

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELAN Devices) on the Netgear Model: HA501

AUTHORIZED SIGNATORY:

Mark Briggs Director of Engineering

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: HA501

Manufacturer:

Netgear 4401 Great America Parkway Santa Clara, CA. 95052-8185

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV2** Dated August 8, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated August 20, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Company Address

Mark Briggs Director of Engineering Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: November 12, 2001

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

COVER PAGE	
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
GENERAL	7
ENCLOSURE	
MODIFICATIONS	7
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
ANTENNA REQUIREMENTS	
TEST SITE	9
GENERAL INFORMATION	9
CONDUCTED EMISSIONS CONSIDERATIONS	9
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
RECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	10
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	11
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
FCC 15.407 (A) OUTPUT POWER LIMITS	15
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	15
SPURIOUS RADIATED EMISSIONS LIMITS	
AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
APPENDIX 1: Test Equipment Calibration Data	
APPENDIX 2: Test Data Log Sheets	2

SCOPE

An electromagnetic emissions test has been performed on the Atheros Communications model AR5BCB-00013 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Atheros Communications model AR5BCB-00013 and therefore apply only to the tested sample. The sample was selected and prepared by Eric Dukatz of Atheros Communications.

The NetGear model HA501 is electrically identical to the model Atheros Communications model AR5BCB-00013 tested. A letter from NetGear explaining this has been included with the application package.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15	RSS 210	Description	Comments	Result
Section	Section	*	Comments	Kesult
Operation in the	he 5.15 – 5.25 GI	Hz Band (Normal Mode)		•
15.407 (d)		Maximum Antenna Gain /Integral Antenna	1.5 dBi Integral	Pass
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 7	Pass
15.407(a) (1)	6.2.2 q1 (i)	Bandwidth	27.67 MHz (26-dB), 17.33 MHz (20-dB)	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	14.8 dBm	Pass
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	.27 dBm/MHz	Pass
Operation in the	he 5.25 – 5.35 GI	Hz Band (Normal Mode)		
		Maximum Antenna Gain	1.5 dBi Integral	Pass
15.407(a) (2)	6.2.2 q1 (ii)	Bandwidth	38.25 MHz (26-dB), 20.83 MHz (20-dB)	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	19.1 dBm	Pass
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	4.0 dBm/MHz	Pass
Operation in th	ne 5.15 – 5.25 GI	Hz Band (Turbo Mode)		
15.407 (d)		Maximum Antenna Gain /Integral Antenna	1.5 dBi Integral	Pass
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 7	Pass
15.407(a) (1)	6.2.2 q1 (i)	Bandwidth	51.7 MHz (26-dB), 33.33 MHz (20-dB)	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	15.4 dBm	Pass
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-2.6 dBm / MHz	Pass
Operation in the	he 5.25 – 5.35 GI	Hz Band (Turbo Mode)		
		Maximum Antenna Gain	1.5 dBi Integral	Pass
15.407(a) (2)	6.2.2 q1 (ii)	Bandwidth	72.3 MHz (26-dB), 45.5 MHz (20- dB)	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	19.1 dBm	Pass
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	1.6 dBm/MHz	Pass
Spurious Emis	sions (All Mode	s)		
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-9.2 dB @ 479.1 MHz	Pass
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-4.4dB @ 15,540 MHz	Pass

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Other Require	ments (Both Mo	des)		
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" in exhibit 8 for a detailed explanation.	Pass
	6.2.2 q(iv)(b)	Peak Spectral Density	12.8 dBm/MHz in Normal mode	Pass
15.407(a)(6)		Peak Excursion Ratio	Less than 13dB	Pass
	6.2.2 q(iv)(c)	Channel Selection	The device was tested on the following channels in turbo mode: 9, 13 and 17. The device was tested on the following channels in normal mode: 6, 14 and 20. These channels represent the lowest, center and highest frequencies of operation in each mode.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in exhibit 9 for a detailed explanation.	Pass
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is =/-20ppm. Refer to the "Theory of Operations" (exhibit 9) for a detailed analysis.	Pass
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	N/A
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to the SAR test report (Exhibit 11)	Pass
15.407(b) / 15.207	6.6	AC Conducted Emissions	-31.1 dB @ 3.238 MHz	Pass

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Netgear model HA501 is a Carbus card, which is designed to provide a wireless LAN connection. Normally, the EUT would be installed in a Carbus slot of a host laptop PC during testing. The EUT was, therefore, installed in a table-top laptop PC during testing to simulate the end-user environment. The EUT derives power from the host laptop PC.

Note that the actual device tested was the Atheros Communications model AR5BCB-00013. Netgear is manufacturing an identical device, the HA501. Please reference the letter that Netgear has provided attesting to this fact.

The sample was received on October 15, 2001 and tested on October 18, 2001. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
Atheros Communications AR5BCB-00013 Wireless	-
LAN Carbus Card	

ENCLOSURE

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 5.33 cm wide by 11.68 cm deep by 1.02 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Toshiba	Tecra 8200	Host Laptop	51212942PU	CJ6PT820WL
		PC		
Toshiba	PA3048U-1ACA	AC Adaptor	0102 A 0465055G	None
		for PC		
Boonton	4531	Power Meter	100201	N/A
Boonton	57318	Power Sensor	2110	N/A

No remote support equipment was used during testing.

EUT INTERFACE PORTS

			Cable(s)	
			Shielded or	
EUT Port	Connected To	Description	Unshielded	Length(m)
EUT, CARDBUS	Installed in Host Laptop	-	-	-
Port	PC's CARDBUS Slot			
Host PC, DC Power	External AC Adaptor DC	Power Cable	Unshielded	1.0
Input	Output			
External AC	AC Power Source	Power Cable	Unshielded	1.0
Adaptor AC Input				

The I/O cabling configuration during emissions testing was as follows:

EUT OPERATION

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in Normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power for turbo mode (12Mb/s).

ANTENNA REQUIREMENTS

As the device is intended to operate in the 15.15 - 15.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is an integral antenna with a gain of 1.5 dBi.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 18, 200 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer ran automated data collection programs, which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission, is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \quad \text{microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi. -

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted band.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm	68.3 dBuV/m
5725 - 5825	-27 dBm (note 1)	68.3 dBuV/m
	-17 dBm (note 2)	78.3 dBuV/m

Note 1: Applies to spurious signals separated by more than 10 MHz from the allocated band. Note 2: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

APPENDIX 1: Test Equipment Calibration Data

Antenna Conducted	Emissions, 18-Oct-01 12:40 PM					
Engineer: jmartinez						
Manufacturer	Description	Model #	<u>Assett #</u>	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
	iated Emissions, 18-Oct-01 04:47 PM					
Engineer: Conrad						
<u>Manufacturer</u>	Description	Model #	<u>Assett #</u>	Cal interval	Last Calibrated	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	1320	12	5/23/2001	5/23/2002
EMCO	LISN, 10kHz-100MHz	3825/2	1292	12	4/9/2001	4/9/2002
EMCO	Log Periodic Antenna, 0.2-1 GHz	3146	1294	12	3/27/2001	3/27/2002
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	812	12	1/23/2001	1/23/2002
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	1316	12	5/9/2001	5/9/2002
Rohde & Schwarz	Test Receiver, 20-1300 MHz	ESVP	1317	12	5/9/2001	5/9/2002
Solar Electronics	LISN	8012-50-R-24-BNC	305	12	7/30/2001	7/30/2002
Antenna Conducted	and Radiated Emissions, 22-Oct-01 03:09 PM					
Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	<u>Cal Due</u>
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz)	84125C	1149	12	2/5/2001	2/5/2002
Hewlett Packard	Preamplifier, 1-26.5 GHz	8449B	TY,84299	12	4/1/2001	4/1/2002

8593EM

1319

12

5/31/2001

40 0 ++ 04 40-40 DM ~ n du ata d Eminai

Spectrum Analyzer, 9KHz - 22GHz

Hewlett Packard

5/31/2002

APPENDIX 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 45059 70 Pages

EMC Test Data

			0 / 001 2 alla
Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Emissions Spec:	FCC 15 B & 15E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

EMC Test Data

For The

Atheros Communications

Model

AR5BCB-00013

Model: / Contact: F	Atheros Communications AR5BCB-00013		Job Number:	J44770
Emissions Spec: I			T-Log Number:	
Emissions Spec: I			Proj Eng:	Mark Briggs
	EIC Dukatz FCC 15 B & 15E, RSS-210		Class:	В
			Environment:	-
installed in a Cardbus sl	lot of a host laptop PC d	General Description provide a 802.11a wireless uring testing. The EUT was nent. The EUT derives powe	, therefore, installed in a	table-top laptop PC
		Equipment Under Tes		
Manufacturer	Model	Description	Serial Number	FCC ID
Atheros Communications	AR5BCB-00013	802.11a Wireless LAN Cardbus Card		PPD-AR5BCB-0001
deep by 1.02 cm high.				
		Modification History		
Mod. #	Test D	ate	Modificaiton	
1			None made	

Elliott

EMC Test Data

Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Emissions Spec:	FCC 15 B & 15E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

Local Support Equipment					
Manufacturer	Model	Description	Serial Number	FCC ID	
Toshiba	Tecra 8200	Host Laptop PC	51212942PU	CJ6PT820WL	
Toshiba	PA3048U-1ACA	AC Adaptor for PC	0102 A 0465055G	None	
3Com	Palm IIIe	PDA	BODD11700375	DoC	
3Com	Serial HotSync Cradle	-	-	-	
Epson	Stylus Photo P952A	Inkjet Parallel Printer	ADA0013241	BKMFBP952A	

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
None	-	-	-	-	

Interface Port Configuration

		J		
			Cable(s)	
EUT Port	Connected To	Description	Shielded or Unshielded	Length(m)
EUT, Carbus Port	Installed in Host Laptop	-	-	-
	PC's carbus Slot			
Host PC, Parallel Port	Epson Printer	Parallel Cable	Shielded	2.0
Host PC, Serial Port	Palm IIIe PDA in Serial	Serial Cable	Shielded	1.0
	HotSync Cradle			
Host PC, DC Power	External AC Adaptor DC	Power Cable	Unshielded	1.0
Input	Output			
External AC Adaptor AC	AC Power Source	Power Cable	Unshielded	1.0
Input				

EUT Operation During Emissions

The EUT was installed in a host laptop PC during testing and continuously transmitted. A batch file was run to fully exercise the host laptop PC, including printing "H" characters to the display and to the attached parallel printer. In addition the EUT was transmitting at its nominal output power on the center channel.

Elliott

EMC Test Data

Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Emissions Spec:	FCC 15 B & 15E, RSS-210	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #2

Local Support Equipment				
Manufacturer	Model	Description	Serial Number	FCC ID
Toshiba	Tecra 8200	Host Laptop PC	51212942PU	CJ6PT820WL
Toshiba	PA3048U-1ACA	AC Adaptor for PC	0102 A 0465055G	None
		· · ·		

Remote Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID	
None	-	-	-	-	

Interface Port Configuration

		Cable(s)			
EUT Port	Connected To	Description	Shielded or Unshielded	Length(m)	
EUT, Carbus Port	Installed in Host Laptop	-	-	-	
	PC's carbus Slot				
Host PC, DC Power	External AC Adaptor DC	Power Cable	Unshielded	1.0	
Input	Output				
External AC Adaptor AC	AC Power Source	Power Cable	Unshielded	1.0	
Input					

EUT Operation During Testing

The radio was transmitting at full power on the specified channel with a duty cycle of 99% (maximum allowed). The EUT was tested in both normal mode (channel bandwidth of approximately 30 MHz) and turbo mode (channel bandwidth of approximately 60 MHz).

"Normal Mode" allows data rates of up to 54 Mb/s. The device was, therefore, tested in Normal mode at the data rate that produced the highest output power for normal mode (6 Mb/s).

"Turbo Mode" allows data rates of up to 72Mb/s. At data rates higher than 12Mb/s the PA gain is reduced to improve signal fidelity. The device was, therefore, tested in turbo mode at the data rate that produced the highest output power for turbo mode (12Mb/s).

6	Elliott	EM	IC Test Data
Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Spec:	FCC 15 B & 15E, RSS-210	Class:	-

FCC Part 15 Subpart E Tests: Normal Mode

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test:	
Test Engineer:	J Martinez
Test Location:	SVOATS# 2

Config. Used: #2 Config Change: None Host Unit Voltage 120Vac, 60 Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

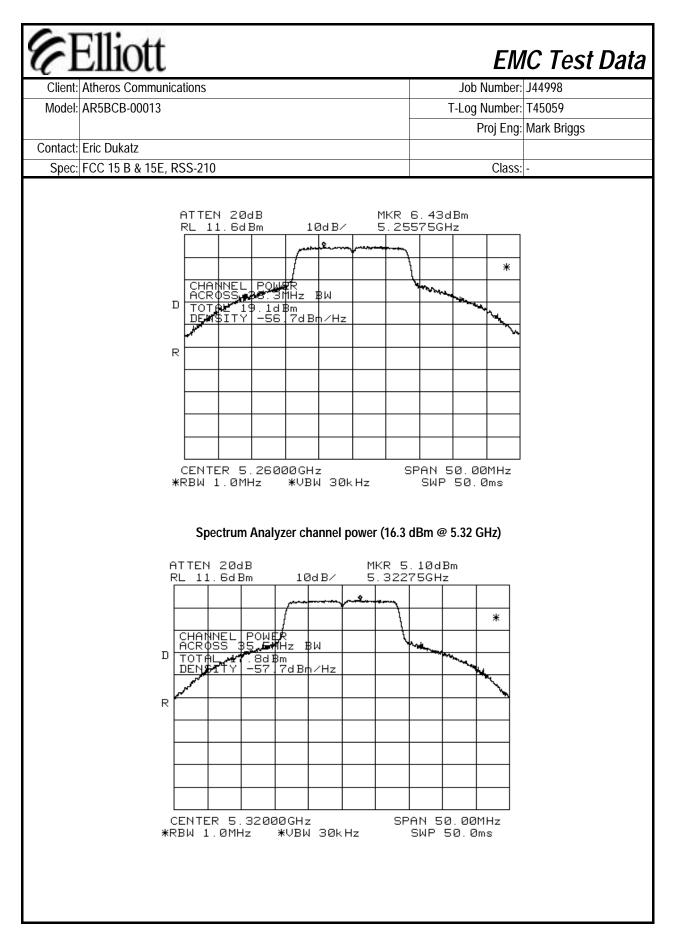
For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

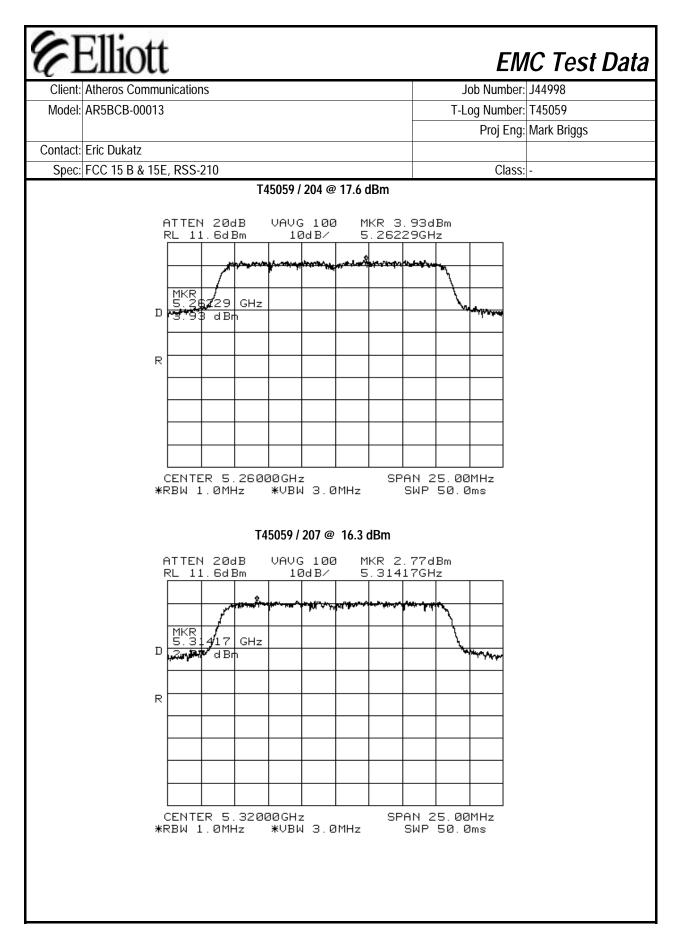
Temperature: 15°C Rel. Humidity: 55%

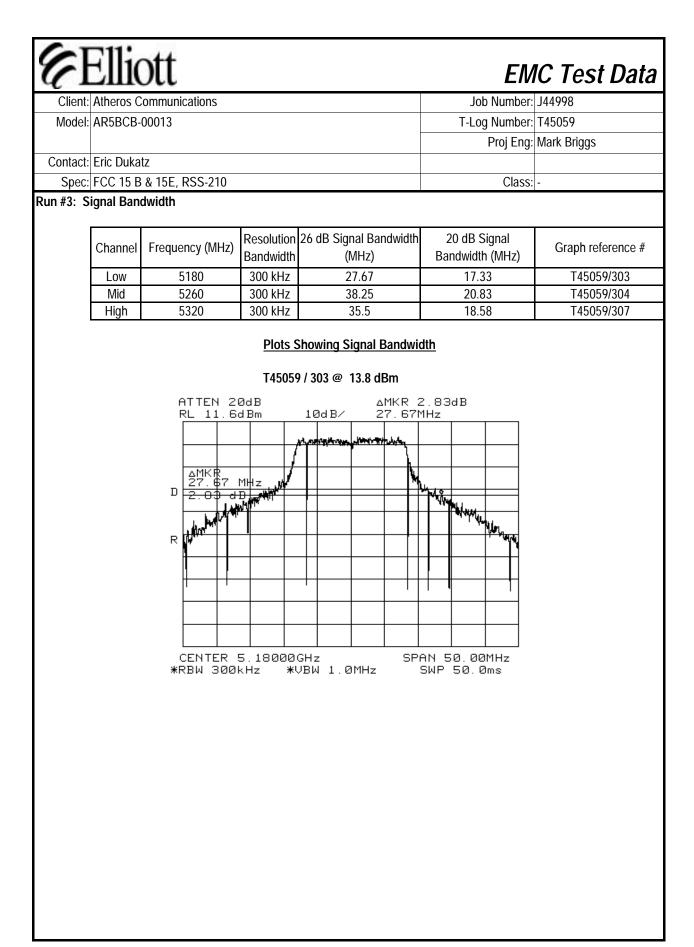
Summary of Results: Normal Mode

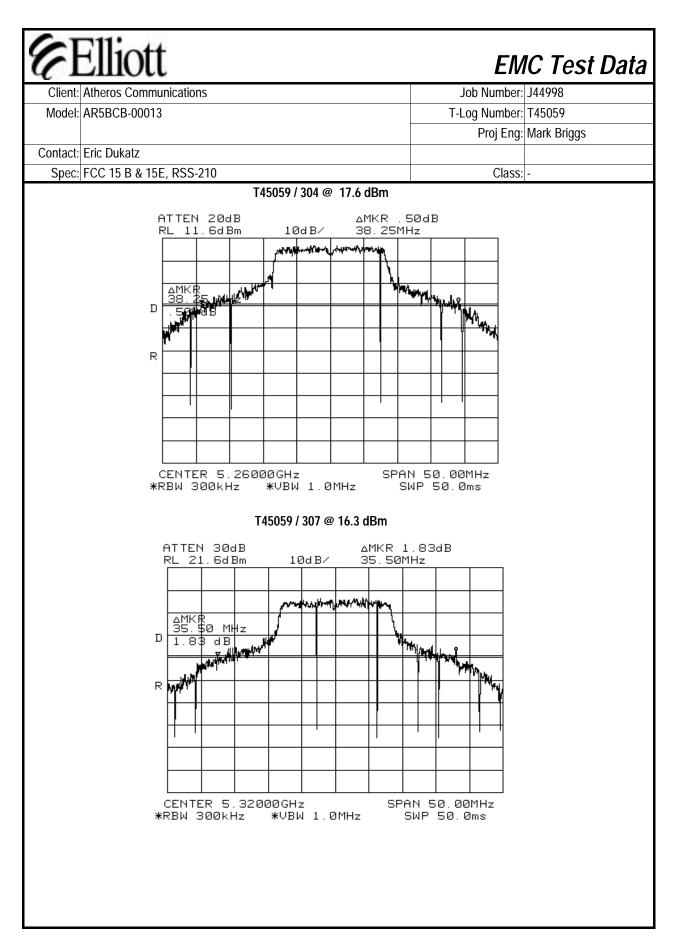
Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	
3	26dB Bandwidth	15.407	Pass	> 20 MHz
3	20 dB Bandwidth	RSS 210	Pass	> 20 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the 27dBm/MHz limit
6	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-4.4dB @ 15,540 MHz

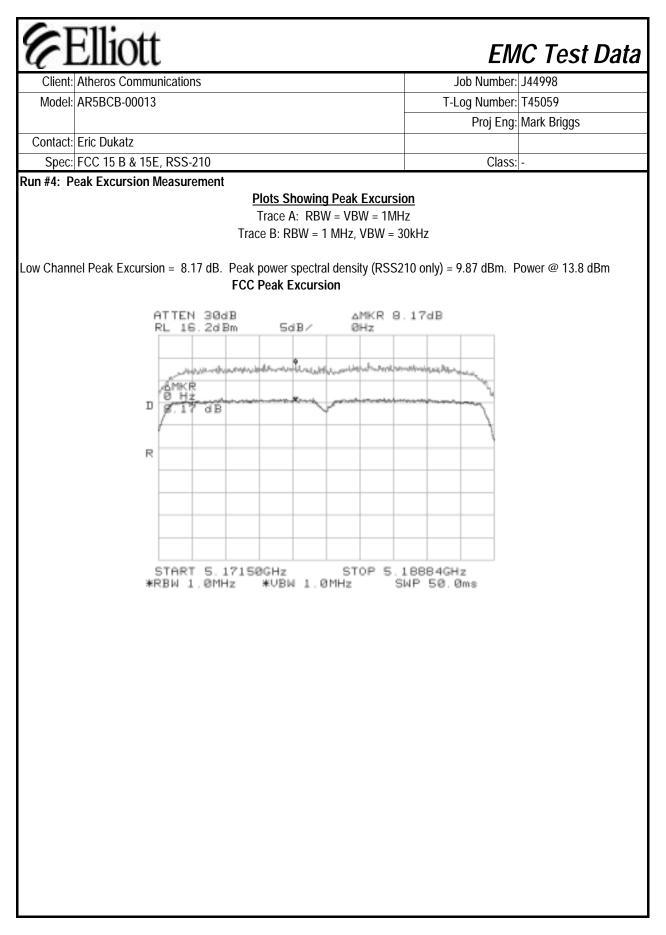

Modifications Made During Testing:

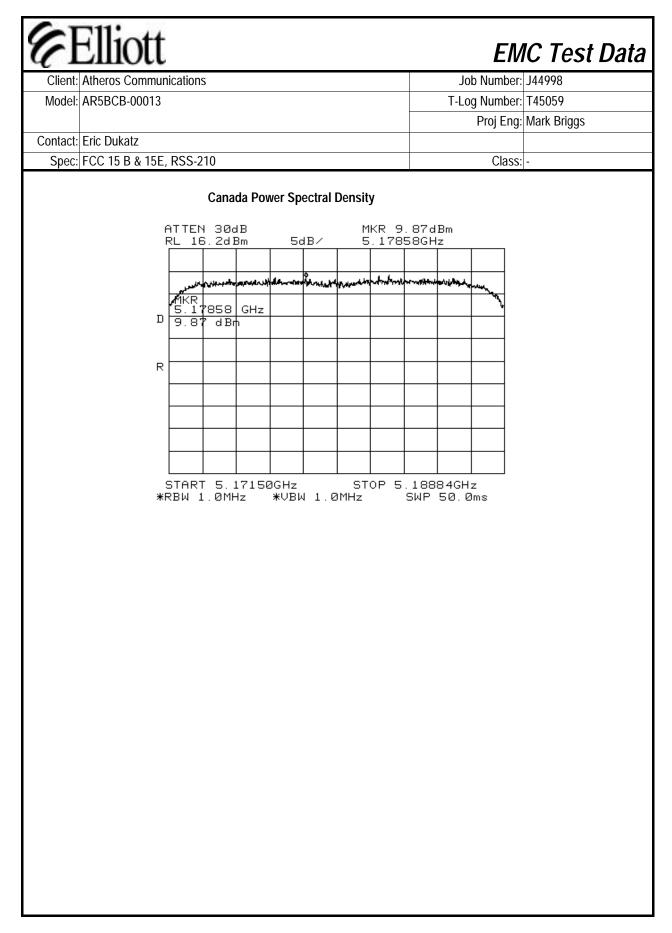
No modifications were made to the EUT during testing

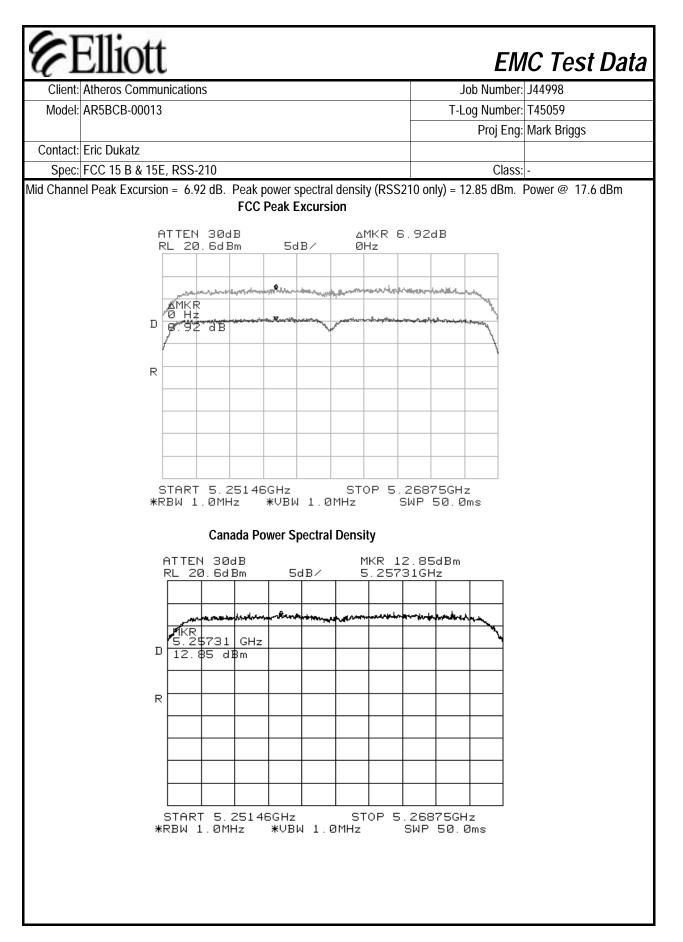

Deviations From The Standard

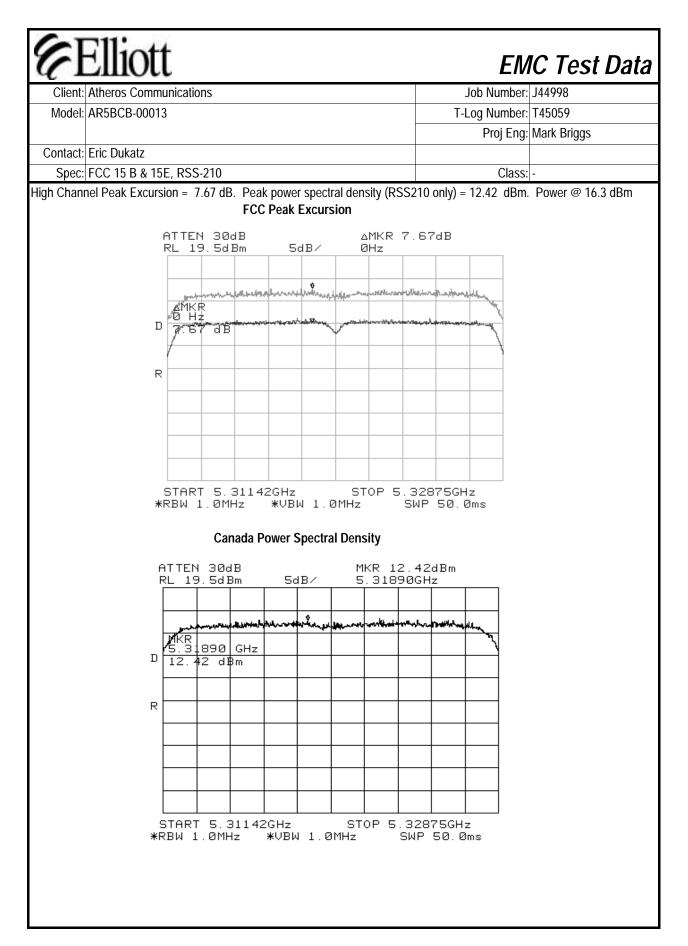

No deviations were made from the requirements of the standard.

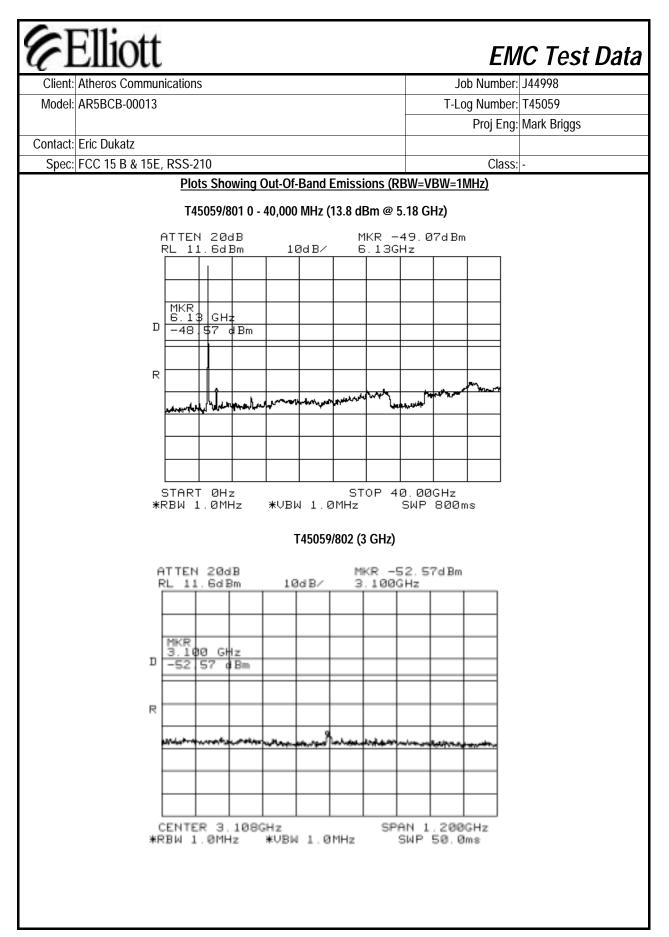

Madal	: Atheros C	communications			Job Number:	J44998
would	AR5BCB-	00013			T-Log Number:	T45059
						Mark Briggs
	: Eric Duka					
Spec:	FCC 15 B	& 15E, RSS-210			Class:	-
n #1: C	Output Pow Antenr	ver na Gain: 1.5	dBi			
	Channel	Frequency (MHz)	26-dB Signal BW	Output Power	FCC Limit (dBm) (note 3)	Comments
	Low	5180	27.7	13.8	17.0	Note 2
	2011	5180	27.7	14.8	17.0	Note 1
	Mid	5260 5260	38.25	17.6 19.1	24.0	Note 2 Note 1
		5260	38.25 35.5	19.1 16.3	24.0	Note 2
	High	5320	35.5	17.8	24.0	Note 1
	1					
e 1:			ý (ion (RBW = 1MHz, VBW =	30kHz)
e 2:				with a peak power sen		
e 3:				•	er than the FCC limit. Thi	s limit is based on the
		bandwidth and operative				
e 4:				GHz band, same as	the FCC limit. This limit i	s based on the emiss
	Danowidtr	n and operating frequence	uency.			
		ATTEN 2	ØdB	MKR	2.27dBm	
		RL 11.6	dBm	10dB/ 5.18	3325GHz	
			/		1 *	
		CHAINNE	27.7HH	z BW		
		ACD MCC		Z ID M	1	
		D TOTAL	14.8d.8m		V I	
		D TOTAL DENSIT	14.8d.m Y 59 6	d Bn /Hz	hanne	
		D TOTAL DENSIT	14.8d.m Y	d Bm / Hz	and the second s	
			14.8d7m Y - 59 6	d Bn /Hz		
		D TOTAL DENSIT	14.8d8m Y = 9916	d Bn /Hz		
		D TOTAL DENSIT	14 . 8	d Bn /Hz		
		D TOTAL DENSIT		d Bn /Hz		
		D TOTAL DENSIT		d Bn /Hz		
		D TOTAL DENSIT		d Bn /Hz		
		D TOTAL DENSIT	1 - 8 - 1 m - 59 6		SPAN 50.00MHz SWP 50.0ms	
			1 - 8 - 1 m - 59 6	GHz	SPAN 50.00MHz	
			1 - 8 - 1 m - 59 6	GHz	SPAN 50.00MHz	
			1 - 8 - 1 m - 59 6	GHz	SPAN 50.00MHz	
			1 - 8 - 1 m - 59 6	GHz	SPAN 50.00MHz	

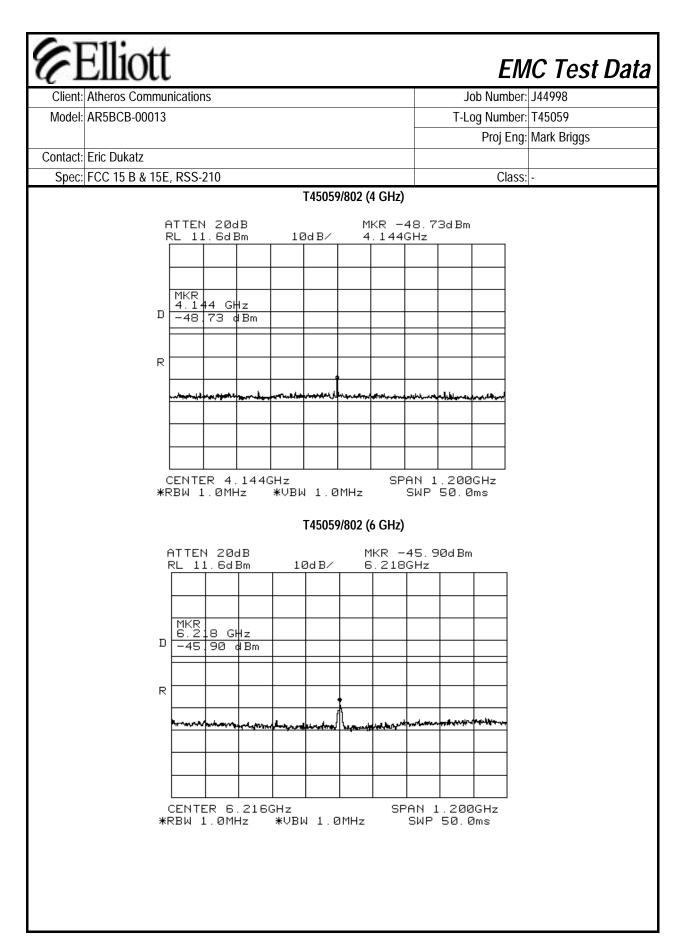


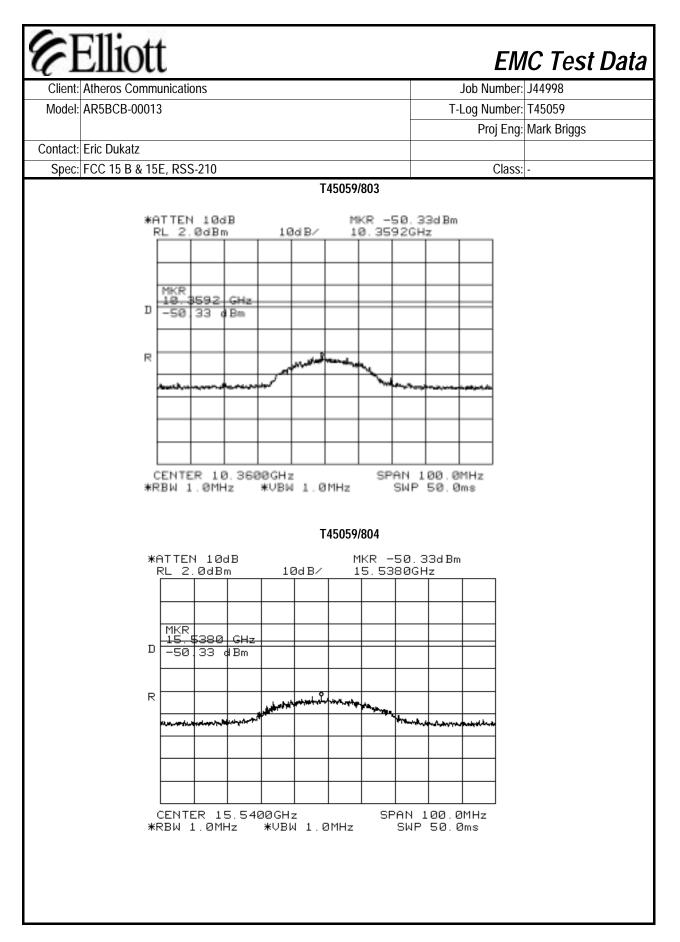

Client:	Atheros C	ommunication	IS						J	b Number:	J44998	
Model:	AR5BCB-00013								T-Log Number:			
									Proj Eng: Mark Briggs			5
Contact:	Eric Duka	tz								- J - J	55	-
Spec:	FCC 15 B	& 15E, RSS-2	210							Class:	-	
		ctral Density									Į.	
	Antenr	na Gain:	1.5	dBi								
				Dou	ior Sn	octrol						
	Channel	Frequency (I	MHz)		/er Sp∉ tv (dBr	n/MHz)	FCC Limi	t (dBm) I	note 2	Graph F	Reference	
	Low	5180		Donon	0.27			4.0		T45059/20	3	Note 1
	Mid	5260			4.0			11.0		T45059/20	4	Note 1
	High	5320			2.8			11.0		T45059/20	7	Note 1
	<u>Plots</u>	Showing Po	wer Sp	ectral I	Densit	<u>y (RBW</u>	= 1MHz, V	/BW = 1	MHz, v	video avera	nging ON)	
				T45	5059/	203 @ 1	3.8 dBm					
		ATTE	N 20			203@1 5 100		.27dE	m			
		ATTEI RL 1		dB	VAVO		MKR	. 27d E 133GF		Ţ]		
			1.6d	d B Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1	1.6d	d B Bm	VAV(1(G 100 3d B/	MKR	133GH				
		RL 1	1.6d 81 <u>8</u> 3	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
		RL 1 MKR 5.1 .27	1.6d 8183 9Bm	dB Bm	VAV(1(G 100 3d B/	MKR 5.18	133GH				
			1.6d	dB Bm GHz		5 100 3d B/	MKR 5.18					
			1.6d 8183 9Bm	d B Bm GHz . 1800	UAU(1)	5 100 3d B/	MKR 5.18	133GH		DMHz		
			1.6d 8183 9Bm	d B Bm GHz . 1800	UAU(1)	5 100 3d B/	MKR 5.18	133GH	25.00	DMHz		

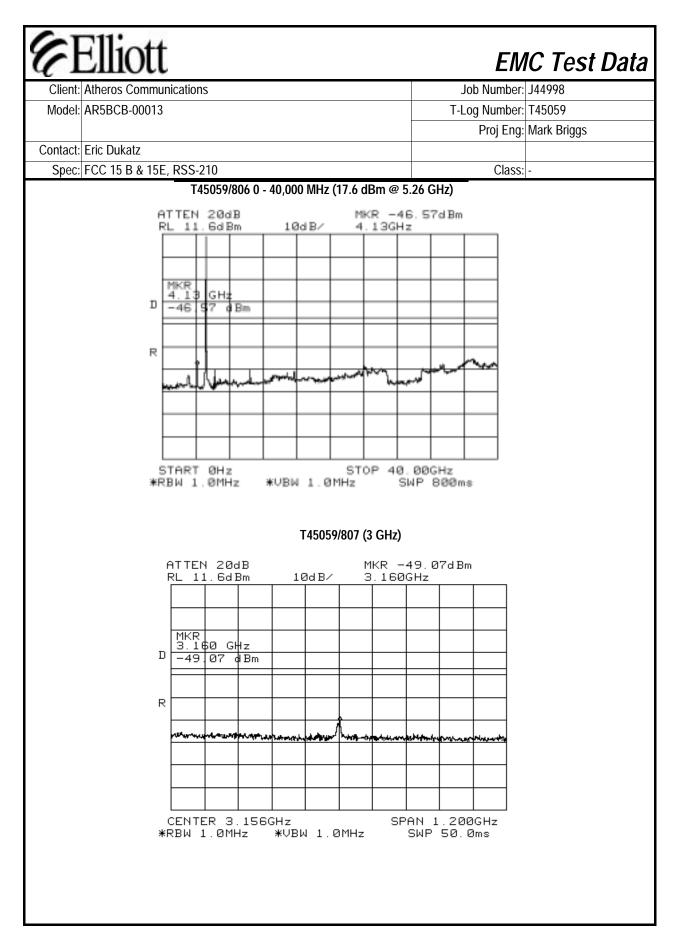


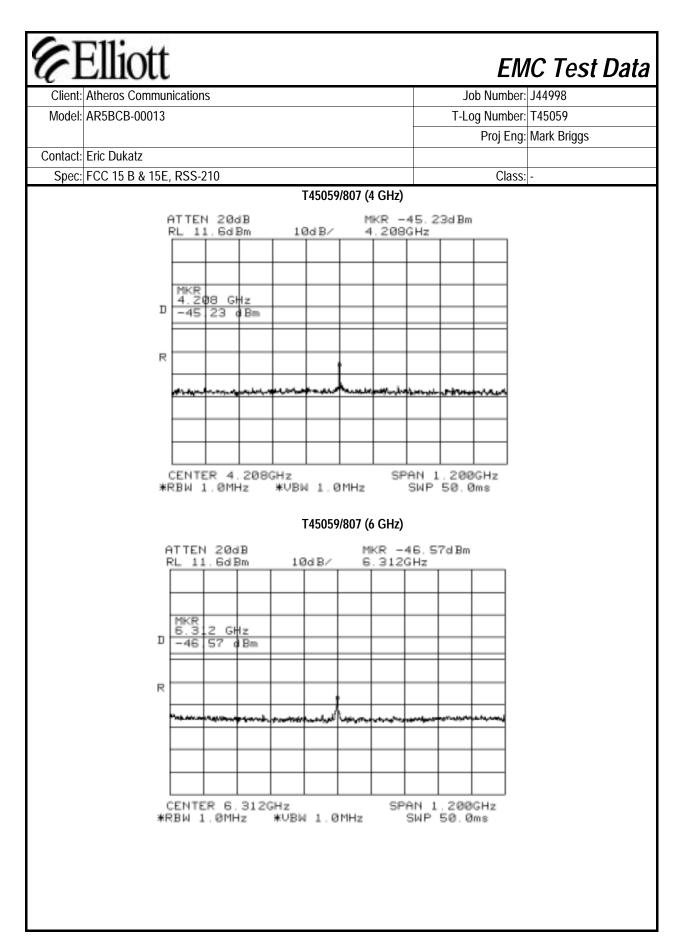


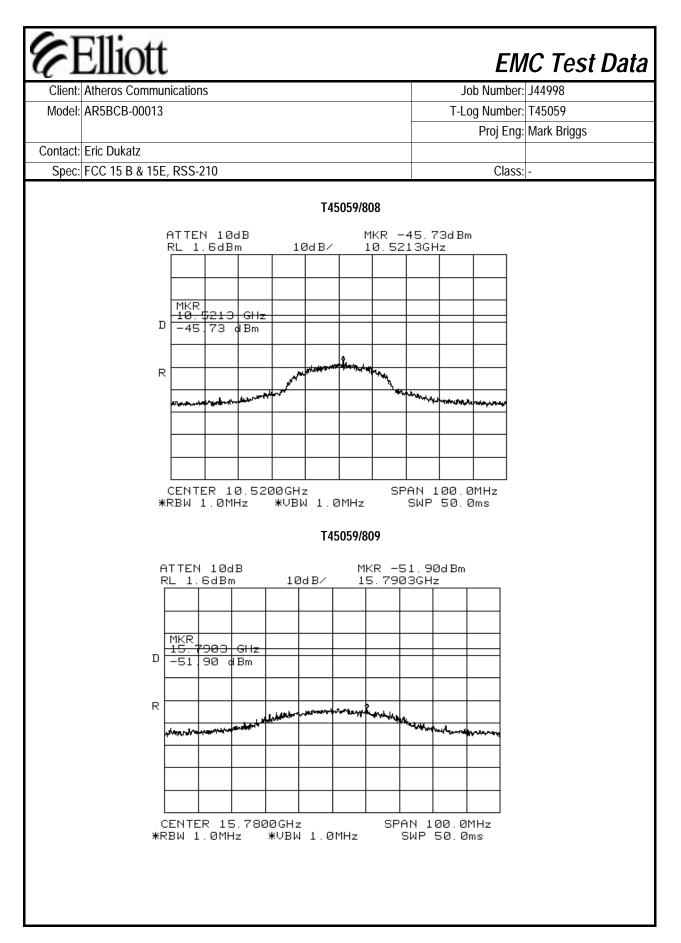

(FI	Elliott	EM	IC Test Data
Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Spec:	FCC 15 B & 15E, RSS-210	Class:	-

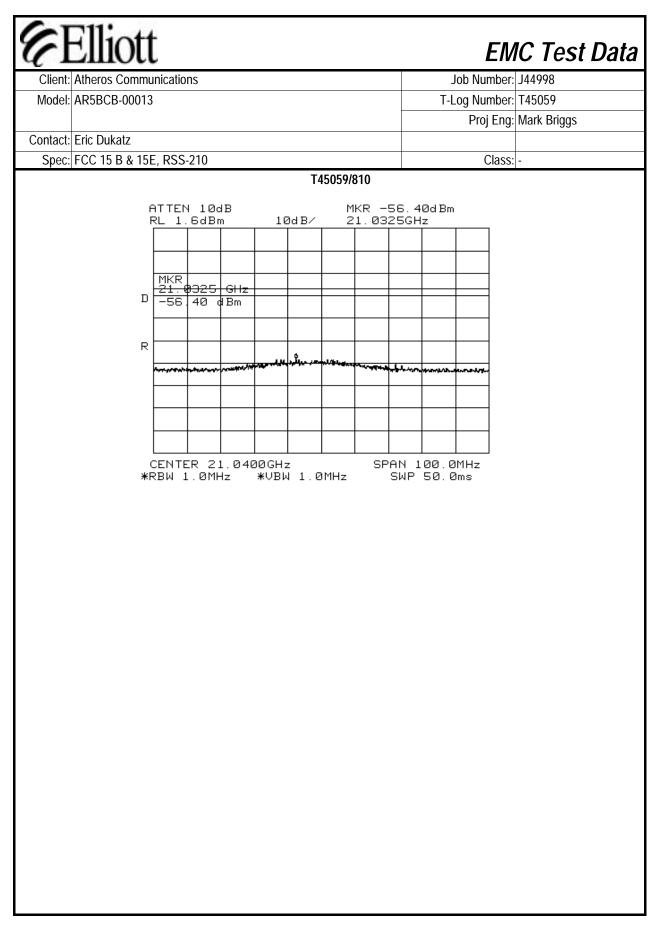

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

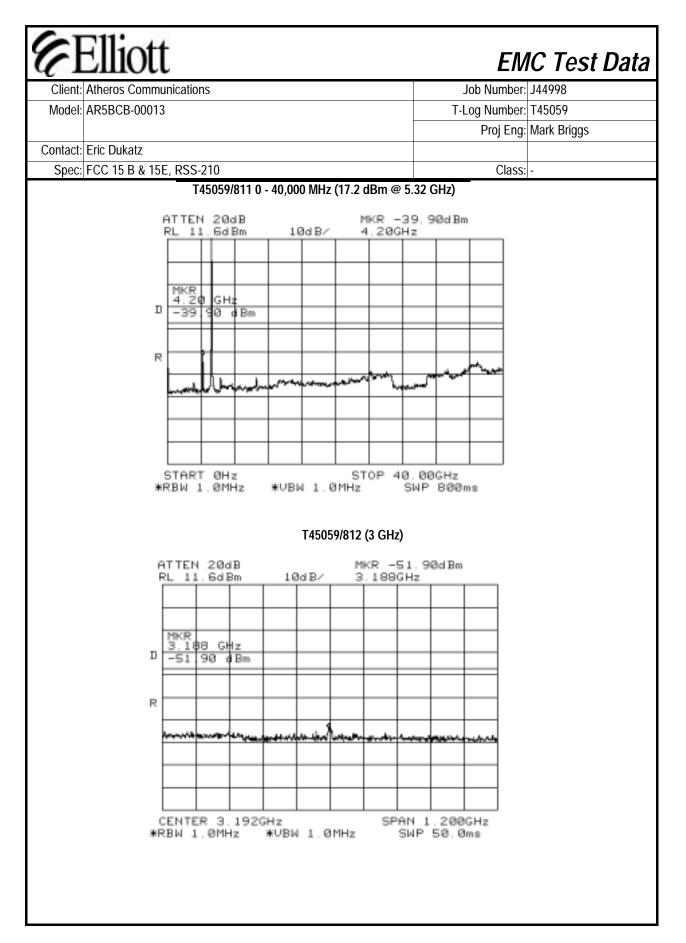

The antenna gain of the radios integral antenna is 1.5 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -28.5 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 1.5 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

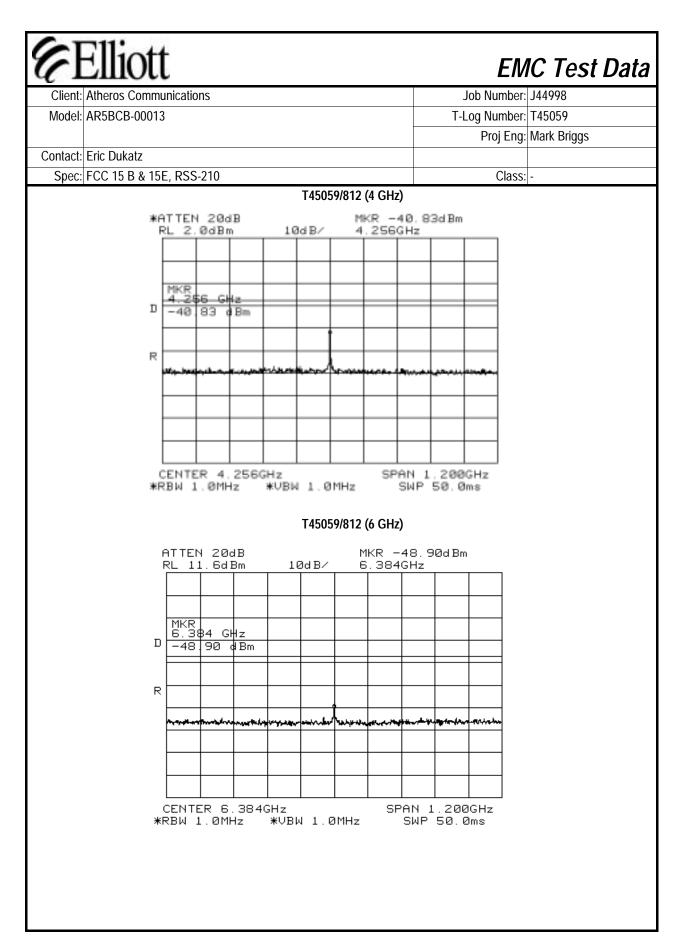

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	T45059/801
Low	E100	1 to 7 GHz	3100 (Note 2), 4144 (Note 1), 6182 (Note 3)	T45059/801 & 802
	5180	7 to 10 GHz	10359 (Note 3)	T45059/801 & 803
		10 GHz to 20 GHz	15539 (Note 1)	T45059/801 & 804
		20 GHz to 40 GHz	None	T45059/801
		30 - 1000 MHz	Note 4	T45059/806
Mid	5260	1 to 7 GHz	3160 (Note 2), 4208 (Note 1), 6312 (Note 3)	T45059/806 & 807
		7 to 10 GHz	10520 (Note 3)	T45059/806 & 808
		10 GHz to 20 GHz	15790 (Note 1)	T45059/806 & 809
		20 GHz to 40 GHz	21.04GHz (Note 1)	T45059/806 & 810
		30 - 1000 MHz	Note 4	T45059/811
High	5320	1 to 7 GHz	3188 (Note 2), 4256 (Note 1), 6383 (Note 3)	T45059/811 & 812
Ŭ		7 to 10 GHz	10640 (Note 1)	T45059/811 & 813
		10 GHz to 20 GHz	15960 (Note 1)	T45059/811 & 814
		20 GHz to 40 GHz	None	T45059/811

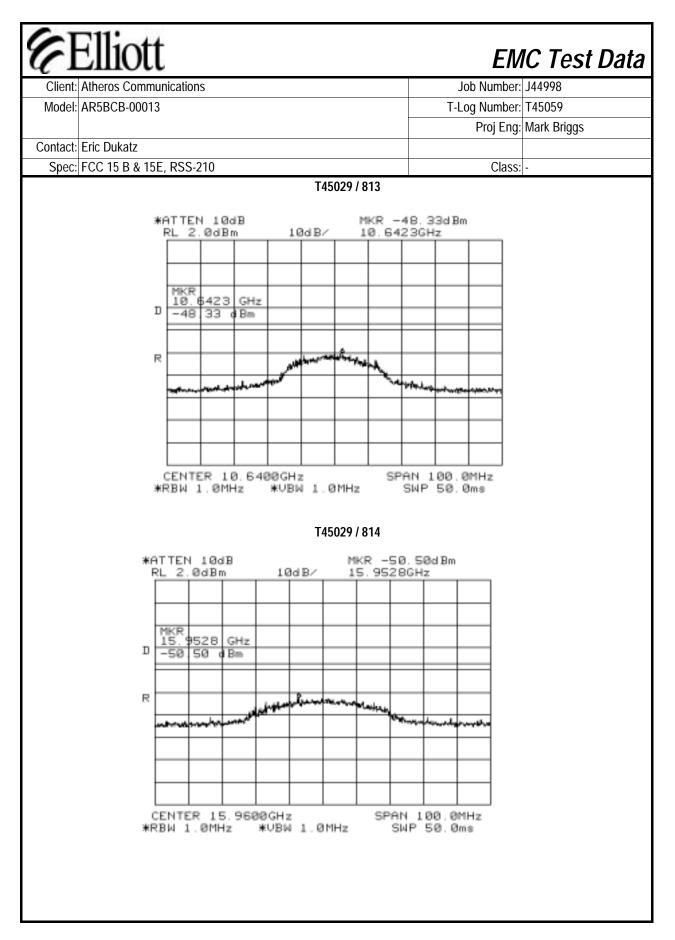

Note 1:	Signal is in a restricted band. Refer to run #6 for field strength measurements.
Note 2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than -27dBm no
Note 2:	field strength measurements required.
Note 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower than -
Note 3:	27dBm field strength measurements were made (refer to run #6)
Note 4:	All spurious signals in this frequency band measured during digital device radiated emissions test.

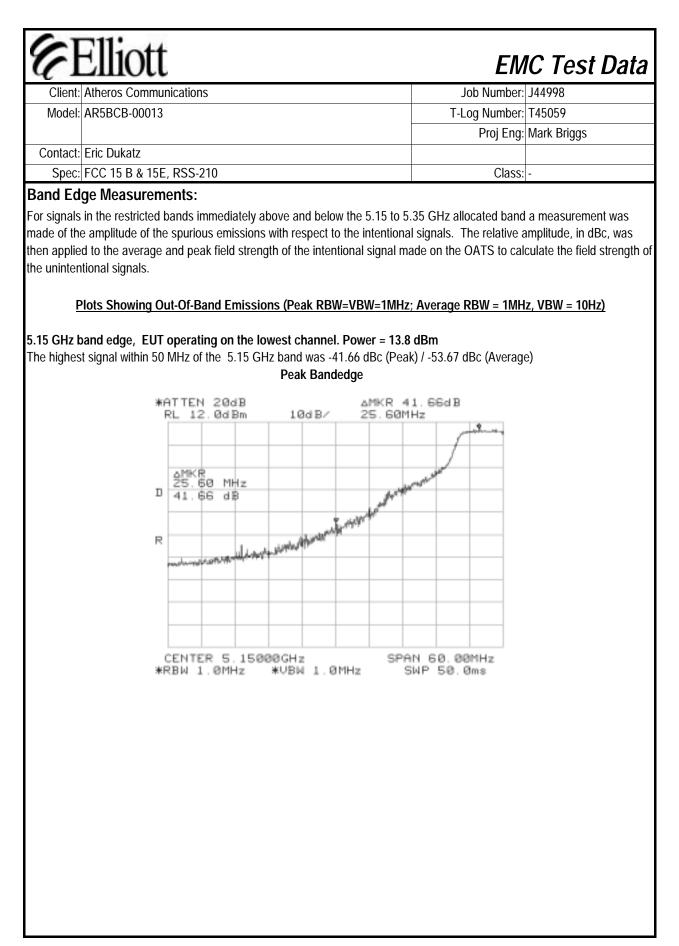


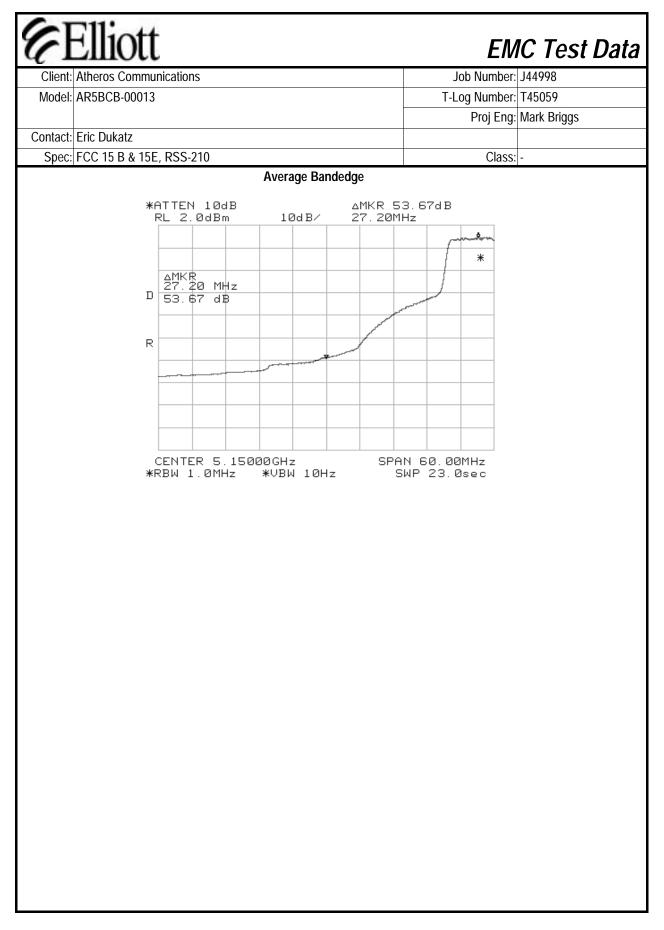


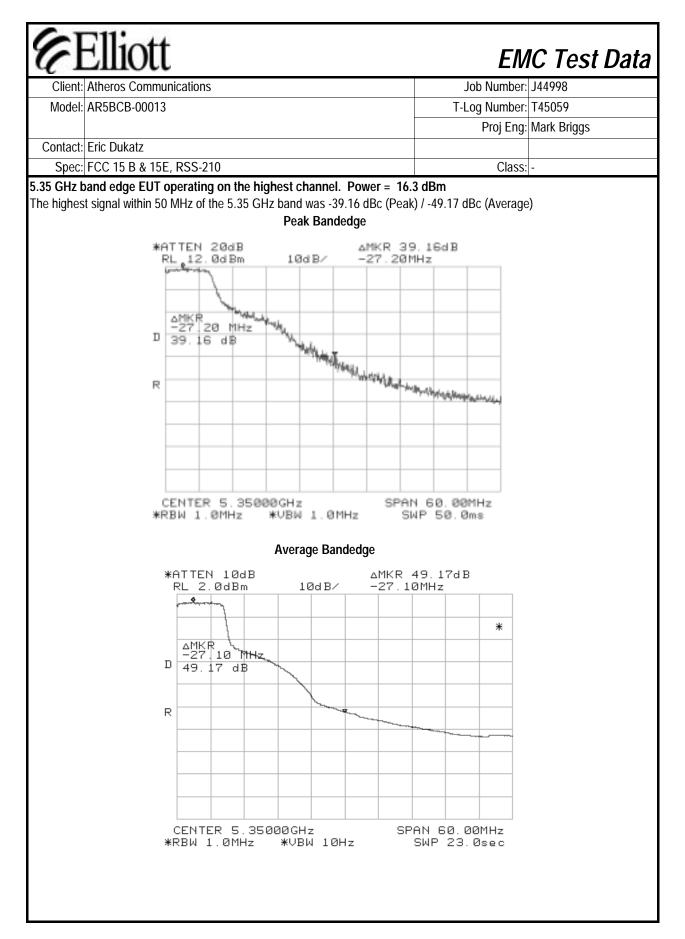


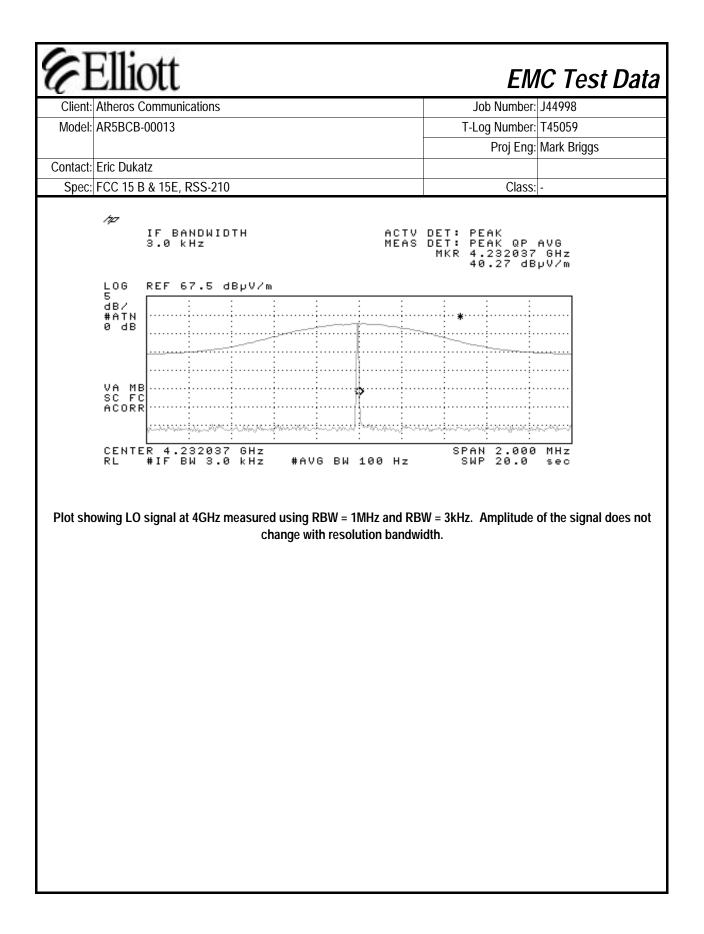












Client:	Atheros Communications							ob Number:	J44998
Model:	AR5BCB-0	00013					T-L	og Number:	T45059
						ŀ		•	Mark Briggs
Contact:	Eric Dukat	Z						, .	
	FCC 15 B		RSS-210					Class:	-
			s Emission	s. 1000 - 40	000 MHz				
Spurious ei		om 30 -	1000 MHz v			rforming emis	sions meas	surements o	f the digital device. F
	l imit fo	remissi	ons in restri	rted bands:	54dBuV/m	n (Average)	74dBuV/	m (Peak)	l
Limit			ide of restric			7dBm/MHz		uV/m)	
undamen Bm @ 53 requency	20 MHz.	measur Pol		calculate t	he band edg	ge field stren Azimuth	gths): Pov	ver = 13.8 d	Bm @ 5180 MHz, 16
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5180.0		V	-	-	Pk	157		RBW = VB	W = 1 MHz
5180.0	96.1	V	-	-	Avg	157	1.6	RBW = 1M	Hz, VBW = 10Hz
5180.0	98.2	h	-	-	Pk	132	1.6	RBW = VB	W = 1 MHz
5180.0	88.6	h	-	-	Avg	132	1.6	RBW = 1M	Hz, VBW = 10Hz
5320.0	110.1	V	-	-	Pk	293	1.5	RBW = VB	W = 1 MHz
5320.0	100.0	V	-	-	Avg	293	1.5	RBW = 1M	Hz, VBW = 10Hz
5320.0		h	-	-	Pk	93		$RBW = VB^{\prime}$	
5320.0	89.3	h	-	-	Avg	93	1.4	RBW = 1M	Hz, VBW = 10Hz
Sand Edge	Field Stre	enath C	alculations	Power = 1	3 8 dBm @	5180 MHz, 16	5 dBm @	5320 MHz	
requency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	64.7	V	74.0	-9.3	Pk			Note 1	
5150.0	42.5	V	54.0	-11.5	Avg			Note 1	
5150.0	56.5	h	74.0	-17.5	Pk			Note 1	
5150.0		h	54.0	-19.1	Avg			Note 1	
5350.0		V	74.0	-3.1	Pk			Note 2	
5350.0		V	54.0	-3.2	Avg			Note 2	
5350.0		h	74.0	-13.7	Pk			Note 2	
5350.0	40.1	h	54.0	-13.9	Avg			Note 2	
lote 1:	relative me average fie	easurem eld strer	ients in run igth measur	#5 (-41.7 dl ements of t	Bc for peak a he fundamer	and -53.7 dBc ntal signal lev	for averag el.	e) applied to	calculated using the the highest peak an
Note 2:		ients in i	run #5 (-39.	2 dBc for pe	eak and -49.2	2 dBc for aver	•		culated using the rela hest peak and average

Client	Atheros Co		cations				lı	b Number:	144998
	del: AR5BCB-00013							og Number:	
wouci.	31: AK2RCR-00013							-	
O a sala at	Ed. Dalat							Ploj Elig:	Mark Briggs
	Eric Dukat		500.040						
1	FCC 15 B							Class:	-
			s Emission			- 10 0			
					5.18 GHz) P			0	
Frequency	Level	Pol		15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6216.0	45.9	V	68.3	-22.4	Note 5	145		Note 4 & 6	
6216.0	43.7	h	68.3	-24.6	Note 5	0		Note 4 & 6	
4144.0	40.7	V	74.0	-33.3	Pk	100			Noise Floor Measureme
4144.0	30.5	V	54.0	-23.5	Avg	100			Noise Floor Measureme
4144.0	41.2	h	74.0	-32.8	Pk	25			Noise Floor Measurem
4144.0	30.6	h	54.0	-23.4	Avg	25			Noise Floor Measurem
10360.0	53.4	V	68.3	-14.9	Note 5	130	1.7	Note 4	
10360.0	52.1	h	68.3	-16.2	Note 5	141	1.7	Note 4	
15540.0	61.4	V	74.0	-12.6	Pk	0	1.2	Note 2; No	ise Floor Measurement
15540.0	49.0	V	54.0	-5.0	Avg	0	1.2	Note 2; No	ise Floor Measurement
15540.0	61.7	h	74.0	-12.3	Pk	0	1.2	Note 2; No	ise Floor Measurement
15540.0	49.6	h	54.0	-4.4	Avg	0	1.2	Note 2; No	ise Floor Measurement
UT On Ce	enter Chan	nel (Mio	ddle Chann	el, 5.26 GH	lz) Power @	17.6 dBm			
6312.0	40.3	V	68.3	-28.0	Note 5	86	1.3	Note 4 & 6	
6312.0	44.3	h	68.3	-24.0	Note 5	148	1.3	Note 4 & 6	
4208.0	41.0	V	74.0	-33.0	Pk	289	1.5	Note 2 & 6)
4208.0	30.2	V	54.0	-23.8	Avg	289	1.5	Note 2 & 6)
4208.0	41.4	h	74.0	-32.6	Pk	100	1.2	Note 2 & 6)
4208.0	30.5	h	54.0	-23.5	Avg	100	1.2	Note 2 & 6)
10520.0	49.0	h	68.3	-19.3	Note 5	160	1.5	Note 4	
10520.0	55.4	V	68.3	-12.9	Note 5	122		Note 4	
15780.0	61.8	V	74.0	-12.2	Pk	153			ise Floor Measurement
15780.0	48.7	V	54.0	-5.3	Avg	153			ise Floor Measurement
15780.0	61.0	h	74.0	-13.0	Pk	0			ise Floor Measurement
15780.0	48.7	h	54.0	-5.3	Avg	0			ise Floor Measurement

Æ	Ellic	ott						EN	IC Test Data
Client:	Atheros Co	ommuni	cations				Jo	b Number:	J44998
Model:	AR5BCB-0	0013					T-Lo	g Number:	T45059
	=							Proj Eng:	Mark Briggs
Contact:	Eric Dukat	Z							
Spec:	FCC 15 B	& 15E, I	RSS-210					Class	-
EUT On Hi	ghest Cha	nnel Av	ailable (Hic	h Channel	, 5.32 GHz)	Power @ 16.5	dBm		
6383.0	<u> </u>	٧	68.3	-34.6	Note 5	0		Note 4	
6383.0	35.0	h	68.3	-33.3	Note 5	180	1.3	Note 4	
4256.0	49.1	٧	74.0	-24.9	Pk	210	1.3	Note 2 & 6	
4256.0	40.1	V	54.0	-13.9	Avg	210	1.3	Note 2 & 6	
4256.0	50.9	h	74.0	-23.1	Pk	0	1.3	Note 2& 6;	Noise Floor Measuremen
4256.0	40.2	h	54.0	-13.8	Avg	0			Noise Floor Measuremen
10640.0	63.1	۷	74.0	-10.9	Pk	97		Note 2	
10640.0	49.1	V	54.0	-4.9	Avg	97		Note 2	
10640.0		h	74.0	-9.9	Pk	132		Note 2	
10640.0	49.2	h	54.0	-4.8	Avg	132		Note 2	
15960.0	61.6	V	74.0	-12.4	Pk	0			ise Floor Measurement
15960.0		V	54.0	-5.5	Avg	0			ise Floor Measurement
15960.0		h	74.0	-13.5	Pk	193			ise Floor Measurement
15960.0	48.4	h	54.0	-5.6	Avg	193	1.0	Note 2; No	ise Floor Measurement
Note 1: Note 2:		the limit	is EIRP < -			field strength a			apply. For all other
Note 3:				ements: Re leo BW: 10		Video BW: 1	MHz, Resti	icted Band	Average Measurements:
Note 4:	Signal doe	s not fa	ll in a restric	ted band.					
Note 5:									(100 samples).
Note 6:	allow meas intentional the intention during the	suremer signal v onally tra conduct	nts with RBV vould overlo ansmitted si ted antenna	W = 1MHz b ad the amp gnal but pas measurem	ecause a pro lifier and the ss the spuric ents) and so	eamplifier could re is no low pa us signal). The the amplitude	d not be us iss filter w e signal wa (peak/ave	sed (with th ith sufficier s a narrow rage) in a 3	noise floor was too high to e EUT operating the it shape factor to reject band signal (as verified 3kHz bandwidth would be has been compared with
	the averag	e limit.							

6	Elliott	EM	IC Test Data
Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Spec:	FCC 15 B & 15E, RSS-210	Class:	-

FCC Part 15 Subpart E Tests: Turbo Mode

Test Specifics

....

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

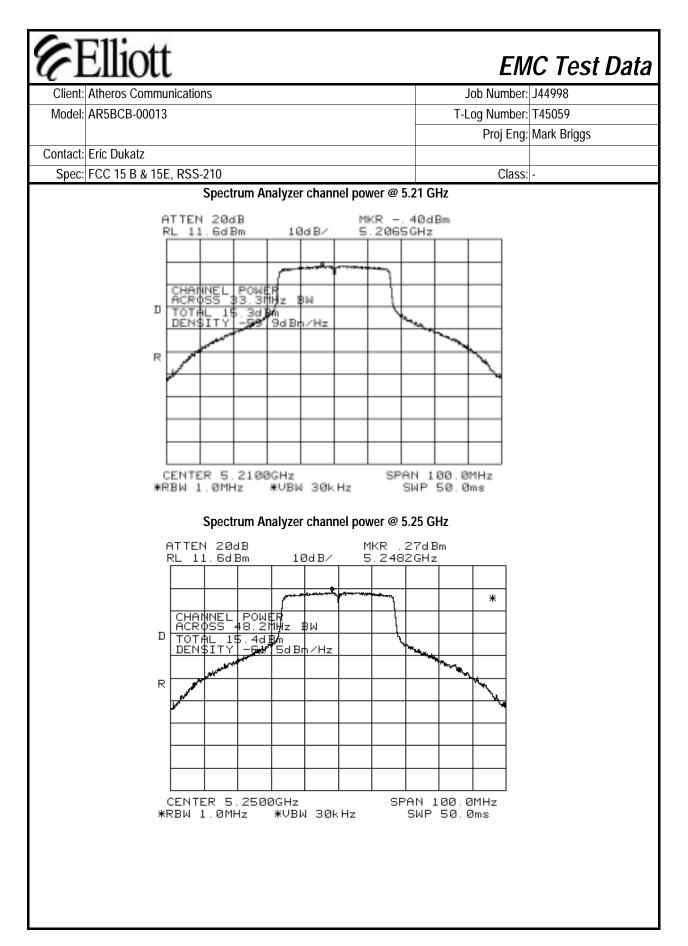
Date of Test:	10/18/2001
Test Engineer:	J Martinez
Test Location:	SVOATS# 2

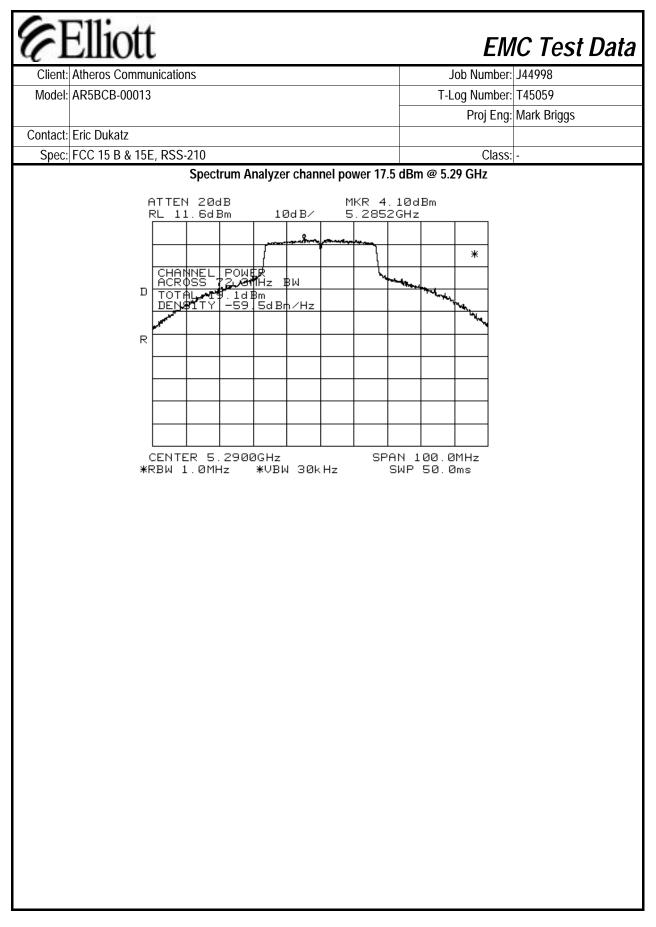
Config. Used: #2 Config Change: None Host Unit Voltage 120Vac, 60 Hz

General Test Configuration

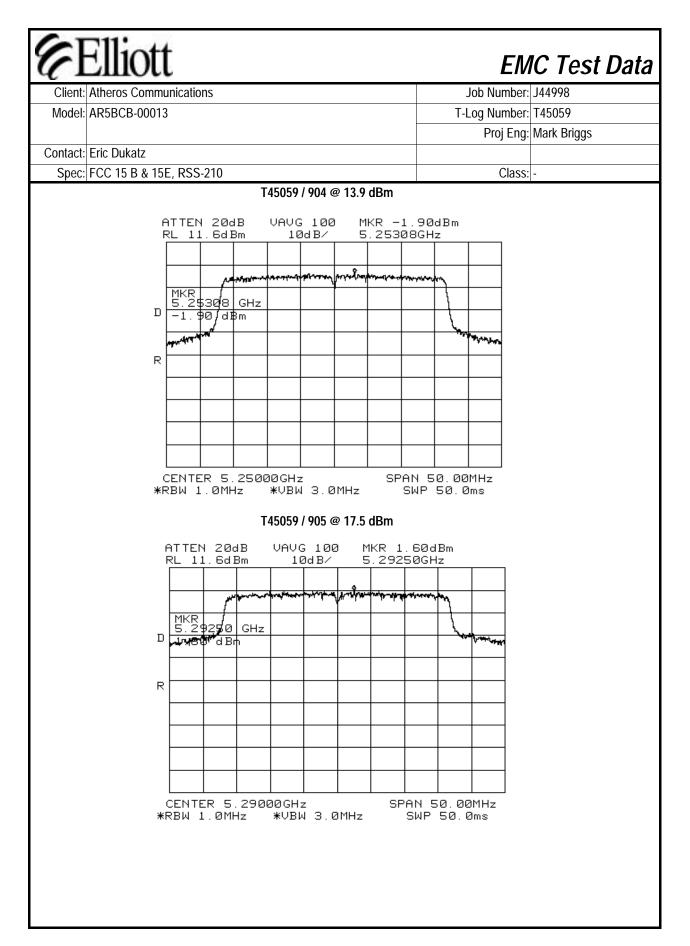
The EUT was located on the turntable for radiated spurious emissions testing.

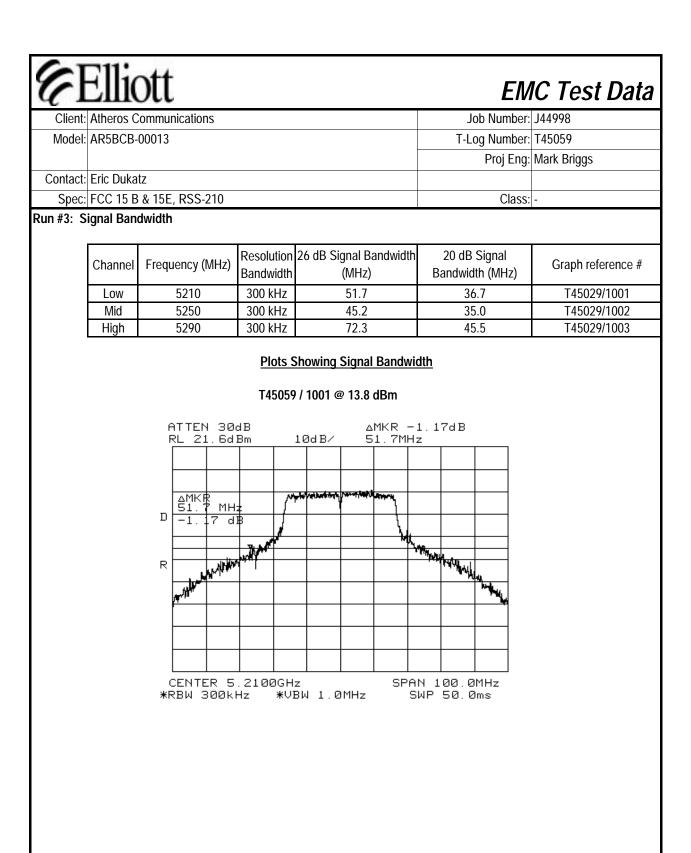
For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

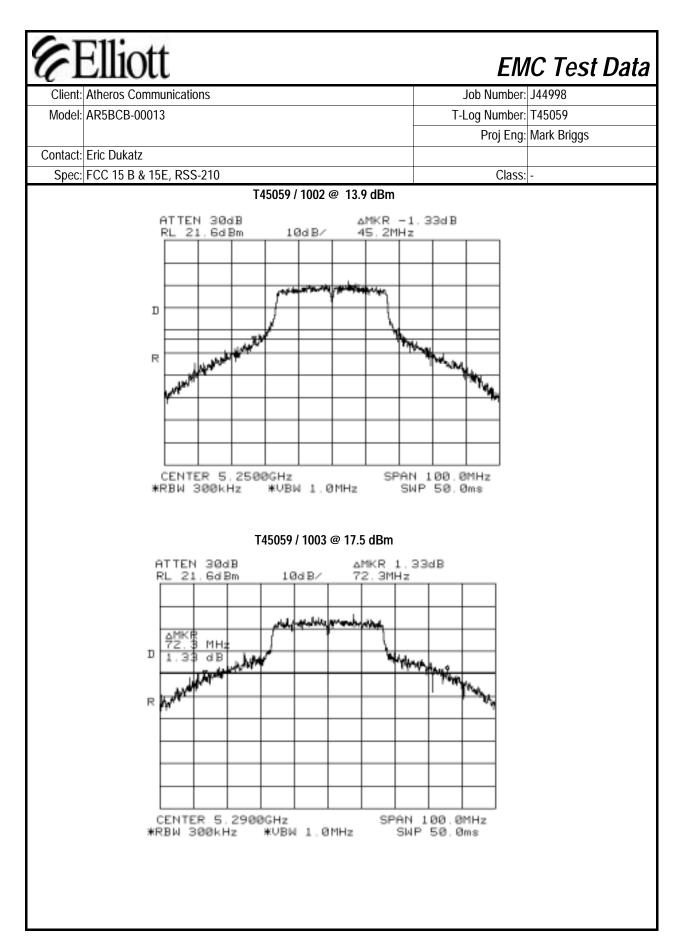

Ambient Conditions:

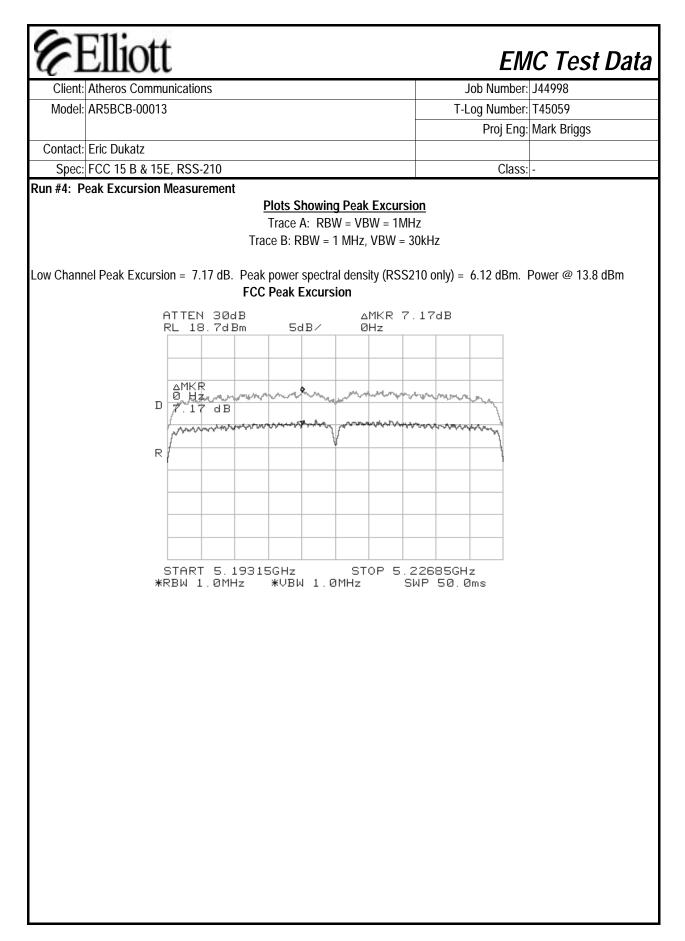

Temperature: 15°C Rel. Humidity: 55%

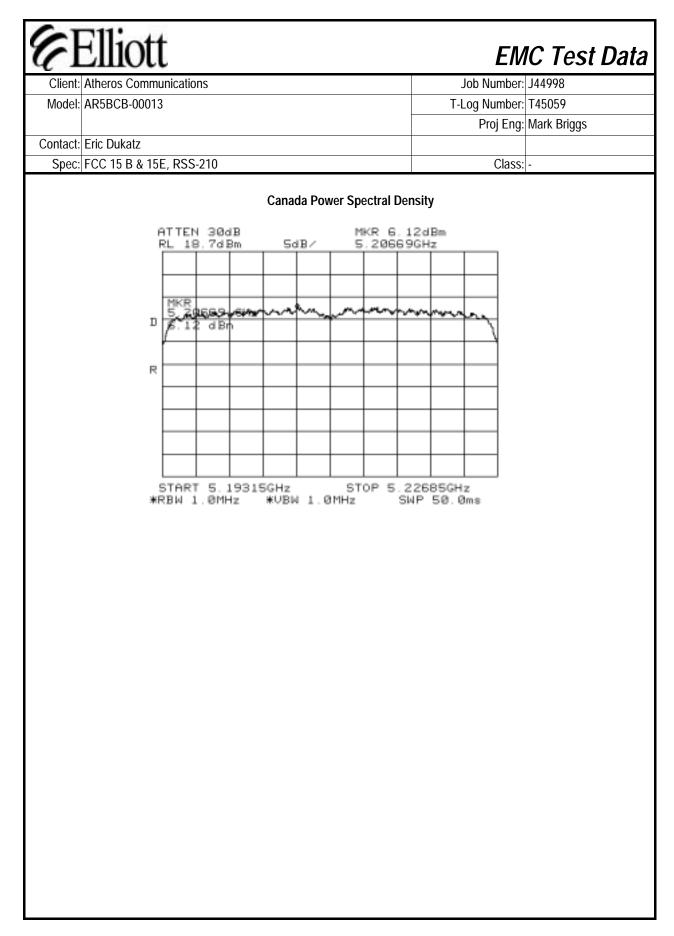
Summary of Results: Turbo Mode

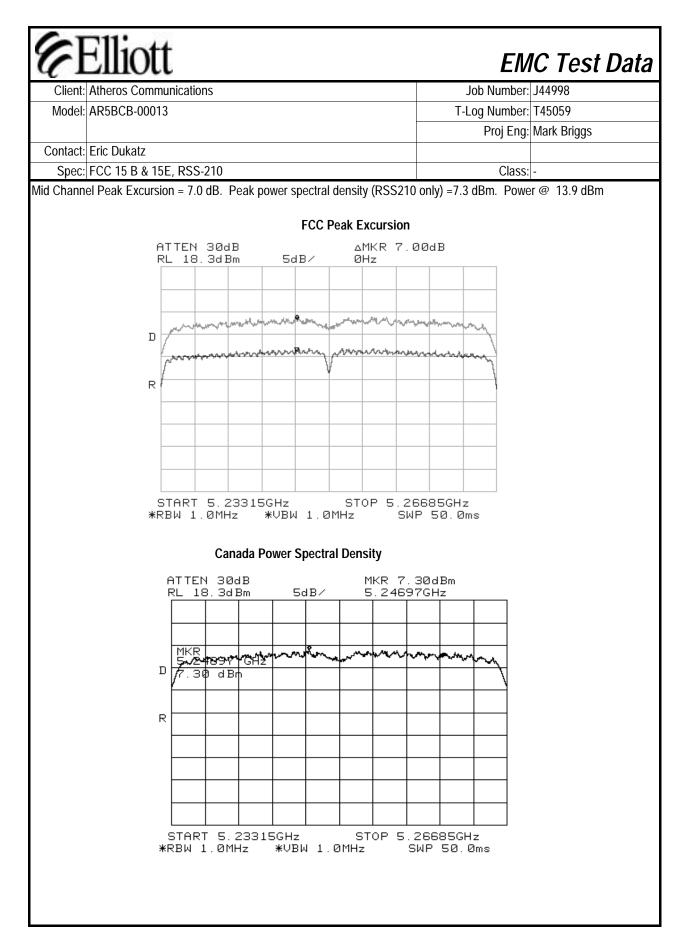

Run #	Test Performed	Limit	Result	Comments
1	Output Power	15.407(a) (1), (2)	Pass	
2	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	
3	26dB Bandwidth	15.407	Pass	> 20 MHz
3	20 dB Bandwidth	RSS 210	Pass	> 20 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	Peak to average excursion < 13dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the 27dBm/MHz limit
6	RE, 1000 - 40000 MHz - Spurious Emissions	15.407(b)(6)	Pass	-4.7dB @ 15,630 MHz

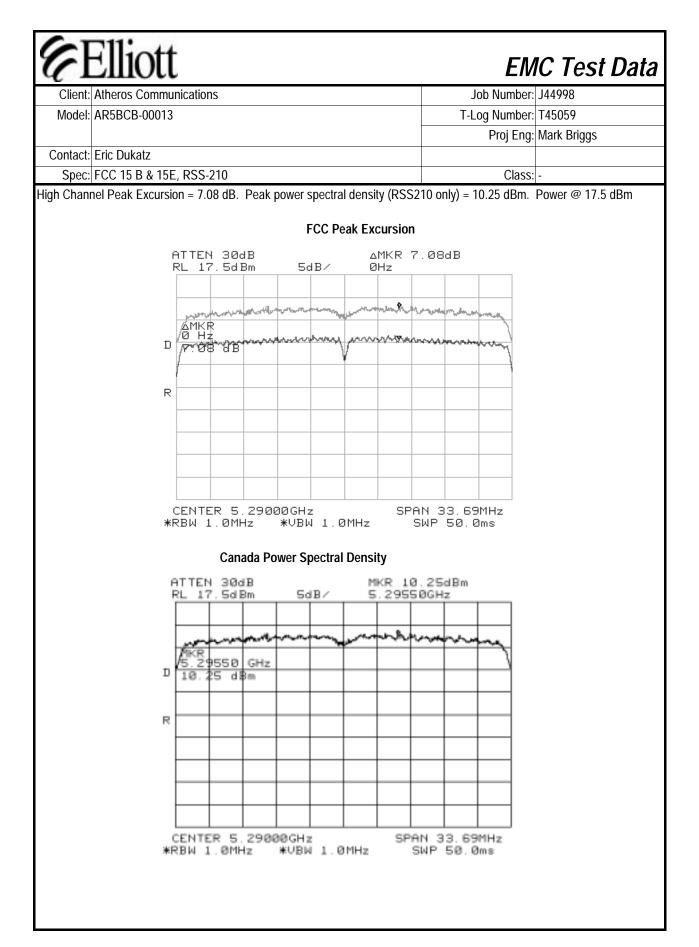

\mathcal{C}	Ellic	ott			EM	IC Test Data
Client	: Atheros C	communications			Job Number:	J44998
Model	: AR5BCB-	00013			T-Log Number:	T45059
			Proj Eng:	Mark Briggs		
Contact	: Eric Duka	tz	, , , , , , , , , , , , , , , , , , , ,			
		& 15E, RSS-210	Class:	-		
0000		4 102/100 210			Chubbi	
		de During Testi ere made to the EUT	•	ing		
		The Standard made from the requ	irements of	the standard.		
Run #1:(Dutput Pow Antenr	ver; na Gain: 1.5	dBi			
	Channel	Frequency (MHz)	26-dB Signal BW	Output Power (dBm)	FCC Limit (dBm) (note 3)	Comments
	Low	5210		13.8	17.0	Note 2
	LOW	5210		15.2	17.0	Note 1
	Mid	5250		13.9	17.0	Note 2
		5250 5290		<u>15.4</u> 17.5	17.0 24.0	Note 1 Note 2
	High	5290		19.1	24.0	Note 1
	1 <u></u>		L			
Note 1:				er measurement functior		30kHz)
Note 2:				vith a peak power senso		
Note 3:	emission I	bandwidth and opera	ating freque			
Note 4:		limit is 24dBm in the n and operating frequ		o GHz band, same as th	e FCC limit. This limit is	s based on the emission

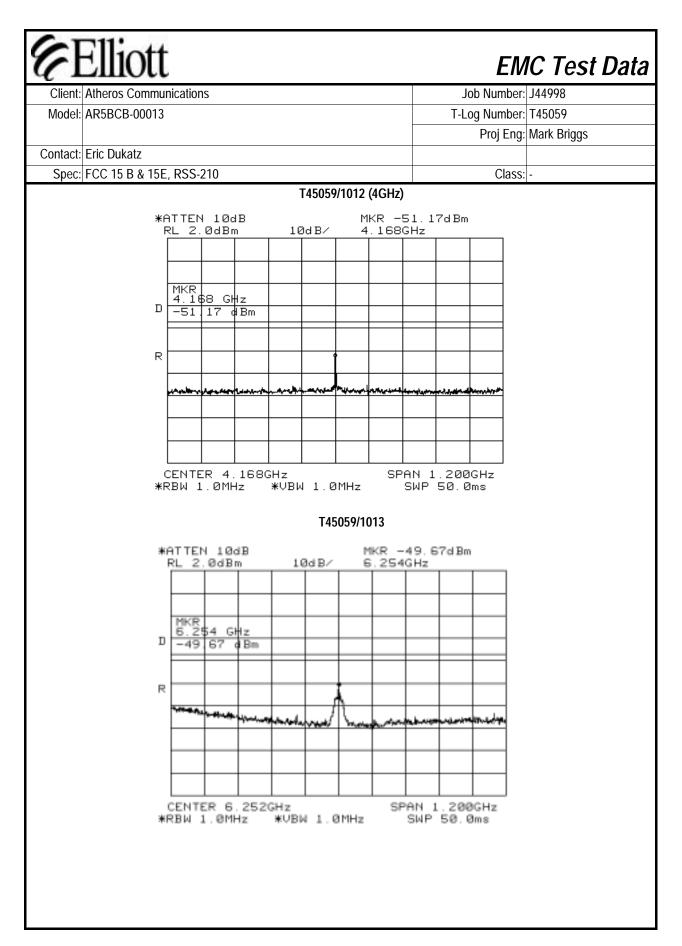


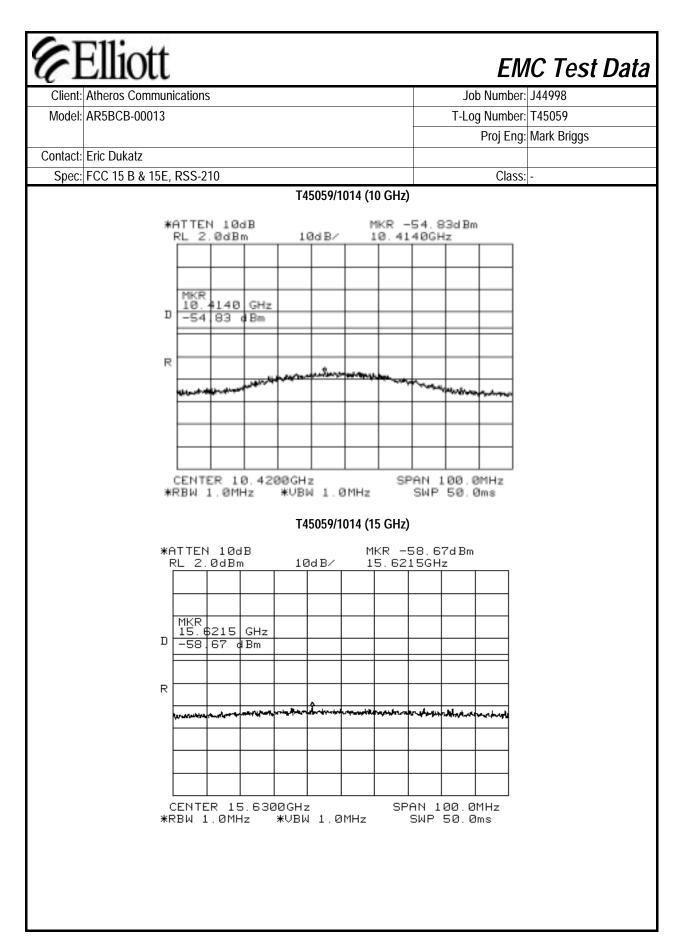


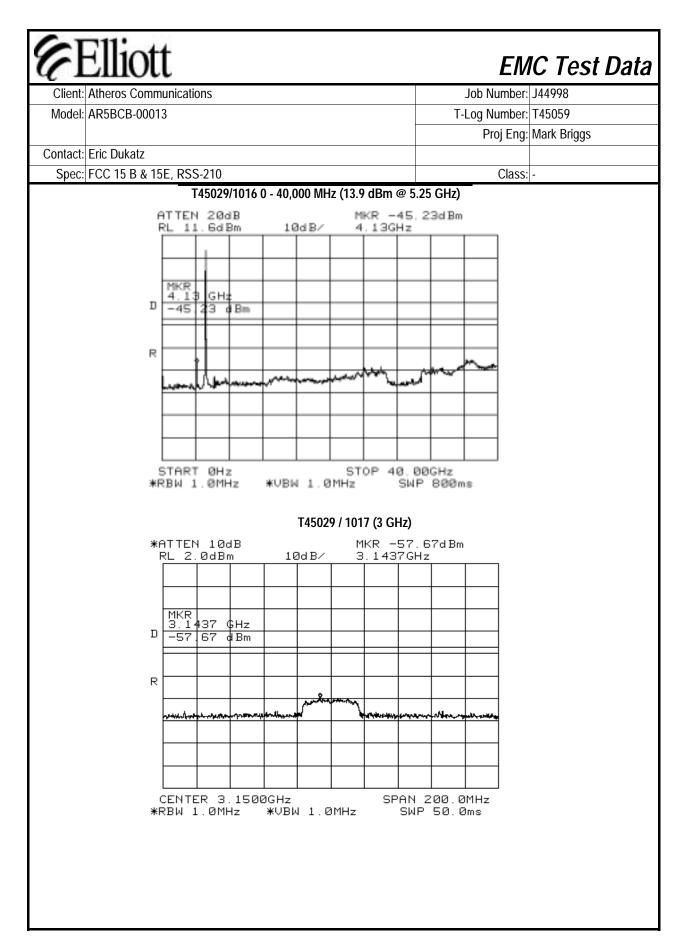

Client:	Ellic Atheros C	ommunications			J	Db Number:	J44998	
	AR5BCB-					og Number:		
					•	Mark Briggs	5	
Contact:	Eric Duka	tz				-		
		& 15E, RSS-210				Class:	-	
		ctral Density				0.0001		
	•	na Gain: 1.5	dBi					
			Power Spectral					
	Channel	Frequency (MHz)	Density (dBm/MHz)	FCC Limit (d	Bm) note 2	Graph F	Reference	
	Low	5210	-2.6	4.0)	T45059/90	3	Note 1
	Mid	5250	-1.9	4.0)	T45059/90		Note 1
	High	5290	1.6	11.	0	T45059/90	5	Note 1
			ore than 6dB. No restri	ction is placed	l on the out	put power o	r average P	SD with
lote 2:	respect to RSS 210	RSS 210. limit is 10dBm/MHz i	n the 5.15 to 5.25 GHz pectral Density (RBW	band, 6dB hi = 1MHz, VBV	gher than th	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. limit is 10dBm/MHz i Showing Power Sp	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1	band, 6dB hi = 1MHz, VBV 3.8 dBm	gher than th	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. limit is 10dBm/MHz i	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1	band, 6dB hi = 1MHz, VBV	gher than th / = 1 MHz, v 57dBm	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. limit is 10dBm/MHz i Showing Power Sp ATTEN 20d	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1	 band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2. 	gher than th / = 1 MHz, v 57dBm	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. limit is 10dBm/MHz i Showing Power Sp ATTEN 20d	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 Bm 10d B/	 band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2. 	gher than th / = 1 MHz, v 57dBm	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. iimit is 10dBm/MHz i Showing Power Sp ATTEN 200 RL 11.6d B MKR	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 IB VAUG 100 3m 10d B/	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. iimit is 10dBm/MHz i Showing Power Sp ATTEN 20d RL 11.6dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. iimit is 10dBm/MHz i Showing Power Sp ATTEN 200 RL 11.6dE MKR 5.20817	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	ne FCC limit		SD with
lote 2:	respect to RSS 210	RSS 210. iimit is 10dBm/MHz i Showing Power Sp ATTEN 200 RL 11.6dE MKR 5.20817	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20c RL 11.6dF MKR 5.20817 D -2.57 dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20c RL 11.6dF MKR 5.20817 D -2.57 dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20c RL 11.6dF MKR 5.20817 D -2.57 dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20c RL 11.6dF MKR 5.20817 D -2.57 dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20c RL 11.6dF MKR 5.20817 D -2.57 dF	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAVG 100 3m 10d B/ Idd B/ GHz	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2 5.20817	gher than th / = 1 MHz, v 57dBm 'GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20d RL 11.6dF D -2.57 dF R	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAUG 100 3m 10d B/ GHz 10 GHz 10	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2. 5.20817 	gher than th / = 1 MHz, v 57dBm 2GHz 	video avera		SD with
lote 2:	respect to RSS 210	RSS 210. imit is 10dBm/MHz i Showing Power Sp ATTEN 20d RL 11.6dF D -2.57 dF R R R	n the 5.15 to 5.25 GHz pectral Density (RBW T45059 / 903 @ 1 HB VAUG 100 Bm 10d B/ GHz GHz Bm 10 10 10 GHz 10 10 10 10	band, 6dB hi = 1MHz, VBV 3.8 dBm MKR -2. 5.20817 	gher than th	video avera		SD with

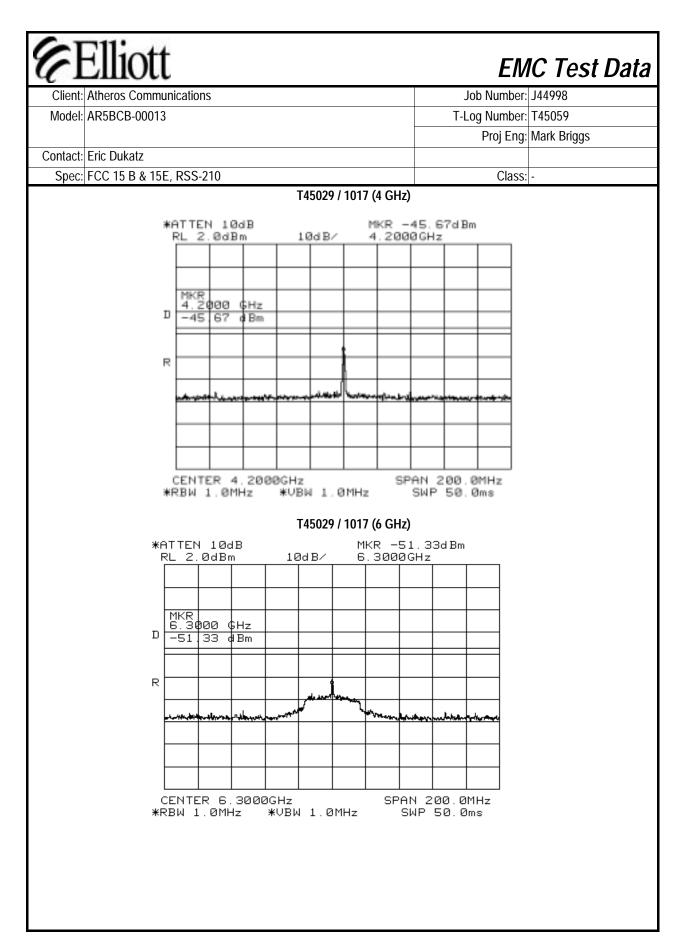


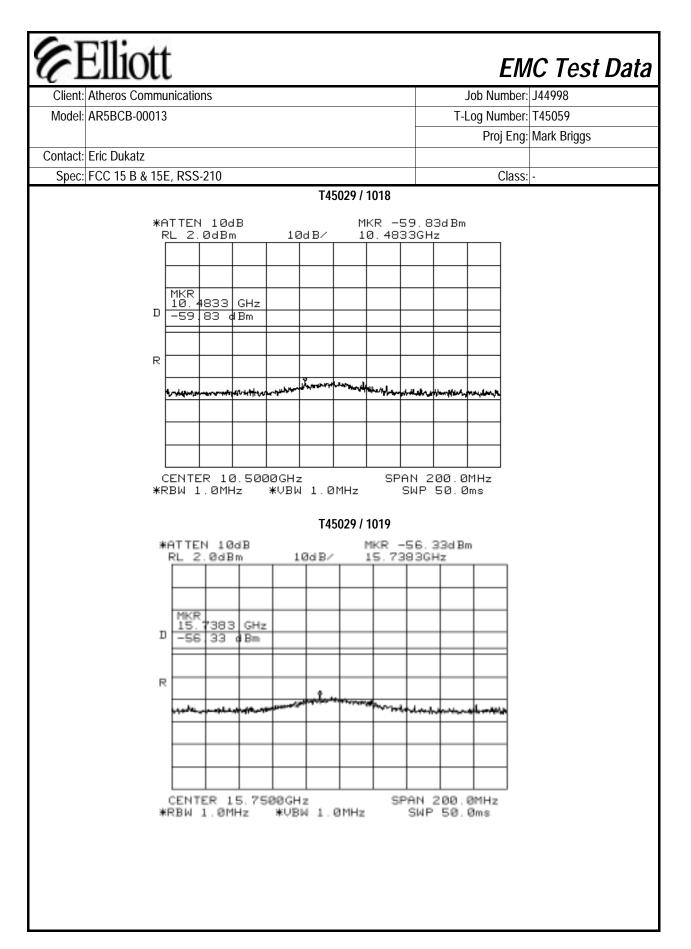


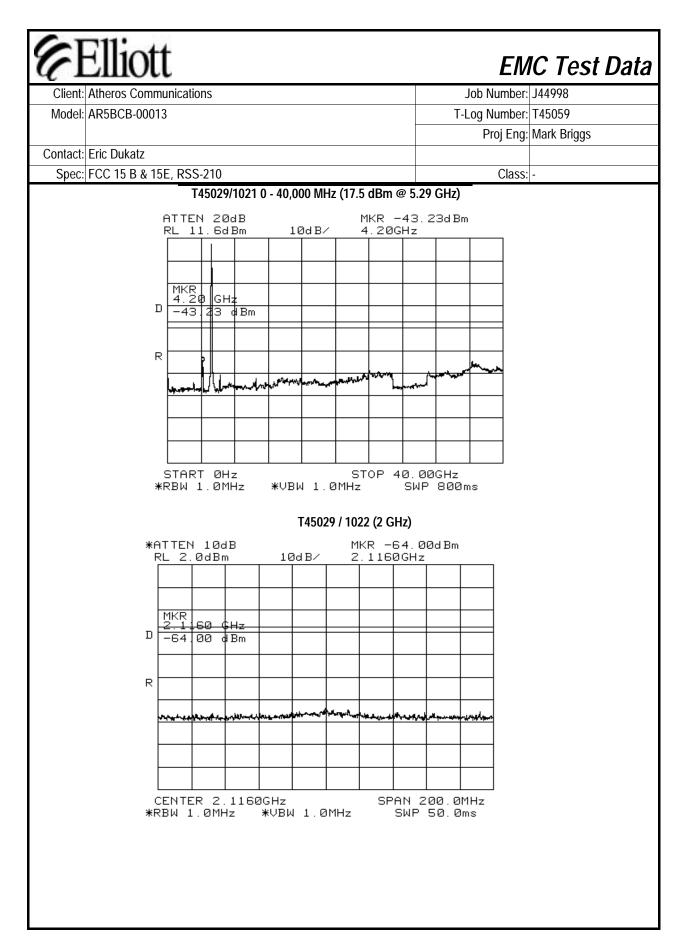

(FI	Elliott	EM	IC Test Data
Client:	Atheros Communications	Job Number:	J44998
Model:	AR5BCB-00013	T-Log Number:	T45059
		Proj Eng:	Mark Briggs
Contact:	Eric Dukatz		
Spec:	FCC 15 B & 15E, RSS-210	Class:	-

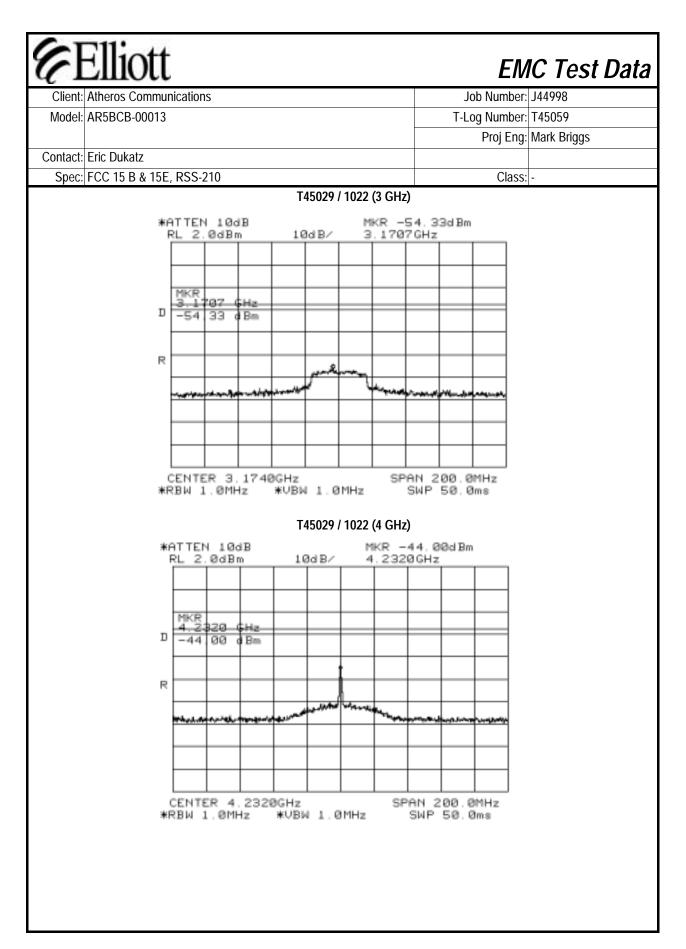

Run #5: Out Of Band Spurious Emissions - Antenna Conducted

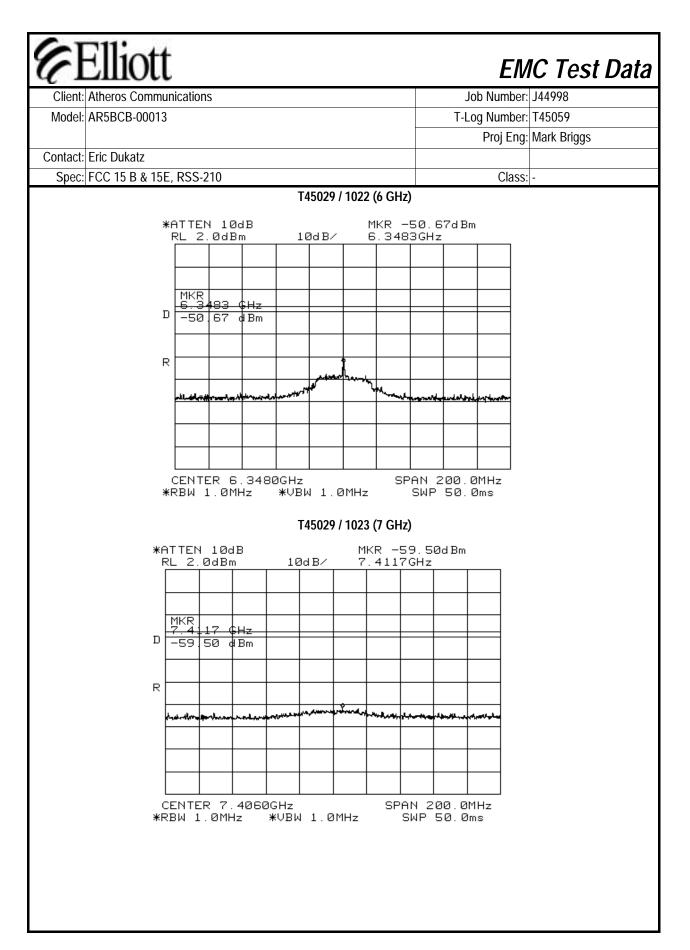

The antenna gain of the radios integral antenna is 1.5 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -28.5 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 1.5 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

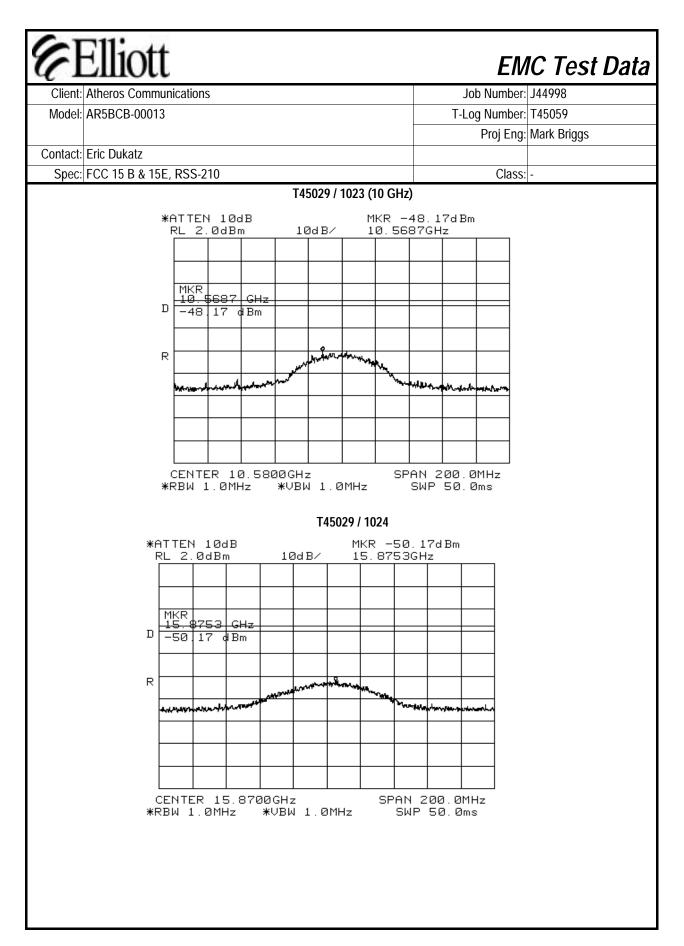

	Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		5210	30 - 1000 MHz	Note 4	T45029/1011
			1 to 5.15 GHz	3126 (Note 2), 4168 (Note 1)	T45029/1011 & 1012
	Low		5.25 to 10 GHz	6254 (Note 3)	T45029/1011 & 1013
			10 GHz to 20 GHz	10410(Note 3), 15630 (Note 1)	T45029/1011 & 1014
			20 GHz to 40 GHz	None	T45029/1011
		5250	30 - 1000 MHz	Note 4	T45029/1016
	Mid		1 to 7 GHz	3140 (Note 2), 4200 (Note 1), 6300 (Note 3)	T45029/1016 & 1017
			7 to 10 GHz	10420 (Note 3)	T45029/1016 & 1018
			10 GHz to 20 GHz	15750 (Note 1)	T45029/1016 & 1019
			20 GHz to 40 GHz	None	T45029/1016
		5290	30 - 1000 MHz	Note 4	T45029/1021
	Llich		1 to 7 GHz	2110(Note 2), 3160 (Note 2),4232 (Note 1), 6348.2 (Note 3)	T45029/1021 & 1022
	High		7 to 10 GHz	7406 (Note1), 10583 (Note 3)	T45029/1021 & 1023
			10 GHz to 20 GHz	15854 (Note 1)	T45029/1021 & 1024
			20 GHz to 40 GHz	None	T45029/1021
1:			Refer to run #6 for field	d strength measurements	
2:	Signal is not in restricted band. Limit is -27dBm eirp. As the signal strength is significantly lower than - field strength measurements required.				
e 3:	Signal is not in restricted band. Limit is -27dBm eirp. Although the signal strength is significantly lower 27dBm field strength measurements were made (refer to run #6)				
	All spurious signals in this frequency band measured during digital device radiated emissions test.				

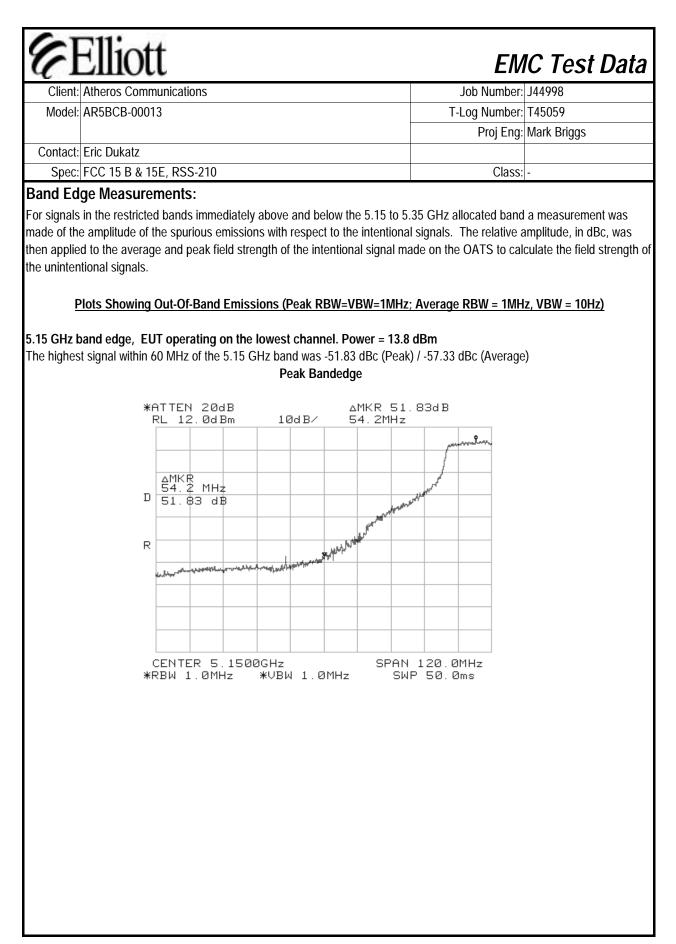


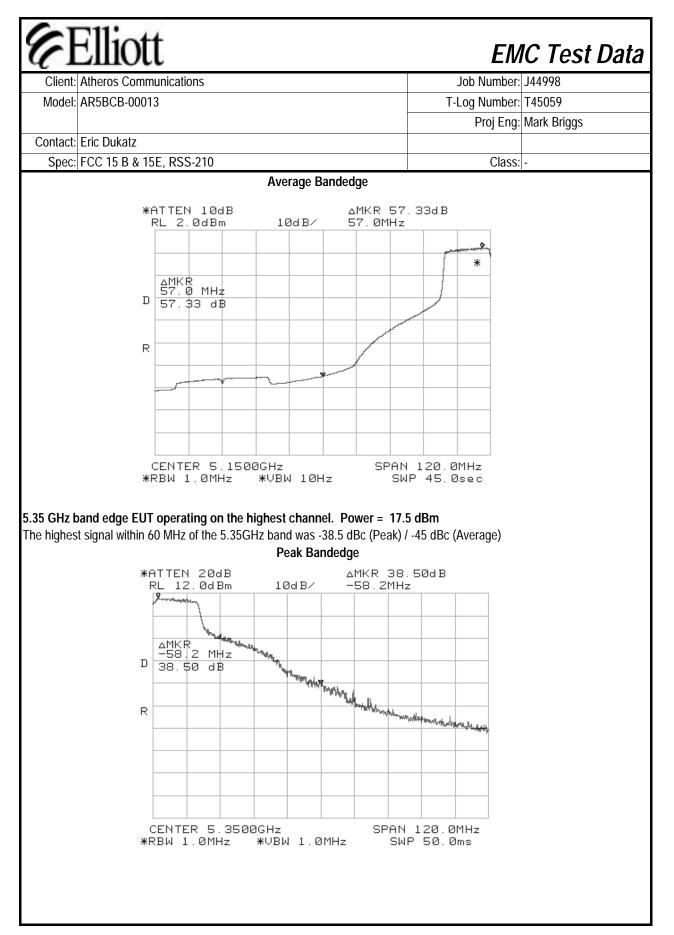


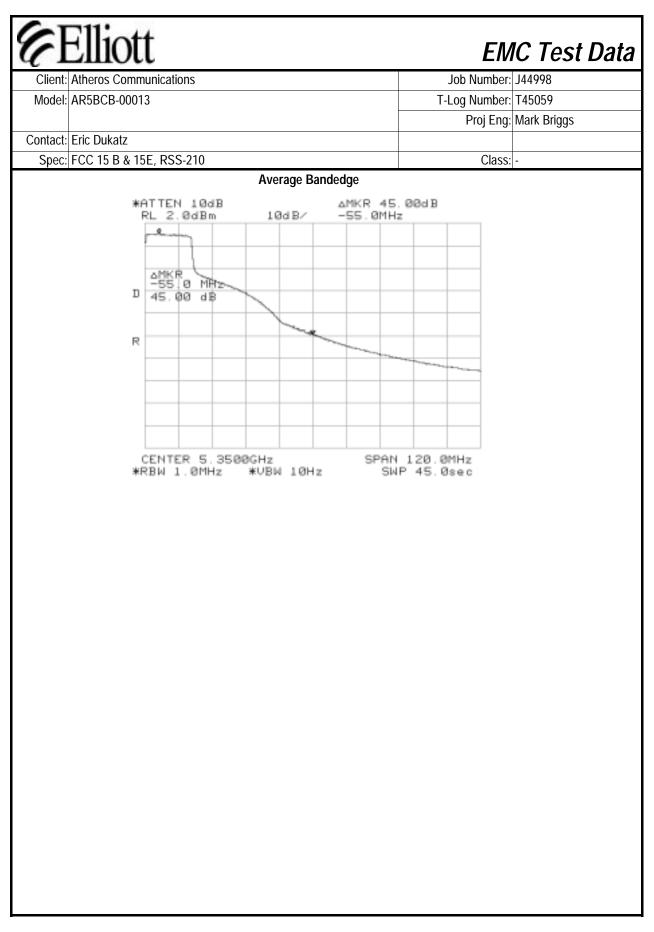


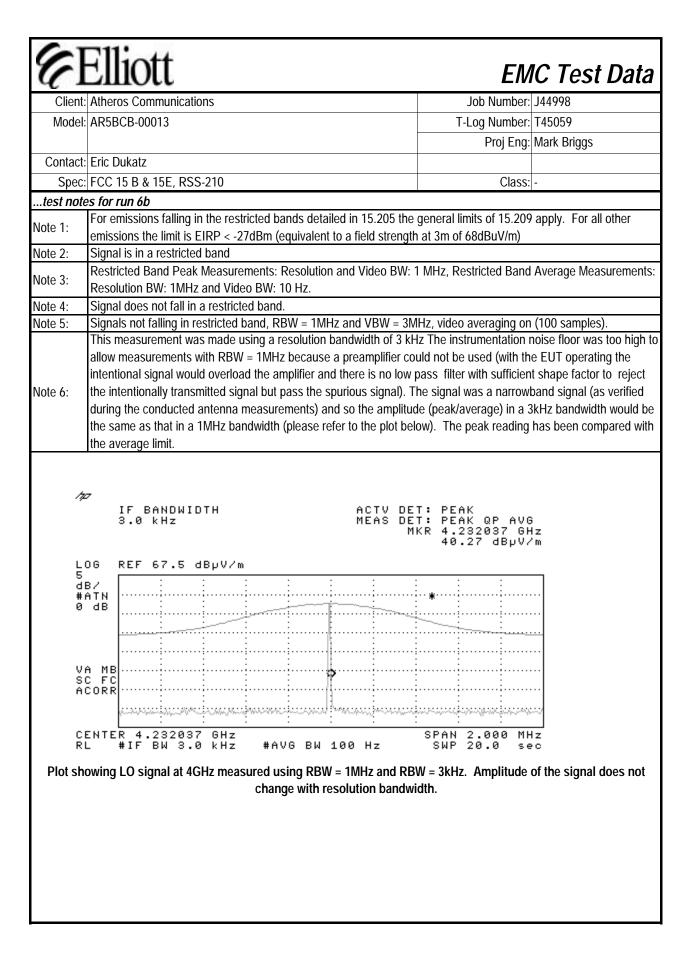












	Ellic Atheros Co		cations				J	ob Number:	J44998
Model:	AR5BCB-0	00013					T-L	og Number:	T45059
						-		•	Mark Briggs
Contact:	Eric Dukat	Z						, ,	
	FCC 15 B		RSS-210					Class:	-
			s Emission	s, 1000 - 40	000 MHz				
Spurious ei		om 30 -	1000 MHz v			rforming emis	sions meas	surements o	f the digital device. F
	Limit for	^r emissi	ons in restric	cted bands:	54dBuV/m	n (Average)	74dBuV/	m (Peak)	
Limit	for emission	ons outs	side of restric	cted bands:	EIRP < -2	7dBm/MHz	(68dB	uV/m)	
Fundamen dBm @ 52 Frequency	90 MHz	measur Pol	-	calculate t	he band edg	ge field stren Azimuth	gths): Pov Height	ver= 13.9 dl Comments	Bm @ 5210MHz, 17.!
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5210.0	104.5	V	-	-	Pk	298	1.5	RBW = VB	W = 1 MHz
5210.0		V	-	-	Avg	298			Hz, VBW = 10Hz
5210.0	99.6	h	-	-	Pk	111		RBW = VB'	
5210.0	90.2	h	-	-	Avg	111			Hz, VBW = 10Hz
5290.0	107.6	V	-	-	Pk	132		RBW = VB	
5290.0	97.8	V	-	-	Avg	132			Hz, VBW = 10Hz
5290.0 5290.0	100.5 89.9	h h	-	-	Pk Avg	113 113		RBW = VB'	w = 1 MHZ Hz, VBW = 10Hz
				<u>I</u>	<u> </u>	5210MHz, 17			
Frequency		Pol		/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.0	, 52.7	V	74.0	-21.3	PK	5		Note 1	
5150.0	37.7	V	54.0	-16.3	Avg			Note 1	
5150.0	47.8	h	74.0	-26.2	PK			Note 1	
5150.0	32.9	h	54.0	-21.1	Avg			Note 1	
5350.0		V	74.0	-4.9	PK			Note 2	
5350.0	52.8	V	54.0	-1.2	Avg			Note 2	
5350.0	62.0	h	74.0	-12.0	PK			Note 2	
5350.0	44.9	h	54.0	-9.1	Avg			Note 2	
lote 1:	relative me average fie	easurem eld strer	nents in run ngth measur highest cha	#5 (-51.8 dE ements of th innel availat	Bc for peak a he fundament ble in the 5.2	and -57.3 dBc ntal signal lev 5 - 5.35 MHz	for averagel. band. Sigi	e) applied to nal level cal	calculated using the the highest peak an culated using the rela
									hest peak and average

Client:	Atheros Co	ommuni	cations				J	b Number:	J44998
Model:	AR5BCB-0	00013					T-Lo	og Number:	T45059
								-	Mark Briggs
Contact:	Eric Dukat	Z							
Spec:	FCC 15 B	& 15E,	RSS-210					Class:	-
Run #6b:	Radiated S	Spuriou	s Emission	s, 1000 - 40	0000 MHz				
UT On Lo	west Chai				5.21 GHz); I	Power = 13.	8 dBm		
requency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
6252.0		V	68.3	-20.1	Note 5	100	1.3	Note 4 & 6	
6252.0	35.0	h	68.3	-33.3	Note 5	61	1.2	Note 4 & 6	
4168.0	41.8	V	74.0	-32.2	Pk	174	1.3	Note 2&6; I	Noise Floor measureme
4168.0	31.6	V	54.0	-22.4	Avg	174	1.3	Note 2&6;	Noise Floor measureme
4168.0	41.8	h	74.0	-32.2	Pk	124	1.3	Note 2&6;	Noise Floor measureme
4168.0	30.4	h	54.0	-23.6	Avg	124	1.3	Note 2&6;	Noise Floor measureme
10420.0	51.0	V	68.3	-17.3	Note 5	154	1.4	Note 4	
10420.0	49.2	h	68.3	-19.1	Note 5	187	1.6	Note 4	
15630.0	62.0	V	74.0	-12.0	Pk	0	1.4	Note 2; Noi	se Floor measurement
15630.0	49.3	V	54.0	-4.7	Avg	0	1.0	Note 2; Noi	ise Floor measurement
15630.0	62.1	h	74.0	-11.9	Pk	136	1.4	Note 2; Noi	se Floor measurement
15630.0	49.1	h	54.0	-4.9	Avg	136	1.4	Note 2; Noi	se Floor measurement
		nel (Mi	ddle Chann	el 5.25 GH	lz); Power =	13.9 dBm			
4200.0	45.6	V	74.0	-28.4	Pk	196	1.2	Note 2 & 6	
4200.0	38.5	V	54.0	-15.5	Avg	196	1.2	Note 2 & 6	
4200.0	41.0	h	74.0	-33.0	Pk	45	1.0	Note 2&6; I	Noise Floor measureme
4200.0	30.4	h	54.0	-23.6	Avg	45	1.0	Note 2&6;	Noise Floor measureme
6230.0	45.5	V	68.3	-22.8	Note 5	120	1.3	Note 4 & 6	
6230.0	44.7	h	68.3	-23.6	Note 5	55	1.3	Note 4 & 6	
10500.0	50.2	V	68.3	-18.1	Note 5	130	1.5	Note 4	
10500.0	47.0	h	68.3	-21.3	Note 5	167	1.5	Note 4	
15750.0	60.6	V	74.0	-13.4	Pk	162	1.0	Note 2; Noi	se Floor Measurement
15750.0	48.9	V	54.0	-5.1	Avg	162	1.0	Note 2; Noi	se Floor Measurement
15750.0	60.8	h	74.0	-13.2	Pk	144	1.0	Note 2; Noi	se Floor Measurement
15750.0	48.3	h	54.0	-5.7	Avg	144	1.0	Note 2: No	se Floor Measurement

Client:	Atheros Co	ommuni	cations				J	ob Number:	J44998
Model:	AR5BCB-0	00013					T-Le	og Number:	T45059
								-	Mark Briggs
Contact:	Eric Dukat	Z						, ,	
Spec:	FCC 15 B	& 15F.	RSS-210					Class:	-
				nh Channel	5 29 GHz)	; Power= 17	5 dBm	elacol	
4232.0	-	V	74.0	-28.8	Pk	0		Note 2&6:	Noise Floor measureme
4232.0	35.4	V	54.0	-18.6	Avg	0			Noise Floor measureme
4232.0	39.8	h	74.0	-34.2	Pk	94			Noise Floor measureme
4232.0	39.2	h	54.0	-14.8	Avg	94			Noise Floor measureme
6348.0	40.0	V	68.3	-28.3	Note 5	128	1.9	Note 4 & 6	
6348.0	41.9	h	68.3	-26.4	Note 5	184	1.4	Note 4 & 6	
10538.0	51.8	V	68.3	-16.6	Note 5	122	1.5	Note 4	
10538.0	48.9	h	68.3	-19.4	Note 5	134	1.5	Note 4	
10600.0	63.7	V	74.0	-10.3	Pk	122	1.5	Note 2	
10600.0	49.1	V	54.0	-4.9	Avg	122	1.5	Note 2	
10600.0	59.8	h	74.0	-14.2	Pk	134	1.5	Note 2	
10600.0	46.6	h	54.0	-7.4	Avg	134	1.5	Note 2	
15870.0	60.6	h	74.0	-13.4	Pk	134	1.1	Note 2; No	ise Floor Measurement
15870.0	48.4	h	54.0	-5.6	Avg	134	1.1	Note 2; No	ise Floor Measurement
15870.0	61.1	۷	74.0	-12.9	Pk	360	1.2	Note 2; No	ise Floor measurement
15870.0	47.8	V	54.0	-6.2	Avg	360	1.2	Note 2: No	ise Floor measurement

See following page for test notes...

<i>Elli</i>	JII			EMC Tes	t Da
Client: Atheros C			J	ob Number: J44998	
Model: AR5BCB-	00013		T-L	og Number: T45059	
				Proj Eng: Mark Briggs	
Contact: Eric Duka	tz				
Spec: FCC 15 E	8 & 15E, RSS-210			Class: B	
	Conducted En	nissions - I	Power P	orts	
est Specifics					
Objective:	The objective of this test session is specification listed above.	s to perform final qu	alification test	ing of the EUT with resp	ect to t
Date of Test:	10/18/2001	Config. Use	ed: 1		
Test Engineer:	Conrad	Config Chang			
Test Location:	SVOATS #2	EUT Voltaç	ge: 120V/60H	2	
	N. A second LISN was used for a ons: Temperature: 24 Rel. Humidity: 43	°C	ipment.		
Ambient Condition	ons: Temperature: 24 Rel. Humidity: 43	°C	ipment.		
Ambient Conditi	ons: Temperature: 24 Rel. Humidity: 43 ults Test Performed	°C % Limit	Result	Margin]
Ambient Condition	ons: Temperature: 24 Rel. Humidity: 43 ults	°C %		Margin -31.1 dB @ 3.238 MHz	

Æ	Ellio	ott					EM	IC Test Data
Client:	Atheros (Communi	cations				Job Number:	J44998
Model:	AR5BCB	-00013					T-Log Number:	T45059
							Proj Eng:	Mark Briggs
Contact:	Eric Duka	ıtz						
Spec:	FCC 15 E	3 & 15E,	RSS-210				Class:	В
Run #1: AC The AC inpu						120V/60Hz rives power fr	om the host	
Frequency	Level	AC	FC	СВ	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
3.238	16.9	Neutral	48.0	-31.1	QP			
3.238	16.3	Line 1	48.0	-31.7	QP			

QP

QP QP

QP

-29.2

-24.4

-23.4

-27.0

Neutral

Line 1

Line 1

Neutral

48.0

48.0

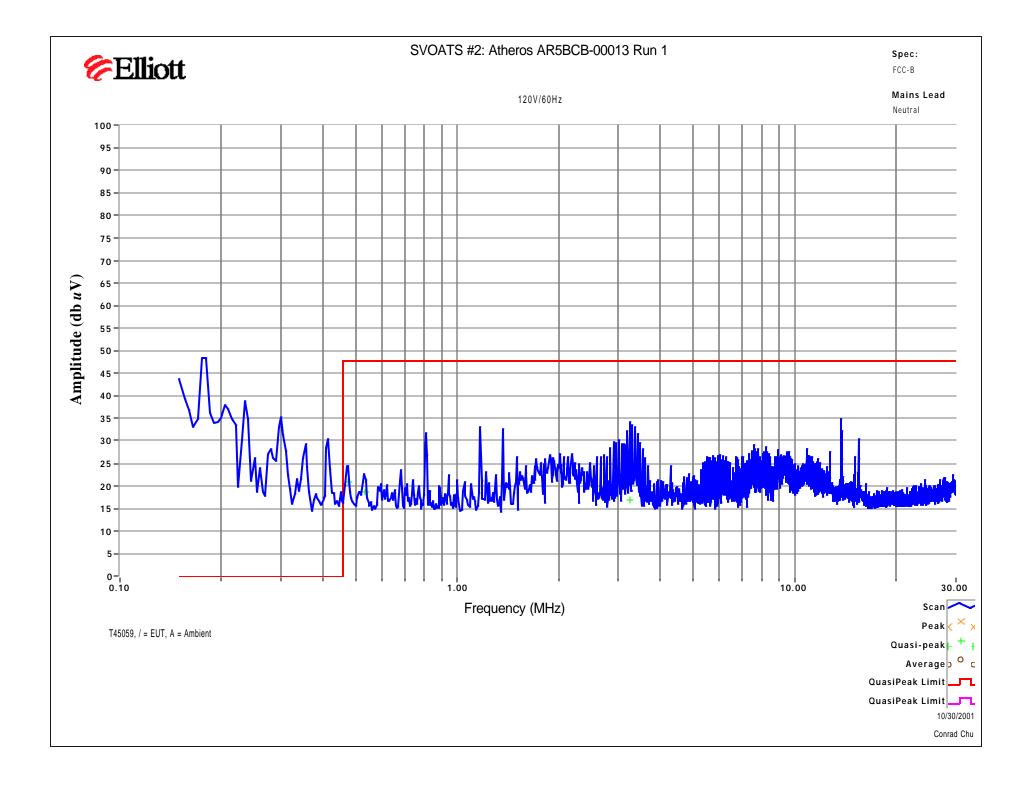
48.0

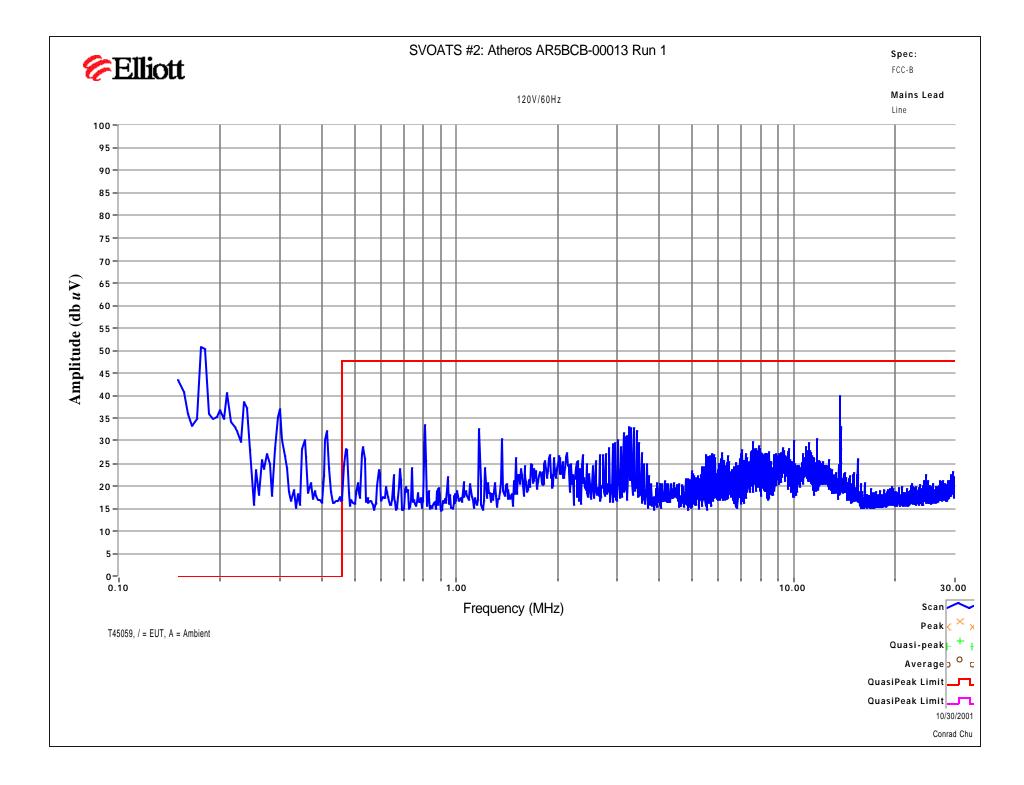
48.0

0.533

0.532

0.473


0.473


18.8

23.6

24.6

21.0

Client: Atheros	Communications			ob Number:	111008	
Model: AR5BCE				.og Number:		
MODEL ANJDEL	-00013		1-L	0	Mark Briggs	
Contact: Eric Duk	atz					
Spec: FCC 15	B & 15E, RSS-210			Class:	B	
	Radia	ated Emissi	ions			
Test Specifics						
-	: The objective of this test session specification listed above.	is to perform final q	ualification test	ing of the E	UT with respe	ect to th
Date of Test	: 10/18/2001	Config. Us	ed: 1			
Test Engineer		Config Chan	0			
Test Location	: SVOATS #2	EUT Volta	ge: 120V/60H	2		
On the OATS, the Note, preliminary measurement ant	bcal support equipment were locate measurement antenna was locate testing indicates that the emission enna. Maximized testing indicated	d 3 meters from the is were maximized b I that the emissions	EUT for the m by orientation of were maximize	easurement of the EUT a	t range 30 - 10 nd elevation o	of the
On the OATS, the Note, preliminary measurement ant of the measurement Note, for testing a peak reading of a	e measurement antenna was locate v testing indicates that the emission enna. Maximized testing indicated ent antenna, <u>and</u> manipulation of th bove 1 GHz, the FCC specifies the ny emission above 1 GHz, can not	d 3 meters from the as were maximized b I that the emissions e EUT's interface ca I limit as an average exceed the average 4°C	EUT for the m by orientation of were maximize ables. measurement	easurement f the EUT a ed by orienta . In additior	t range 30 - 10 nd elevation c ation of the El	of the JT, ele
On the OATS, the Note, preliminary measurement ant of the measureme Note, for testing a peak reading of a Ambient Condit	e measurement antenna was locate t testing indicates that the emission enna. Maximized testing indicated ent antenna, <u>and</u> manipulation of the bove 1 GHz, the FCC specifies the ny emission above 1 GHz, can not ions: Temperature: 2 Rel. Humidity: 4	d 3 meters from the as were maximized b I that the emissions e EUT's interface ca I limit as an average exceed the average 4°C	EUT for the m by orientation of were maximize ables. measurement	easurement f the EUT a ed by orienta . In additior	t range 30 - 10 nd elevation c ation of the El	of the JT, ele
On the OATS, the Note, preliminary measurement ant of the measureme Note, for testing a peak reading of a Ambient Condit	e measurement antenna was locate t testing indicates that the emission enna. Maximized testing indicated ent antenna, <u>and</u> manipulation of the bove 1 GHz, the FCC specifies the ny emission above 1 GHz, can not ions: Temperature: 2 Rel. Humidity: 4	d 3 meters from the as were maximized b I that the emissions e EUT's interface ca I limit as an average exceed the average 4°C	EUT for the m by orientation of were maximize ables. measurement	easurement of the EUT a ed by orienta . In additior than 20 dB.	t range 30 - 10 nd elevation c ation of the El	of the JT, ele
On the OATS, the Note, preliminary measurement ant of the measureme Note, for testing a peak reading of a Ambient Condit	e measurement antenna was locate v testing indicates that the emission enna. Maximized testing indicated ent antenna, <u>and</u> manipulation of th bove 1 GHz, the FCC specifies the ny emission above 1 GHz, can not ions: Temperature: 2 Rel. Humidity: 4 sults	d 3 meters from the is were maximized b I that the emissions e EUT's interface ca limit as an average exceed the average 4°C 3%	EUT for the m by orientation of were maximized ables. measurement e limit by more	easurement of the EUT a ed by orienta . In additior than 20 dB.	t range 30 - 10 nd elevation c ation of the El	of the JT, ele

Cliont	Atheros C	ott	cations					ob Number:	1//002
	AR5BCB-		Lations						
wodel:	AKORCR-	00013					I-L	og Number:	
<u> </u>	<u> </u>							Proj Eng:	Mark Briggs
	Eric Dukat								
Spec:	FCC 15 B	& 15E,	RSS-210					Class:	В
eadings t	aken at 3 n	neters as	e d Emissio s per FCC ro	equirements	5			1.	
requency		Pol		СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
497.100		h	46.0	-9.2	QP	0	1.2		
428.697		V	46.0	-9.8	QP	265	2.1		
497.100		V	46.0	-10.1	QP	270	1.4	ł	
689.880	-	V	46.0	-14.8	QP	90	1.0		
796.910		V	46.0	-15.5	QP	81	1.0		
931.320		V	46.0	-16.0	QP	174	1.0		
796.910		h	46.0	-16.0	QP	310	1.0		
405.735 628.300		h	46.0	-16.0 -16.3	QP QP	330	1.0 1.0		
		V	46.0 46.0	-16.3 -18.7	QP QP	281 38	1.0		
384.900 399.590		h	46.0	-18.7	QP QP		1.0		
432.050		v h	46.0	-18.8	QP QP	0	1.2		
432.050		V	40.0	-19.1	QP	125	1.0		
399.920		V	45.0	-19.4	QP	125	1.0		
412.840		h	46.0	-19.6	QP	310	1.0		
440.150		h	46.0	-20.0	QP	355	1.0	1	
32.420		V	40.0	-20.0	QP	200	1.0		
232.900		V	46.0	-21.0	QP	200	2.2		
159.900		v	43.5	-21.1	QP	187	1.2	1	
427.500		V	46.0	-21.5	QP	162	1.0	1	
349.630		V	46.0	-22.0	QP	162	1.6	1	
566.000		V	46.0	-22.1	QP	44	1.1	1	
336.100		h	46.0	-22.3	QP	273	1.2		
412.840		V	46.0	-23.0	QP	185	1.0		
566.000		V	46.0	-23.0	QP	44	1.5		
263.900		V	46.0	-23.0	QP	188	1.0		
405.735		V	46.0	-23.8	QP	208	1.0		
440.150		V	46.0	-24.0	QP	125	1.0		
		h	46.0	-24.0	QP	353	1.0	Ì	
427.500	22.0		10.0	=					

Client:	Atheros C	ommuni	cations				J	ob Number:	J44998
Model:	AR5BCB-0	00013					T-L	og Number:	T45059
								Proj Eng:	Mark Briggs
Contact:	Eric Dukat	Z							
Spec:	FCC 15 B	& 15E, I	RSS-210					Class:	В
equency		Pol	FC	СВ	Detector	Azimuth	Height	Comments	
equency MHz	Level dBµV/m	Pol v/h	FC Limit	C B Margin	Pk/QP/Avg	degrees	meters	Comments	
equency MHz 497.100	Level dBµV/m 36.8	Pol	FC Limit 46.0	C B Margin -9.2	Pk/QP/Avg QP	degrees 0	meters 1.2	Comments	
equency MHz 497.100 428.697	Level dBµV/m 36.8 36.2	Pol v/h	FC Limit 46.0 46.0	C B Margin -9.2 -9.8	Pk/QP/Avg QP QP	degrees 0 265	meters 1.2 2.1	Comments	
equency MHz 497.100 428.697 497.100	Level dBµV/m 36.8 36.2 36.7	Pol v/h h	FC Limit 46.0 46.0 46.0	C B Margin -9.2 -9.8 -9.3	Pk/QP/Avg QP QP QP	degrees 0 265 44	meters 1.2 2.1 1.0	Comments	
equency MHz 497.100 428.697 497.100 689.880	Level dBµV/m 36.8 36.2 36.7 33.0	Pol v/h h v	FC Limit 46.0 46.0	C B Margin -9.2 -9.8 -9.3 -13.0	Pk/QP/Avg QP QP QP QP	degrees 0 265 44 0	meters 1.2 2.1 1.0 1.0	Comments	
equency	Level dBμV/m 36.8 36.2 36.7 33.0 32.4	Pol v/h h v v	FC Limit 46.0 46.0 46.0	C B Margin -9.2 -9.8 -9.3	Pk/QP/Avg QP QP QP	degrees 0 265 44	meters 1.2 2.1 1.0	Comments	