

SAR TEST REPORT

REPORT NO.:	SA920109R03A
MODEL NO.:	LM-WP200RB
RECEIVED :	Jan. 09, 2003
TESTED:	Jan. 10, 2003

APPLICANT: Delta Networks, Inc.

ADDRESS: 252, Shang Ying Road, KueiShan 333, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB LOCATION: 47 14th Lin, Chiapau Tsun, Linko, Taipei, Taiwan, R.O.C.

This test report consists of 15 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, NVLAP or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1. 2.	CERTIFICATION	
2. 2.1	GENERAL INFORMATION	
2.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	
2.3	GENERAL INOFRMATION OF THE TEST SYSTEM	5
3.	DESCRIPTION OF TEST MODES AND CONFIGURATIONS	7
4.	DESCRIPTION OF SUPPORT UNITS	8
5.	TEST RESULTS	
5.1		-
5.2	MEASURED SAR RESULT	
5.3	SAR LIMITS 1	
5.4	EUT CONDUCTED POWER VARIATION 1	
5.5	TISSUE	1
5.6	TEST EQUIPMENT FOR TISSUE PROPERTY1	
6. 7	SYSTEM VALIDATION	
7. 8.	INFORMATION ON THE TESTING LABORATORIES	
0.		J
	DIX A: TEST CONFIGURATIONS AND TEST DATA	
	DIX B: ADT SAR MEASUREMENT SYSTEM	
	DIX C: PHOTOGRAPHS OF SYSTEM VALIDATION DIX D: SYSTEM CERTIFICATE & CALIBRATION	
	DIX D. STOTEM CERTIFICATE & CAEIDIVATION	

1. CERTIFICATION

PRODUCT :	11Mbps Wireless LAN PCMCIA Card
MODEL NO. :	LM-WP200RB
BRAND :	DNI
APPLICANT :	Delta Networks, Inc.
STANDARDS :	47 CFR Part 2 (Section 2.1093), FCC OET Bulletin 65, Supplement C (01-01), RSS-102

We, **Advance Data Technology Corporation**, hereby certify that one sample of the designation has been tested in our facility on 10th Jan. 2003. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts for the measurements of the sample's EMC characteristics under the conditions herein specified.

CHECKED BY:	- Perit Jong	, DATE:	January 15, 2003
APPROVED BY:	Rengie Wang	<u>, DATE:</u>	January 15, 2003
	Dr. Alan Lane Manager		

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

11Mbps Wireless LAN PCMCIA Card
LM-WP200RB
3.3VDC powered by host
BPSK, QPSK, CCK
DSSS
1/2/5.5/11Mbps
2412MHz ~ 2462MHz
11
62.6 mW
Printed Inverted-F Antenna
1.11 W/kg
NA
PCMCIA
NA

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC 47 CFR Part 2 (2.1093) FCC OET Bulletin 65, Supplement C (01- 01) RSS-102

All tests have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE TEST SYSTEM

ET3DV6 ISOTROPIC E-FIELD PROBE

Construction	Symmetrical design with triangular core. Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., glycolether).
Calibration	Basic Broad Band Calibration in air: 10-2500 MHz Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request
Frequency	10 MHz to 3 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Optical Surface Detection	±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces
Dimensions	Overall length: 337 mm (Tip Length: 10 mm) Tip diameter: 7.0 mm (Body diameter: 10 mm) Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetric measurements up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (ET3DV6)

TWIN SAM V4.0

Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness 2 ± 0.2 mm

Filling Volume Approx. 25 liters

Dimensions Height: 810 mm; Length: 1000 mm; Width: 500 mm

SYSTEM VALIDATION KITS: D900V2 – D2450V2

Construction	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor
Calibration	Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions
Frequency	900, 1800, 1900, 2450 MHz
Return Loss	> 20 dB at specified validation position
Power Capability	> 100 W (f < 1GHz); > 40 W (f > 1GHz)
Options	Dipoles for other frequencies or solutions and other calibration conditions upon request
Dimensions	D900V2: dipole length: 149 mm; overall height: 330 mm D1800V2: dipole length: 72 mm; overall height: 300 mm D1900V2: dipole length: 68 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 300 mm

3. DESCRIPTION OF TEST MODES AND CONFIGURATIONS

CARRIER MODULATION UNDER TEST	Un-modulated CW Carrier
CREST FACTOR	1.0
UNDER TEST AND ITS	Ch. 1: 2412MHz / 62.23 mW Ch. 6: 2437MHz / 62.60 mW Ch. 11: 2462MHz / 61.80 mW
ANTENNA CONFIGURATION	Printed Inverted-F Antenna
EUT POWER SOURCE	From Host Notebook
HOST POWER SOURCE	Fully Charged Battery

The following test configurations have been applied in this test report:

- Mode 1: EUT in the bottom PCMCIA slot of the notebook, the bottom of the notebook contact the bottom of the flat phantom with 0 cm separation distance.
- Mode 2: EUT in the bottom PCMCIA slot of the notebook, the keyboard face of the notebook is perpendicular to the bottom of the flat phantom and the EUT is located between notebook and phantom. The separation distance is 1.5 cm between the tip of the EUT and the bottom of the flat phantom.
- Mode 3: EUT in the bottom PCMCIA slot of the notebook, the keyboard face of the notebook is perpendicular to the bottom of the flat phantom and the EUT is located between notebook and phantom. The separation distance is 0 cm between the tip of the EUT and the bottom of the flat phantom.

Note 1: Please reference "APPENDIX A" for the photos of test configuration.

Note 2: The output power of the un-modulated CW carrier has been adjusted to be the same with that of modulated signal.

4. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	PP01L	TW-09C748-12800-19O-	FCC DoC
				B220	APPROVED

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

5. TEST RESULTS

5.1 TEST PROCEDURES

The SAR value was calculated via the 3D spline interpolation algorithm which has been implemented in the software of DASY3 SAR measurement system manufactured and calibrated by Schmid & Partner.

A coarse scan with 20mm x 20mm grid was performed for the highest spatial SAR location. A fine scan with 5mm x 5mm x 7mm volume was performed for SAR value averaged over 1g and 10g spatial volumes.

ENVIRONMEN AL CONDICTIO	23.5 degre 42 % Humi		TESTED BY		Bunny Yao
CHANNEL	EQUENCY (MHz)	MO	MODE		ASURED 1g SAR (W/kg)
1	2412	1			0.576
6	2437	1			0.539
11	2462	1			0.488
1	2412	2			0.092
6	2437	2			0.079
11	2462	2			0.075
1	2412	3			1.11
6	2437	3			0.936
11	2462	3			0.876

5.2 MEASURED SAR RESULT

Note: Test configuration of each mode is described in section 3.

Note: In this testing, the limit for General Population Spatial Peak averaged over 1g, **1.6 W/kg**, is applied.

Note: Please see the Appendix for the photo of the test configuration and also the data.

5.3 SAR LIMITS

	SAR (W/kg)			
HUMAN EXPOSURE	(General Population / Uncontrolled Exposure Environment)	(Occupational / controlled Exposure Environment)		
Spatial Average (whole body)	0.08	0.4		
Spatial Peak (averaged over 1 g)	1.6	8.0		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

5.4 EUT CONDUCTED POWER VARIATION

The variation of the EUT conducted power measured before and after SAR testing should not over 5%. The test procedures for conducted power level is described in FCC rule part 2.1046.

The maximum variation in this testing is listed in the following table.

Channel	Mode	Conducted Power (Before)	Conducted Power (After)	Variation (%)
11	2	62.6 mW	60.8 mW	-2.8

5.5 TISSUE

The tissue of 2450MHz for brain and body was well prepared according to the standard procedures. The required and measured dielectric parameters are listed in this table.

	Brain		Muscle	
	Required	Measured	Required	Measured
Permitivity (ϵ_r)	39.2±5%	NA	52.7±5%	52.90
Conductivity (σ)	1.8±5%	NA	1.95±5%	2.01

The measured parameters of the used tissue.

Tissue Prepared and Measured on 10 th Jan. 2003					
	B	rain	Muscle		
	Value Freq. (MHz)		Value	Freq.(MHz)	
Max Permitivity	NA	NA	53.58	2400	
Min. Permitivity	NA	NA	52.70	2500	
Max Conductivity	NA	NA	2.030	2500	
Min Conductivity	NA	NA	1.893	2400	

5.6 TEST EQUIPMENT FOR TISSUE PROPERTY

Item	Name	Provider	Туре	Series No.	Calibrated Until
1	Network Analyzer	Agilent	8720ES	NA	May 6, 2003
2	Dielectric Probe	Agilent	85070C	NA	NA

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue, and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 50mW RF input power was used instead of 250mW used by Schmid & Partner, then the measured SAR will be linearly extrapolated to that of 250mW RF power.

Item Name		Provider	Туре	Series No.	Calibrated Until
1	SAM Phantom	S&P	QD000 P40 CA	PT-1150	NA
2	Validation Dipole	S & P	D2450V2	716	Sept. 25, 2004
3	Signal Generator	R&S	SMP04	10001	May 5, 2003
4	E-Field Probe	S & P	ET3DV6	1687	Sept. 27, 2003
5	DAE	S & P	DAE3 V1	510	April 10, 2004
6	Robot Positioner	Staubli Unimation	NA	NA	NA

6.1 TEST EQUIPMENT

6.2 VALIDATION RESULT

Environmental Condition	23.5 degree C 42 % Humidity	Test Engineer	Bunny Yao
245	ation Test in Body Tis	sue	
Required	Measured	Deviation (%)	Separation Distance
14.30 (1g)	14.2	0.70	1.0 cm
6.74 (10g)	6.75	0.15	1.0 cm

Note: Please see Appendix for the photo of system validation test.

7. MEASUREMENT UNCERTAINTIES

	Uncertainty	Probability	Divisor	C i	Stantard
	Value	Distribution			Uncertainty
Test Sample Related					
Test Sample	±6%	Normal	1	1	±6%
Positioning	=0/				0.001
Drift of Output Power	±5%	Rectangular	√3	1	±2.9%
Phantom and Setup	0.01				0.01
Phantom Uncertainty	±0%	Rectangular	<u></u> 3	1	±0%
Liquid	±5%	Rectangular	√3	0.5	±1.4%
Conductivity(target)	. 400/	Destant las	<i>_</i>	0.5	10.00/
	±10%	Rectangular	√3	0.5	±2.9%
Conductivity(meas)	±5%	Dectoraular	√3	0.5	±1.4%
Liquid Permittivity(target)	±3%	Rectangular	$\sqrt{3}$	0.5	±1.4%
Liquid	±5%	Rectangular	√3	0.5	±1.4%
Permittivity(meas)	10/0	rectangular	vJ	0.5	1.470
RF Ambient Conditions	±3%	Rectangular	√3	1	±1.7%
System Check		J	,		
Calibration	± 2.6 %	normal	1	1	± 2.6 %
Axial isotropy	± 2.3 %	rectangular	√3	(1-cp) ^{1/2}	± 0.9 %
Hemispherical	± 9.6 %	rectangular	√3	√ср	± 3.9 %
isotropy					
Spatial resolution	± 0.5 %	rectangular	√3	1	± 0.3 %
Boundary effect	± 4.0 %	rectangular	$\sqrt{3}$	1	± 6.4 %
Linearity	± 4.7 %	rectangular	√3	1	± 2.7 %
Detection Limit	± 2.0 %	rectangular	$\sqrt{3}$	1	± 1.2 %
Readout Electronics	± 1.0 %	normal	1	1	± 1.0 %
Mechanical Constrains	± 0.4 %	normal	1	1	± 0.4 %
of Robot					
Probe positioning	± 5.0 %	rectangular	$\sqrt{3}$	1	± 2.9 %
Extrapolation/Integratio	± 3.9 %	rectangular	√3	1	± 2.3 %
Dipole/Liquid Distance	± 1.0 %	rectangular	√3	1	± 0.6 %
Dipole Input Power	±4.7 %		1	1	± 4.7 %
Liquid conductivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(target)		-			
Liquid conductivity	± 10 %	rectangular	√3	0.6	± 3.5 %
(meas.)			<i>~</i> -		
Liquid permittivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(target)		rootongular	<i>/</i> ^	0.6	
Liquid permittivity	± 5.0 %	rectangular	√3	0.6	± 1.7 %
(meas.)					

FCC ID: PD5LMWP200RB	
ree ib. i beam i avoitab	

RF Ambient condition	± 3.0 %	normal	1	1	± 1.7 %
Combined Stan			±12.4 %		
Expanded Un			±24.9 %		

8. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025, Guide 25 or EN 45001:

USA	FCC, NVLAP
Germany	TUV Rheinland
Japan	VCCI
New Zealand	MoC
Norway	NEMKO
R.O.C.	BSMI, DGT, CNLA

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC Lab: Tel: 886-2-26052180 Fax: 886-2-26052943

Tel: 886-35-935343 Fax: 886-35-935342

Hsin Chu EMC Lab:

Lin Kou Safety Lab: Tel: 886-2-26093195 Fax: 886-2-26093184 Lin Kou RF&Telecom Lab Tel: 886-3-3270910 Fax: 886-3-3270892

Email: <u>service@mail.adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

APPENDIX A: TEST CONFIGURATIONS AND TEST DATA

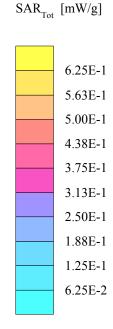
A1: TEST CONFIGURATION

Mode 1

Mode 2

Mode 3

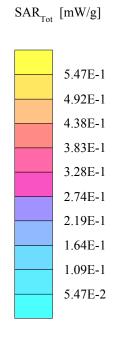
EUT Photo



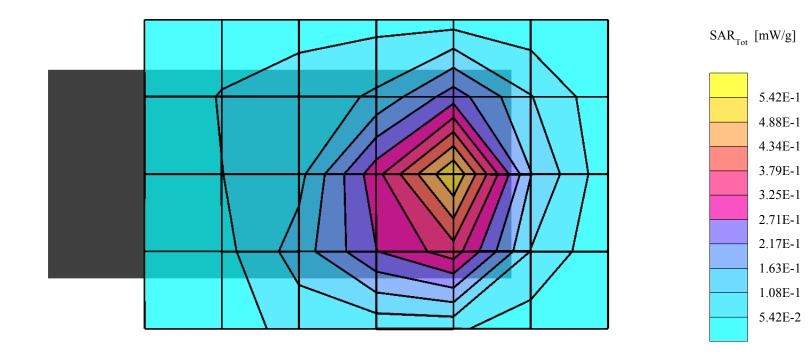
A2: TEST DATA

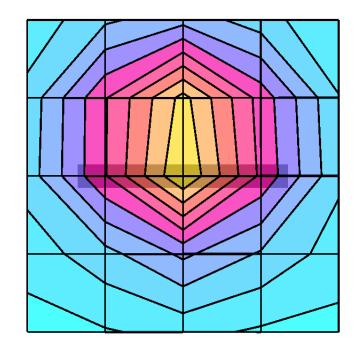
802.11b Wireless PC Card Mode 1


Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2412 MHz Liquid parameters : Body 2412 MHz $\sigma = 1.96$ mho/m $\epsilon_r = 53.1 \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.576 mW/g, SAR (10g): 0.317 mW/g, (Worst-case extrapolation) Powerdrift: -0.01 dB

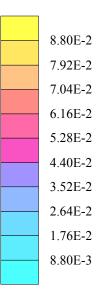


802.11b Wireless PC Card Mode 1


Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2437 MHz Liquid parameters : Body 2437 MHz σ = 1.99 mho/m ϵ_r = 53.0 ρ = 1.00 g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.539 mW/g, SAR (10g): 0.295 mW/g, (Worst-case extrapolation) Powerdrift: -0.01 dB

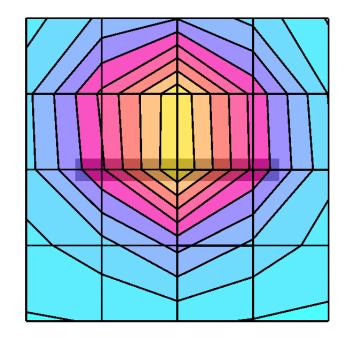

802.11b Wireless PC Card Mode 1

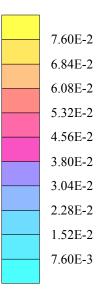
Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2462 MHz Liquid parameters : Body 2462 MHz σ = 2.02 mho/m ϵ_r = 52.9 ρ = 1.00 g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.488 mW/g, SAR (10g): 0.270 mW/g, (Worst-case extrapolation) Powerdrift: -0.00 dB



802.11b Wireless PC Card Mode 2

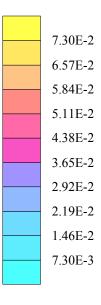
Separation distance : 15mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2412 MHz Liquid parameters : Body 2412 MHz $\sigma = 1.96$ mho/m $\varepsilon_r = 53.1 \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.0919 mW/g, SAR (10g): 0.0528 mW/g, (Worst-case extrapolation) Powerdrift: -0.04 dB





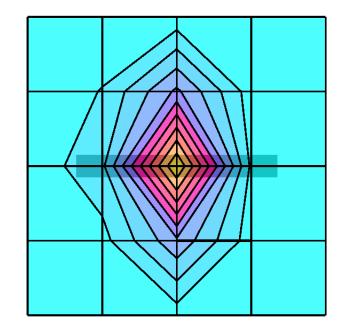
802.11b Wireless PC Card Mode 2

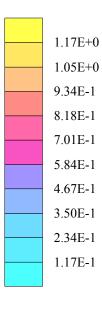
Separation distance : 15mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2437 MHz Liquid parameters : Body 2437 MHz $\sigma = 1.99$ mho/m $\varepsilon_r = 53.0 \ \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.0785 mW/g, SAR (10g): 0.0452 mW/g, (Worst-case extrapolation) Powerdrift: -0.12 dB



802.11b Wireless PC Card Mode 2

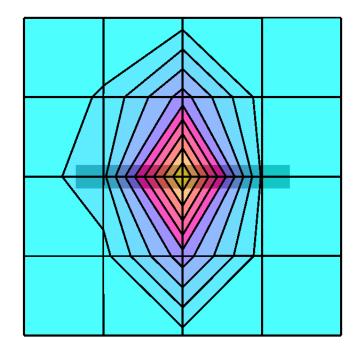
Separation distance : 15mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2462 MHz Liquid parameters : Body 2462 MHz $\sigma = 2.02$ mho/m $\varepsilon_r = 52.9 \ \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.0754 mW/g, SAR (10g): 0.0429 mW/g, (Worst-case extrapolation) Powerdrift: 0.04 dB

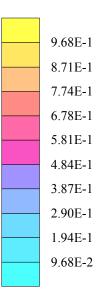




802.11b Wireless PC Card Mode 3

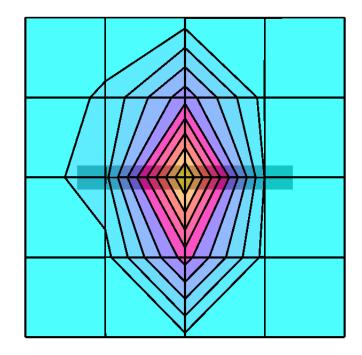
Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2412 MHz Liquid parameters : Body 2412 MHz $\sigma = 1.96$ mho/m $\epsilon_r = 53.1 \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 1.11 mW/g, SAR (10g): 0.542 mW/g, (Worst-case extrapolation) Powerdrift: -0.00 dB

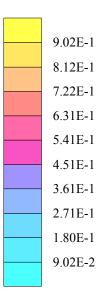




802.11b Wireless PC Card Mode 3

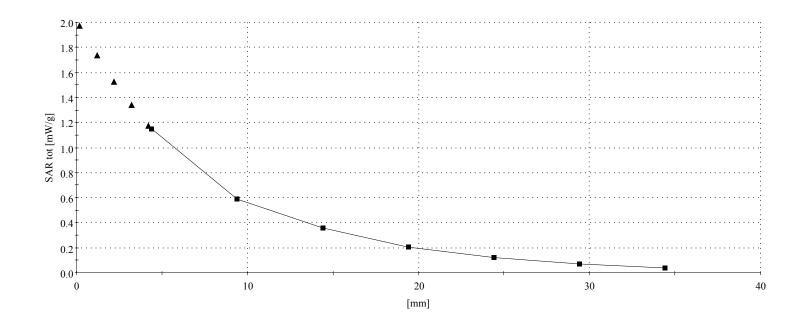
Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2437 MHz Liquid parameters : Body 2437 MHz σ = 1.99 mho/m ϵ_r = 53.0 ρ = 1.00 g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.936 mW/g, SAR (10g): 0.458 mW/g, (Worst-case extrapolation) Powerdrift: -0.09 dB





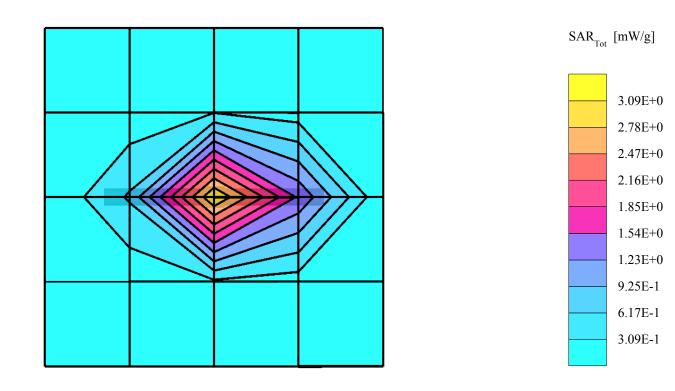
802.11b Wireless PC Card Mode 3

Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2462 MHz Liquid parameters : Body 2462 MHz σ = 2.02 mho/m ϵ_r = 52.9 ρ = 1.00 g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cube 5x5x7: SAR (1g): 0.876 mW/g, SAR (10g): 0.429 mW/g, (Worst-case extrapolation) Powerdrift: -0.07 dB

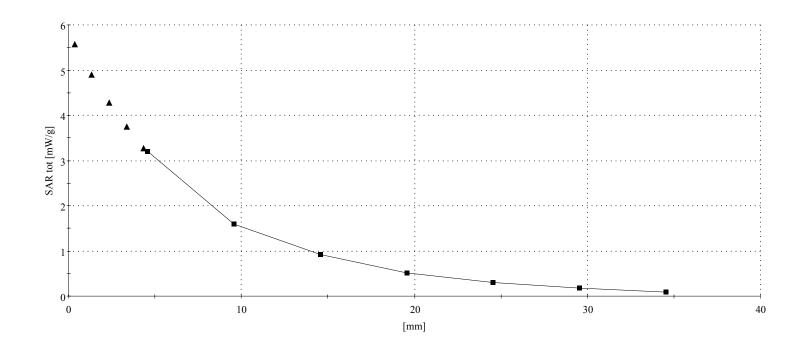


802.11b Wireless PC Card Mode 3

Separation distance : 0mm (Laptop PC to Phantom) Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade SAM Phantom; Flat Section; Position: (90°,90°); Antenna type: Internal PIFA Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Test Frequency : 2412 MHz Liquid parameters : Body 2412 MHz $\sigma = 1.96$ mho/m $\varepsilon_r = 53.1 \rho = 1.00$ g/cm³ Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Cube 5x5x7: SAR (1g): 1.11 mW/g, SAR (10g): 0.542 mW/g, (Worst-case extrapolation) Powerdrift: -0.00 dB



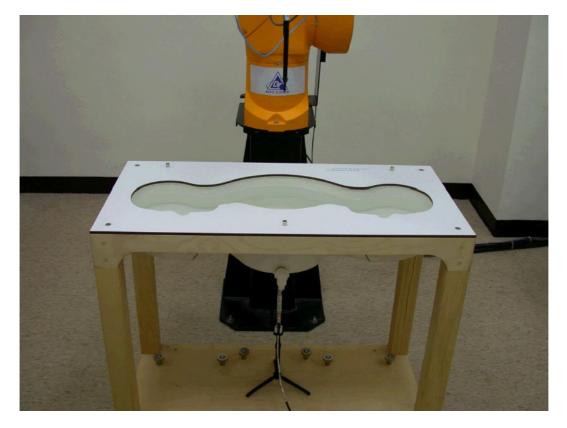
A3: VALIDATION TEST DATA


Validation Dipole D2450V2 SN:716,d=10mm

SAM; Flat Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Liquid parameters : Body 2450 MHz $\sigma = 2.00$ mho/m $\varepsilon_r = 53.0 \rho = 1.00$ g/cm³ Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0 Cubes (2): Peak: 5.61 mW/g \pm 0.06 dB, SAR (1g): 2.84 mW/g \pm 0.06 dB, SAR (10g): 1.35 mW/g \pm 0.06 dB, (Worst-case extrapolation) Penetration depth: 7.9 (7.4, 9.0) [mm] Powerdrift: -0.01 dB

Validation Dipole D2450V2 SN:716,d=10mm

SAM; Flat Air temperature : 23.5 degrees centigrade ; Liquid temperature : 22.4 degrees centigrade Probe: ET3DV6 - SN1687; ConvF(4.40,4.40,4.40); Crest factor: 1.0 Liquid parameters : Body 2450 MHz σ = 2.00 mho/m ε_r = 53.0 ρ = 1.00 g/cm³ Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0 Cube 5x5x7: Peak: 5.69 mW/g, SAR (1g): 2.88 mW/g, SAR (10g): 1.37 mW/g, (Worst-case extrapolation) Penetration depth: 7.8 (7.3, 9.0) [mm] Powerdrift: -0.01 dB



APPENDIX B: ADT SAR MEASUREMENT SYSTEM

APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION

APPENDIX D: SYSTEM CERTIFICATE & CALIBRATION

D1: SAM PHANTOM

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0	·	
Type No	QD 000 P40 CA		
Series No	TP-1150 and higher	<u></u>	
Manufacturer / Origin -	Untersee Composites		
U	Hauptstr. 69	· ·	
	CH-8559 Fruthwilen		
	Switzerland		

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

28.02.2002

Signature / Stamp

F. Bombult

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fex +41 1 245 97 79 oleans that

1 (1)

D2: 2450MHZ SYSTEM VALIDATION DIPOLE

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

2450 MHz System Validation Dipole

Type:D2450V2Serial Number:716Place of Calibration:ZurichDate of Calibration:September 26, 2002Calibration Interval:24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

N.Vellen Bleonio Ktz

Approved by:

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D2450V2 Serial: 716

Manufactured: September 10, 2002 Calibrated: September 26, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the new SAM twin phantom filled with head simulating solution of the following electrical parameters at 2450 MHz:

Relative permitivity	37.7	± 5%
Conductivity	1.88 mho/m	± 10%

The DASY System with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 5.0 at 2450 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

2.1. SAR Measurement with DASY3 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>worst-case extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	57.2 mW/g
averaged over 10 cm^3 (10 g) of tissue:	26.4 mW/g

2.2 SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	54.0 mW/g
averaged over 10 cm ³ (10 g) of tissue:	25.2 mW/g

3. Dipole impedance and return loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.148 ns	(one direction)
Transmission factor:	0.982	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re{Z} = 54.1 \Omega$
	Im $\{Z\} = 2.4 \Omega$
Return Loss at 2450 MHz	- 26.8 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new SAM twin phantom filled with body simulating solution of the following electrical parameters at 2450 MHz:

Relative permitivity	52.4	± 5%
Conductivity	1.99 mho/m	± 10%

The DASY System with a dosimetric E-field probe ET3DV6 (SN:1507, conversion factor 4.5 at 2450 MHz) was used for the measurements.

The dipole feedpoint was positioned below the center marking and oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 5x5x7 fine cube was chosen for cube integration. Probe isotropy errors were cancelled by measuring the SAR with normal and 90° turned probe orientations and averaging.

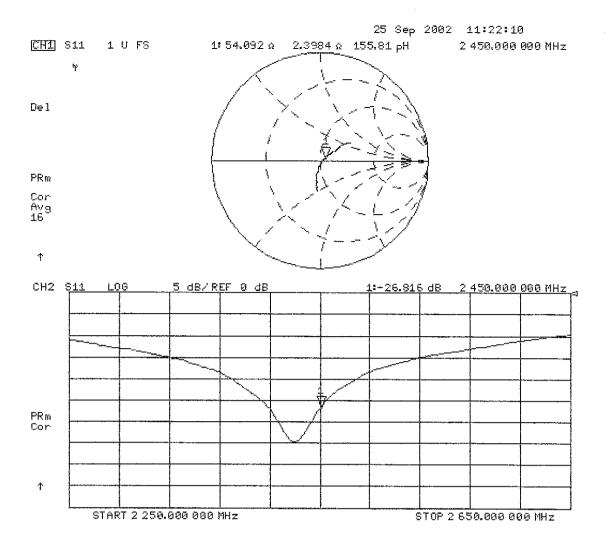
The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power.

5.1. SAR Measurement with DASY3 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>worst-case extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	57.2 mW/g
averaged over 10 cm ³ (10 g) of tissue:	27.0 mW/g

5.2 SAR Measurement with DASY4 System


Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	51.6 mW/g
averaged over 10 cm^3 (10 g) of tissue:	25.0 mW/g

6. Dipole impedance and return loss

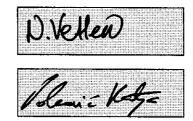
The dipole was positioned at the flat phantom sections according to section 4 (with body tissue inside the phantom) and the distance holder was in place during impedance measurements.

Feedpoint impedance at 2450 MHz:	$Re\{Z\} = 49.6 \Omega$
	Im $\{Z\} = 4.2 \Omega$
Return Loss at 2450 MHz	- 27.5 dB

D3: DOSIMETRIC E-FIELD PROBE

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate


Dosimetric E-Field Probe

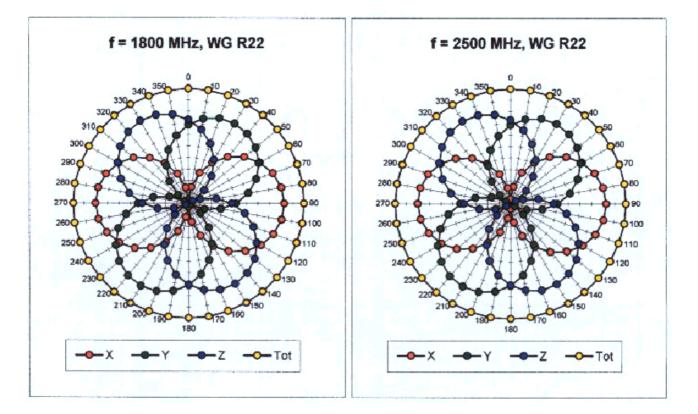
Type:	ET3DV6
Serial Number:	1687
Place of Calibration:	Zurich
Date of Calibration:	June 5, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

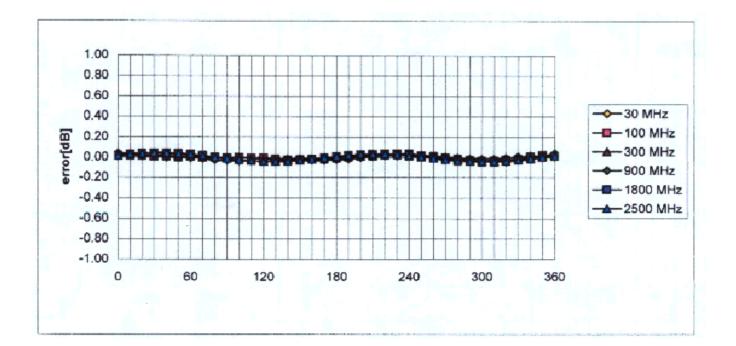
Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

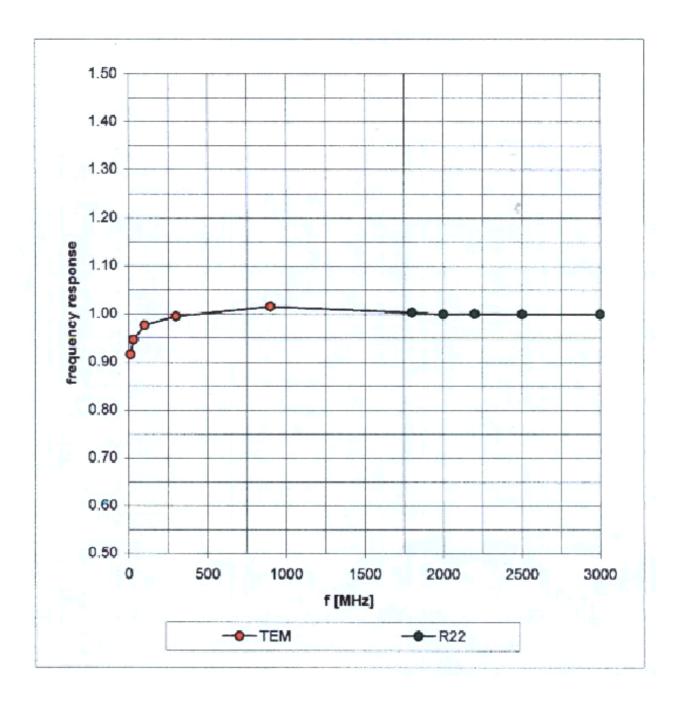

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

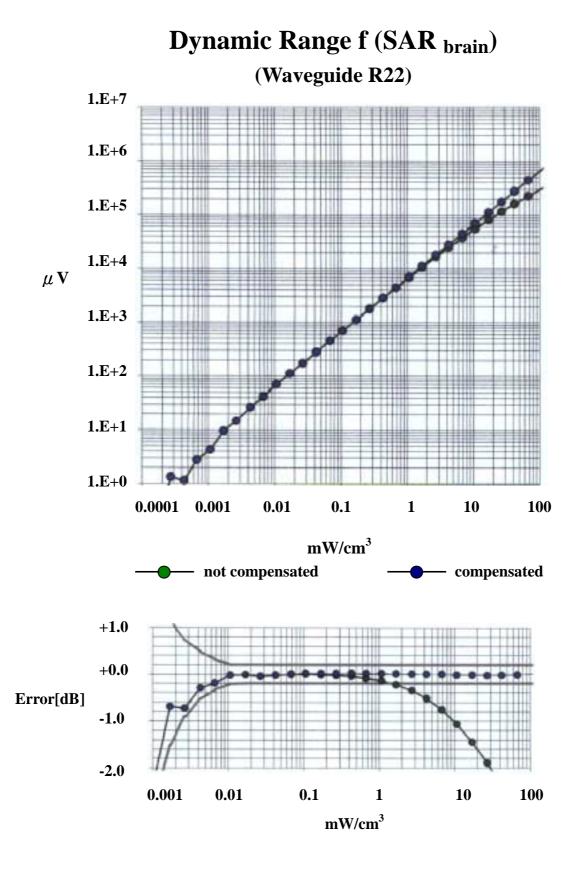
Probe ET3DV6


SN:1687

Manufactured: Last calibration: May 28, 2002 June 5, 2002

Calibrated for System DASY3



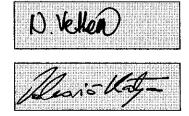

Isotropy Error (Φ), $\theta = 0^{\circ}$

Frequency Response of E-Field

(TEM – Cell:ifi110, Waveguide R22)

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate


Dosimetric E-Field Probe

Туре:	ET3DV6
Serial Number:	1687
Place of Calibration:	Zurich
Date of Calibration:	September 28, 2002
Calibration Interval:	12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

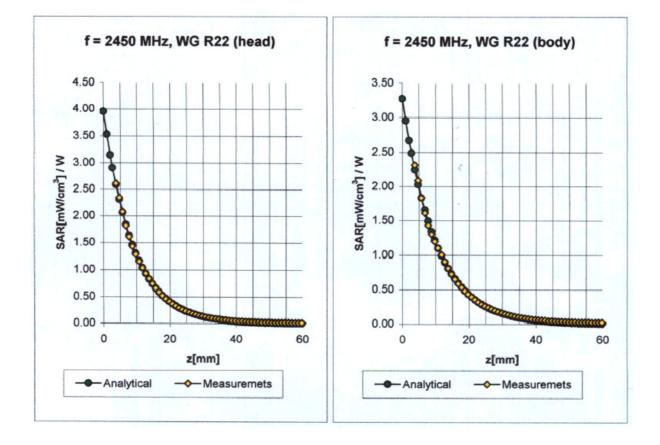
Approved by:

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

Probe ET3DV6

SN:1687

Additonal Conversion Factors


Calibrated: September 28, 2002

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

.....

Conversion Factor Assessment

Head	2450 MHz		$\epsilon_r = 39.2 \pm 5\%$ or	= 1.80 ± 5% mho)/m	
Co	onvF X	4.9	± 8.9% (k≕2)	Boundary effect:		
Co	onvF Y	4.9	± 8.9% (k=2)	Alpha	1.00	
Co	onvF Z	4.9	± 8.9% (k=2)	Depth	1.70	
Body	2450 MHz		ε <mark>, = 52.7 ± 5%</mark> σ	= 1.95 ± 5% mho	1.95 ± 5% mho/m	
Co	onvF X	4.4	± 8.9% (k=2)	Boundary effect	Boundary effect:	
Co	onvF Y	4.4	± 8.9% (k=2)	Alpha	1.00	
Co	onvF Z	4.4	± 8.9% (k=2)	Depth	1.65	