

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

802.11B/G WIRELESS ROUTER

MODEL NUMBER: WGR614v3 and WGT624v2

FCC ID: PY3WGR614V3

REPORT NUMBER: 03U2205-1

ISSUE DATE: SEPTEMBER 3, 2003

Prepared for NETGEAR INC. 4500 GREAT AMERICA PARKWAY SANTA CLARA CA 95054, USA

Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

LAB CODE:200065-0

TABLE OF CONTENTS

1.	,	TEST RESULT CERTIFICATION	3
2.]	EUT DESCRIPTION	4
3.	,	TEST METHODOLOGY	5
4.]	FACILITIES AND ACCREDITATION	5
5.	(CALIBRATION AND UNCERTAINTY	5
	5.1	1. MEASURING INSTRUMENT CALIBRATION	5
	5.2	2. MEASUREMENT UNCERTAINTY	5
	5.3	3. TEST AND MEASUREMENT EQUIPMENT	5
6.	5	SETUP OF EQUIPMENT UNDER TEST	7
7.	L	APPLICABLE LIMITS AND TEST RESULTS 11	1
	7.1	1. 6 dB BANDWIDTH	1
	7.2	2. 99% BANDWIDTH	9
	7.3	3. PEAK OUTPUT POWER	7
	7.4	4. MAXIMUM PERMISSIBLE EXPOSURE	5
	7.5	5. AVERAGE POWER	8
	7.6	6. PEAK POWER SPECTRAL DENSITY	9
	7.7	7. CONDUCTED SPURIOUS EMISSIONS	7
	7.8	8. RADIATED EMISSIONS	2
	7.9	9. POWERLINE CONDUCTED EMISSIONS	8
8.	5	SETUP PHOTOS	2

Page 2 of 97

1. TEST RESULT CERTIFICATION

COMPANY NAME:	NETGEAR INC. 4500 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, USA
EUT DESCRIPTION:	802.11b/g wireless router
MODEL:	WGR614v3 and WGT624v2
DATE TESTED:	AUGUST 14 – SEPTEMBER 3, 2003

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
FCC PART 15 SUBPART C	NO NON-COMPLIANCE NOTED			

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

topation - Store

WILLIAM ZHUANG EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 97

2. EUT DESCRIPTION

The EUT is an 802.11b/g wireless router.

The EUT has a maximum peak output power of 25.25 dBm (335 mW) and an antenna gain of 1.8 dBi in the 2400 - 2483.5 MHz band. It is designed to be used with a single external dipole antenna.

WGT624v2 and WGR614v3 share exactly the same PCB layout, use exactly the same RF circuitry, the same antenna with the same output power from the same manufacturer. The only difference between the two models is as below:

 In firmware, WGT624 has added packet bursting, compression, and fast frame mechanisms. The original hardware is already certified for channel bonding (also called Turbo mode by Atheros). The final Atheros firmware would allow dynamic bonding, which means that the AP/router would negotiate with the client Card to see if the client card supports channel bonding and.
 Due to the added firmware, the hardware has to be upgraded from 2Mbyte Flash and 8Mbyte SDRAM to 4Mbyte Flash and 16Mbyte SDRAM .

The project was subcontracted by Netgear through Atheros. The references in all the plots are applicable to the Netgear products.

The circuit board assembly includes two RF output connectors, however only one is utilized. The circuit board assembly also includes a printed antenna at the auxiliary RF output connector, however this antenna is not used. A 50 ohm termination resistor is installed at the auxiliary RF output. The external antenna is connected to the main RF output connector.

Page 4 of 97

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

The open area test sites and conducted measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 97

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TES	TEST AND MEASUREMENT EQUIPMENT LIST							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date				
Quasi-Peak Adapter	HP	85650A	2521A01038	7/16/2004				
SA Display Section	HP	85662A	2314A04793	7/16/2004				
SA RF Section	HP	85680A	2314A02604	7/16/2004				
Preamplifier	HP	8447D	2944A06833	8/22/2003				
Antenna, Biconical	Eaton	94455-1	1214	3/6/04				
Antenna, Log Periodic	EMCO	3146	9107-3163	3/06/04				
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/2004				
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2003				
Spectrum Analyzer	AGILENT	E4446A	US42070220	1/13/04				
Pre-amplifier	MITEQ	NSP2600-SP	924341	4/25/04				
Horn Antenna	EMCO	3115	6717	2/4/04				
Power Meter	AGILENT	E4416A	0841291160	11/7/04				
Power Sensor	Agilent	E9327A	US40440755	08/09/03				
Antenna, Biconical	Eaton	94455-1	1214	3/6/04				
Antenna, Log Periodic	EMCO	3146	9107-3163	3/06/04				
Preamplifier	Miteq	NSP10023988	646456	4/26/04				
High Pass Filter (4.57GHz)	FSY Microwave	FM-4570-9SS	003	N.C.R.				

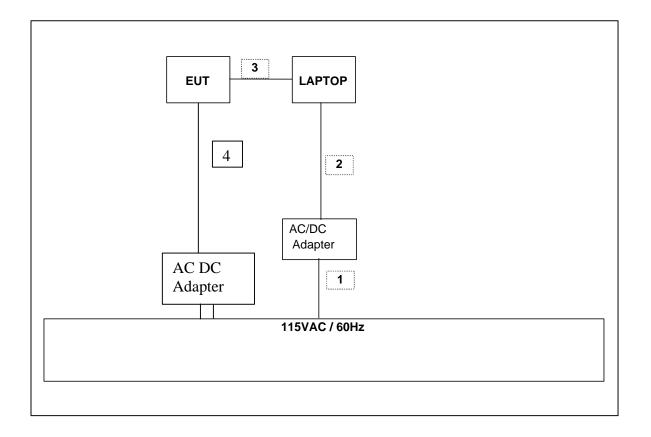
Page 6 of 97

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Number	Serial Number	FCC ID
Laptop	Toshiba	NA	J291200E8019	Doc
Power Adapter	Toshiba	PA3083U-1ACA	0536906G	Doc
5V DC power adapter	Switching Adapter	RHC-060200-1	0319	DOC

I/O CABLES


Cable	I/O	# of I/O	Connector	Type of	Cable	Data		
No	Port	Port	Туре	Cable	Length	Traffic	Bundled	Remark
1	AC	2	US 115V	Un-shielded	1m	No	No	N/A
2	DC	1	DC	Un-shielded	1m	No	No	N/A
3	Ethernet	1	RJ45	Un-shielded	3m	Yes	Yes	N/A
4	DC	1	DC	Un-shielded	1m	No	No	Integrated with Adapter

TEST SETUP

The EUT was controlled by the laptop via Ethernet cable.

Page 7 of 97

SETUP DIAGRAM

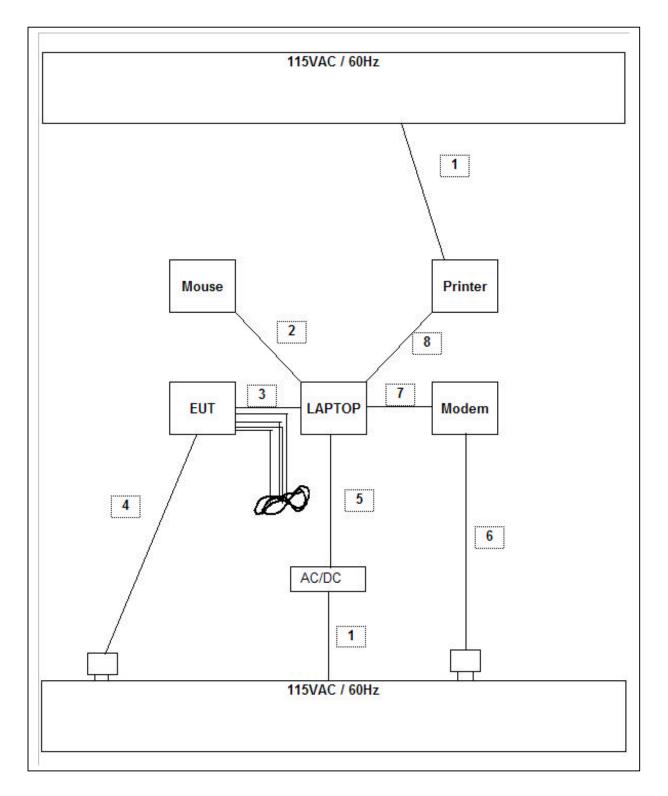
Page 8 of 97

SETUP FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

Device Type	Manufacturer	Model Number	Serial Number	FCC ID
Laptop	Toshiba	NA	J291200E8019	Doc
Power Adapter	Toshiba	PA3083U-1ACA	0536906G	Doc
5V DC power adapter	Switching Adapter	RHC-060200-1	0319	DOC
MODEM	ACEEX	1414	9013537	IFAXDM1414
PRINTER	HP	2225C	2541S41679	BS46XU2225C
Mouse	Microsoft	Intelemouse	63618-OEM-6345201	DoC
Mouse	Microsoft	Intelemouse	63618-OEM-6345201	DoC

I/O CABLES


Cable No	I/O Port	# of I/O Port	Connector Type	Type of Cable	Cable Length	Data Traffic	Bundled	Remark
1	AC	2	US 115V	Un-shielded	1m	No	No	N/A
2	PS2		PS2	Un-shielded	2m	No	No	N/A
3	Ethernet	5	RJ45	Un-shielded	3m	Yes	Yes	N/A
4	DC	1	DC	Un-shielded	1m	No	No	Integrated with Adapter
5	DC	1	DC	Un-shielded	2m	No	No	N/A
6	DC	1	DC	Un-shielded	1m	No	No	Integrated with Adapter
7	Serial	1	DB9	Shielded	1m	Yes	No	N/A
8	Parallel	1	DB25	Shielded	2m	Yes	Yes	N/A

TEST SETUP

The EUT was controlled by the laptop via Ethernet cable.

Page 9 of 97

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

Page 10 of 97

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. 6 dB BANDWIDTH

LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

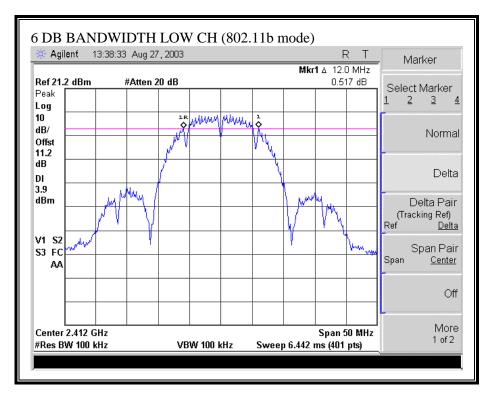
<u>RESULTS</u>

No non-compliance noted:

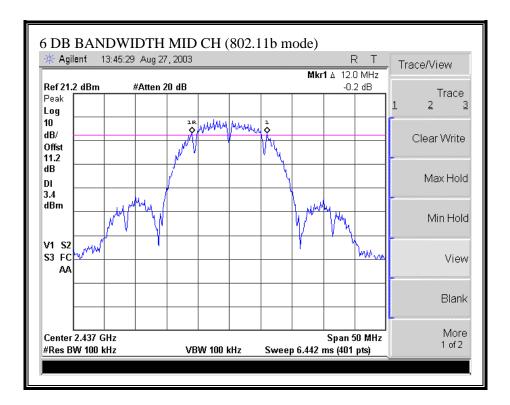
802.11b Mode

Channel	Frequency 6 dB Bandwidth		Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	12000	500	11500
Middle	2437	12000	500	11500
High	2462	12000	500	11500

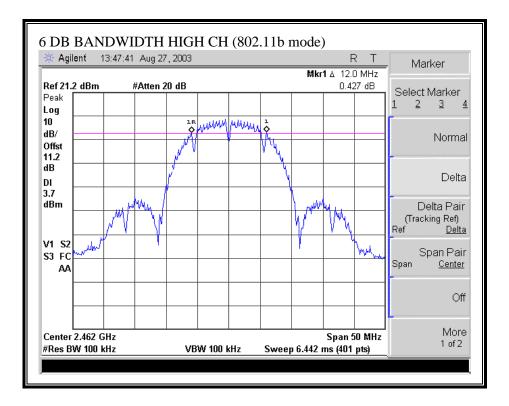
802.11g Normal Mode


Channel	Frequency 6 dB Bandwidth		Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	16400	500	15900
Middle	2437	16300	500	15800
High	2462	16400	500	15900

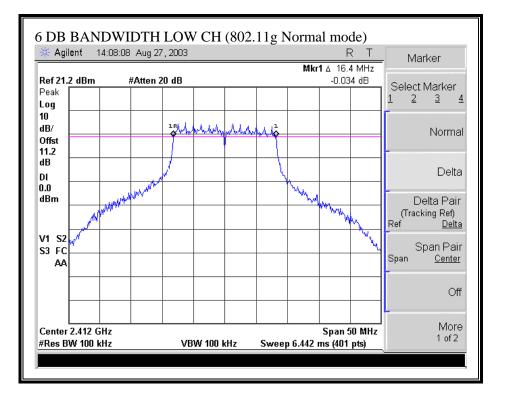
802.11g Turbo Mode


Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2437	31500	500	31000

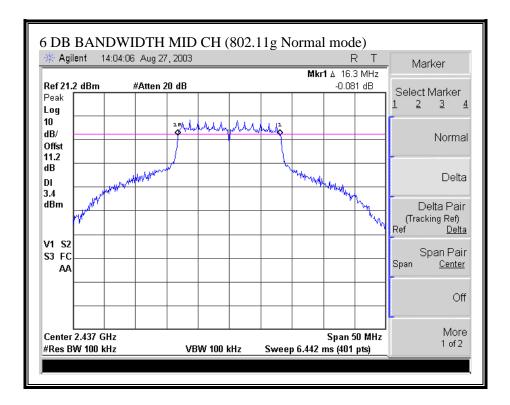
Page 11 of 97


6 DB BANDWIDTH (802.11b MODE)

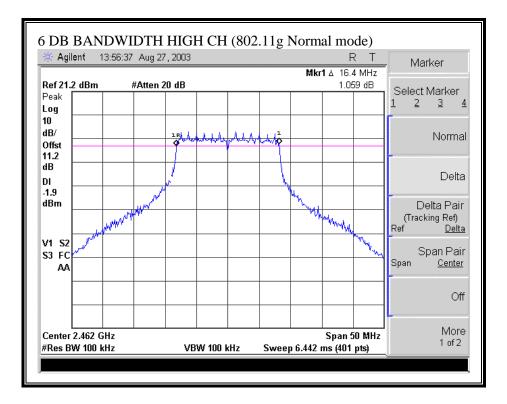
Page 12 of 97



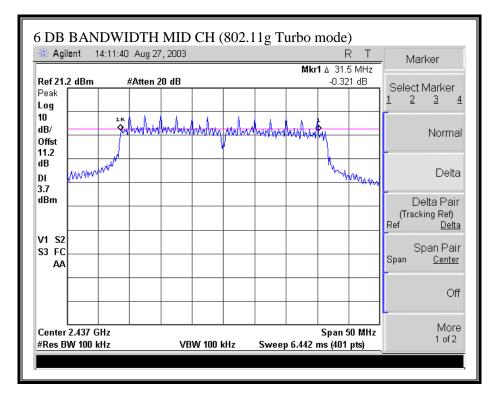
Page 13 of 97



Page 14 of 97


6 DB BANDWIDTH (802.11g NORMAL MODE)

Page 15 of 97



Page 16 of 97

Page 17 of 97

6 DB BANDWIDTH (802.11g TURBO MODE)

Page 18 of 97

7.2. 99% **BANDWIDTH**

<u>LIMIT</u>

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

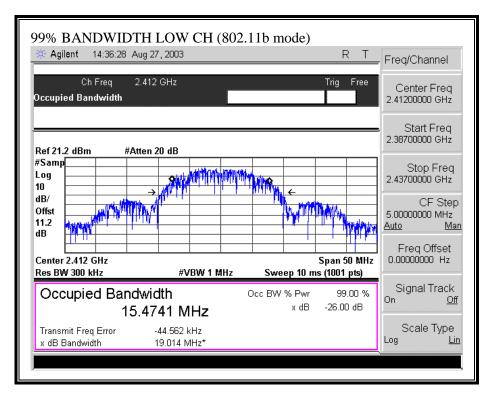
RESULTS

No non-compliance noted:

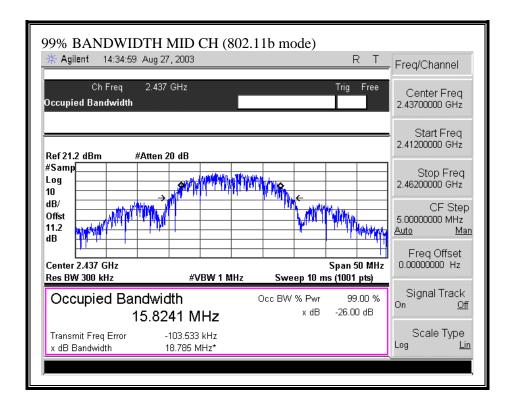
802.11b Mode

Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Low	2412	15.474		
Middle	2437	15.824		
High	2462	15.935		

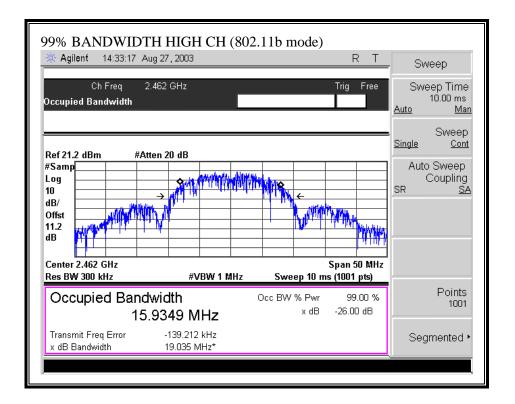
802.11g Normal Mode


Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.626
Middle	2437	16.687
High	2462	16.507

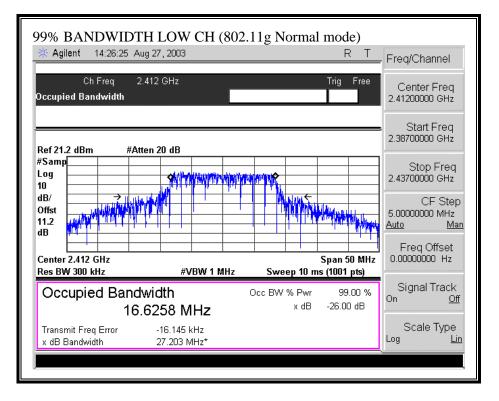
802.11g Turbo Mode


Channel	Frequency	99% Bandwidth		
	(MHz)	(MHz)		
Middle	2437	33.799		

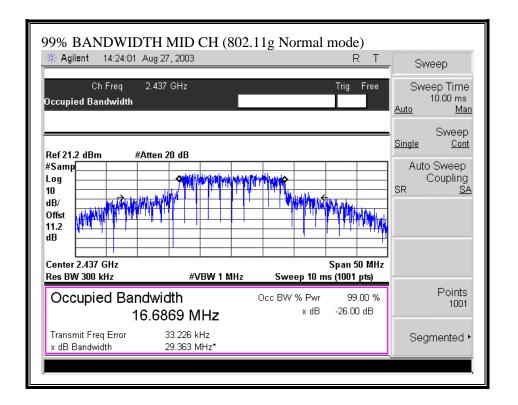
Page 19 of 97


99% BANDWIDTH (802.11b MODE)

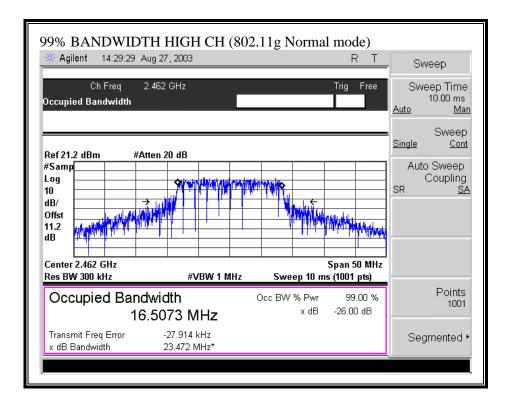
Page 20 of 97



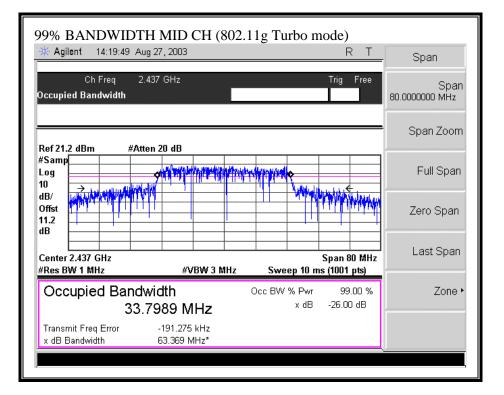
Page 21 of 97



Page 22 of 97


99% BANDWIDTH (802.11g NORMAL MODE)

Page 23 of 97



Page 24 of 97

Page 25 of 97

99% BANDWIDTH (802.11g TURBO MODE)

Page 26 of 97

7.3. PEAK OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

\$15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 1.8 dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth.

Page 27 of 97

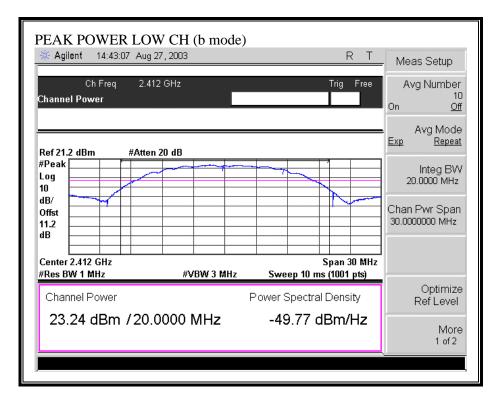
RESULTS

No non-compliance noted:

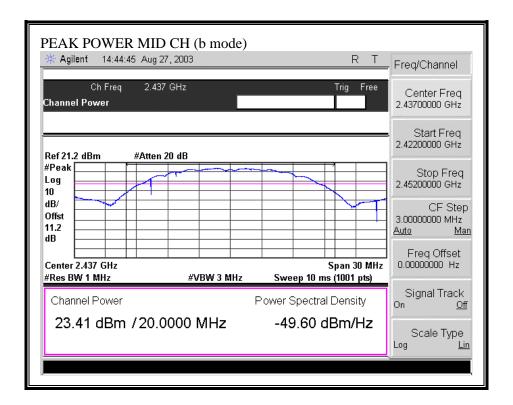
802.11b Mode

Channel	Frequency	Peak Power	Limit	Margin	
	(MHz)	(MHz) (dBm)		(dB)	
Low	2412	23.24	30	-6.76	
Middle	2437	23.41	30	-6.59	
High	2462	23.19	30	-6.81	

802.11g Normal Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz) (dBm)		(dBm)	(dB)
Low	2412	22.24	30	-7.76
Middle	2437	25.25	30	-4.75
High	2462	21.15	30	-8.85

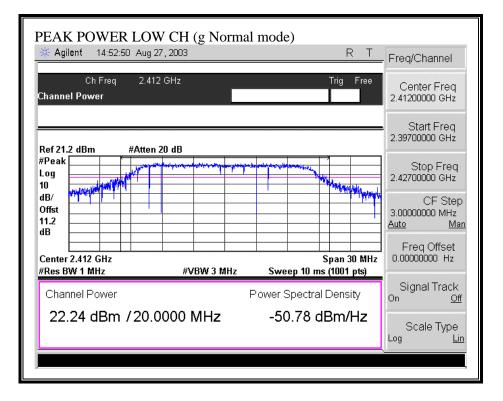
802.11g Turbo Mode


Channel	Frequency	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	23.94	30	-6.06

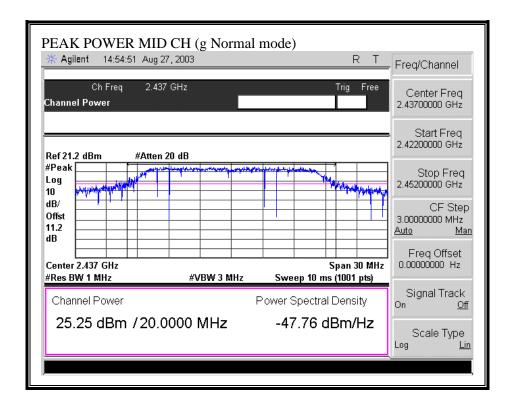
Page 28 of 97

OUTPUT POWER (802.11b MODE)

Page 29 of 97



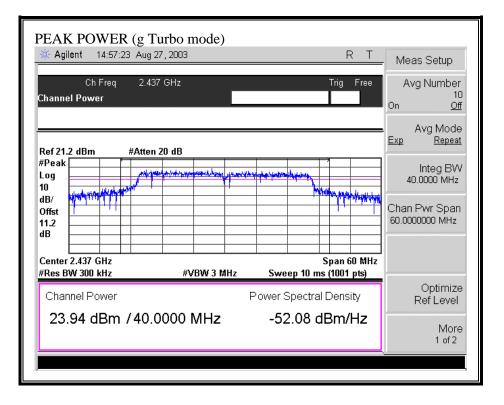
Page 30 of 97


PEAK POWER HIGH CH (b mode)		
# Agilent 14:46:06 Aug 27, 2003 R T	Freq/Channel	
Ch Freq 2.462 GHz Trig Free Channel Power	Center Freq 2.46200000 GHz	
 Ref 21.2 dBm #Atten 20 dB	Start Freq 2.44700000 GHz	
#Peak Log 10	Stop Freq 2.47700000 GHz	
dB/	CF Step 3.0000000 MHz <u>Auto Man</u>	
Center 2.462 GHz Span 30 MHz #Res BW 1 MHz #VBW 3 MHz Sweep 10 ms (1001 pts)	Freq Offset 0.00000000 Hz	
Channel Power Spectral Density	Signal Track On <u>Off</u>	
23.19 dBm / 20.0000 MHz -49.82 dBm/Hz	Scale Type Log <u>Lin</u>	

Page 31 of 97

OUTPUT POWER (802.11g NORMAL MODE)

Page 32 of 97



Page 33 of 97

PEAK POWER HIGH C		al mode)			
🔆 Agilent 14:51:08 Aug 27, 200	3		R T	, Sw	еер
Ch Freq 2.462 GHz Channel Power			Trig Free		ep Time 10.00 ms <u>Man</u>
Ref 21.2 dBm #Atten 20 dB				Single	Sweep <u>Cont</u>
#Peak					Sweep Coupling <u>SA</u>
Center 2.462 GHz #Res BW 1 MHz	VBW 3 MHz	Sweep 10 m	Span 30 MHz s (1001 pts)		
Channel Power		Power Spectra	l Density		Points 1001
21.15 dBm /20.0000	MHz	-51.86 c	lBm/Hz	Seg	mented •

Page 34 of 97

OUTPUT POWER (802.11g TURBO MODE)

Page 35 of 97

7.4. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$15.247 (b) (5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See \$1.1307(b)(1) of this chapter.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = distance in meters

S = Power Density in milliwatts / square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of mW and cm, using:

P(mW) = P(W) / 1000 andd (cm) =100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

 $\label{eq:generalized_state} \begin{array}{l} d = distance \ in \ cm \\ P = Power \ in \ mW \\ G = Numeric \ antenna \ gain \\ S = Power \ Density \ in \ mW \ / \ cm^2 \end{array}$

Page 36 of 97

Substituting the logarithmic form of power and gain using:

200500	$P(mW) = 10 ^ (P(dBm) / 10) and$	
	G (numeric) = $10 \wedge (G (dBi) / 10)$	
yields		
	$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$	Equation (1)
where		
	d = MPE distance in cm	
	P = Power in dBm	
	G = Antenna Gain in dBi	
	$S = Power Density Limit in mW / cm^2$	

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

 $S = 1.0 \text{ mW} / \text{cm}^2 \text{ from } 1.1310 \text{ Table } 1$

RESULTS

No non-compliance noted:

Mode	Power Density Limit	Output Power	Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	23.41	1.80	5.14
802.11g Normal	1.0	25.25	1.80	6.35
802.11g Turbo	1.0	23.94	1.80	5.46

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

Page 37 of 97

7.5. AVERAGE POWER

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 20 dB (including 20 dB pad and 0 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

802.11b Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	20.26
Middle	2437	20.07
High	2462	20.14

802.11g Normal Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2412	16.91
Middle	2437	20.15
High	2462	15.94

802.11g Turbo Mode

Channel	Frequency	Average Power
	(MHz)	(dBm)
Middle	2437	20.20

Page 38 of 97

7.6. PEAK POWER SPECTRAL DENSITY

<u>LIMIT</u>

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW > 3 kHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

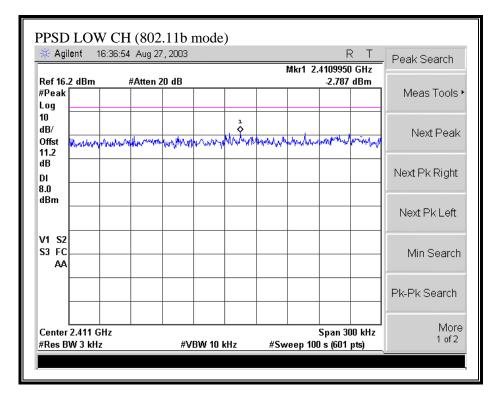
RESULTS

No non-compliance noted:

802.11b Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-2.79	8	-10.79
Middle	2437	-3.30	8	-11.30
High	2462	-2.76	8	-10.76

802.11g Normal Mode


Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-7.27	8	-15.27
Middle	2437	-1.32	8	-9.32
High	2462	-7.65	8	-15.65

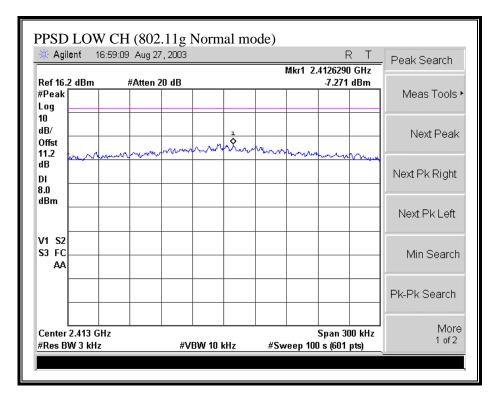
802.11g Turbo Mode

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	-1.75	8	-9.75

Page 39 of 97

PEAK POWER SPECTRAL DENSITY (802.11b MODE)

Page 40 of 97


🔆 Agilı	ent	10.41.30	6 Aug 27	,2003				Mkr1 2.	F	· ·	Peak Search
Ref 16.2	dBm		#Atten 2	0 dB				WINI 2.	-3.302		
#Peak											Meas Tools
Log 10											
dB/				In stores			No. Inc		. I. ataa	to all Dates	Next Peak
Offst 11.2	(Wunde Ann	alt alterna	human	mon and a factor	MAN MAN	1 A MANU	an dhanan an	unhanna	yhti'n the second	ww.ewa	
dB											Next Pk Right
DI 8.0											Nozer Krught
dBm											
											Next Pk Left
V1 S2											
S3 FC											Min Search
											Pk-Pk Search
L Center 3	2.435 (i GHz							Span 30		More
#Res B\				#VI	BW 10 I	kHz	#Sw	eep 100			1 of 2

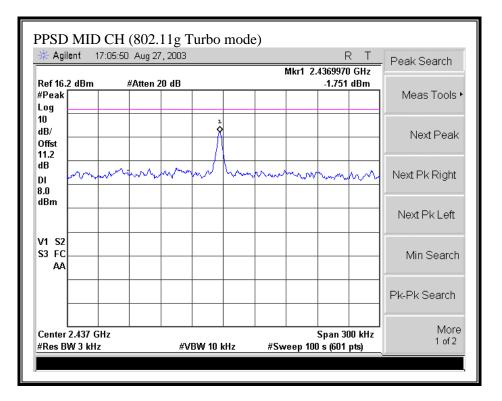
Page 41 of 97

🔆 Agilent	16:47:	17 Aug 27, 20	03					Т	Peak Search
Ref 16.2 d	Dm	#Atten 20 d	в		I	Mkr1 2.	4610985 0 -2.757 d		
#Peak		#Allen zu u	<u> </u>				-2.757 u		Meas Tools
Log 10			_						
dB/									Next Peak
Offst 11.2	www.www.wertyando	wanter	with the the state of the state	Approx and and	an the second	h'un Marta	What have and	hel have by	
dB									
DI									Next Pk Right
8.0 dBm									
									Next Pk Left
V1 S2 S3 FC									Min Search
AA									Will Search
									Pk-Pk Search
Center 2.4	61 GHz		I				Span 300	kHz	More
#Res BW 3	3 kHz		#VBW 10	kHz	#Sw	eep 100	s (601 pt	s)	1 of 2

Page 42 of 97

PEAK POWER SPECTRAL DENSITY (802.11g NORMAL MODE)

Page 43 of 97


🔆 Agilent 17	7:02:26 Aug 27, 2003			R T Peak Search
Ref 16.2 dBm	#Atten 20 dB		Mkr1 2.4369970 -1.315	
#Peak				Meas Tools
Log 10		1		
dB/		8		Next Peak
Offst 11.2				
	mound	- when	man	Next Pk Right
DI				
dBm				
				Next Pk Left
V1 S2				
S3 FC				Min Search
				Pk-Pk Search
Center 2.437 GI	Hz		Span 3	More More
#Res BW 3 kHz		/BW 10 kHz	#Sweep 100 s (601	

Page 44 of 97

	I CH (802.11g No 55:15 Aug 27, 2003		RТ	- Peak Search
		Mkr1	2.4644950 GHz	- r curcoedicii
Ref 16.2 dBm #Peak Log	#Atten 20 dB		-7.652 dBm	Meas Tools •
10 dB/ Offst 11.2	an melaniman	-	mm	Next Peak
dB ~~~~~			0.00000	Next Pk Right
dBm				Next Pk Left
V1 S2 S3 FC AA				Min Search
				Pk-Pk Search
Center 2.464 GH #Res BW 3 kHz	z #VBW	10 kHz #Sweep	Span 300 kHz 100 s (601 pts)	More 1 of 2

Page 45 of 97

PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)

Page 46 of 97

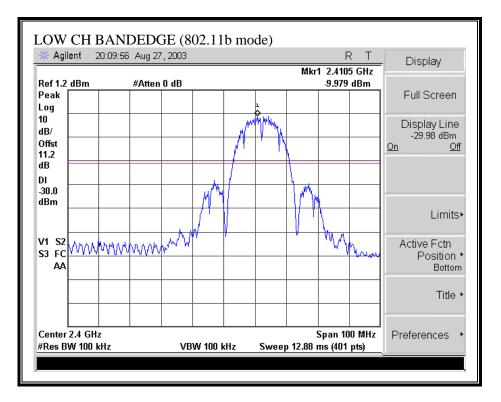
7.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

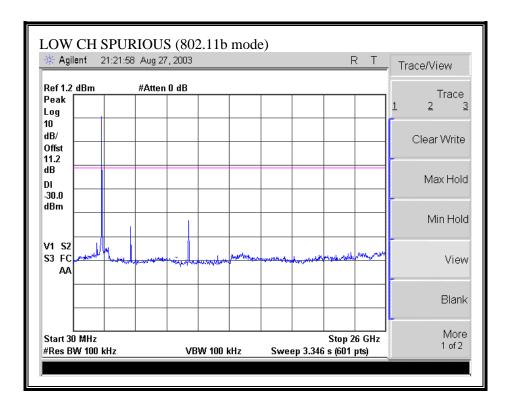
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

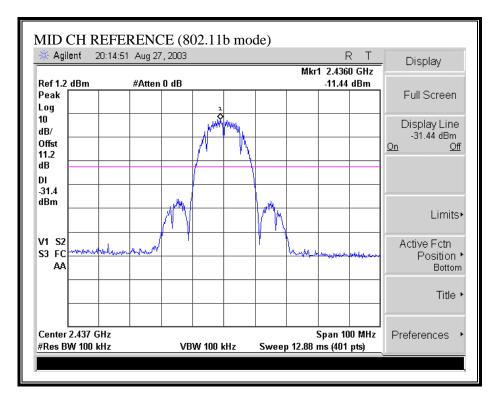

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS


No non-compliance noted:

Page 47 of 97

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)



Page 48 of 97

Page 49 of 97

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

Page 50 of 97