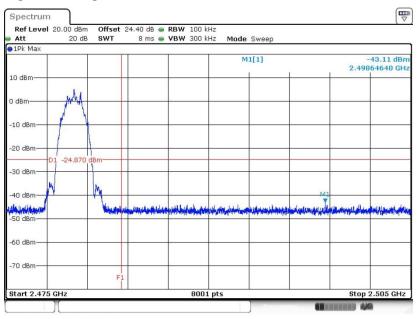
Low Band Edge Plot on Channel 00

Date: 24.JUN.2019 09:34:34

High Band Edge Plot on Channel 39



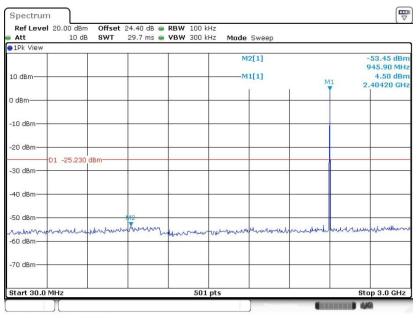
Date: 24.JUN.2019 10:05:58


<2 Mbps>

Low Band Edge Plot on Channel 00

Date: 24.JUN.2019 09:50:19

High Band Edge Plot on Channel 39



Date: 24.JUN.2019 09:55:33

3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

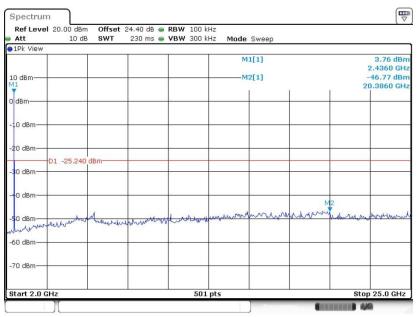

GFSK Channel 00

Date: 24.JUN.2019 09:34:55

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00

Date: 24.JUN.2019 09:35:13


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

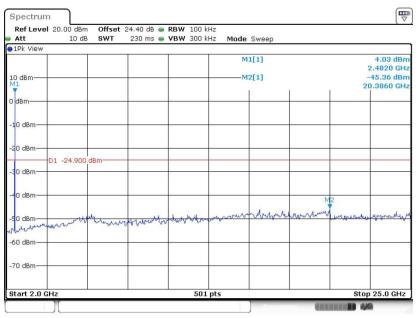
GFSK Channel 19 Spectrum Ref Level 20.00 dBm Offset 24.40 dB 🖷 RBW 100 kHz Att 10 dB SWT 29.7 ms 🖷 VBW 300 kHz Mode Sweep ●1Pk View 3.64 dBn 2.43980 GHz -52.93 dBm M2[1] 10 dBm M1 940.00 MH 0 dBm--10 dBm -20 dBm D1 -25.240 dBm -30 dBm -40 dBm -50 dBm Y many philaster Anna hoper and Makel -60 dBm -70 dBm Start 30.0 MHz 501 pts Stop 3.0 GHz

Date: 24.JUN.2019 09:38:00

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 19

Date: 24.JUN.2019 09:38:11


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

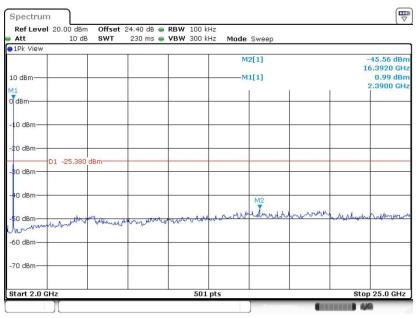
GFSK Channel 39 Spectrum Ref Level 20.00 dBm Offset 24.40 dB 🖷 RBW 100 kHz Att 10 dB SWT 29.7 ms 🖷 VBW 300 kHz Mode Sweep ●1Pk View 4.84 dBn 2.48130 GHz -52.94 dBm M2[1] 10 dBm M1 2.29750 GHz 0 dBm -10 dBm -20 dBm D1 -24.900 dBm -30 dBm -40 dBm -50 dBm month runha reptul de the bar -60 dBm -70 dBm Start 30.0 MHz 501 pts Stop 3.0 GHz

Date: 24.JUN.2019 10:06:34

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 39

Date: 24.JUN.2019 10:06:46


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

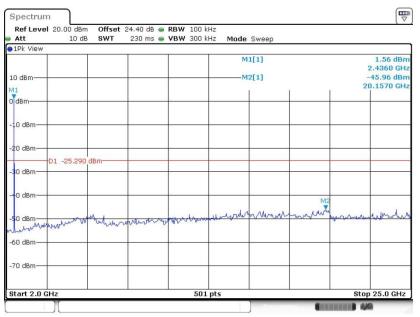
GFSK Channel 00 Spectrum Ref Level 20.00 dBm Offset 24.40 dB 🖷 RBW 100 kHz Att 10 dB SWT 29.7 ms 🖷 VBW 300 kHz Mode Sweep ●1Pk View -52.51 dBn 2.30940 GHz 2.81 dBm 2.40420 GHz M1[1] 10 dBm M1 0 dBm -10 dBm -20 dBm D1 -25.380 dBm -30 dBm -40 dBm -50 dBm M nordin upplied Autor ANA And uhn and a Aspests -60 dBm -70 dBm Start 30.0 MHz 501 pts Stop 3.0 GHz

Date: 24.JUN.2019 09:50:41

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

GFSK Channel 00

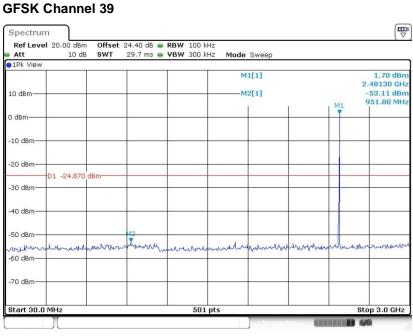
Date: 24.JUN.2019 09:50:53


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

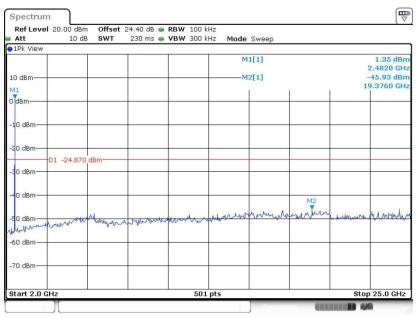
GFSK Channel 19 Spectrum Ref Level 20.00 dBm Offset 24.40 dB 🖷 RBW 100 kHz Att 10 dB SWT 29.7 ms 🖷 VBW 300 kHz Mode Sweep ●1Pk View 3.91 dBn 2.43980 GHz -53.34 dBm M2[1] 10 dBm 566.50 MH 0 dBm -10 dBm -20 dBm D1 -25.290 dBm -30 dBm -40 dBm -50 dBr manule pound wint no Mark -60 dBm -70 dBm Start 30.0 MHz 501 pts Stop 3.0 GHz

Date: 24.JUN.2019 09:53:13

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps


GFSK Channel 19

Date: 24.JUN.2019 09:53:25


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 24.JUN.2019 09:55:48

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

GFSK Channel 39

Date: 24.JUN.2019 09:56:02

3.5 Radiated Band Edges and Spurious Emission Measurement

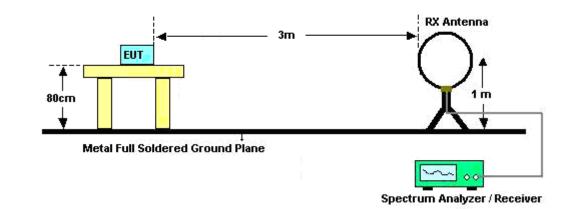
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

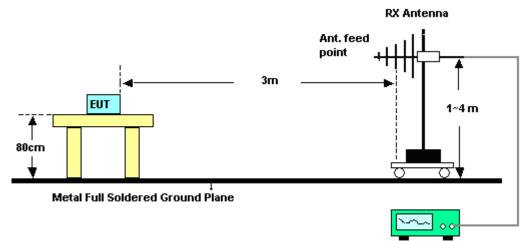
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.


3.5.3 Test Procedures

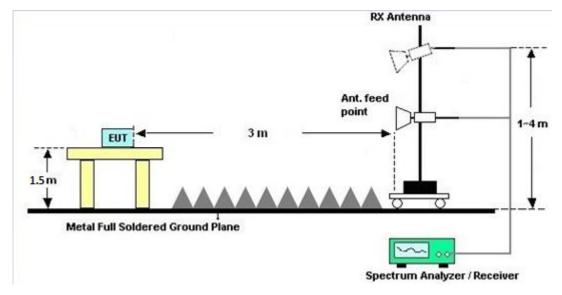
- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz



Spectrum Analyzer / Receiver

TEL : 886-3-327-3456	Page Number	: 37 of 44
FAX : 886-3-328-4978	Issued Date	: Jul. 12, 2019
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

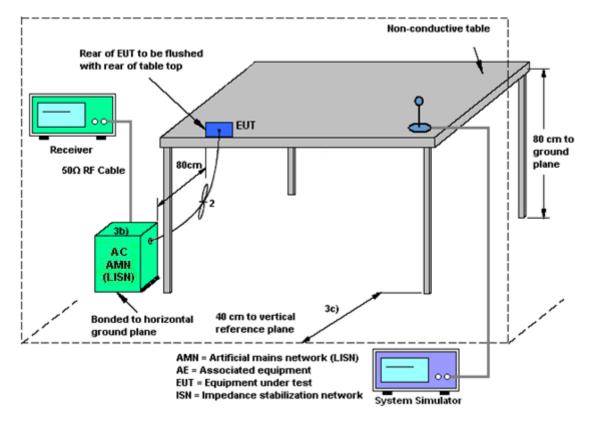
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eroquency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL : 886-3-327-3456	Page Number	: 40 of 44
FAX : 886-3-328-4978	Issued Date	: Jul. 12, 2019
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	DTM-303A	TP157075	N/A	Nov. 05, 2018	Jun. 11, 2019~ Jun. 24, 2019	Nov. 04, 2019	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SN O10	10MHz~6GHz	Dec. 19, 2018	Jun. 11, 2019~ Jun. 24, 2019	Dec. 18 2019	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Jun. 11, 2019~ Jun. 24, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC1208382	N/A	Mar. 27, 2019	Jun. 11, 2019~ Jun. 24, 2019	Mar. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 21, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 12, 2018	Jun. 21, 2019	Nov. 11, 2019	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 19, 2019	Jun. 21, 2019	Mar. 18, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Jun. 21, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde &		100081	9kHz~30MHz	Nov. 09, 2018	Jun. 21, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Software Rohde & EM Schwarz V1		N/A	N/A	N/A	Jun. 21, 2019	N/A	Conduction (CO05-HY)
LF Cable	LF Cable HUBER + SUHNER RG-2		LF01	N/A	Dec. 31, 2018	Jun. 21, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Limiter Rohde & ESH3-Z		100851	N/A	Dec. 31, 2018 Jun. 21, 2019		Dec. 30, 2019	Conduction (CO05-HY)
Loop Antenna	Rohde &		100488	9 kHz~30 MHz	Jan. 07, 2019	Jun. 25, 2019~ Jun. 29, 2019	Jan. 06, 2020	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D &N-6-06	35414&AT-N 0602	30MHz~1GHz	Oct. 13, 2018	Jun. 25, 2019~ Jun. 29, 2019	Oct. 12, 2019	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz ~ 18GHz	Oct. 30, 2018	Jun. 25, 2019~ Jun. 29, 2019	Oct. 29, 2019	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA91705 84	18GHz- 40GHz	Dec. 05, 2018 Jun. 25, 2019- Jun. 29, 2019		Dec. 04, 2019	Radiation (03CH11-HY)
Amplifier SONOMA		310N	187312	9kHz~1GHz	Dec. 04, 2018	Jun. 25, 2019~ Jun. 29, 2019	Dec. 03, 2019	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55- 303	1710001800 055007	1GHz~18GHz	Apr. 01, 2019	Jun. 25, 2019~ Jun. 29, 2019	Mar. 31, 2020	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY5327008 0	1GHz~26.5GHz	Nov. 14, 2018	Jun. 25, 2019~ Jun. 29, 2019	Nov. 13, 2020	Radiation (03CH11-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 16, 2018	Jun. 25, 2019~ Jun. 29, 2019	Jul. 15, 2019	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY5420048 6	10Hz ~ 44GHz	Oct. 19, 2018	Jun. 25, 2019~ Jun. 29, 2019	Oct. 18, 2019	Radiation (03CH11-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark	
Hygrometer	TECPEL	DTN-303B	TP140325	N/A	Nov. 05, 2018	Jun. 25, 2019~ Jun. 29, 2019	Nov. 04, 2019	Radiation (03CH11-HY)	
Filter	Wainwright	WLK4-1000- 1530-8000-4 0SS	SN11	1G Low Pass	Sep. 16, 2018	Jun. 25, 2019~ Jun. 29, 2019	Sep. 17, 2019	Radiation (03CH11-HY)	
Filter	Wainwright	WHKX12-27		2.7G High Pass	Sep. 16, 2018	Jun. 25, 2019~ Jun. 29, 2019	Sep. 17, 2019	Radiation (03CH11-HY)	
RF Cable	HUBER + SUCOFLEX SUHNER 104		MY9837/4P E 9kHz-30MHz		Mar. 13, 2019 Jun. 25, 2019~ Jun. 29, 2019		Mar. 12, 2020	Radiation (03CH11-HY)	
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Jun. 25, 2019~ Jun. 29, 2019	Mar. 12, 2020	Radiation (03CH11-HY)	
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4P E	30M-18G	Mar. 13, 2019	Jun. 25, 2019~ Jun. 29, 2019	Mar. 12, 2020	Radiation (03CH11-HY)	
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 13, 2019	Jun. 25, 2019~ Jun. 29, 2019	Mar. 12, 2020	Radiation (03CH11-HY)	
Controller	AM-BS-4500		N/A	Control Turn table & Ant Mast	N/A	Jun. 25, 2019~ Jun. 29, 2019	N/A	Radiation (03CH11-HY)	
Antenna Mast			N/A	1~4m	N/A	Jun. 25, 2019~ Jun. 29, 2019	N/A		
Turn Table			N/A	0~360 Degree	N/A	Jun. 25, 2019~ Jun. 29, 2019	N/A	Radiation (03CH11-HY)	
Software	Audix	E3 6.2009-8-24	RK-001042	N/A	N/A	Jun. 25, 2019~ Jun. 29, 2019	N/A	Radiation (03CH11-HY)	

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.00
of 95% (U = 2Uc(y))	5.20

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.20
--	------

Report Number : FR940901-03B

Appendix A. Test Result of Conducted Test Items

<1Mbps>	2019/0/11-2019/0/24	Itelative Humidity.	31-34	70
Test Date:	2019/6/11~2019/6/24	Relative Humidity:	51~54	%
Test Engineer:	Creed Wu	Temperature:	21~25	°C

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandw										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	1.023	0.665	0.50	Pass		
BLE	1Mbps	1	19	2440	1.109	0.667	0.50	Pass		
BLE	1Mbps	1	39	2480	1.021	0.669	0.50	Pass		

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod. Data Rate NTX CH. Freq. (MHz)					Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	1Mbps	1	0	2402	4.60	30.00	-2.60	2.00	36.00	Pass		
BLE	1Mbps	1	19	2440	4.90	30.00	-2.60	2.30	36.00	Pass		
BLE	1Mbps	1	39	2480	5.00	30.00	-2.60	2.40	36.00	Pass		

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	4.77	-11.40	-2.60	8.00	Pass			
BLE	1Mbps	1	19	2440	4.76	-11.33	-2.60	8.00	Pass			
BLE	1Mbps	1	39	2480	5.10	-10.96	-2.60	8.00	Pass			

Report Number : FR940901-03B

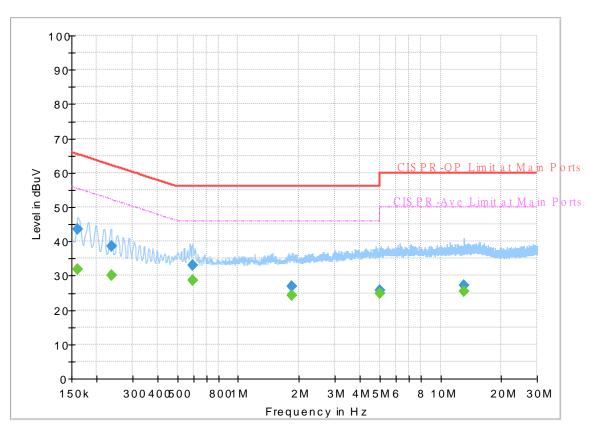
Test Engineer:	Creed Wu	Temperature:	21~25	°C
Test Date:	2019/6/11~2019/6/24	Relative Humidity:	51~54	%
<2Mbps>			-	

- Inter	-											
	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail				
BLE5.0	2Mbps	1	0	2402	2.026	1.151	0.50	Pass				
BLE5.0	2Mbps	1	19	2440	2.026	1.147	0.50	Pass				
BLE5.0	2Mbps	1	39	2480	2.026	1.159	0.50	Pass				

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
		_									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE5.0	2Mbps	1	0	2402	4.60	30.00	-2.60	2.00	36.00	Pass	1
BLE5.0	2Mbps	1	19	2440	5.00	30.00	-2.60	2.40	36.00	Pass	1
BLE5.0	2Mbps	1	39	2480	5.00	30.00	-2.60	2.40	36.00	Pass	I

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE5.0	2Mbps	1	0	2402	4.62	-13.95	-2.60	8.00	Pass		
BLE5.0	2Mbps	1	19	2440	4.71	-13.85	-2.60	8.00	Pass		
BLE5.0	2Mbps	1	39	2480	5.13	-13.49	-2.60	8.00	Pass		

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

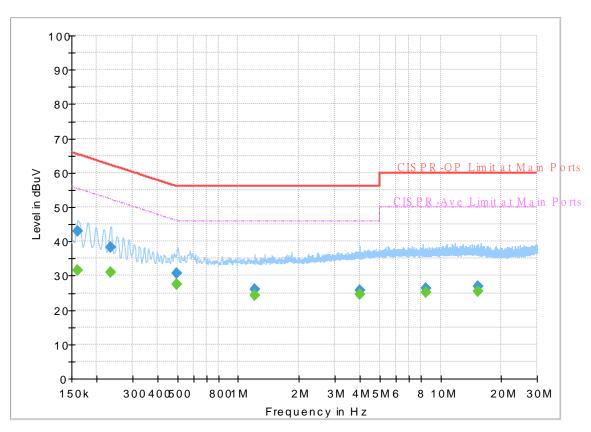


Appendix B. AC Conducted Emission Test Results

Toot Engineer	limmy Chang	Temperature :	24~26 ℃
Test Engineer :	Jimmy Chang	Relative Humidity :	51~53%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 940901-03 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250		31.93	55.40	23.47	L1	OFF	19.5
0.161250	43.49		65.40	21.91	L1	OFF	19.5
0.235500		30.16	52.25	22.09	L1	OFF	19.5
0.235500	38.73		62.25	23.52	L1	OFF	19.5
0.595500		28.76	46.00	17.24	L1	OFF	19.5
0.595500	33.14		56.00	22.86	L1	OFF	19.5
1.837500		24.36	46.00	21.64	L1	OFF	19.6
1.837500	26.76		56.00	29.24	L1	OFF	19.6
5.005500		24.87	50.00	25.13	L1	OFF	19.7
5.005500	25.82		60.00	34.18	L1	OFF	19.7
12.993000		25.50	50.00	24.50	L1	OFF	20.0
12.993000	27.25		60.00	32.75	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 940901-03 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.161250		31.54	55.40	23.86	Ν	OFF	19.5
0.161250	42.99		65.40	22.41	Ν	OFF	19.5
0.233250		30.88	52.33	21.45	Ν	OFF	19.5
0.233250	38.42		62.33	23.91	Ν	OFF	19.5
0.498750		27.56	46.02	18.46	Ν	OFF	19.5
0.498750	30.61		56.02	25.41	Ν	OFF	19.5
1.209750		24.23	46.00	21.77	Ν	OFF	19.6
1.209750	26.16		56.00	29.84	Ν	OFF	19.6
3.984000		24.61	46.00	21.39	Ν	OFF	19.7
3.984000	25.79		56.00	30.21	Ν	OFF	19.7
8.499750		25.07	50.00	24.93	Ν	OFF	19.9
8.499750	26.29		60.00	33.71	Ν	OFF	19.9
15.315000		25.34	50.00	24.66	Ν	OFF	20.1
15.315000	27.03		60.00	32.97	Ν	OFF	20.1

Appendix C. Radiated Spurious Emission

Test Engineer :		Temperature :	21~25°C
rest Engineer .	HAO Xu, Fu Chen, and Troye Hsieh	Relative Humidity :	50~56%

2.4GHz 2400~2483.5MHz

BLE 1Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2377.305	52.95	-21.05	74	42.47	27.49	16.62	33.63	100	62	Ρ	Н
		2383.5	42.41	-11.59	54	31.94	27.47	16.63	33.63	100	62	А	Н
	*	2402	99.58	-	-	89.16	27.4	16.65	33.63	100	62	Р	Н
	*	2402	98.89	-	-	88.47	27.4	16.65	33.63	100	62	А	Н
BLE CH 00													Н
2402MHz		2337.72	52.74	-21.26	74	42.16	27.65	16.58	33.65	352	118	Р	V
240210172		2313.78	42.35	-11.65	54	31.72	27.74	16.55	33.66	352	118	А	V
	*	2402	94.61	-	-	84.19	27.4	16.65	33.63	352	118	Ρ	V
	*	2402	93.9	-	-	83.48	27.4	16.65	33.63	352	118	А	V
													V
		2314.16	52.76	-21.24	74	42.13	27.74	16.55	33.66	100	57	Р	Η
		2345.04	42.37	-11.63	54	31.81	27.62	16.59	33.65	100	57	А	Н
	*	2440	100.23	-	-	89.83	27.32	16.69	33.61	100	57	Р	Н
	*	2440	99.48	-	-	89.08	27.32	16.69	33.61	100	57	А	Η
		2488.56	52.92	-21.08	74	42.47	27.3	16.74	33.59	100	57	Р	Н
BLE		2498.08	42.27	-11.73	54	31.81	27.3	16.75	33.59	100	57	А	Н
CH 19 2440MHz		2345.68	53.01	-20.99	74	42.45	27.62	16.59	33.65	387	110	Ρ	V
2440101112		2324.72	42.38	-11.62	54	31.77	27.7	16.56	33.65	387	110	А	V
	*	2440	95.68	-	-	85.28	27.32	16.69	33.61	387	110	Р	V
	*	2440	94.96	-	-	84.56	27.32	16.69	33.61	387	110	А	V
		2488	52.73	-21.27	74	42.28	27.3	16.74	33.59	387	110	Р	V
		2494.4	42.31	-11.69	54	31.85	27.3	16.75	33.59	387	110	А	V

	*	2480	100.07	-	-	89.64	27.3	16.73	33.6	129	51	Р	Н
	*	2480	99.3	-	-	88.87	27.3	16.73	33.6	129	51	А	Н
		2485.96	52.48	-21.52	74	42.04	27.3	16.74	33.6	129	51	Ρ	Н
		2490.56	42.51	-11.49	54	32.05	27.3	16.75	33.59	129	51	А	Н
DI C													Н
BLE CH 39													Н
2480MHz	*	2480	95.22	-	-	84.79	27.3	16.73	33.6	374	103	Р	V
240011112	*	2480	94.44	-	-	84.01	27.3	16.73	33.6	374	103	А	V
		2495.48	52.81	-21.19	74	42.35	27.3	16.75	33.59	374	103	Р	V
		2499.44	42.39	-11.61	54	31.93	27.3	16.75	33.59	374	103	А	V
													V
													V
Remark		o other spurio I results are P		st Peak	and Avera	ge limit line	е.						

(MHz) 4804 4804 4804 4880 7320	(dBµV/m) 36.77 36.47 36.47 36.95 40.98	Limit (dB) -37.23 -37.53 -37.53	Line (dBµV/m) 74 74 74 74	Level (dBμV) 53.83 53.53	Factor (dB/m) 31.1 31.1	Loss (dB) 11 11	Factor (dB) 59.16 59.16	Pos (cm) 100 100	Pos (deg) 0	Avg. (P/A) P	(H/V) H H H V V
4804	36.47 36.95	-37.53	74								H H H V
4880	36.95	-37.05		53.53	31.1	11	59.16	100	0	Р	H H V
4880	36.95	-37.05		53.53	31.1	11	59.16	100	0	Ρ	H V
4880	36.95	-37.05		53.53	31.1	11	59.16	100	0	Ρ	V
4880	36.95	-37.05		53.53	31.1	11	59.16	100	0	Ρ	
			74								V
			74								v
			74								V
			74								V
7320	40.98		14	54.03	31.04	11.06	59.18	100	0	Р	Н
		-33.02	74	49.96	36.54	13.65	59.17	100	0	Р	Н
											Н
											Н
4880	36.99	-37.01	74	54.07	31.04	11.06	59.18	100	0	Р	V
7320	40.66	-33.34	74	49.64	36.54	13.65	59.17	100	0	Р	V
											V
											V
4960	37.41	-36.59	74	54.17	31.32	11.11	59.19	100	0	Р	Н
7440	41.16	-32.84	74	50.18	36.48	13.62	59.12	100	0	Р	Н
											Н
											Н
4960	38.82	-35.18	74	55.58	31.32	11.11	59.19	100	0	Р	V
7440	41.2	-32.8	74	50.22	36.48	13.62	59.12	100	0	Р	V
											V
											V
	7320 4960 7440 4960 7440 7440	7320 40.66 7320 40.66 4960 37.41 7440 41.16 4960 38.82 7440 41.2 4960 38.82 7440 41.2	7320 40.66 -33.34 7320 40.66 -33.34 4960 37.41 -36.59 7440 41.16 -32.84 4960 38.82 -35.18 7440 41.2 -32.8 4960 38.82 -35.18 7440 41.2 -32.8 6 1 1 1 1 1 4960 38.82 -35.18 7440 41.2 -32.8 1 1 1 1 1 1	7320 40.66 -33.34 74 7320 40.66 -33.34 74 740 74 -36.59 74 7400 37.41 -36.59 74 7440 41.16 -32.84 74 7440 41.2 -32.8 74 4960 38.82 -35.18 74 7440 41.2 -32.8 74 7440 5.12 -32.8 74 7440 41.2 -32.8 74 7440 41.2 -32.8 74	7320 40.66 -33.34 74 49.64 1 1 1 1 1 4960 37.41 -36.59 74 54.17 7440 41.16 -32.84 74 50.18 4960 38.82 -35.18 74 55.58 7440 41.2 -32.8 74 50.22 4960 38.82 -35.18 74 50.22 4960 38.82 -32.8 74 50.22 4960 41.2 -32.8 74 50.22	7320 40.66 -33.34 74 49.64 36.54 7320 40.66 -33.34 74 49.64 36.54 740 740 -36.59 74 54.17 31.32 7440 41.16 -32.84 74 50.18 36.48 7440 41.16 -32.84 74 50.18 36.48 7440 41.2 -35.18 74 55.58 31.32 7440 41.2 -32.84 74 50.22 36.48 1 -32.81 74 50.22 36.48 1 -32.8 74 50.22 36.48	7320 40.66 -33.34 74 49.64 36.54 13.65 7320 40.66 -33.34 74 49.64 36.54 13.65 740 740 74 74 74 74 74 74 7400 37.41 -36.59 74 54.17 31.32 11.11 7440 41.16 -32.84 74 50.18 36.48 13.62 4960 38.82 -35.18 74 55.58 31.32 11.11 7440 41.2 -32.8 74 50.22 36.48 13.62 4960 38.82 -35.18 74 50.22 36.48 13.62 7440 41.2 -32.8 74 50.22 36.48 13.62 960 38.82 -35.18 74 50.22 36.48 13.62 974 974 50.22 36.48 13.62 14 14 974 974 50.22 36.48 13.62 14 974 974 50.22 36.48 13.62	7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 740 74.1 -36.59 74 54.17 31.32 11.11 59.19 7400 41.16 -32.84 74 50.18 36.48 13.62 59.12 7400 41.16 -32.84 74 50.18 36.48 13.62 59.12 4960 38.82 -35.18 74 50.18 31.32 11.11 59.19 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 8 14 14 14 14 14 14 14 9 14 14 14 14 14 14 14 14 14 14 <td>7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 7320 740 740 740 740 740 740 740 59.17 100 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 7440 41.2 -32.84 74 55.58 31.32 11.11 59.19 100 7440 41.2 -32.8 74 55.58 31.32 11.11 59.19 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 <</td> <td>7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 0 1 1 1 1 1 1 1 1 1 1 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 7440 41.2 -32.84 74 50.18 31.32 11.11 59.19 100 0 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 100 0 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 8 1 1 1 1<!--</td--><td>7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 0 P 1 1 1 1 1 1 1 1 1 1 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100</td></td>	7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 7320 740 740 740 740 740 740 740 59.17 100 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 7440 41.2 -32.84 74 55.58 31.32 11.11 59.19 100 7440 41.2 -32.8 74 55.58 31.32 11.11 59.19 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 <	7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 0 1 1 1 1 1 1 1 1 1 1 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 7440 41.2 -32.84 74 50.18 31.32 11.11 59.19 100 0 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 100 0 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 8 1 1 1 1 </td <td>7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 0 P 1 1 1 1 1 1 1 1 1 1 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100</td>	7320 40.66 -33.34 74 49.64 36.54 13.65 59.17 100 0 P 1 1 1 1 1 1 1 1 1 1 4960 37.41 -36.59 74 54.17 31.32 11.11 59.19 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 7440 41.16 -32.84 74 50.18 36.48 13.62 59.12 100 0 P 4960 38.82 -35.18 74 55.58 31.32 11.11 59.19 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100 0 P 7440 41.2 -32.8 74 50.22 36.48 13.62 59.12 100

BLE 1Mbps (Harmonic @ 3m)

BLE 2Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		2377.725	52.89	-21.11	74	42.41	27.49	16.62	33.63	152	29	Ρ	Н
		2324.175	42.73	-11.27	54	32.12	27.7	16.56	33.65	152	29	А	Н
	*	2402	100.86	-	-	90.44	27.4	16.65	33.63	152	29	Ρ	Н
	*	2402	99.22	-	-	88.8	27.4	16.65	33.63	152	29	Α	Н
BLE													Н
CH 00													Н
2402MHz		2344.125	53.1	-20.9	74	42.54	27.62	16.59	33.65	396	113	Ρ	V
		2363.34	42.91	-11.09	54	32.39	27.55	16.61	33.64	396	113	А	V
	*	2402	96.86	-	-	86.44	27.4	16.65	33.63	396	113	Р	V
	*	2402	95.19	-	-	84.77	27.4	16.65	33.63	396	113	А	V
													V
													V
		2326.16	52.53	-21.47	74	41.91	27.7	16.57	33.65	147	32	Ρ	Н
		2353.84	42.75	-11.25	54	32.21	27.58	16.6	33.64	147	32	А	Н
	*	2440	101.07	-	-	90.67	27.32	16.69	33.61	147	32	Ρ	Н
	*	2440	99.4	-	-	89	27.32	16.69	33.61	147	32	А	Н
515		2489.28	52.82	-21.18	74	42.37	27.3	16.74	33.59	147	32	Ρ	Н
BLE CH 19		2490	42.63	-11.37	54	32.18	27.3	16.74	33.59	147	32	А	Н
2440MHz		2364.72	52.23	-21.77	74	41.72	27.54	16.61	33.64	386	111	Ρ	V
		2344.72	42.6	-11.4	54	32.04	27.62	16.59	33.65	386	111	А	V
	*	2440	96.35	-	-	85.95	27.32	16.69	33.61	386	111	Р	V
	*	2440	94.58	-	-	84.18	27.32	16.69	33.61	386	111	А	V
		2488.24	51.89	-22.11	74	41.44	27.3	16.74	33.59	386	111	Ρ	V
		2499.68	42.63	-11.37	54	32.17	27.3	16.75	33.59	386	111	А	V

	*	2480	100.46	-	-	90.03	27.3	16.73	33.6	142	38	Р	Н
	*	2480	98.73	-	-	88.3	27.3	16.73	33.6	142	38	А	Н
		2492.52	53.03	-20.97	74	42.57	27.3	16.75	33.59	142	38	Ρ	Н
		2483.52	43.14	-10.86	54	32.7	27.3	16.74	33.6	142	38	А	Н
DIE													Н
BLE CH 39													Н
2480MHz	*	2480	96.24	-	-	85.81	27.3	16.73	33.6	373	117	Р	V
240011112	*	2480	94.4	-	-	83.97	27.3	16.73	33.6	373	117	А	V
		2498.6	53.62	-20.38	74	43.16	27.3	16.75	33.59	373	117	Р	V
		2484.04	42.67	-11.33	54	32.23	27.3	16.74	33.6	373	117	А	V
													V
													V
Demon	1. No	o other spurio	us found.										
Remark	2. Al	I results are P	ASS again	st Peak	and Avera	ge limit line	е.						

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		4804	36.67	-37.33	74	53.73	31.1	11	59.16	100	0	Ρ	Н
													Н
													Н
BLE													Н
CH 00		4804	36.31	-37.69	74	53.37	31.1	11	59.16	100	0	Ρ	V
2402MHz													V
													V
													V
		4880	37.05	-36.95	74	54.13	31.04	11.06	59.18	100	0	Р	Н
		7320	41.34	-32.66	74	50.32	36.54	13.65	59.17	100	0	Р	Н
													Н
BLE													н
CH 19		4880	36.41	-37.59	74	53.49	31.04	11.06	59.18	100	0	Р	V
2440MHz		7320	41.83	-32.17	74	50.81	36.54	13.65	59.17	100	0	Р	V
													V
													V
		4960	38.85	-35.15	74	55.61	31.32	11.11	59.19	100	0	Р	Н
		7440	40.57	-33.43	74	49.59	36.48	13.62	59.12	100	0	Р	Н
													Н
BLE													Н
CH 39		4960	37.26	-36.74	74	54.02	31.32	11.11	59.19	100	0	Р	V
2480MHz		7440	40.81	-33.19	74	49.83	36.48	13.62	59.12	100	0	Р	V
													V
													V
	1 1	othor on the		1	<u> </u>	1			1	<u> </u>	1	1	L
Remark		o other spuric results are F		at Dook	and Average	a limit lin	0						
	2. All	results are f	-ASS ayains	ы геак	anu Averag		с .						

BLE 2Mbps (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pal
DLC	Note	Frequency	Level	Limit	Linit	Level	Factor	Loss	Factor	Pos	Pos	Avg.	P01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	-	(H/V)
		130.88	21.81	-21.69	43.5	35.33	17.26	1.52	32.3	-	-	Р	н
		151.25	26.14	-17.36	43.5	39.94	16.81	1.67	32.28	-	-	Ρ	Н
		178.41	25.06	-18.44	43.5	40.55	14.88	1.89	32.26	-	-	Ρ	Н
		786.6	30.79	-15.21	46	30.74	28.06	3.9	31.91	-	-	Ρ	Н
		857.41	32.42	-13.58	46	30.65	29.26	4.09	31.58	-	-	Ρ	Н
		951.5	33.94	-12.06	46	29.87	30.64	4.31	30.88	100	0	Ρ	Н
													Н
													н
													Н
													н
													Н
2.4GHz BLE													н
LF		40.67	25.08	-14.92	40	37.91	18.7	0.84	32.37	-	-	Ρ	V
		107.6	24.63	-18.87	43.5	38.92	16.63	1.39	32.31	-	-	Ρ	V
		119.24	28.52	-14.98	43.5	42.07	17.29	1.46	32.3	-	-	Ρ	V
		878.75	32.21	-13.79	46	30.38	29.15	4.14	31.46	-	-	Ρ	V
		913.67	33	-13	46	30.93	29.06	4.23	31.22	-	-	Ρ	V
		945.68	33.7	-12.3	46	30.02	30.31	4.3	30.93	100	0	Ρ	V
													V
													V
													V
													V
													V
													V

Emission below 1GHz

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any						
	unwanted emissions shall not exceed the level of the fundamental frequency.						
!	Test result is over limit line.						
P/A	Peak or Average						
H/V	Horizontal or Vertical						

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dB μ V/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

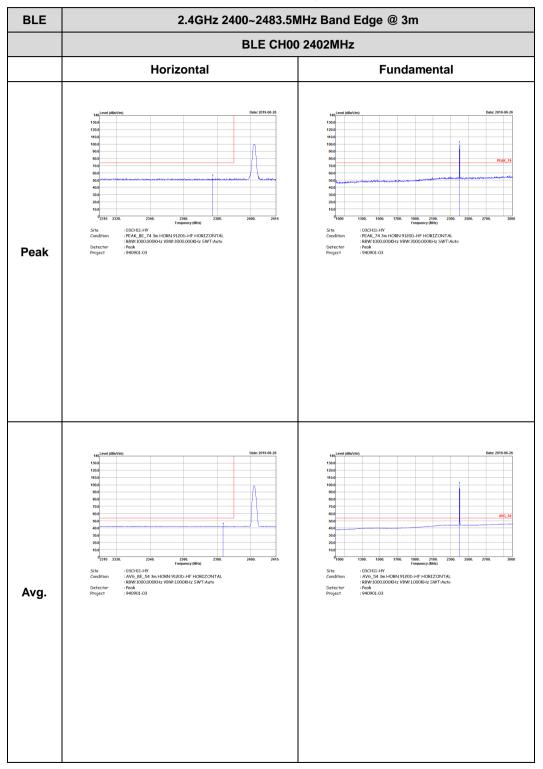
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

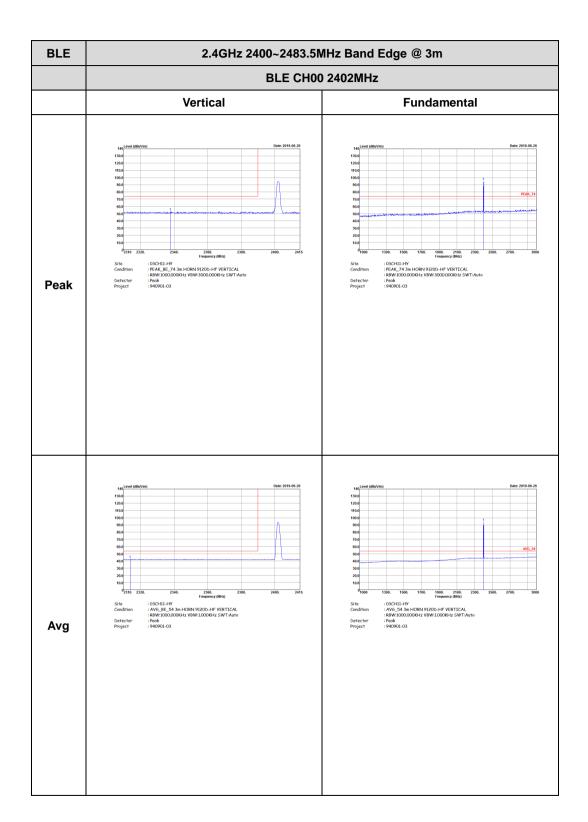
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

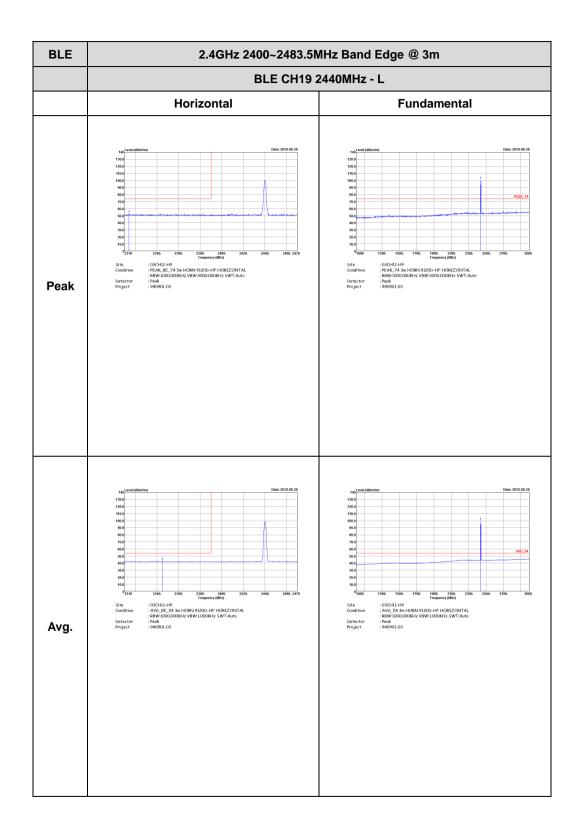
Both peak and average measured complies with the limit line, so test result is "PASS".

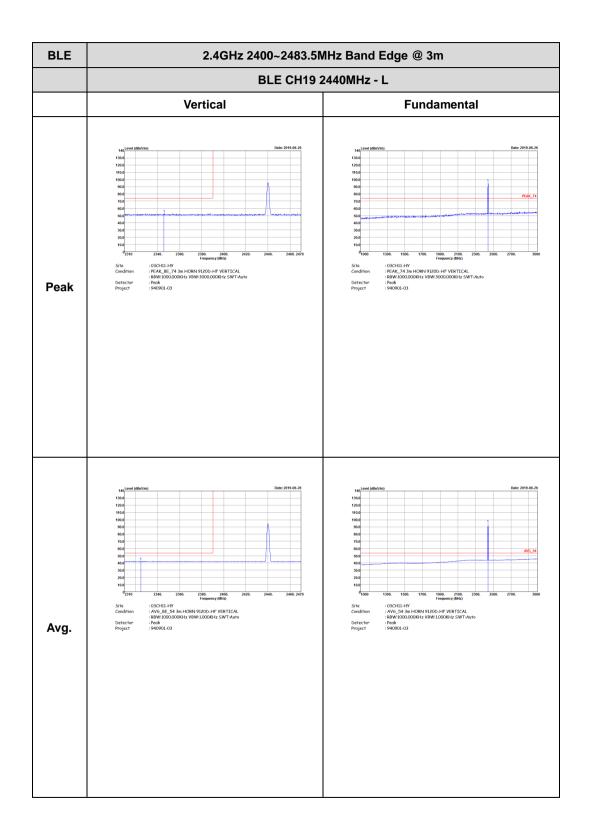
Appendix D. Radiated Spurious Emission Plots


Test Engineer :	HAO Xu, Fu Chen, and Troye Hsieh	Temperature :	21~25°C
Test Engineer .		Relative Humidity :	50~56%

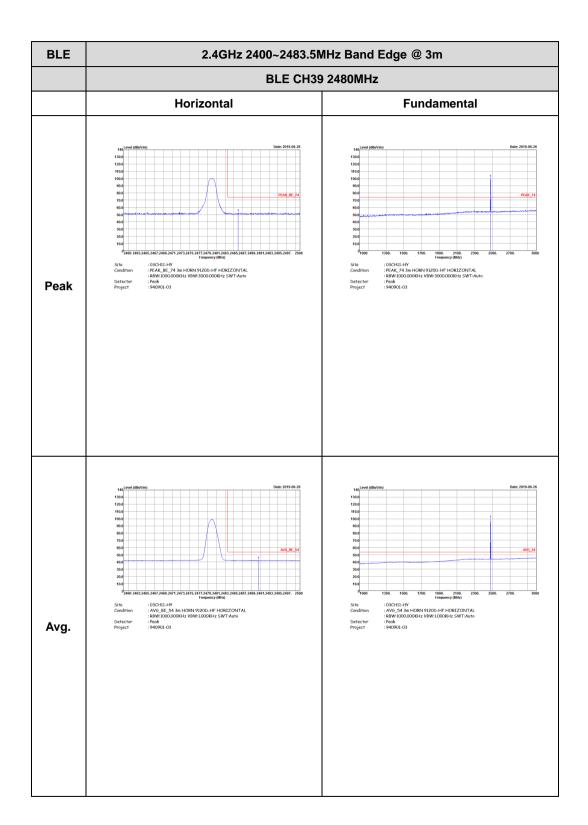
Note symbol

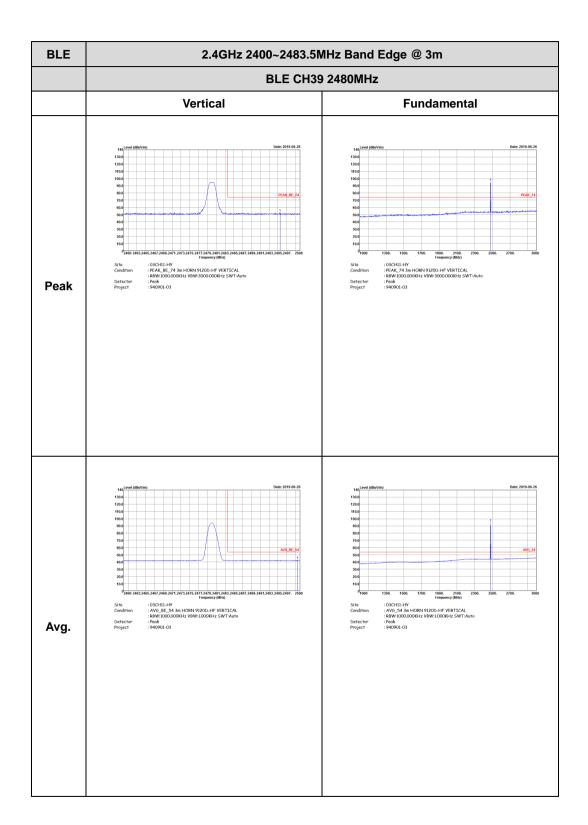

-L	Low channel location
-R	High channel location


BLE 1Mbps (Band Edge @ 3m)

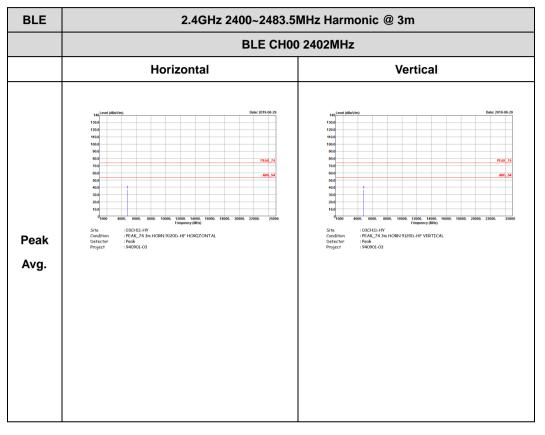


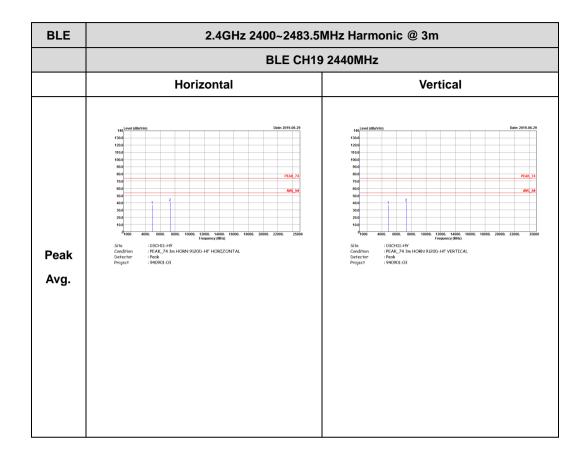
BLE	2.4GHz 2400~2483.5M	/Hz Band Edge @ 3m
	BLE CH19 2	2440MHz - R
	Horizontal	Fundamental
Peak	and the set of th	Left blank
Avg.	100 100 <th>Left blank</th>	Left blank

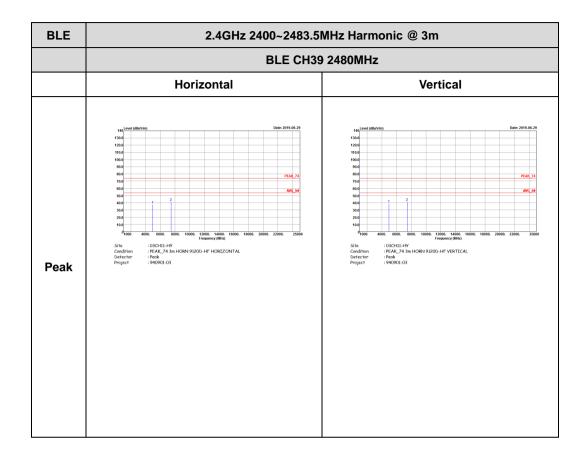


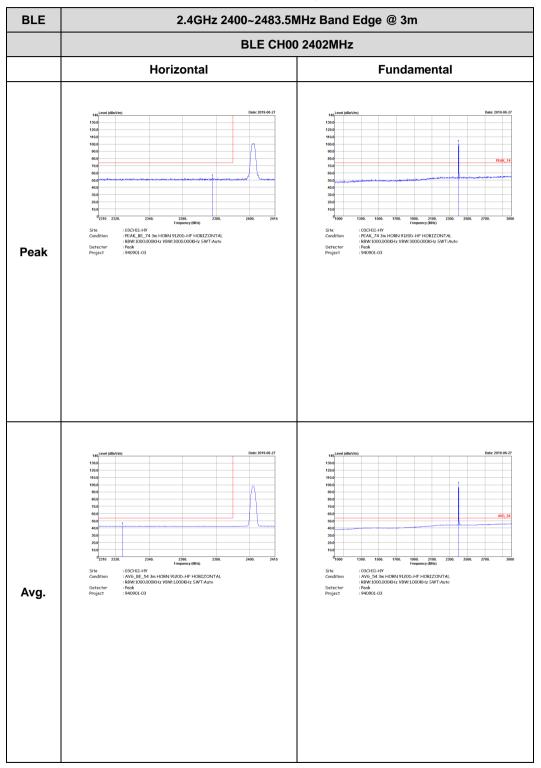


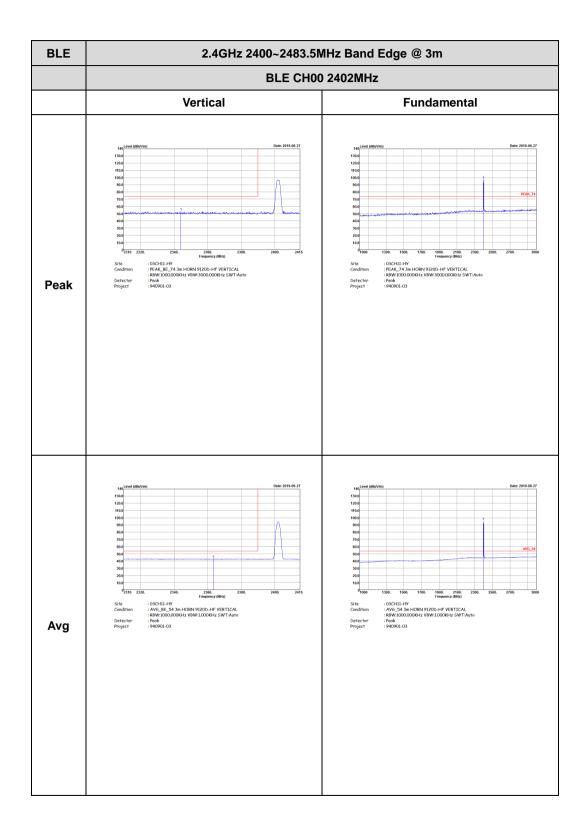
BLE	2.4GHz 2400~2483.5M	/Hz Band Edge @ 3m
	BLE CH19 2	2440MHz - R
	Vertical	Fundamental
Peak	44 Control of the second s	Left blank
Avg.	44 Terret (1800/m) Diff: 2019.03.26 100	Left blank



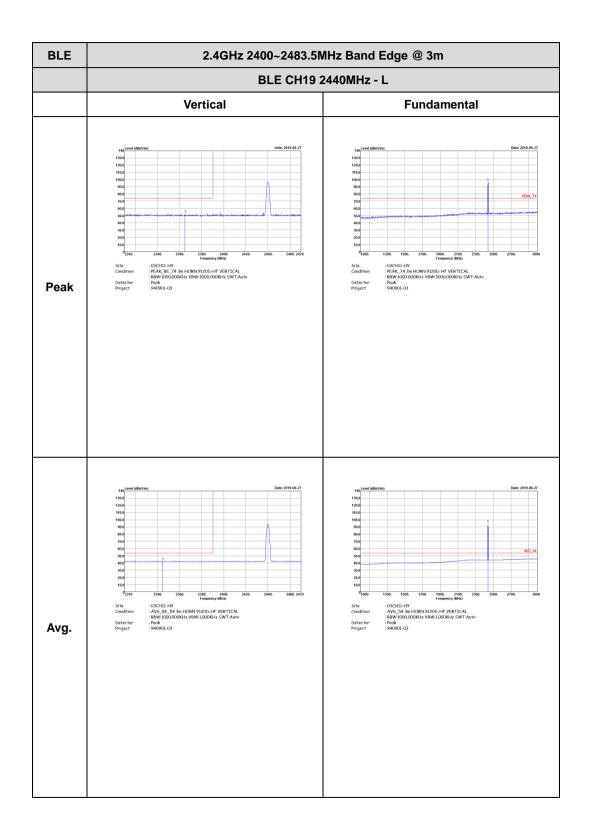



BLE 1Mbps (Harmonic @ 3m)

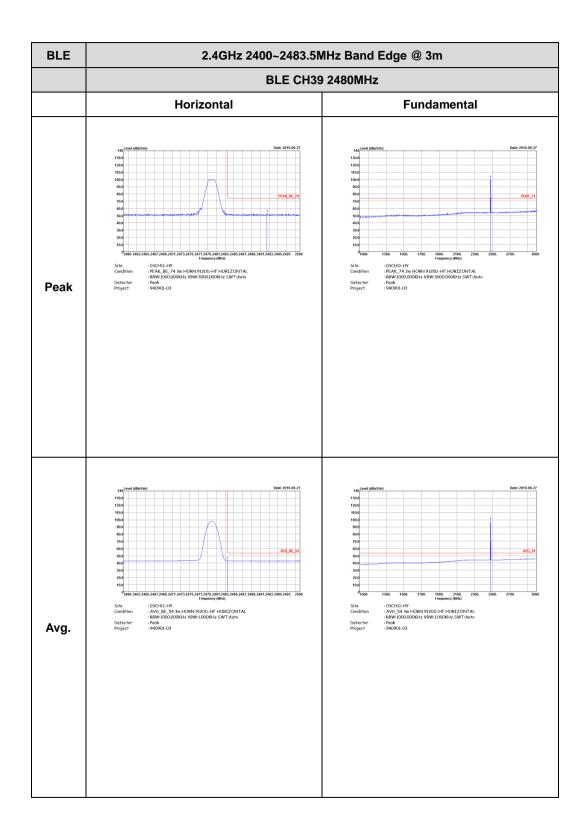


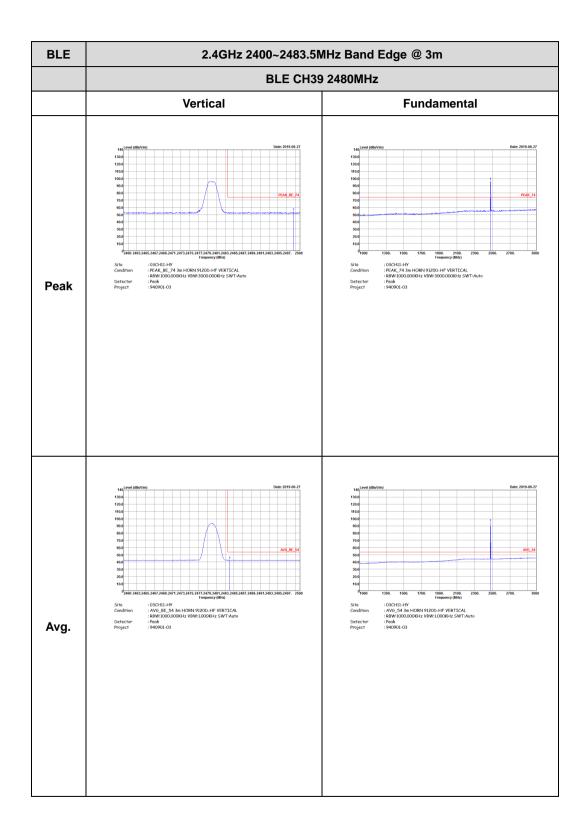


BLE 2Mbps (Band Edge @ 3m)

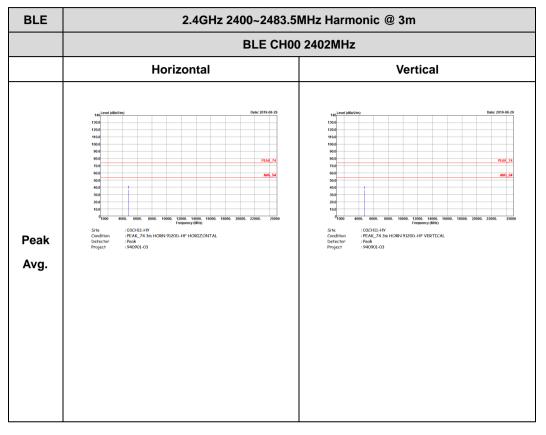


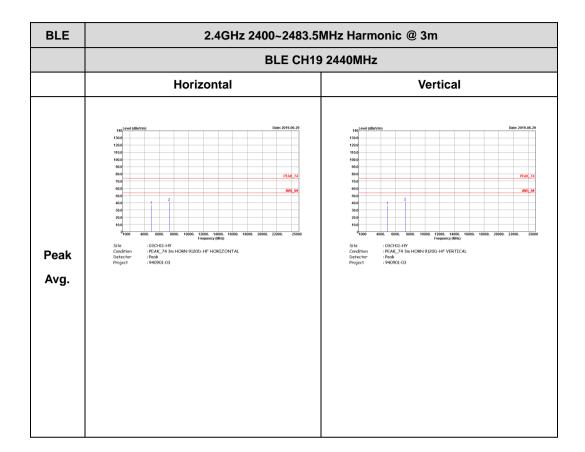
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440MHz - R						
	Horizontal	Fundamental					
Peak	<pre>update interview inte</pre>	Left blank					
Avg.	1 0	Left blank					



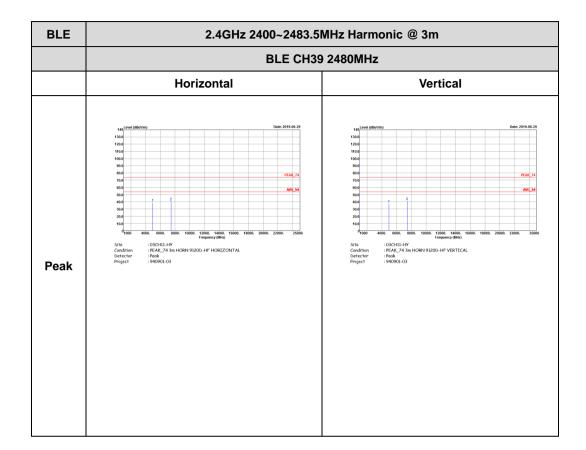


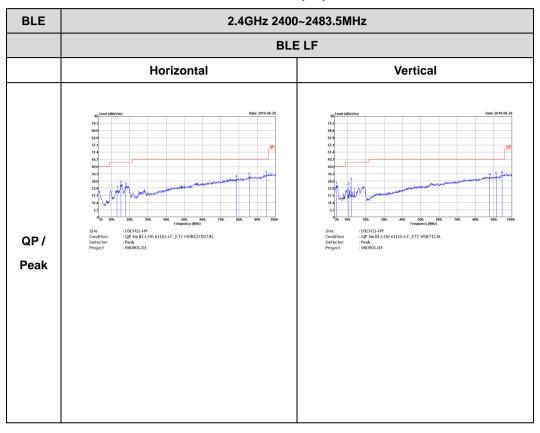
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440MHz - R						
	Vertical	Fundamental					
Peak	10 <th>Left blank</th>	Left blank					
Avg.	100 1	Left blank					





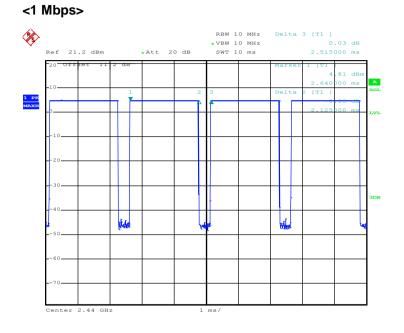
2.4GHz 2400~2483.5MHz


BLE 2Mbps (Harmonic @ 3m)

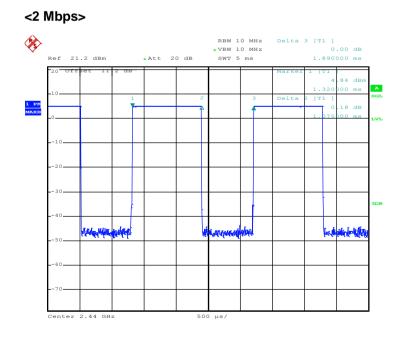


Emission below 1GHz

2.4GHz BLE (LF)



Appendix E. Duty Cycle Plots


Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
Bluetooth LE for 1 Mbps	84.49	2125	0.47	1kHz	0.73
Bluetooth LE for 2 Mbps	56.88	1075	0.93	1kHz	2.45

Bluetooth - LE

Date: 12.JUN.2019 01:53:33

Date: 12.JUN.2019 01:55:01

