Measurement of Maximum Permissible Exposure

1. Foreword

In adopt with the Human Exposure IEEE C95.1, and according to the FCC 1.1310. The Maximum Permissible Exposure (MPE) is obligated to measure in order to prove the safety of radiation harmfulness to the human body.

The Gain of the antenna used is measured in an anechoic chamber. The maximum total power to the antenna is to be recorded. By adopting the Friis Transmission Formula and the power gain of the antenna, we can find the distance right away from the product, where the limit of the MPE is.

2. Description of EUT

Granted FCC ID	PY3WG311V2
Product name	IEEE 802.11g Wireless PCI Adapter
Model name	WG311 v2
Classification	Mobile Device (i) Under normal use condition, the antenna is at from the user; (ii) Warning statement for keeping 20 cm separatio the prohibition of operating next to the person ha the user's manual
Frequency Range	$2.412 \mathrm{GHz} \sim 2.462 \mathrm{GHz}$
Supported Channel	11 Channels
Modulation Skill	DBPSK, DQPSK, CCK, OFDM
Power Type	Powered by PCI interface of the client's device

3. Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Filed Strength (H) (A/m)	Power Density (S) $(\mathrm{mW} / \mathrm{cm} 2)$	Averaging Time $\|E\|^{2},\|H\|^{2}$ or S (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	100	6
3.0-30	1842/f	4.89/f	900/f ${ }^{2}$	6
30-300	61.4	0.163	1.0	6
300-1500	--	--	f/300	6
1500-100,000	--	--	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	100	30
1.34-30	824/f	2.19/f	$180 / \mathrm{f}^{2}$	30
30-300	27.5	0.073	0.2	30
300-1500	--	--	f/1500	30
1500-100,000	--	--	1.0	30

According to OET BULLETIN 56 Fourth Edition / August 1999, Equation for Predicting RF Fields:

3.1 IEEE 802.11b, Lowest CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{62.661 \times 1.514}{4 \pi(20)^{2}}=0.0189 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{62.661 \times 1.514}{4 \pi}}=2.747 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 2.747 cm ."

3.2 IEEE 802.11b, Middle CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{69.183 \times 1.514}{4 \pi(20)^{2}}=0.0385 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{69.183 \times 1.514}{4 \pi}}=2.887 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 2.887 cm ."

3.3 IEEE 802.11b, Highest CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{67.453 \times 1.514}{4 \pi(20)^{2}}=0.0203 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{67.453 \times 1.514}{4 \pi}}=2.8507 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 2.851 cm. "

3.4 IEEE 802.11g, Lowest CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{118.032 \times 1.514}{4 \pi(20)^{2}}=0.03555 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{118.0328 \times 1.514}{4 \pi}}=3.771 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 3.771 cm. "

3.5 IEEE 802.11g, Middle CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{127.938 \times 1.514}{4 \pi(20)^{2}}=0.0385 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{127.938 \times 1.514}{4 \pi}}=3.926 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 3.926 cm. "

3.6 IEEE 802.11g, Highest CH

Friis Transmission Formula: $S=\frac{P G}{4 \pi R^{2}}=\frac{125.314 \times 1.514}{4 \pi(20)^{2}}=0.03774 \mathrm{~mW} / \mathrm{cm}^{2}$
Estimated safe separation: $\quad R=\sqrt{\frac{P G}{4 \pi}}=\sqrt{\frac{125.314 \times 1.514}{4 \pi}}=3.8856 \mathrm{~cm}$
Remarks: "The safe estimated separation that the user must maintain from the antenna is at least 3.886 cm ."

Where: $\mathrm{S}=$ power density (in appropriate units, e.g. $\mathrm{mW} / \mathrm{cm} 2$)
$\mathrm{P}=$ power input to the antenna (in appropriate units, e.g., mW)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$\mathrm{R}=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm)

The Numeric gain G of antenna with a gain specified in dB is determined by:
$\mathrm{G}=\log ^{-1}(\boldsymbol{d} \boldsymbol{B}$ antenna gain / 10)
$\mathrm{G}=\log ^{-1}(1.8 / 10)=1.514$

