Report No.: ES/2004/90001 Page: 34 of 39

Probe ET3DV6

SN:1760

Manufactured:

November 12, 2002

Last calibrated:

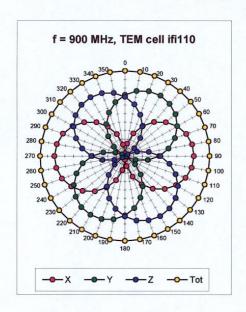
March 7, 2003

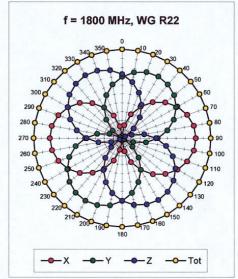
Recalibrated:

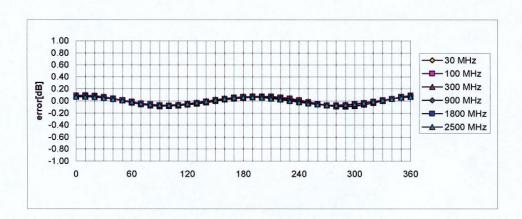
February 17, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

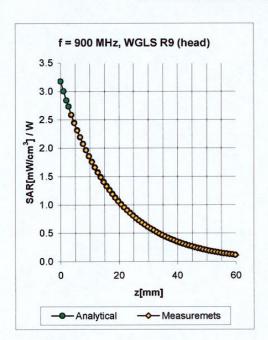

Report No.: ES/2004/90001

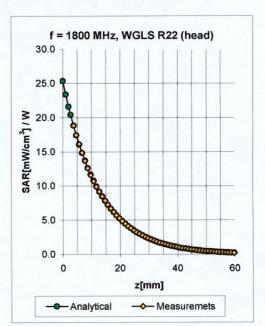

Page: 35 of 39


ET3DV6 SN:1760

February 17, 2004

Receiving Pattern (ϕ) , θ = 0°


Axial Isotropy Error < ± 0.2 dB


Page: 36 of 39

ET3DV6 SN:1760

February 17, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	800-1000	Head	41.5 ± 5%	0.97 ± 5%	0.51	1.96	6.34 ± 11.3% (k=2)
1800	1710-1890	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.36	5.13 ± 10.9% (k=2)
1900	1805-1995	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.42	5.10 ± 11.1% (k=2)
900	800-1000	Body	55.0 ± 5%	1.05 ± 5%	0.43	2.21	6.04 ± 11.3% (k=2)
1800	1710-1890	Body	53.3 ± 5%	1.52 ± 5%	0.60	2.56	4.56 ± 10.9% (k=2)
1900	1805-1995	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.76	4.43 ± 11.1% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.47	1.45	4.18 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Report No. : ES/2004/90001 Page : 37 of 39

Uncertainty Analysis

DASY4 Uncertainty Budget According to IEEE P1528 [1]

	Accordi	ng to 11	EEE P	1528	[1]			
	Uncertainty	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±4.8 %	N	1	1	1	$\pm 4.8 \%$	±4.8 %	∞
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	0.7	0.7	$\pm 1.9 \%$	$\pm 1.9 \%$	∞
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	$\pm 3.9 \%$	±3.9 %	∞
Boundary Effects	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	±0.6 %	∞
Linearity	$\pm 4.7 \%$	R	$\sqrt{3}$	1	1	$\pm 2.7 \%$	±2.7 %	∞
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	±0.6 %	∞
Readout Electronics	±1.0 %	N	1	1	1	$\pm 1.0 \%$	±1.0 %	∞
Response Time	±0.8 %	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	±0.5 %	∞
Integration Time	$\pm 2.6 \%$	R	$\sqrt{3}$	1	1	$\pm 1.5 \%$	±1.5 %	∞
RF Ambient Conditions	±3.0 %	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	$\pm 1.7 \%$	∞
Probe Positioner	$\pm 0.4 \%$	R	$\sqrt{3}$	1	1	$\pm 0.2 \%$	±0.2 %	∞
Probe Positioning	$\pm 2.9 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	±1.7 %	∞
Max. SAR Eval.	±1.0 %	R	$\sqrt{3}$	1	1	$\pm 0.6 \%$	±0.6 %	∞
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	$\pm 2.9 \%$	±2.9 %	875
Device Holder	±3.6 %	N	1	1	1	$\pm 3.6 \%$	±3.6 %	5
Power Drift	±5.0 %	R	$\sqrt{3}$	1	1	$\pm 2.9 \%$	±2.9 %	∞
Phantom and Setup								
Phantom Uncertainty	±4.0 %	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	$\pm 2.3 \%$	∞
Liquid Conductivity (target)	±5.0 %	R	$\sqrt{3}$	0.64	0.43	$\pm 1.8 \%$	$\pm 1.2 \%$	∞
Liquid Conductivity (meas.)	$\pm 2.5 \%$	N	1	0.64	0.43	$\pm 1.6 \%$	±1.1 %	∞
Liquid Permittivity (target)	±5.0 %	R	$\sqrt{3}$	0.6	0.49	$\pm 1.7 \%$	$\pm 1.4 \%$	∞
Liquid Permittivity (meas.)	$\pm 2.5 \%$	N	1	0.6	0.49	$\pm 1.5 \%$	$\pm 1.2 \%$	∞
Combined Std. Uncertainty						$\pm 10.3 \%$	±10.0 %	331
Expanded STD Uncertain	ity	÷			-	$\pm 20.6\%$	$\pm 20.1\%$	

Report No.: ES/2004/90001

Page: 38 of 39

Phantom description

Schmid & Par Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41

Certificate of conformity / First Article Inspection

Item .	SAM Twin Phantom V4.0	
Type No	QD 000 P40 CA	
Series No	TP-1150 and higher	3
Manufacturer / Origin	Untersee Composites	
	Hauptstr. 69	± ± ±
3	CH-8559 Fruthwilen	
** _ - =	Switzerland	

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series with (2015) using further series units (called samples).

		Details	Units tested
Test Shape	Requirement Compliance with the geometry	IT'IS CAD File (*)	First article, Samples
Material thickness	according to the CAD model. Compliant with the requirements	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	according to the standards Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800	Pre-series, First article

Standards

CENELEC EN 50361

IEEE P1528-200x draft 6.5

*IEC PT 62209 draft 0.9

The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

Engineering AG

Schmid & Part

F. Rumbult

Report No.: ES/2004/90001

Page: 39 of 39

System Validation from Original equipment supplier SPEAG Schmid & Partner

Page 1 of 1

Date/Time: 03/23/04 10:56:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN727

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: Muscle 2450 MHz;

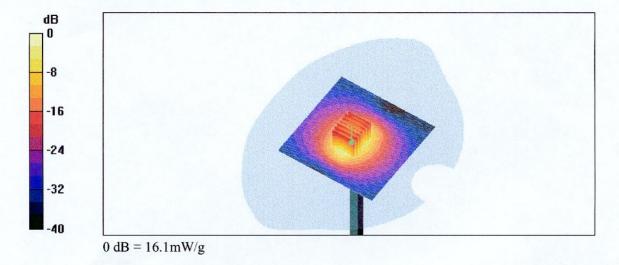
Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3013; ConvF(4.02, 4.02, 4.02); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 89.7 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 17 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.7 V/m; Power Drift = 0.0 dB

Maximum value of SAR (measured) = 16.1 mW/g Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 14.2 mW/g; SAR(10 g) = 6.62 mW/g

