

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

802.11b/g WIRELESS ROUTER

MODEL NUMBER: WGR614v2

BRAND NAME: NETGEAR

FCC ID: PY3WGR614V2

REPORT NUMBER: 03U1974-1

ISSUE DATE: JUNE 12, 2003

Prepared for
NETGEAR INC.
4500 GREAT AMERICA PARKWAY
SANTA CLARA
CA, 95054, USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA

TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1. T	TEST RESULT CERTIFICATION	3
2. E	EUT DESCRIPTION	4
3. T	TEST METHODOLOGY	5
4. F.	FACILITIES AND ACCREDITATION	5
4.1.	FACILITIES AND EQUIPMENT	5
4.2.	TABLE OF ACCREDITATIONS AND LISTINGS	6
5. C	CALIBRATION AND UNCERTAINTY	7
5.1.	MEASURING INSTRUMENT CALIBRATION	7
5.2.	MEASUREMENT UNCERTAINTY	7
5.3.	TEST AND MEASUREMENT EQUIPMENT	8
6. S	SETUP OF EQUIPMENT UNDER TEST	9
7. A	APPLICABLE RULES AND TEST RESULTS	
7.1.	6 dB BANDWIDTH	
7.2.	OUTPUT POWER	21
7.3.	MAXIMUM PERMISSIBLE EXPOSURE	23
7.4.	PEAK POWER SPECTRAL DENSITY	
7.5.	CONDUCTED SPURIOUS EMISSIONS	
7.6.	RADIATED EMISSIONS	
7.7.	POWERLINE CONDUCTED EMISSIONS	83
Q C1	SETTID DUOTOS	97

1. TEST RESULT CERTIFICATION

COMPANY NAME: NETGEAR INC.

4500 GREAT AMERICA PARKWAY SANTA CLARA, CA 95054, USA

EUT DESCRIPTION: 802.11b/g WIRELESS ROUTER

MODEL: WGR614v2

DATE TESTED: MAY 14 – JUNE 7, 2003

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 15 SUBPART C NO NON-COMPLIANCE NOTED

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Approved & Released For CCS By:

Tested By:

MIKE HECKROTTE CHIEF ENGINEER

MH

COMPLIANCE CERTIFICATION SERVICES

NEELESH RAJ EMC ENGINEER

ML B

COMPLIANCE CERTIFICATION SERVICES

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

2. EUT DESCRIPTION

The EUT is an 802.11b/g access point operating in the 2400 to 2483.5 MHz range. It has a peak output power of 26.5 dBm (447 mW) and an antenna gain of 1.8 dBi.

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

4. FACILITIES AND ACCREDITATION

4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

4.2. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	高 SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

TEST AND MEASUREMENT EQUIPMENT LIST					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date	
Quasi-Peak Adapter	HP	85650A	2521A01038	7/16/04	
SA Display Section	HP	85662A	2314A04793	7/16/04	
SA RF Section	HP	85680A	2314A02604	7/16/04	
Horn Antenna (1 - 18GHz)	EMCO	3115	6739	2/4/04	
Antenna, Biconical	Eaton	94455-1	1214	3/6/04	
Antenna, Log Periodic 200- 1000MHz	EMCO	3146	9107-3163	3/06/04	
Preamplifier	Miteq	NSP10023988	646456	4/26/04	
Spectrum Analyzer	HP	8564E	3943A01643	7/22/03	
High Pass Filter (4.57GHz)	FSY Microwave	FM-4570-9SS	003	N.C.R.	
Spectrum Analyzer	Agilent	E4446A	US42070220	03/01/04	
Power Meter	Agilent	E4416A	GB41291150	08/09/03	
Power Sensor	Agilent	E9327A	US40440755	08/09/03	

6. SETUP OF EQUIPMENT UNDER TEST

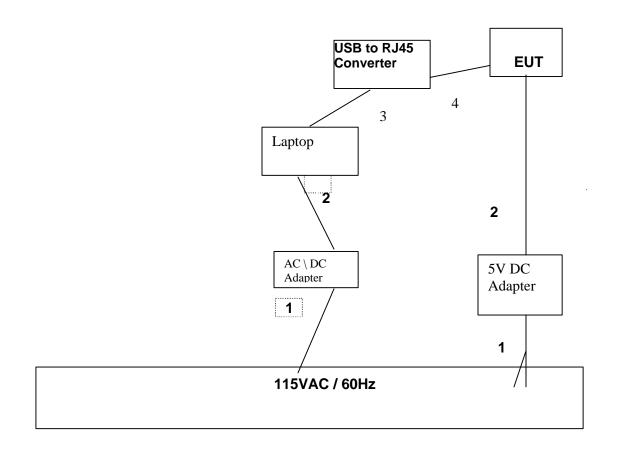
SETUP INFORMATION FOR TRANSMITTER TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Device Type Manufacturer Model Serial Number FCC ID					
Laptop	Toshiba	NA	J291200E8019	Doc	
Power Adapter	Toshiba	PA3083U-1ACA	0536906G	Doc	
USB to RJ45 Converter	Netgear	FA101	NA	DOC	
	G : 1:	D11G 0 60200 1	0210	200	
5V DC power adapter	Switching Adapter	RHC-060200-1	0319	DOC	

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2


I/O CABLES

Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical	Type	Type	Length	
		Ports				
1	AC	2	US115V	Un-Shielded	2m	NA
2	DC	2	DC	Un-Shielded	2m	Integral with adapter
2	USB	1	USB	Un-Shielded	2m	NA
4	RJ45	2	RJ45	Un-Shielded	2m	NA

TEST SETUP

The EUT was controlled by the laptop via the USB to Ethernet adapter.

SETUP DIAGRAM FOR TRANSMITTER TESTS

Page 10 of 93

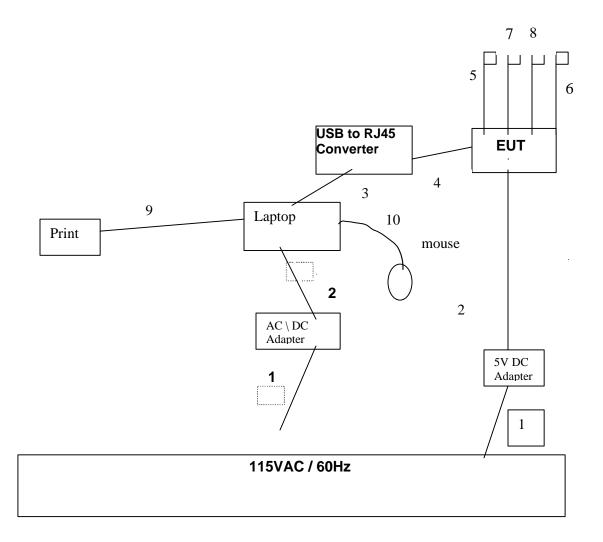
SETUP INFORMATION FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Device Type	Manufacturer	Model	Serial Number	FCC ID		
Laptop	Toshiba	NA	J291200E8019	Doc		
Power Adapter	Toshiba	PA3083U-1ACA	0536906G	Doc		
MOUSE	HP	M-S34	LZB75062022	DZL211029		
PRINTER	HP	2225C	2541S41679	BS46XU2225C		
USB to RJ45	Netgear	FA101	NA	DOC		
Converter						
5V DC power adapter	Switching Adapter	RHC-060200-1	0319	DOC		

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2


I/O CABLES

Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical	Type	Type	Length	
		Ports				
1	AC	2	US115V	Un-Shielded	2m	NA
2	DC	2	DC	Un-Shielded	2m	Integral with adapter
3	USB	1	USB	Shielded	2m	NA
4	RJ45	2	RJ45	Un-Shielded	2m	NA
5	RJ45	2	RJ45	Un-Shielded	5m	NA
6	RJ45	2	RJ45	Un-Shielded	5m	NA
7	RJ45	2	RJ45	Un-Shielded	5m	NA
8	RJ45	2	RJ45	Un-Shielded	5m	NA
9	Parallel	1	DB25	Un-Shielded	2m	NA
10	Mouse	1	Mini	Shielded	1m	Integral with mouse

TEST SETUP

The EUT was controlled by the laptop via the USB to Ethernet adapter.

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

Page 12 of 93

7. APPLICABLE RULES AND TEST RESULTS

7.1. 6 dB BANDWIDTH

LIMIT

§15.247 (a) (2) For direct sequence systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

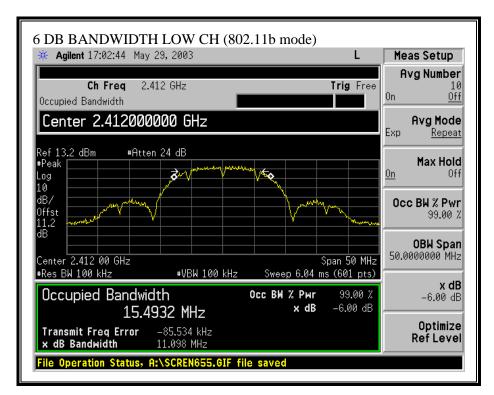
RESULTS

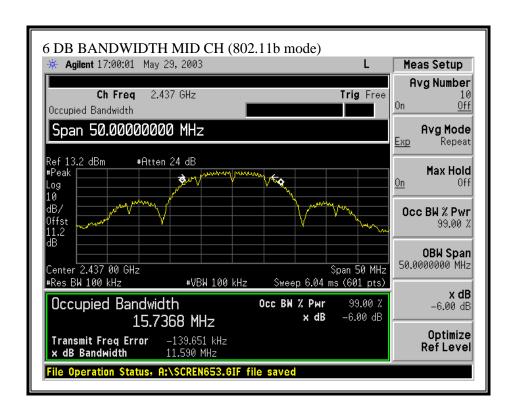
No non-compliance noted:

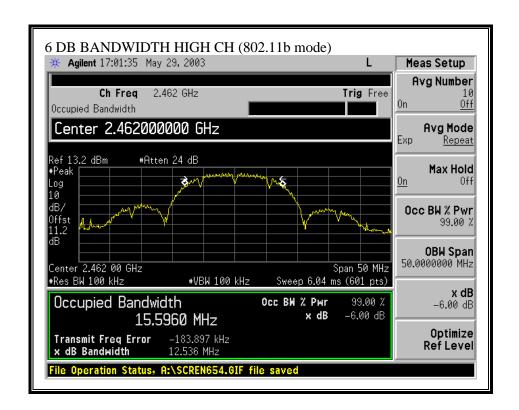
802.11b Mode

002,1101,1000							
Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin			
	(MHz)	(kHz)	(kHz)	(kHz)			
Low	2412	11098	500	10598			
Middle	2437	11590	500	11090			
High	2462	12536	500	12036			

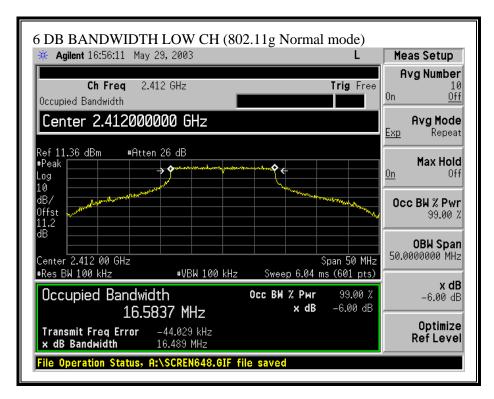
802.11g Normal Mode

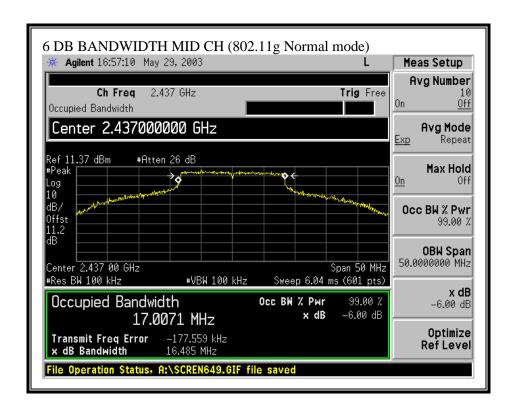

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Low	2412	16489	500	15989
Middle	2437	16485	500	15985
High	2462	16511	500	16011

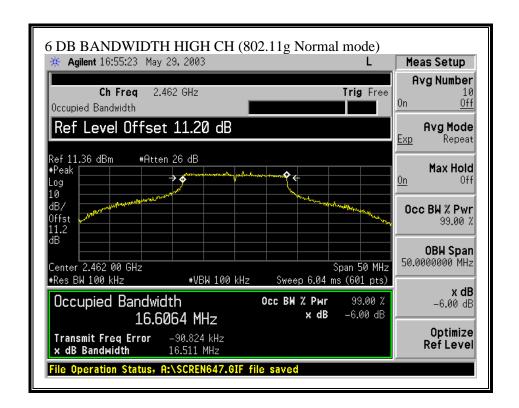

802.11g Turbo Mode

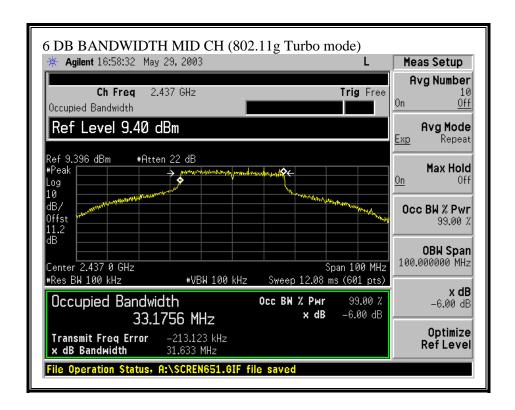

Channel	Frequency	6 dB Bandwidth	Minimum Limit	Margin
	(MHz)	(kHz)	(kHz)	(kHz)
Middle	2437	31633	500	31133

DATE: JUNE 12, 2003 FCC ID: PY3WGR614V2


6 DB BANDWIDTH (802.11b MODE)






6 DB BANDWIDTH (802.11g NORMAL MODE)

6 DB BANDWIDTH (802.11g TURBO MODE)

7.2. OUTPUT POWER

PEAK POWER LIMIT

§15.247 (b) The maximum peak output power of the intentional radiator shall not exceed the following:

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

\$15.247 (b) (3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz , and 5725-5850 MHz bands: 1 watt.

§15.247 (b) (4) Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The maximum antenna gain is 1.8 dBi, therefore the limit is 30 dBm.

AVERAGE POWER LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter. The power meter is set to simultaneously read peak power and average power.

RESULTS

No non-compliance noted:

The cable assembly insertion loss of 11.2 dB (including 10 dB pad and 1.2 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

802.11b Mode

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	20.4	21.8	30	-8.2
Middle	2437	20	21.3	30	-8.7
High	2462	20	21.4	30	-8.6

802.11g Normal Mode

Channel	Frequency	Average Power	Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	2412	17.6	25	30	-5
Middle	2437	20	26.5	30	-3.5
High	2462	17.3	24.9	30	-5.1

802.11g Turbo Mode

Channel	l Frequency Average Power		Peak Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Middle	2437	19.6	25	30	-5

7.3. MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

§15.247 (b) (5) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See §1.1307(b)(1) of this chapter.

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G)} / d$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = distance in meters

S = Power Density in milliwatts / square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d = \sqrt{((30 * P * G) / (3770 * S))}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

d (cm) = 100 * d (m)

yields

$$d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$$

$$d = 0.282 * \sqrt{(P * G / S)}$$

where

d = distance in cm

P = Power in mW

revision section of the document.

G = Numeric antenna gain

 $S = Power Density in mW / cm^2$

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

DATE: JUNE 12, 2003 FCC ID: PY3WGR614V2

Substituting the logarithmic form of power and gain using:

 $P(mW) = 10 \land (P(dBm) / 10)$ and $G(numeric) = 10 \land (G(dBi) / 10)$

yields

 $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$

Equation (1)

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

 $S = Power Density Limit in mW / cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

 $S = 1.0 \text{ mW} / \text{cm}^2 \text{ from } 1.1310 \text{ Table } 1$

RESULTS

No non-compliance noted:

Mode	Power Density Limit	Output Power	Antenna Gain	MPE Distance
	(mW/cm^2)	(dBm)	(dBi)	(cm)
802.11b	1.0	21.80	1.80	4.27
802.11g Normal	1.0	26.50	1.80	7.33
802.11g Turbo	1.0	25.00	1.80	6.17

NOTE: For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

7.4. PEAK POWER SPECTRAL DENSITY

LIMIT

§15.247 (d) For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer, the maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3 kHz and VBW >= 3KHz, sweep time = span / 3 kHz, and video averaging is turned off. The PPSD is the highest level found across the emission in any 3 kHz band.

RESULTS

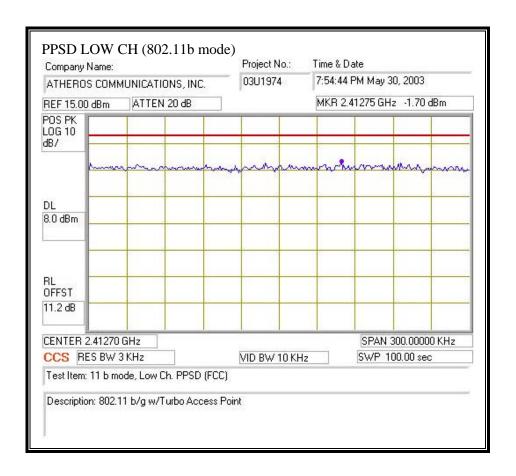
No non-compliance noted:

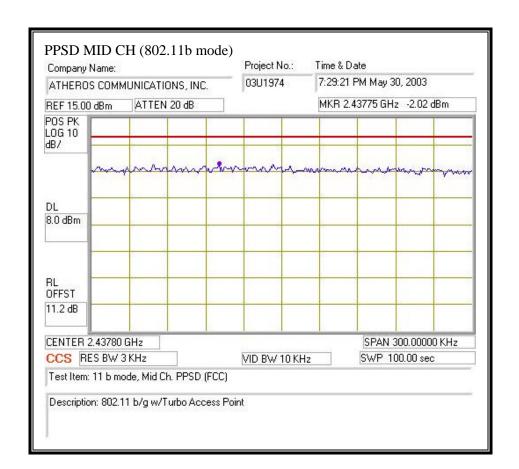
802.11b Mode

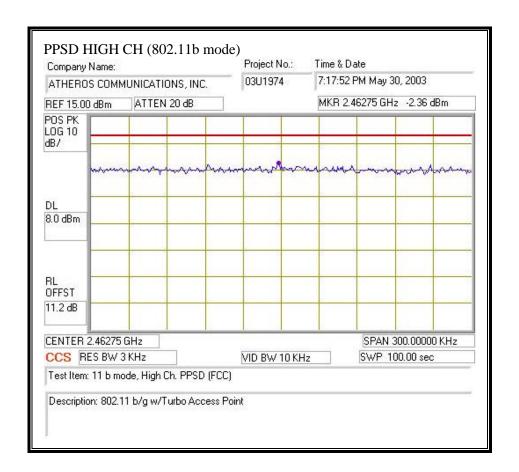
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-1.7	8	-9.7
Middle	2437	-2.02	8	-10.02
High	2462	-2.36	8	-10.36

802.11g Normal Mode

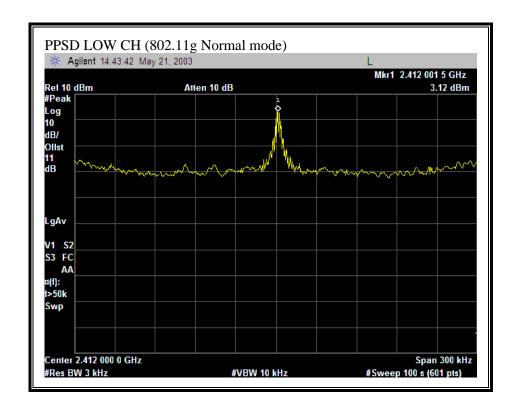
Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	3.12	8	-4.88
Middle	2437	3.88	8	-4.12
High	2462	1.96	8	-6.04

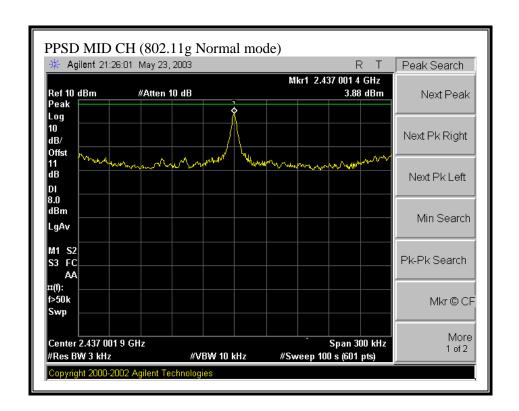

802.11g Turbo Mode

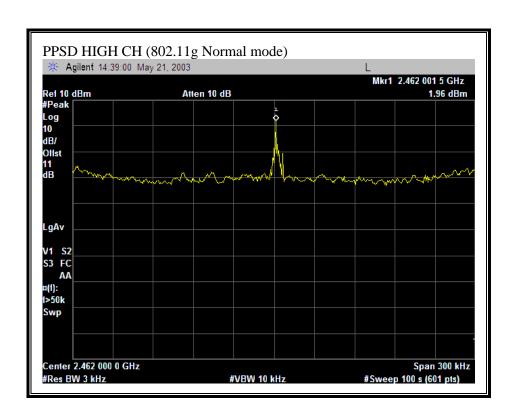

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Middle	2437	5.21	8	-2.79

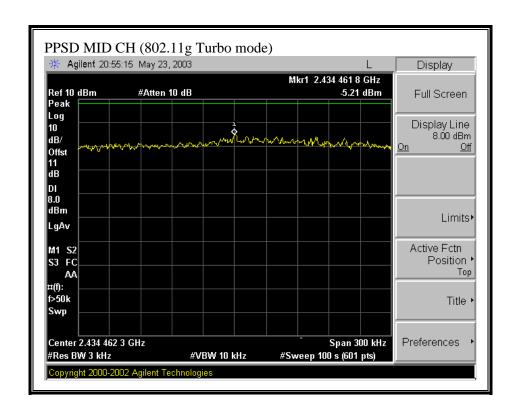

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2


PEAK POWER SPECTRAL DENSITY (802.11b MODE)






PEAK POWER SPECTRAL DENSITY (802.11g NORMAL MODE)

PEAK POWER SPECTRAL DENSITY (802.11g TURBO MODE)

7.5. CONDUCTED SPURIOUS EMISSIONS

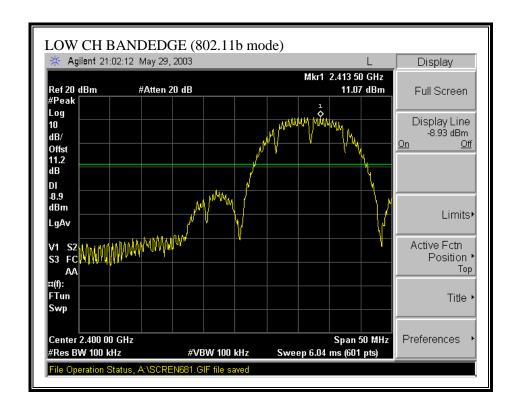
LIMITS

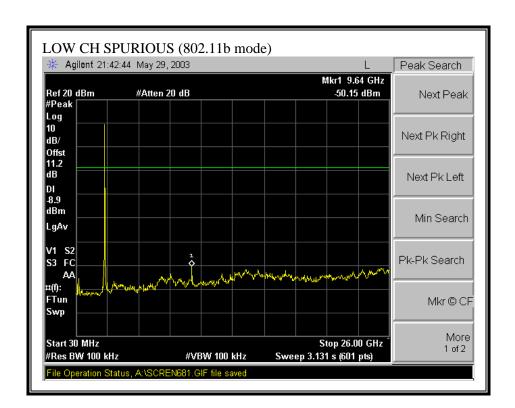
§15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

DATE: JUNE 12, 2003

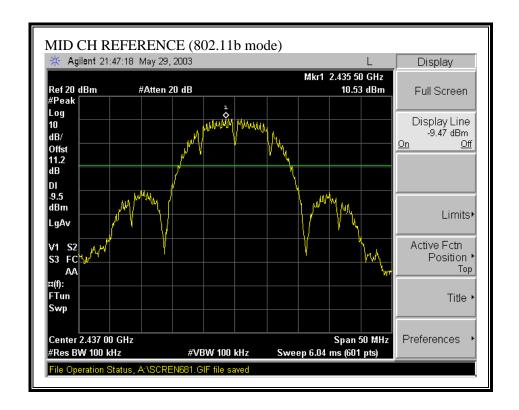
FCC ID: PY3WGR614V2

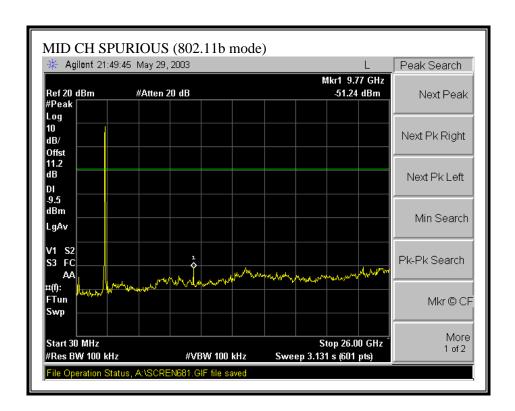
TEST PROCEDURE

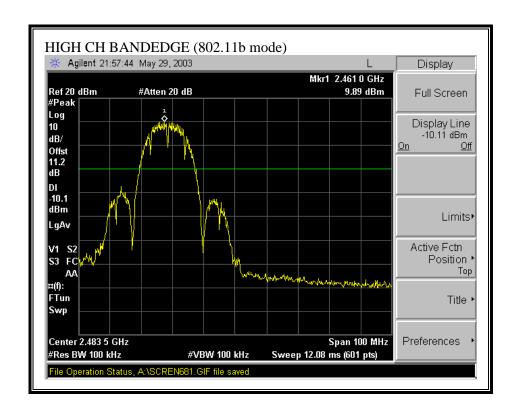

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 100 kHz.

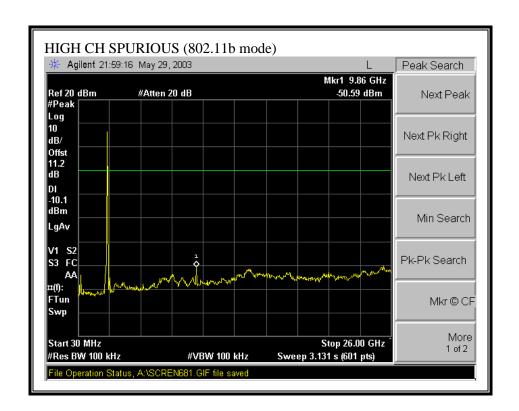

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

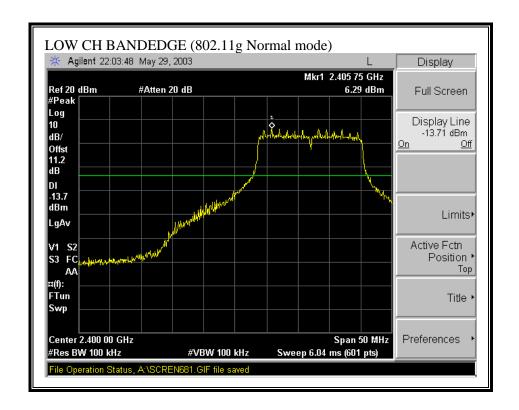
RESULTS

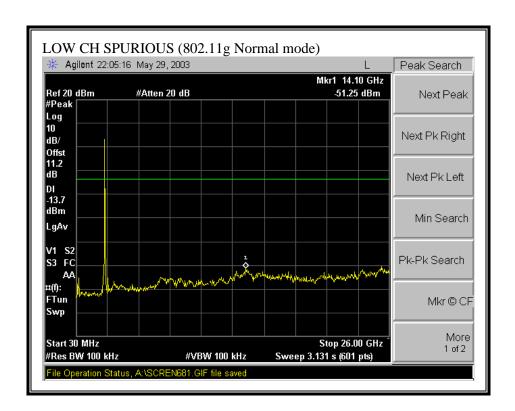

No non-compliance noted:

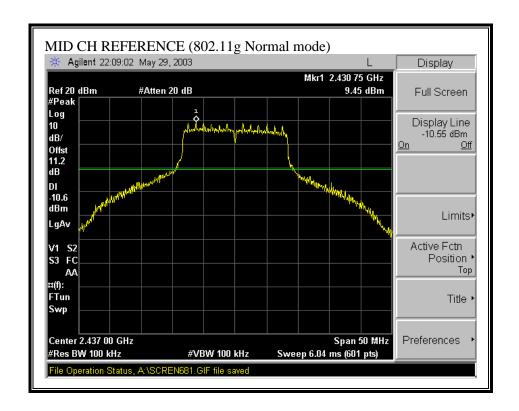

SPURIOUS EMISSIONS, LOW CHANNEL (802.11b MODE)

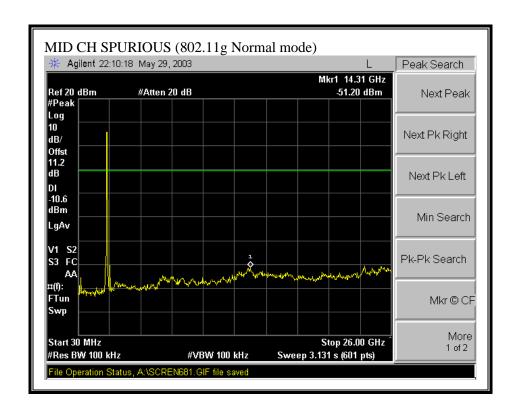


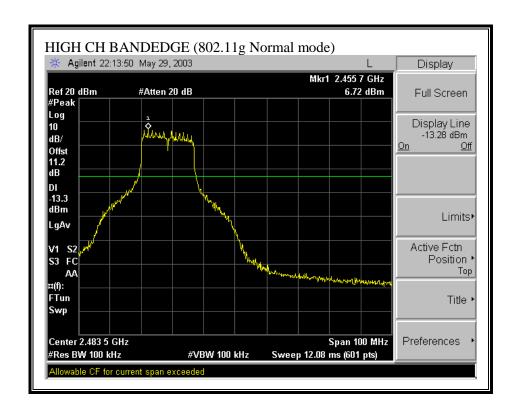

SPURIOUS EMISSIONS, MID CHANNEL (802.11b MODE)

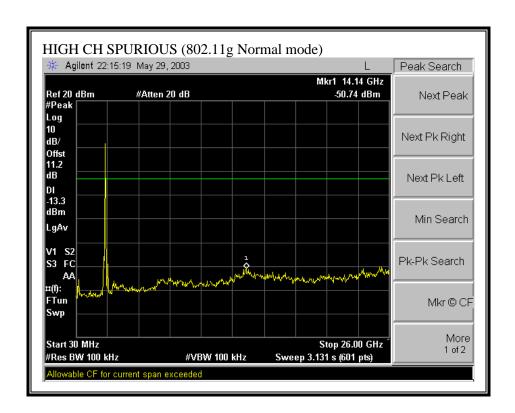


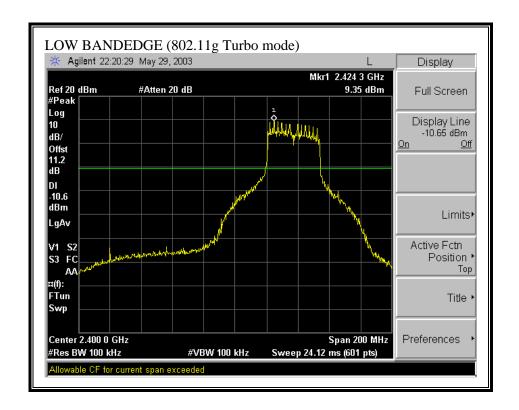

SPURIOUS EMISSIONS, HIGH CHANNEL (802.11b MODE)

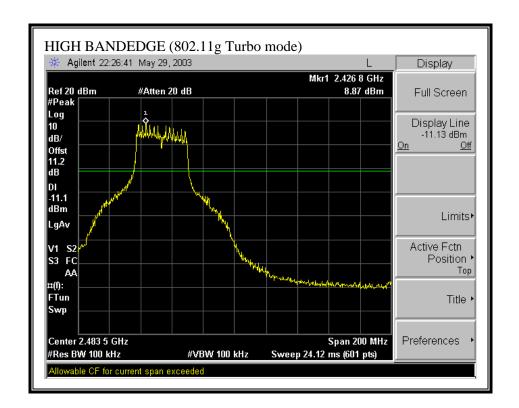


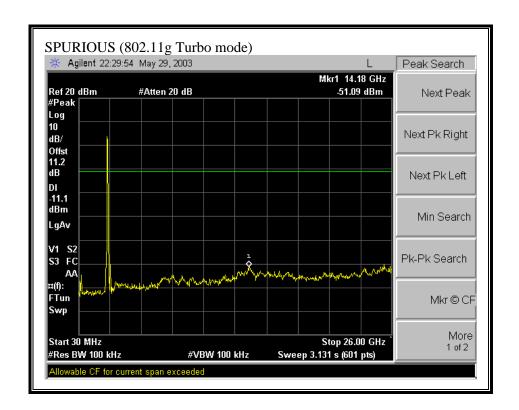

SPURIOUS EMISSIONS, LOW CHANNEL (802.11g NORMAL MODE)




SPURIOUS EMISSIONS, MID CHANNEL (802.11g NORMAL MODE)




SPURIOUS EMISSIONS, HIGH CHANNEL (802.11g NORMAL MODE)



SPURIOUS EMISSIONS, MID CHANNEL (802.11g TURBO MODE)

7.6. RADIATED EMISSIONS

LIMITS

§15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	$\binom{2}{}$
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

§15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

DATE: JUNE 12, 2003

FCC ID: PY3WGR614V2

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

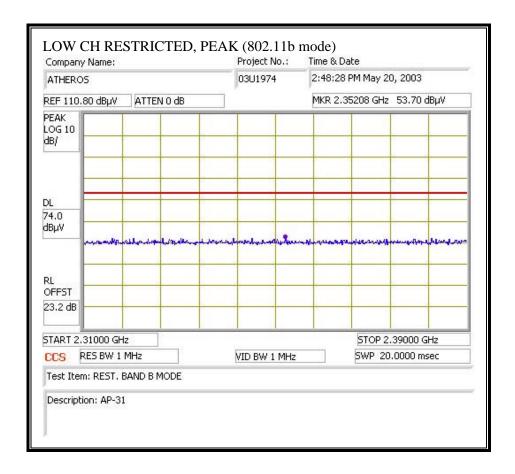
TEST PROCEDURE

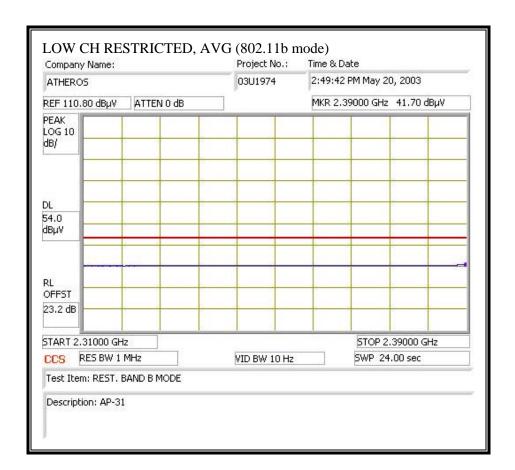
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

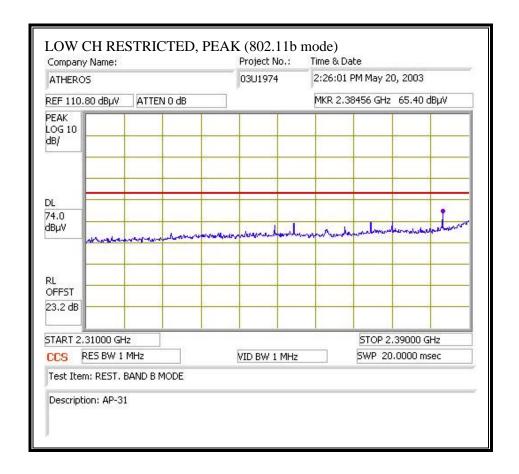
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

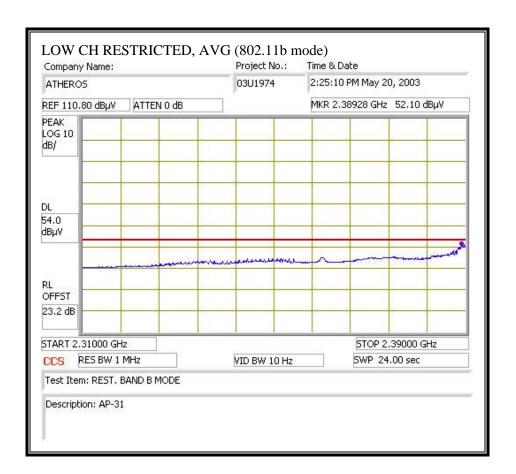
The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

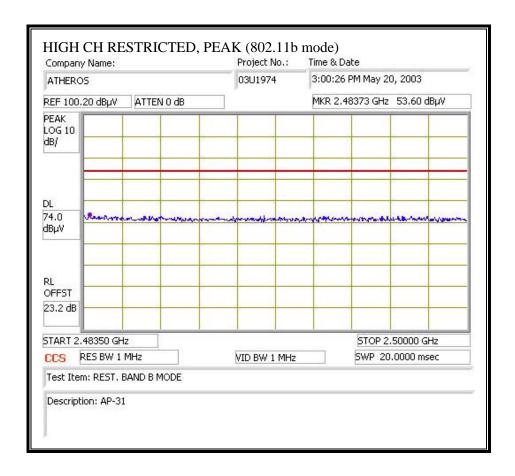

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

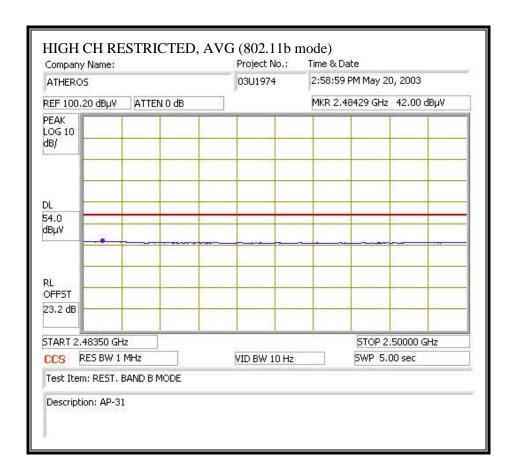

RESULTS

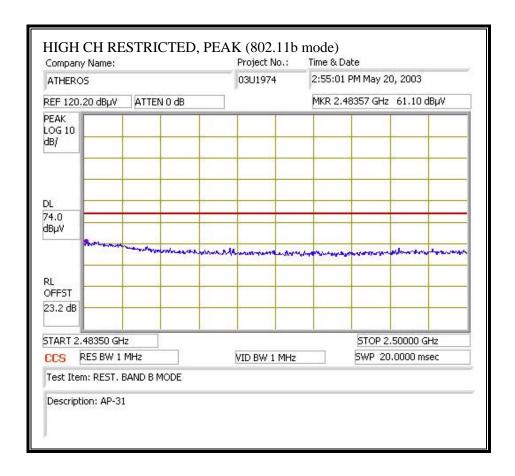
No non-compliance noted:

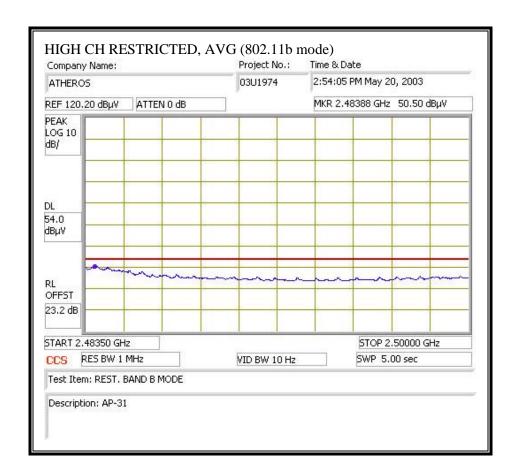

Page 50 of 93

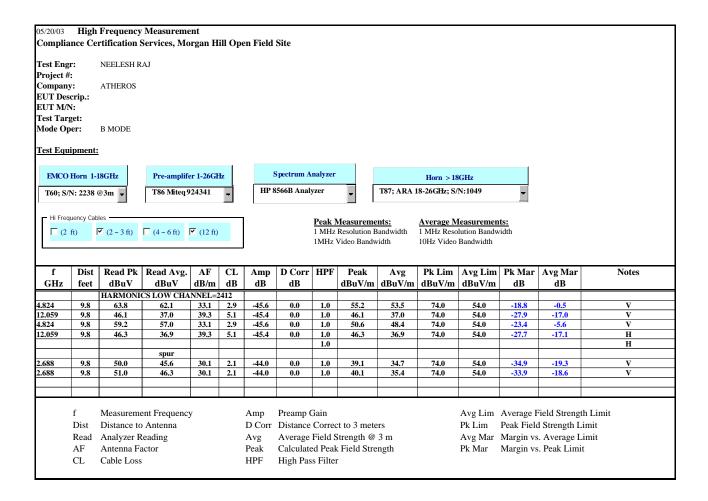

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, HORIZONTAL)



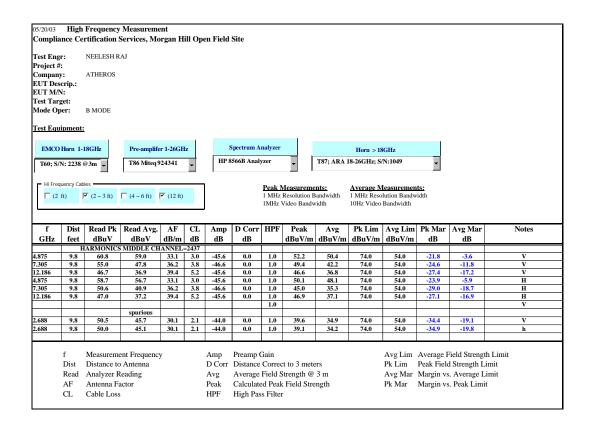

RESTRICTED BANDEDGE (b MODE, LOW CHANNEL, VERTICAL)




RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, HORIZONTAL)



RESTRICTED BANDEDGE (b MODE, HIGH CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS (b MODE, LOW CHANNEL)

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

HARMONICS AND SPURIOUS EMISSIONS (b MODE, MID CHANNEL)

