

www.elliotlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 4 (LELEAN Devices) on the Netgear Model: HA311

AUTHORIZED SIGNATORY:

Mark Briggs Director of Engineering

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: HA311

Manufacturer:

Netgear 4500 Great America Parkway Santa Clara, CA. 95054

Tested to applicable standards:

RSS-210, Issue 4, December 2000 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 **SV1** Dated July 30, 2001 Departmental Acknowledgement Number: IC2845 **SV4** Dated July 19, 2001

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 4); and that the equipment performed in accordance with the data submitted in this report.

Mark Briggs

Signature Name Title Company Address

Mark Briggs Director of Engineering Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: April 18, 2002

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product, which may result in increased emissions, should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	5
SUMMARY OF RESULTS	(
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ENCLOSURE	
MODIFICATIONS SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	
ANTENNA REQUIREMENTS	
TEST SITE	
GENERAL INFORMATION	10
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNAS	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS.	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	.15
FCC 15.407 (A) OUTPUT POWER LIMITS	
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	
SPURIOUS RADIATED EMISSIONS LIMITS	
AC POWER PORT CONDUCTED EMISSIONS LIMITS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	. 19

TABLE OF CONTENTS (Continued)

EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 1: Test Equipment Calibration Data EXHIBIT 2: Test Data Log Sheets	2
EXHIBIT 3: Test Configuration Photographs	3
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs of	
Netgear Model HA311Construction	5
EXHIBIT 6: Operator's Manual for	6
Netgear Model HA311	
EXHIBIT 7: Block Diagram of	7
EXHIBIT 7: Block Diagram of Netgear Model HA311	7
EXHIBIT 8: Schematic Diagrams for	8
Netgear Model HA311	8
EXHIBIT 9: Theory of Operation for	9
Netgear Model HA311	9
EXHIBIT 10: Advertising Literature	
EXHIBIT 11: RF Exposure Information	11

SCOPE

An electromagnetic emissions test has been performed on the Netgear model HA311 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 4 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Netgear model HA311 and therefore apply only to the tested sample. The sample was selected and prepared by Stephen Tsai of Netgear

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in t	he 5.15 – 5.25 GI	Iz Band		
15.407 (d)		As the device operates in the 5.15 – 5.25 GHz band the antenna must be integral to the device.	Antenna Gain = 3 dBi The antenna is integral to the device and permanently attached.	COMPLIES
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 6	COMPLIES
15.407(a) (1)		26dB Bandwidth	Turbo Mode: 43.1 MHz 802.11 Mode: 26.4 MHz	N/A
	6.2.2 q1 (i)	20dB Bandwidth	Turbo Mode: 33.2 MHz 802.11 Mode: 26.4 MHz	N/A
	RSP 100	99% power Bandwidth	Turbo Mode: 33.2 MHz 802.11 Mode: 17.3 MHz	N/A
15.407(a) (1)	6.2.2 q1 (ii)	Output Power	Turbo Mode: 15.7 dBm 802.11 Mode: 15.8 dBm	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	Turbo Mode: -6.33 dBm/MHz 802.11 Mode: -3.18 dBm/MHz	COMPLIES
density of spur	ious emissions ir		is restricted to indoor use only, therefore the were limited to the power spectral limits for i	
		Antenna Gain	Antenna Gain = 3 dBi	COMPLIES
15.407(a) (2)	6.2.2 q1 (ii)	26dB Bandwidth	Turbo Mode: 65.5 MHz 802.11 Mode: 34.6 MHz	N/A
	6.2.2 q1 (i)	20dB Bandwidth	Turbo Mode: 44.0 MHz 802.11 Mode: 22.3 MHz	N/A
	RSP 100	99% power Bandwidth	Turbo Mode: 37.8 MHz 802.11 Mode: 18.7 MHz	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	Turbo Mode: 20.2 dBm 802.11 Mode: 18.6 dBm	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	Turbo Mode: -3.42 dBm/MHz 802.11 Mode: -0.77 dBm/MHz	COMPLIES

General requir	ements for all ba	nds		
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-3.4dB @ 319.995MHz	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-0.1dB @ 10507.82	COMPLIES
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Exhibit 9) for a detailed explanation.	COMPLIES
	6.2.2 q(iv)(b)	Peak Spectral Density	5.8 dB	COMPLIES
15.407(a)(6)		Peak Excursion Ratio	5.75-7.92 dB	COMPLIES
	6.2.2 q(iv)(c)	Channel Selection	The channels selected to be to tested represent the highest, lowest and center channels available.	N/A
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Exhibit 9 for a detailed explanation.	COMPLIES
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is +/- 20 ppm, refer to the "Theory of Operations" in Exhibit 9 for a detailed analysis.	COMPLIES
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	COMPLIES
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11	COMPLIES
15.407(b) / 15.207	6.6	AC Conducted Emissions	-5.8dB @ .489MHz	COMPLIES

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Netgear model HA311 is a UNII radio which is designed to operate in the 5.15-5.25GHz and 5.25-5.35GHz UNII/LELAN bands. The EUT is PCI card, which is designed to be installed into a desktop PC. The card provides data rates of up to 54 Mb/s while operating in 802.11 mode (nominal bandwidth of 20 MHz) and data rates of up to 72 Mb/s operating in a turbo mode (nominal bandwidth of 40 MHz).

Normally, the host system would be tabletop during operation. The host system was treated as tabletop equipment during testing to simulate the end user environment.

The sample was received on April 8, 2002 and tested on April 8 and April 9, 2002. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number	Proposed FCC ID #
Delta HA311 UNII PCI Card	Card #1	

ENCLOSURE

The EUT does not have an enclosure, as it is a PCI card designed to be installed into a host PC. The card does have two integral shields.

MODIFICATIONS

The EUT require modifications during testing in order to comply with the emission, which was shielding on rear (solder side of PCI card) of PCB. Refer to external photos.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Dell DHS PC	599GJ01	DoC
Dell D1726T-HS Monitor	7172104	AK8GDM17SE2T
Hewlett Packard E03633HLUS-C Keyboard	51825521	C1GE03633
Logitech M-S69 Mouse	LNA11311085	JNZ211443

No remote support equipment was used during emissions testing:

EUT INTERFACE PORTS

		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length (m)
PC SVGA	Monitor	Multiconductor	Shielded	2
PC PS2	Keyboard	Multiconductor	Shielded	2
PC PS2	Mouse	Multiconductor	Shielded	2
PC PCI slot	EUT	Direct connection	-	-

The I/O cabling configuration during emissions testing was as follows:

Note 1: Printer and Serial Devices were not connected during the Radio test. These ports are not required during the radio test.

EUT OPERATION DURING TESTING

The radio was transmitting at the stated power level on the specified channels with a duty cycle of 99 % (maximum allowed). The EUT was transmitting at a data rate of 6 Mb/s in 802.11 mode and at a data rate of 72 Mb/s in Turbo mode. The data rates selected produced the highest output power spectral density for their respective modes. The channels were selected since they are at the top, center and bottom of the allocated bands.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 15.15 - 15.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The EUT uses an integral antenna with a gain of 3 dBi. The antenna is connected to a standard connector, which will be seal under the permanent shield this way meeting the requirements of the FCC Part 15.203 and RSS-210.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on April 8 and April 9, 2002at the Elliott Laboratories Open Area Test Site #4 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 4 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

Either a spectrum analyzer or a power meter and thermister mount are used for all direct output power measurements from transmitters.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission, is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit, may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 - 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

- Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 5.25 GHz band.
 Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.
- Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency		
Range	Limit	Limit
(MHz)	(uV)	(dBuV)
0.450 to 30.000	250	48
(MHz)	(uV)	(dBuV)

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- $R_r = Receiver Reading in dBuV/m$
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Radio Test Equipment1 PagesDigital Test Equipment1 Pages

Radiated Emissions, 1 - 40 GHz, 11-Apr-02 Engineer: imartinez

Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	High Pass filter, 8.2GHz	P/N 84300-80039	1156	12	3/25/2002	2/25/2003
EMCO	Horn Antenna D. Ridge 1-18 GHz	3115	1386	12	1/31/2002	1/31/2003
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	12	10/9/2001	10/9/2002
Miteq	Pre-amp, 1-18GHz	AFS44	1346	12	1/7/2002	1/7/2003
Hewlett Packard	Spectrum Analyzer 9KHz - 26GHz	8563E	284	12	3/21/2002	3/21/2003
Hewlett Packard	Spectrum Analyzer 9kHz - 40 GHz	8564E (84125C)	1393	12	2/21/2002	2/21/2003

Antenna Conducted Emissions, 11-Apr-02 Engineer: imartinez

Engineer: jmartinez						
Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Hewlett Packard	Spectrum Analyzer 9kHz - 40 GHz	8564E (84125C)	1393	12	2/21/2002	2/21/2003

Conducted and Radiated Emissions, 10-Apr-02

Engineer: mfaustino

Manufacturer	Description	Model #	Assett #	Cal interval	Last Calibrated	Cal Due
Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54	12	1/4/2002	1/4/2003
Elliott Laboratories	FCC / CISPR LISN	LISN-3, OATS	304	12	6/14/2001	6/14/2002
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	12	3/2/2002	3/2/2003
EMCO	Log Periodic Antenna, 0.2-2 GHz	3148	1347	12	10/16/2001	10/16/2002
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	957	12	3/25/2002	3/25/2003
Hewlett Packard	EMC Spectrum Analyzer, Opt. 026 9 KHz -26.5GHz	8593EM	1141	12	3/11/2002	3/11/2003
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	12	8/21/2001	8/21/2002
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12	2/7/2002	2/7/2003
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30 EMI	1337	12	12/26/2001	12/26/2002
Solar Electronics Co	LISN	8028-50-TS-24-BNC	904	12	5/18/2001	5/18/2002

EXHIBIT 2: Test Data Log Sheets

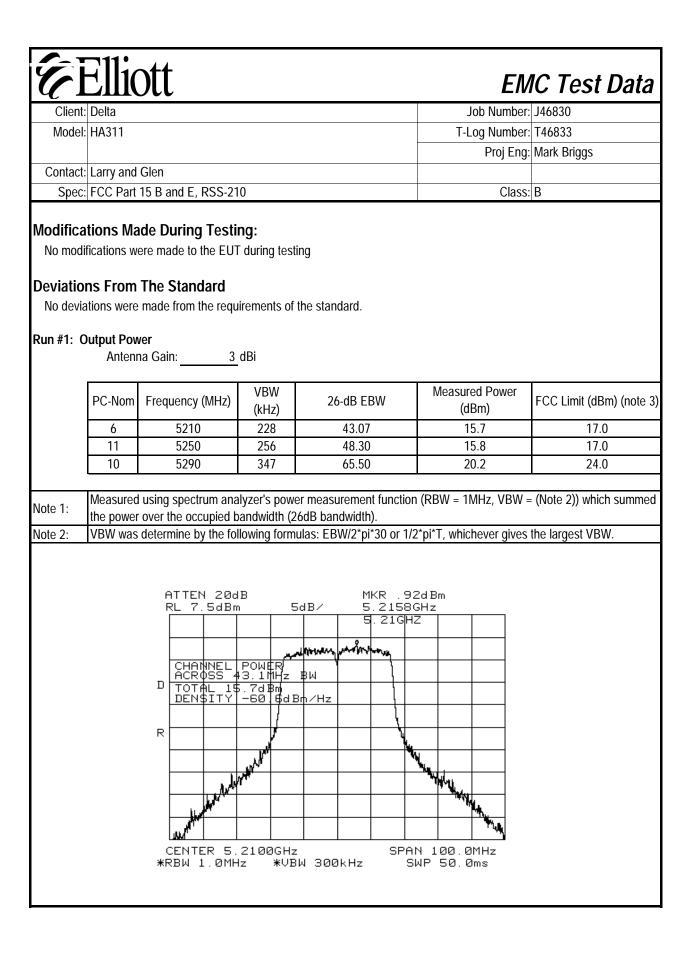
ELECTROMAGNETIC EMISSIONS

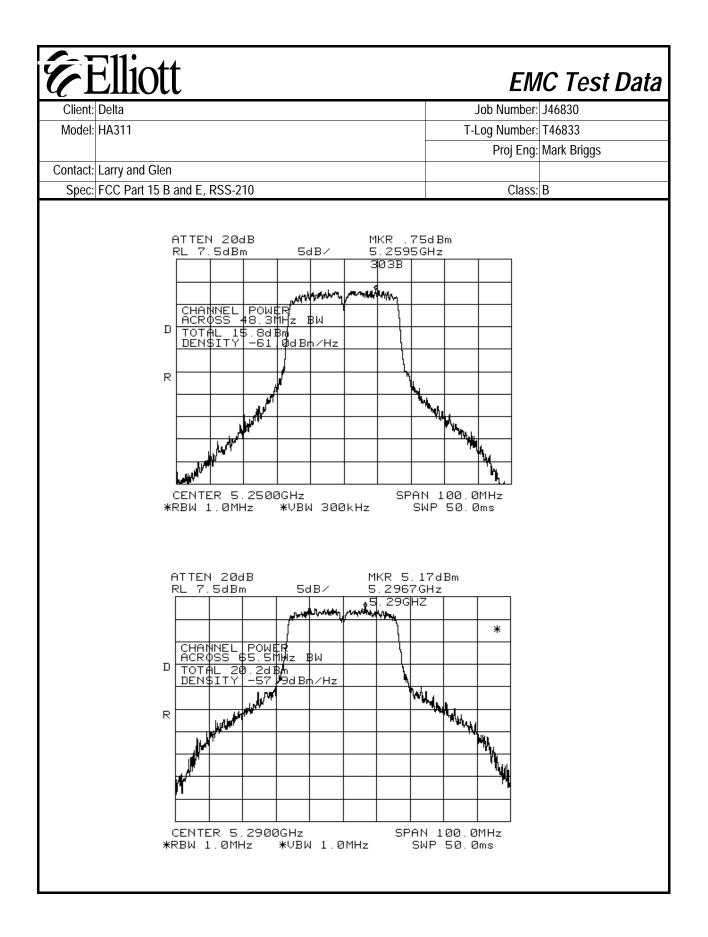
TEST LOG SHEETS

AND

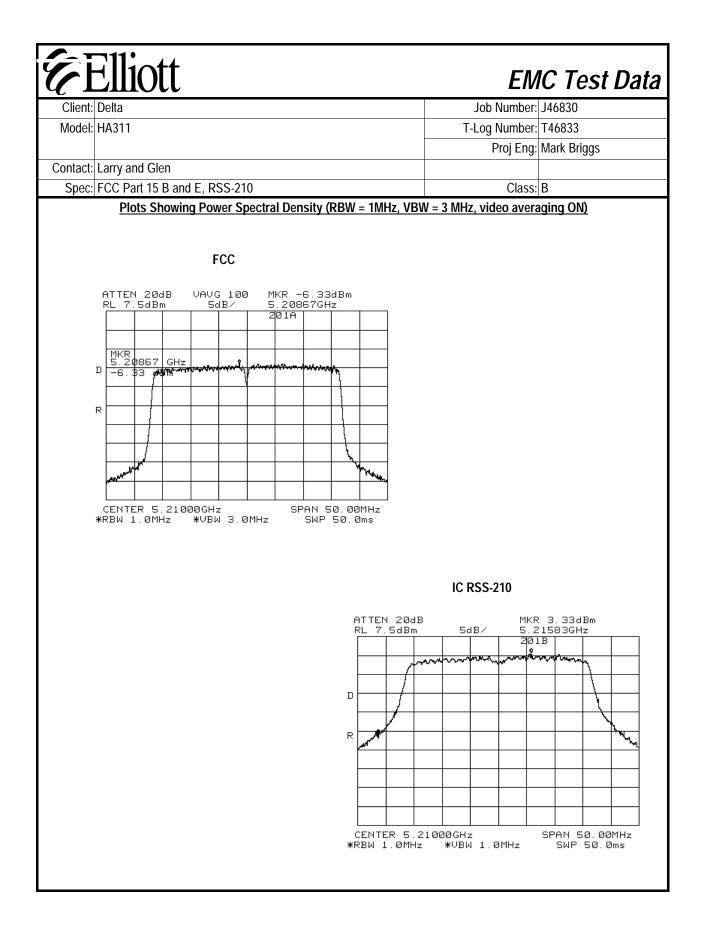
MEASUREMENT DATA

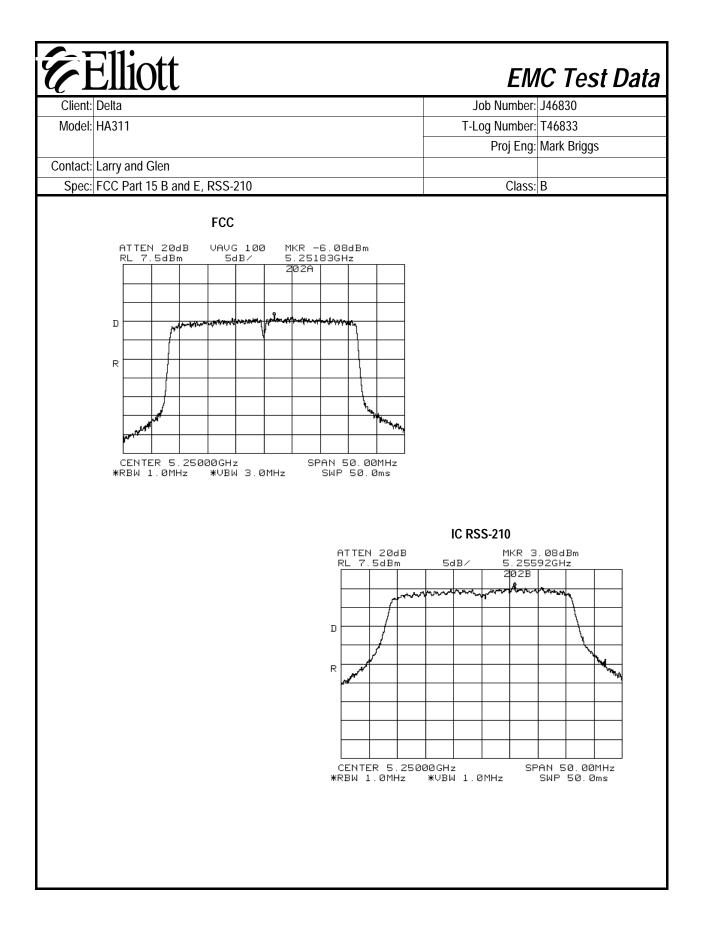
T4683361 PagesT468899 Pages

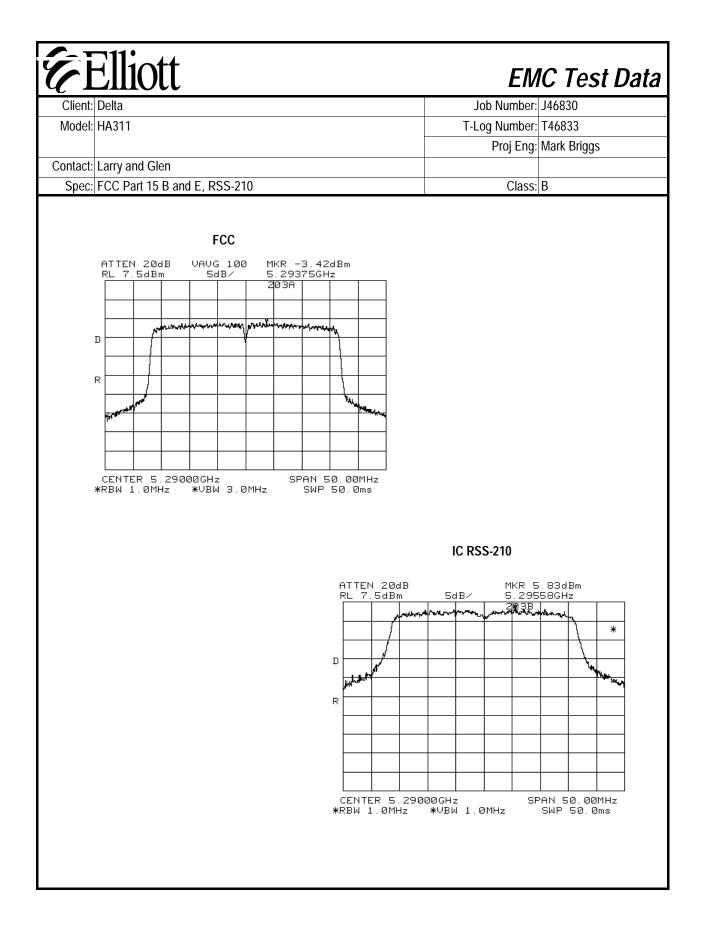

Elliott	EM	C Tes
Client: Delta	Job Number:	
Model: HA311	T-Log Number:	
	Proj Eng:	Mark Briggs
Contact: Larry and Glen		
nissions Spec: FCC Part 15 B and E, RSS-210	Class:	В
nmunity Spec: N/A	Environment:	-
EMC Test D	Data	
For The		
Delta		
Model		
HA311		

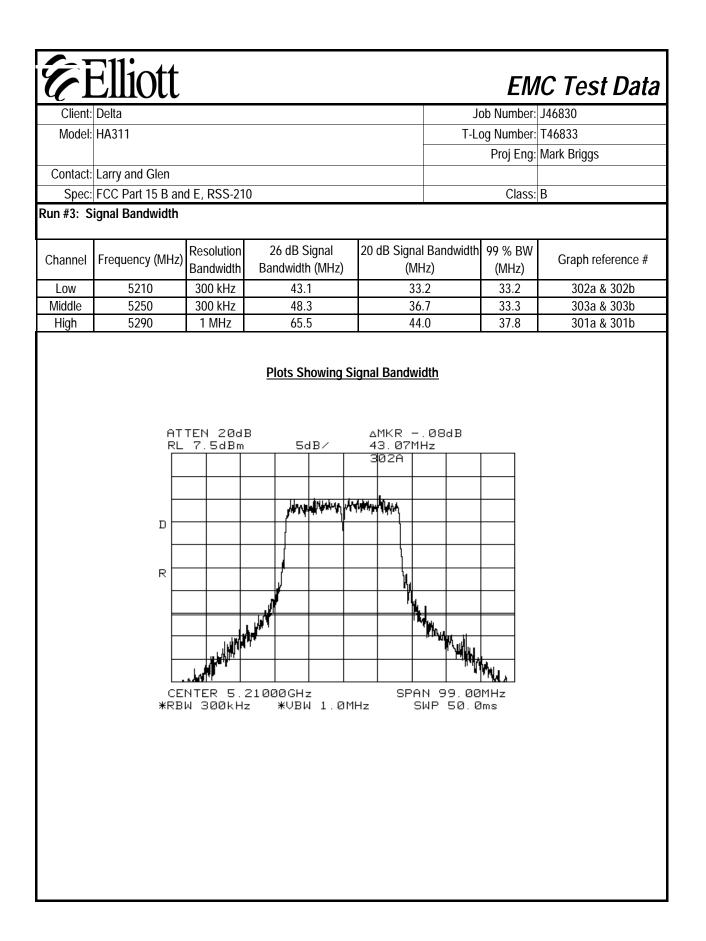

6 Elli	ott			FI	MC Test Data
U U				1	
	ent: Delta del: HA311			Job Numbe T-Log Numbe	
IVIO					g: Mark Briggs
Cont	act: Larry and Glen				
	ec: FCC Part 15 B	and E, RSS-210		Clas	is: B
Immunity Sp				Environme	nt: -
is PCI card which is in 802.11 mode (no of 50 MHz). Normally, the host	designed to be insi minal bandwidth of	Gene gned to operate in talled into a deskt 25 MHz) and data ole-top during ope	top PC. The card a rates of up to 72	1 z and 5.25-5.35GHz UN provides data rates of u Mb/s operating in a turb	II/LELAN bands. The EUT to 54 Mb/s while operating to mode (nominal bandwidth ble-top equipment during
		Equipr	nent Under Te	st	
Manufacturer	Model		Description	Serial Number	FCC ID
Delta	HA311	l U	INII PCI Card	Card #1	
The antenna is con requirements of of	FCC Part 15.203 an	d connector, whic d RSS-210. EU	T Enclosure	er the permanent shield stalled into a host PC. T	
		Modif	ication History		
Mod. #	Test	Date		Modification	
1					

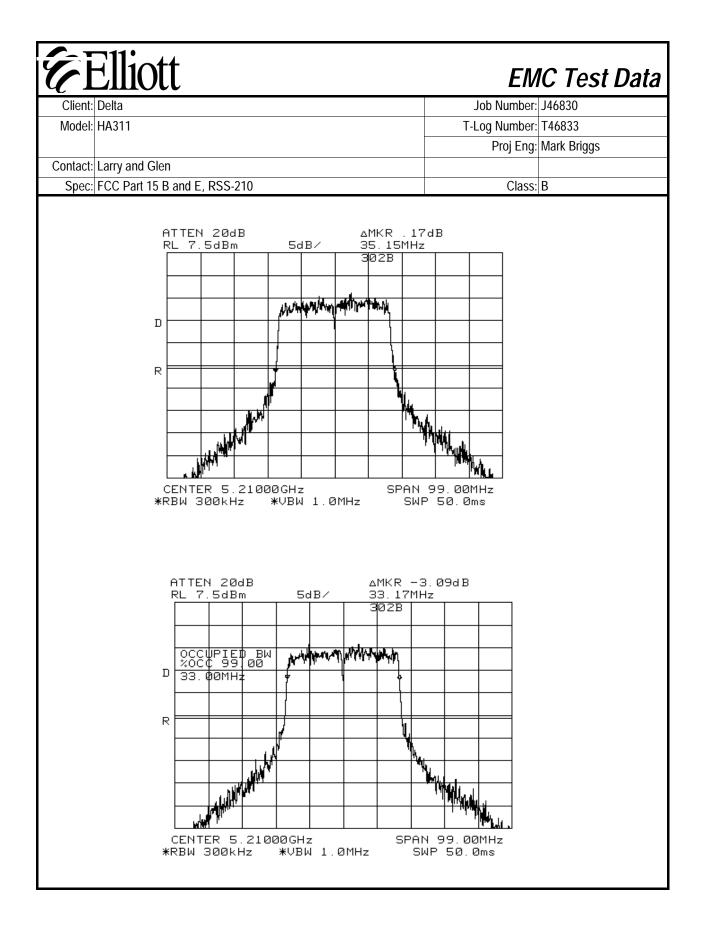
Client: D Model: H Contact: La Emissions Spec: F Immunity Spec: N				
Contact: La Emissions Spec: F(14311		Job Number:	
Emissions Spec: F		_	T-Log Number:	
Emissions Spec: F	arry and Clan		Proj Eng:	Mark Briggs
		°C 210	Class:	В
		55-210	Environment:	D
		e #1 (Dedie Spi		
Test	-	n #1 (Radio Spu cal Support Equipme		ons)
Manufacturer	Model	Description	Serial Number	FCC ID
Dell	DHS	PC	599GJ01	DoC
Dell	D1726T-HS	Monitor	7172104	AK8GDM17SE2
Hewlett Packard	E03633HLUS-C	Keyboard	51825521	C1GE03633
Logitech	M-S69	Mouse	LNA11311085	JNZ211443
Manufacturer None required	Ren Model	note Support Equipm Description	ent Serial Number	FCC ID
		Description		FCC ID
			Serial Number	FCC ID
		Description		
None required	Model	Description	Serial Number Cable(s)	
None required	Model Connected To	Description Interface Ports Description	Serial Number Cable(s) Shielded or Unshield	led Length(r
None required	Model Connected To Monitor	Description Interface Ports Description Multiconductor	Serial Number Cable(s) Shielded or Unshield Shielded	led Length(r 2

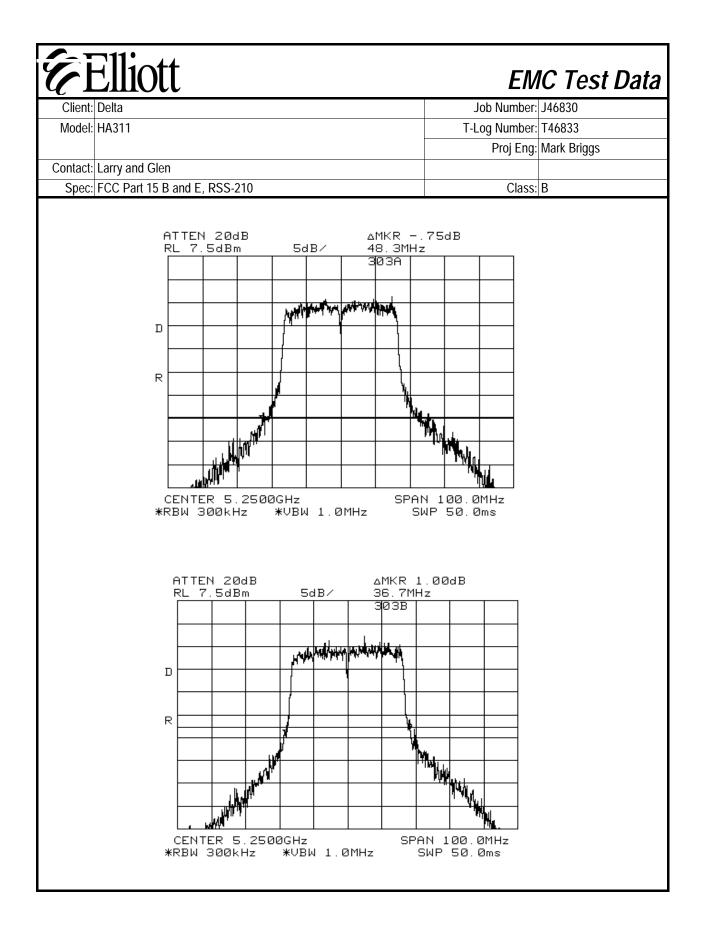

E	Ellic	ott		EM	IC Test Data
Client:	Delta			Job Number:	J46830
Model:	HA311			T-Log Number:	T46833
			-	Proj Eng:	Mark Briggs
Contact:	Larry and	Glen			
Spec:	FCC Part	15 B and E, RSS-210		Class:	В
Test Spe	Objective:		Subpart E Tests:		
Test	te of Test: Engineer: Location:		Config. Used: Config Change: Host Unit Voltage	None	
The EUT For radia When me spectrum	was locate ted emission easuring the analyzer of	ons testing the measuremer le conducted emissions from or power meter via a suitable	ted spurious emissions testing at antenna was located 3 met the EUT's antenna port, the e attenuator to prevent overlo ternal attenuators and cables	ers from the EUT unles antenna port of the EL pading the measuremer	JT was connected to the
Ambient	Conditio	ons: Temperatu Rel. Humic			
Summar	y of Resi	ults			

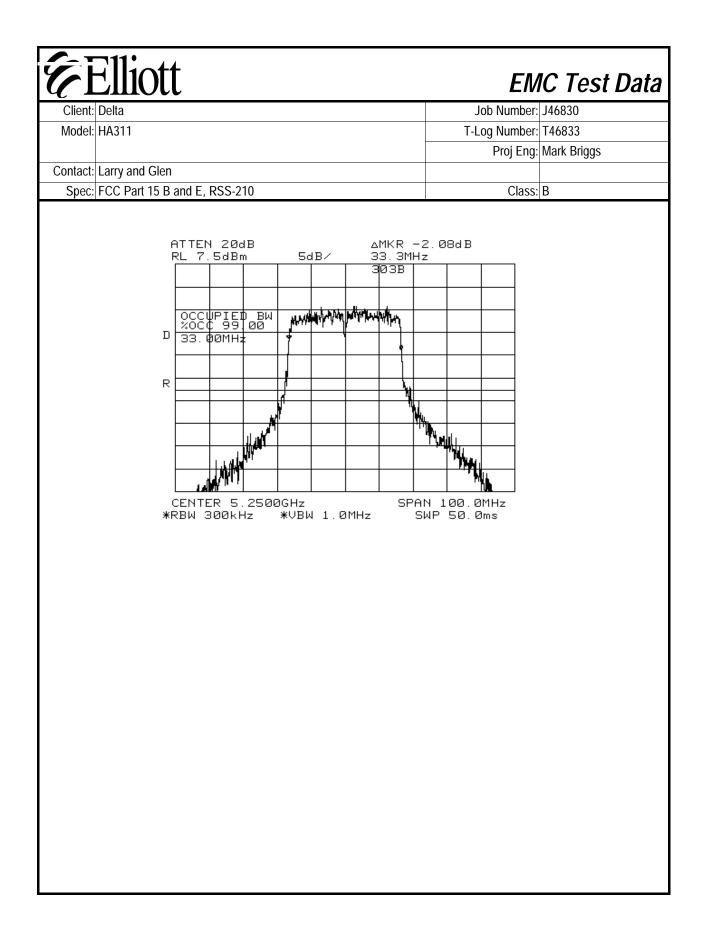

Run #	Test Performed	Limit	Result	Comments
1	Output Power (5.15 - 5.25GHz band)	15.407(a) (1)	Pass	15.8 dBm
1	Output Power (5.25 - 5.35GHz band)	15.407(a) (2)	Pass	20.2 dBm
2	Power Spectral Density (5.15 - 5.25GHz)	15.407(a) (1)	Pass	-6.3 dBm
2	Power Spectral Density (5.25- 5.35GHz)	15.407(a) (2)	Pass	-3.42 dBm
3	26dB Bandwidth	15.407	Pass	43.1 - 65.5 MHz
3	20 dB Bandwidth	RSS 210	Pass	33.2 - 44.0 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	6.67 - 7.75 dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	> -27 dBm

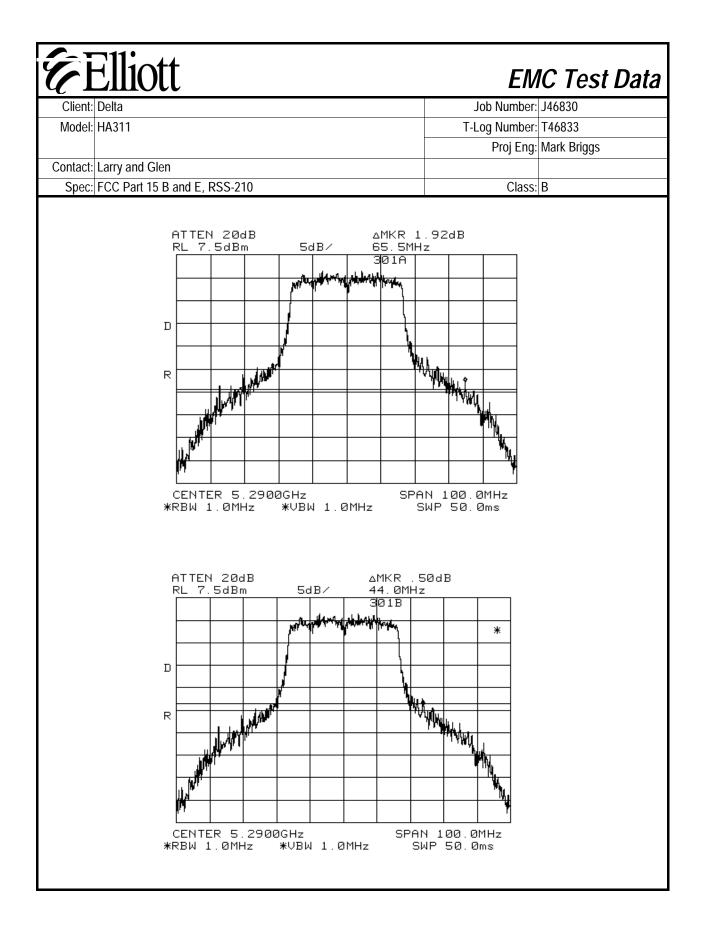


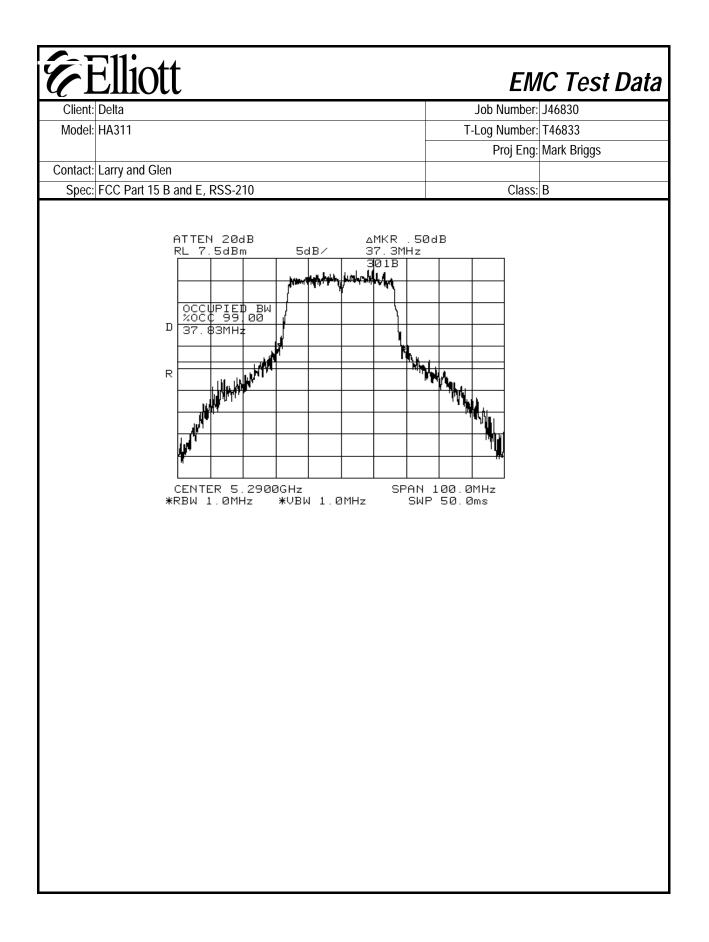


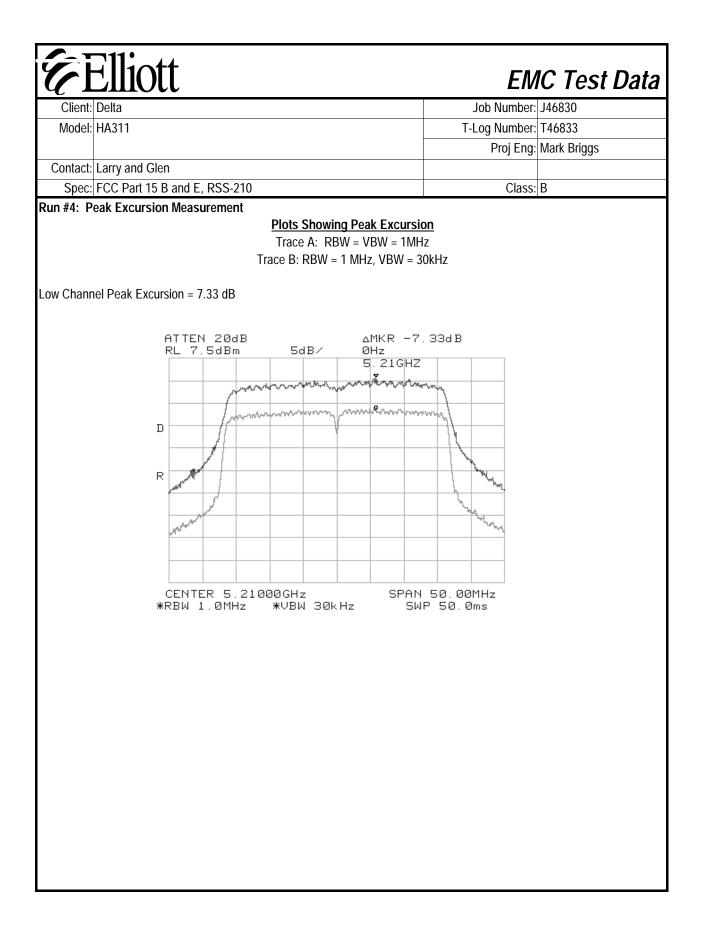

	Elliott			Job Number:	C Test Data
Client:					
Model:	HAJII			T-Log Number:	
				Proj Eng:	Mark Briggs
	Larry and Glen				
	FCC Part 15 B and			Class:	В
Run #2: Po	ower Spectral Der Antenna Gain:				
	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (dBm) note 2	Peak Power Spectral Density (dBm)	Graph Reference
low	5210	-6.33	4.0	3.33	201a & 201b
mid	5250	-6.00	4.0	3.08	202a & 202b
high	5290	-3.42	11.0	5.83	203a & 203b
	not exceed the ma band) so no restric	tion is placed on the ou	ge PSD of 10dBm (5.15 Itput power or average P	to 5.25 GHz band) or 5. SD with respect to RSS	83 dBm (5.25-5.35GHz 210.
	not exceed the ma band) so no restric	ximum permitted avera tion is placed on the ou	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5. SD with respect to RSS	83 dBm (5.25-5.35GHz 210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GHz
	band) so no restric	tion is placed on the ou	Itput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GHz
	band) so no restric	tion is placed on the ou	Itput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GHz
	band) so no restric	tion is placed on the ou	Itput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GHz
	band) so no restric	tion is placed on the ou	Itput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GHz
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.
	not exceed the ma	ximum permitted avera	ge PSD of 10dBm (5.15	to 5.25 GHz band) or 5.	83 dBm (5.25-5.35GH
	band) so no restric	tion is placed on the ou	tput power or average P	SD with respect to RSS	210.

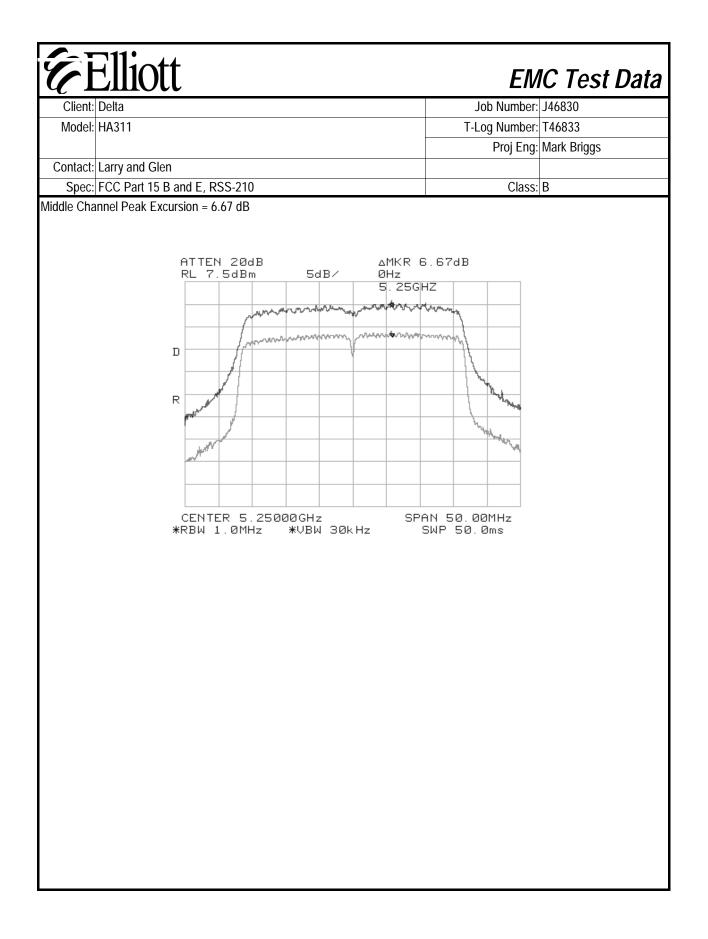


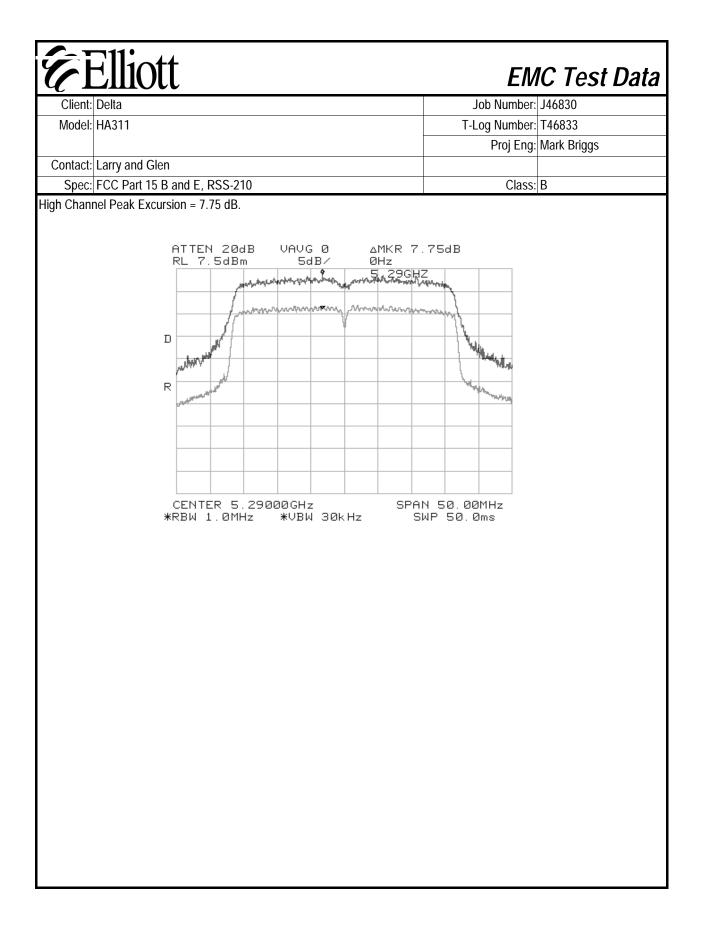










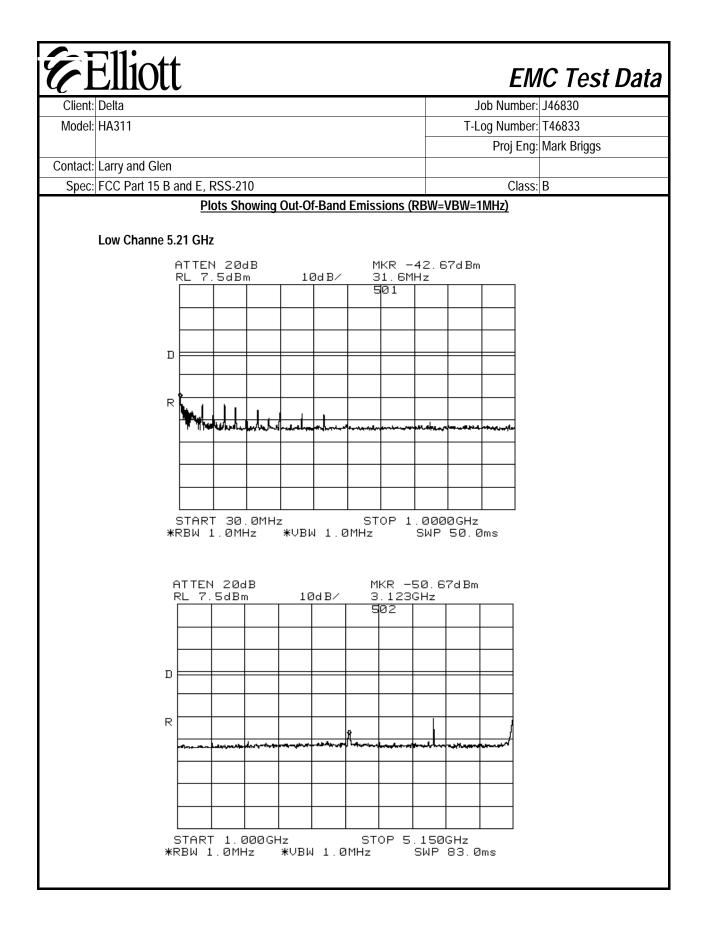


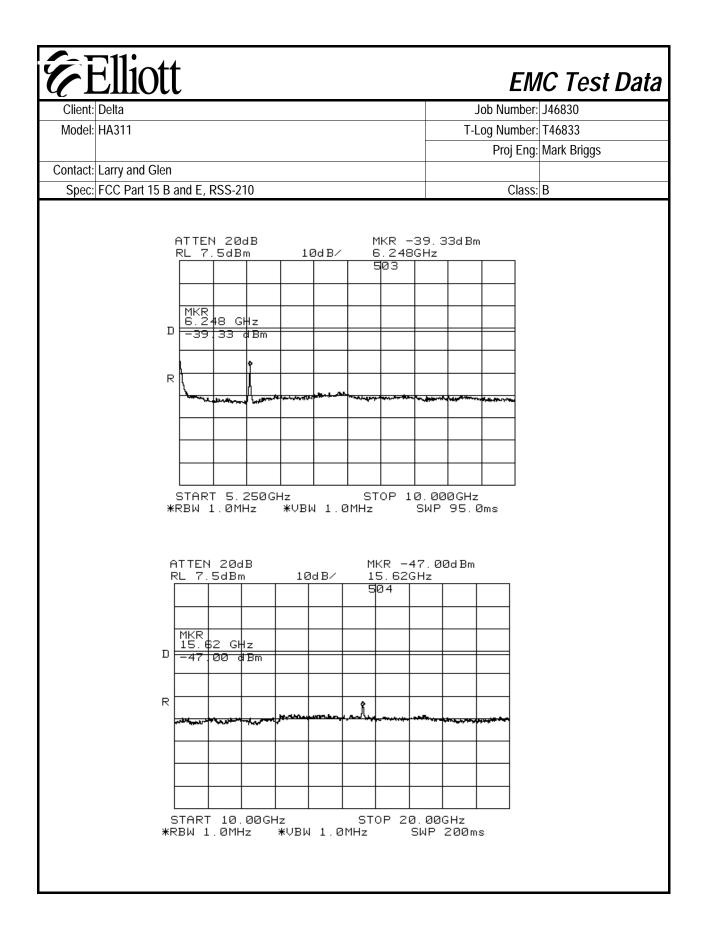
Elliott

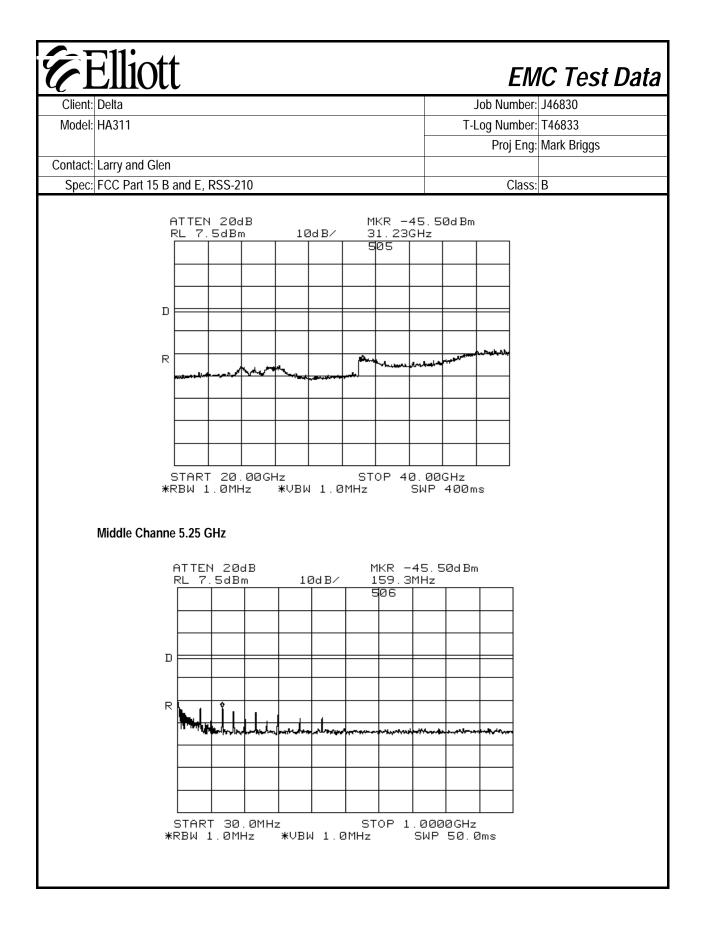
EMC Test Data

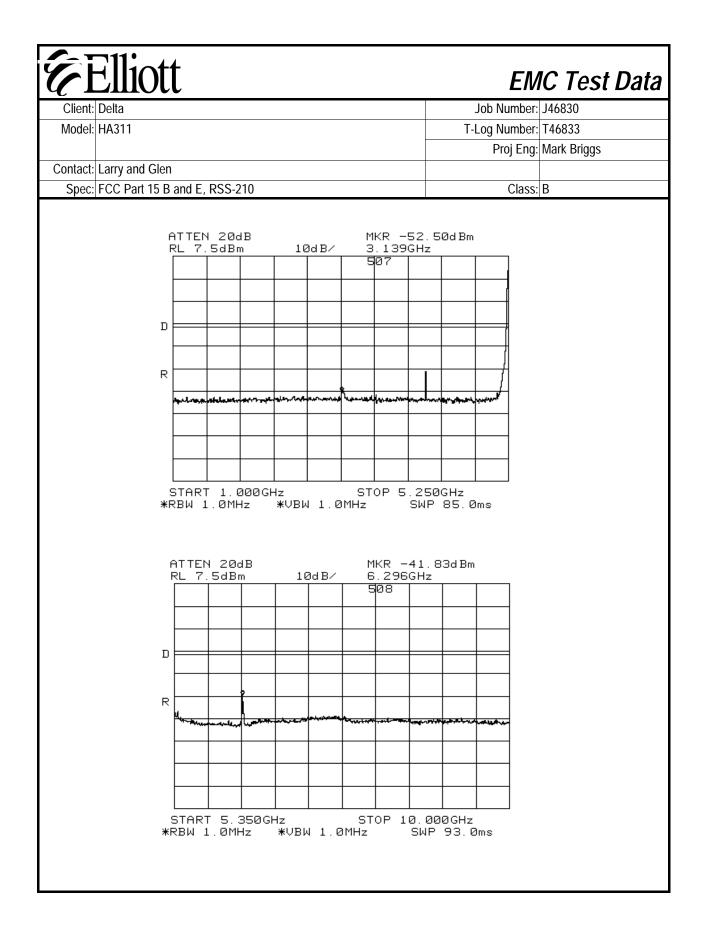
Client:	Delta	Job Number:	J46830
Model:	HA311	T-Log Number:	T46833
		Proj Eng:	Mark Briggs
Contact:	Larry and Glen		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

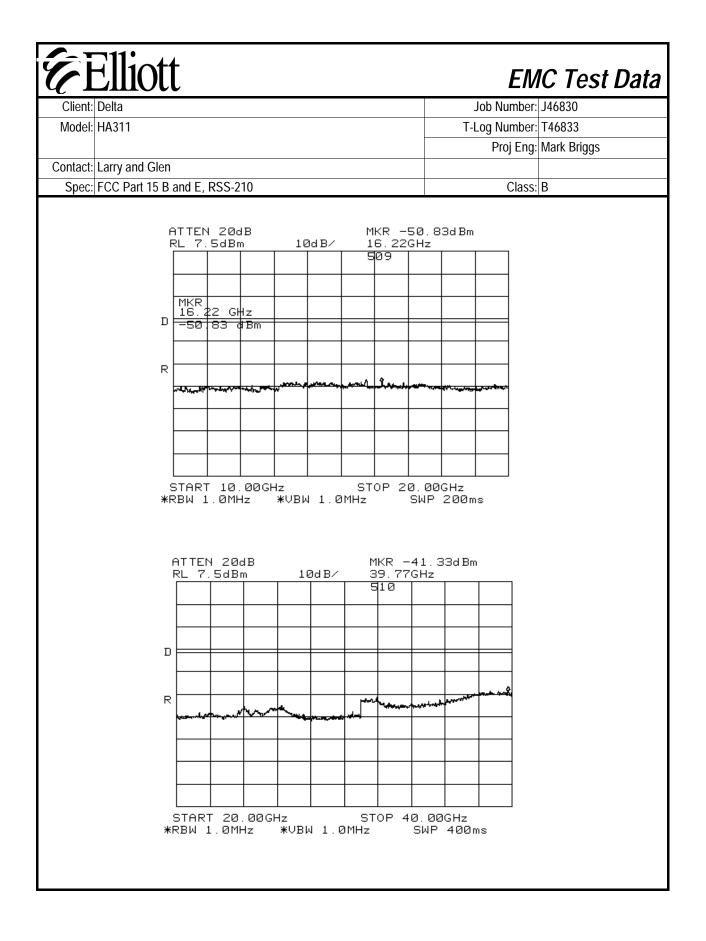
Run #5: Out Of Band Spurious Emissions - Antenna Conducted

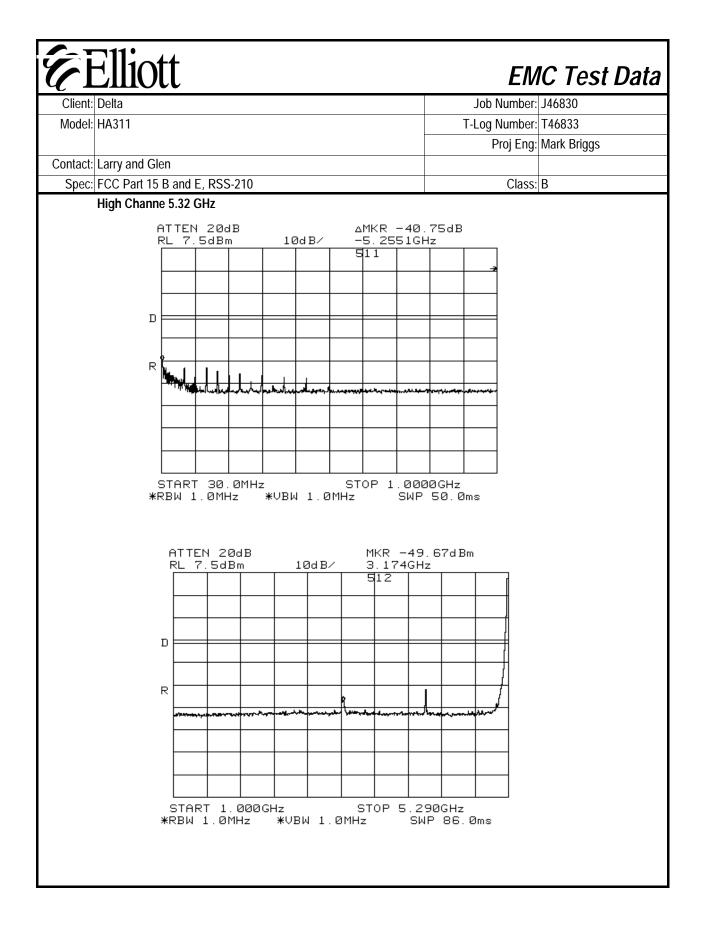

The antenna gain of the radios integral antenna is 3 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30.0 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

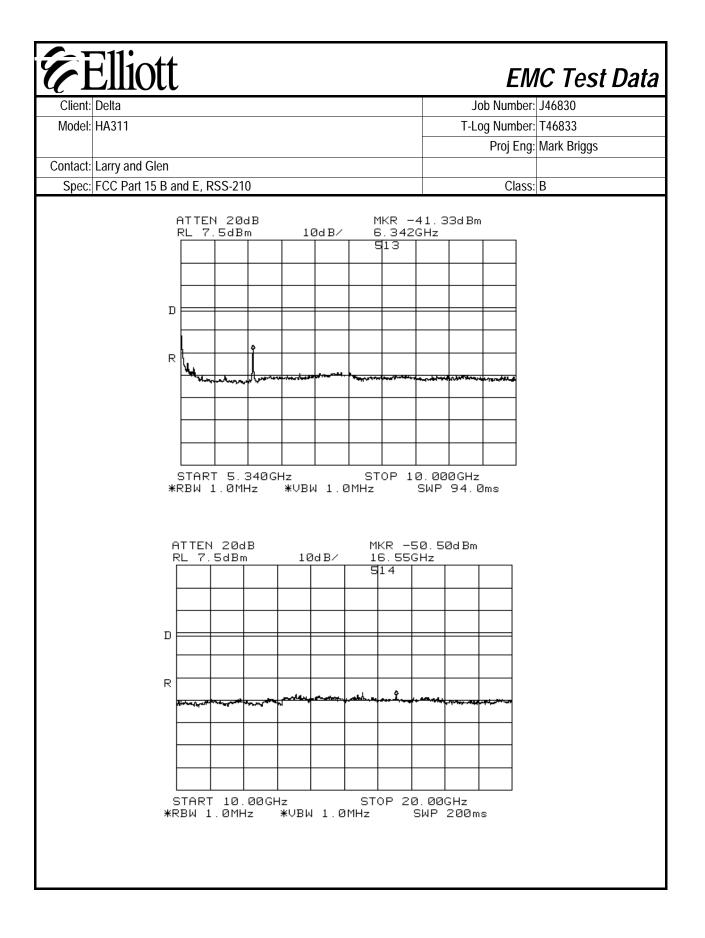

Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
		30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	3123 MHz (-50.7 dBm, Note 2), 4168 MHz (-43.7 dBm, Note 1)	502
	5.21	5.25 to 10 GHz	6248 MHz (-40.3 dBm, Note 2)	503
		10 GHz to 20 GHz	15620 MHz (-47 dBm, Note 1)	504
		20 GHz to 40 GHz	None	505
		30 - 1000 MHz	Note 4	506
	E OF	1 to 5.25 GHz	3139 MHz (-51.5 dBm, Note 2), 4209 MHz (-44.5 dBm, Note 1)	507
	5.25	5.35 to 10 GHz	6296 MHz (-41.8 dBm, Note 2)	508
		10 GHz to 20 GHz	None	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
		1 to 5.29 GHz	3174 MHz (-49.7 dBm, Note 2), 4232 MHz (-44.7 dBm, Note 1)	512
	5.29	5.34 to 10 GHz	6342 MHz (-41.3 dBm, Note 2)	513
		10 GHz to 20 GHz	None	514
		20 GHz to 40 GHz	None	515

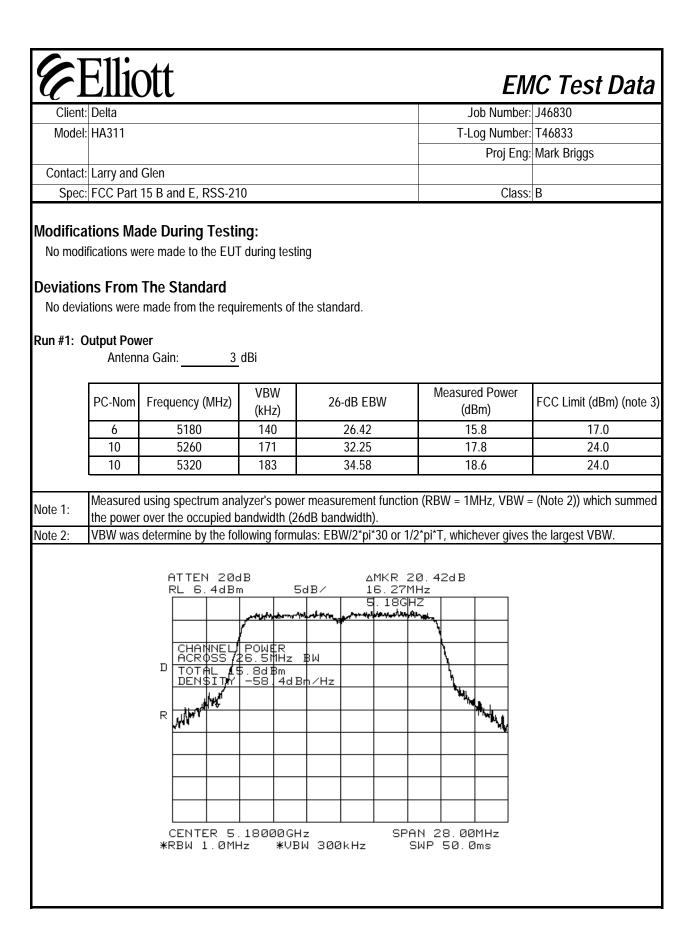

All spurious signals in this frequency band measured during digital device radiated emissions test.

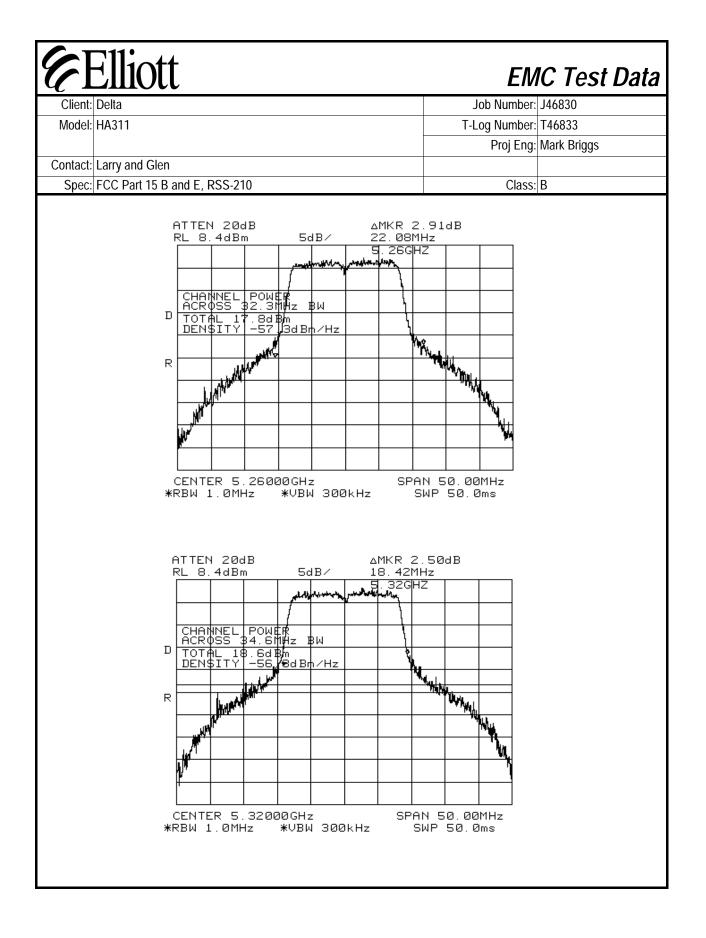

27dBm field strength measurements were made (refer to run #6)


Note 4:

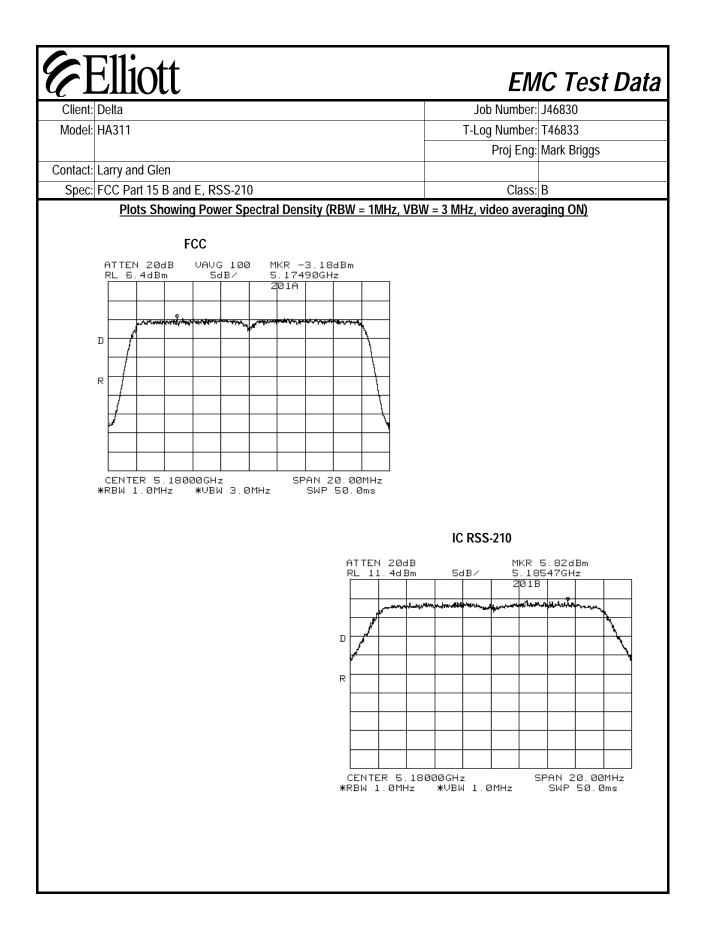




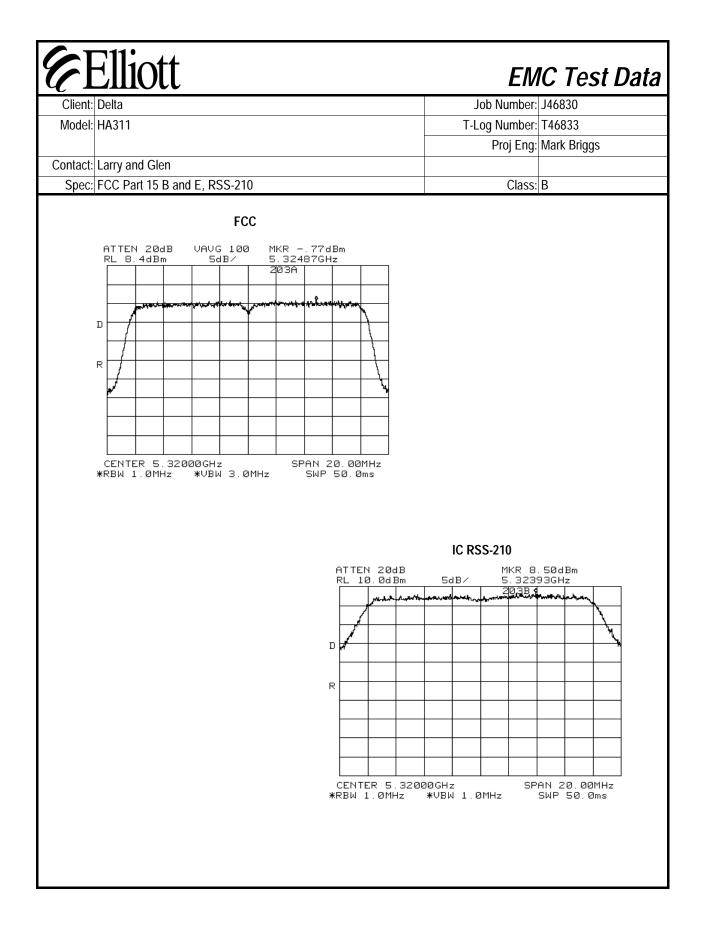


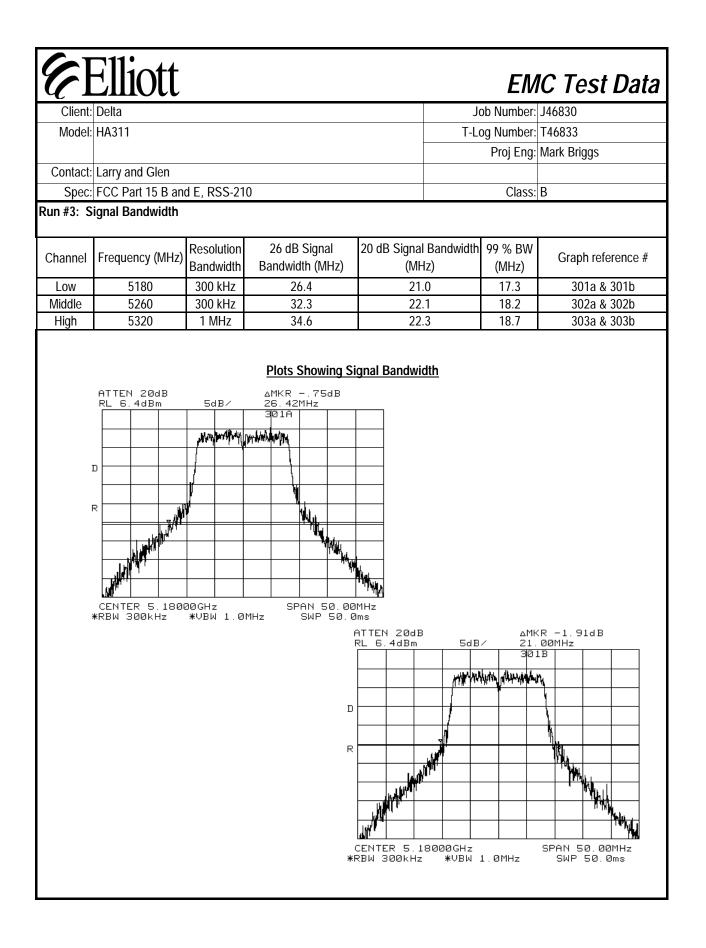


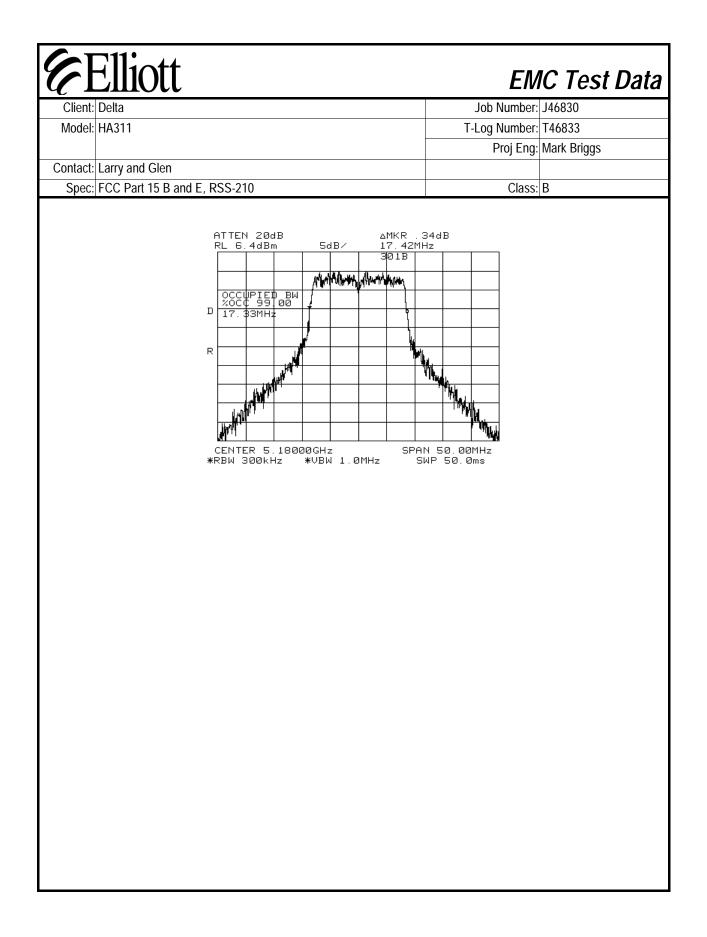
Elliott	EM	IC Test Data
Client: Delta	Job Number:	J46830
Model: HA311	T-Log Number:	
		Mark Briggs
Contact: Larry and Glen	, , ,	
Spec: FCC Part 15 B and E, RSS-210	Class:	В
ATTEN 20dB MKR -41 RL 7.5dBm 10dB/ 39.00GH	83dBm Hz	
R History and the second secon	And a start and a start and a start a st	
START 20.00GHz STOP 40.		
*RBW 1.0MHz *VBW 1.0MHz SV	NP 400ms	

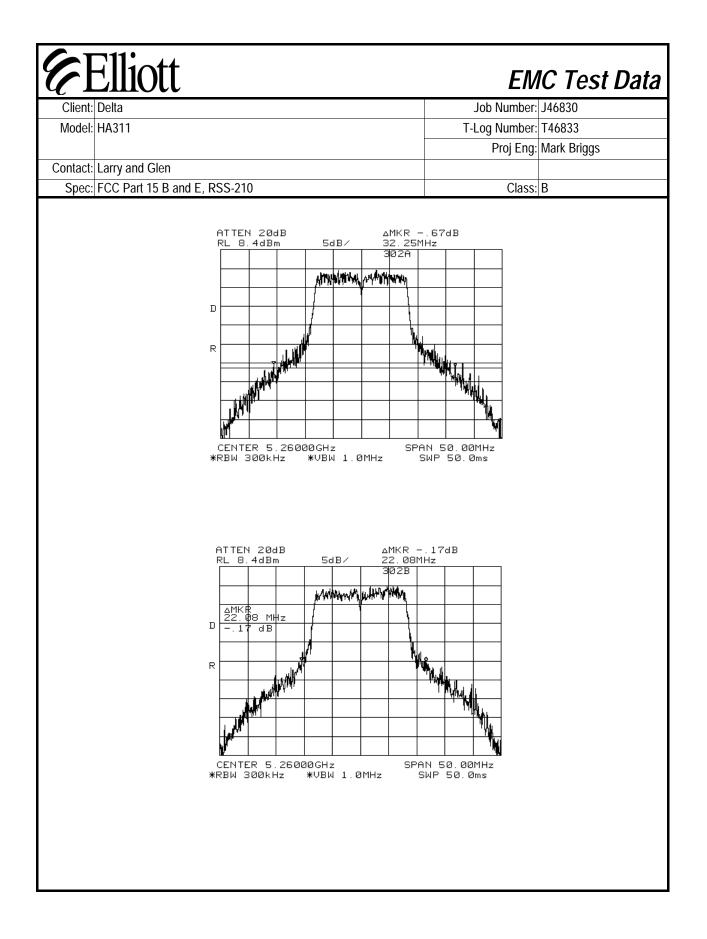

Client: Delta Job Number: J46830 Model: HA311 T-Log Number: T46833 Proj Eng: Mark Briggs Contact: Larry and Glen Proj Eng: Mark Briggs Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 FCC Part 15 Subpart E Tests Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to th specification listed above. Date of Test: Juntinez Config. Used: 1 Test Engineer: Jmartinez Config Change: None Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results 1 Ou	E	Ellio	ott			EM	IC Test Da	
Proj Eng: Mark Briggs Contact: Larry and Glen Image: Contact: Proj Eng: Mark Briggs Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 Subpart E Tests Subjective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: <u>4/9/2002</u> Config. Used: 1 Test Engineer: Jmartinez Config Change: None Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results Nonements in the Performed	Client:	Delta			J	b Number:	J46830	
Contact: Larry and Glen Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 Subpart E Tests Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: [4/9/2002] Config. Used: 1 Test Engineer: Jmartinez Config Change: None Test Location: SVOATS# 4 Config Change: None Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or	Model:	HA311			T-Lo	og Number:	T46833	
Spec: FCC Part 15 B and E, RSS-210 Class: B FCC Part 15 B and E, RSS-210 FCC Part 15 Subpart E Tests FCC Part 15 Subpart E Tests Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 4/9/2002 Config. Used: 1 Test Engineer: Jmartinez Config Change: None Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C						Proj Eng:	Mark Briggs	
FCC Part 15 Subpart E Tests Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to th specification listed above. Date of Test: 4/9/2002 Config. Used: 1 Test Engineer: Imartinez Config Change: None Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results 1 Output Power (5.15 - 5.25GHz 15.407(a) (1) Pass 1 0utput Power (5.15 - 5.25GHz band) 15.407(a) (1) Pass	Contact:	Larry and	Glen					
Test Specifics Dijective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: <u>4/9/2002</u> Config. Used: 1 Test Engineer: <u>Jmartinez</u> Config Change: None Test Location: SVOATS# 4 Config Change: None Bottom Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results Mathematical method is the state of the state is the state of the state is the state of the state is th	Spec:	FCC Part	15 B and E, RSS-210			Class:	В	
Test Engineer: Imartinez Config Change: None Test Location: SVOATS# 4 Host Unit Voltage 120Vac, 60Hz General Test Configuration The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results Image: Summary of Results 1 Output Power (5.15 - 5.25GHz band) 15.407(a) (1) Pass 15.8 dBm	-		The objective of this test session	-		ng of the E	JT with respect to th	
The EUT was located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT unless stated otherwise. When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used. Ambient Conditions: Temperature: 20°C Rel. Humidity: 55% Summary of Results Imit Result 1 Output Power (5.15 - 5.25GHz band) 15.407(a) (1) Pass 15.8 dBm	Test	Engineer:	Jmartinez	Config Change:	None	IHz		
<th a="" and="" colu<="" column="" td=""><td>The EUT For radia When m spectrun</td><td>F was locat ated emiss easuring th n analyzer</td><td>ted on the turntable for radiated stores testing the measurement ar ne conducted emissions from the or power meter via a suitable att</td><td>tenna was located 3 me EUT's antenna port, the enuator to prevent overla</td><td>ters from the antenna po pading the n</td><td>ort of the El</td><td>JT was connected to</td></th>	<td>The EUT For radia When m spectrun</td> <td>F was locat ated emiss easuring th n analyzer</td> <td>ted on the turntable for radiated stores testing the measurement ar ne conducted emissions from the or power meter via a suitable att</td> <td>tenna was located 3 me EUT's antenna port, the enuator to prevent overla</td> <td>ters from the antenna po pading the n</td> <td>ort of the El</td> <td>JT was connected to</td>	The EUT For radia When m spectrun	F was locat ated emiss easuring th n analyzer	ted on the turntable for radiated stores testing the measurement ar ne conducted emissions from the or power meter via a suitable att	tenna was located 3 me EUT's antenna port, the enuator to prevent overla	ters from the antenna po pading the n	ort of the El	JT was connected to
Run #Test PerformedLimitResultComments1Output Power (5.15 - 5.25GHz band)15.407(a) (1)Pass15.8 dBm	Ambient	Conditi						
1 Output Power (5.15 - 5.25GHz band) 15.407(a) (1) Pass 15.8 dBm	Summar	y of Res	ults					
band) 15.407(a) (1) Pass 15.8 dBm	Ru	n #		Limit	Result	Com	iments	
	1			15.407(a) (1)	Pass	15.8	3 dBm	

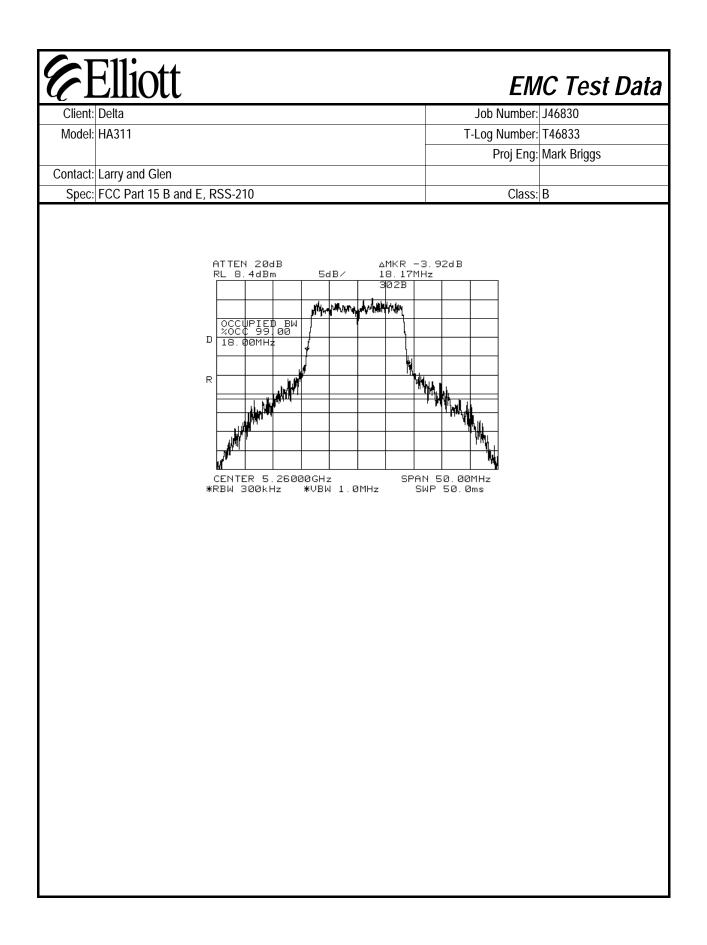
1	Output Power (5.15 - 5.25GHz band)	15.407(a) (1)	Pass	15.8 dBm
1	Output Power (5.25 - 5.35GHz band)	15.407(a) (2)	Pass	18.6 dBm
2	Power Spectral Density (5.15 - 5.25GHz)	15.407(a) (1)	Pass	-3.18 dBm
2	Power Spectral Density (5.25- 5.35GHz)	15.407(a) (2)	Pass	-0.77 dBm
3	26dB Bandwidth	15.407	Pass	26.4 - 34.6 MHz
3	20 dB Bandwidth	RSS 210	Pass	21.0 - 22.3 MHz
4	Peak Excursion Envelope	15.407(a) (6)	Pass	5.75 - 7.92 dB
5	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	> -27 dBm

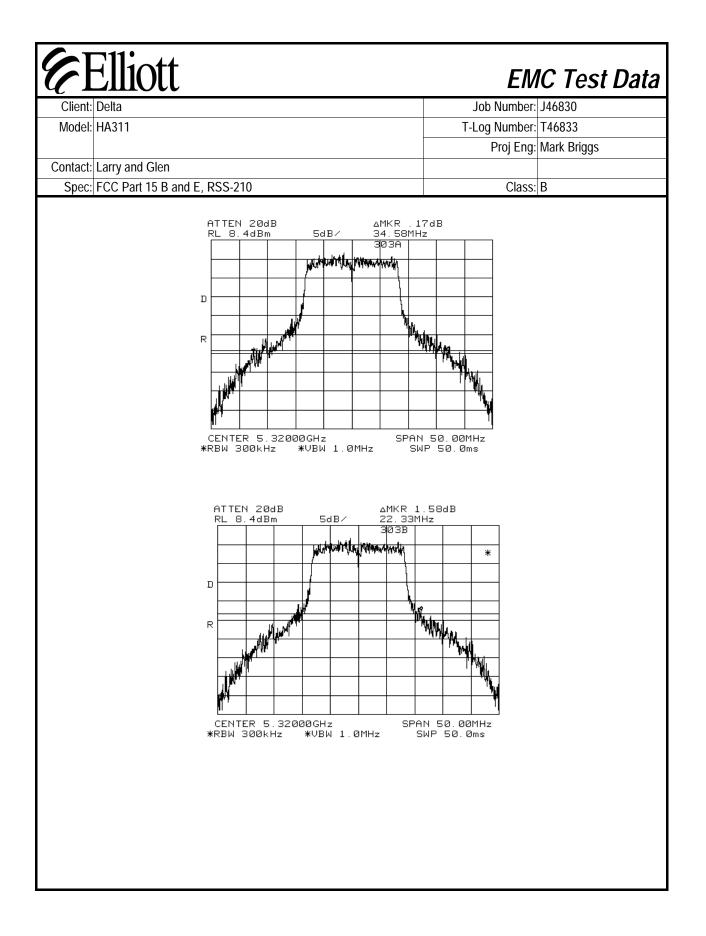


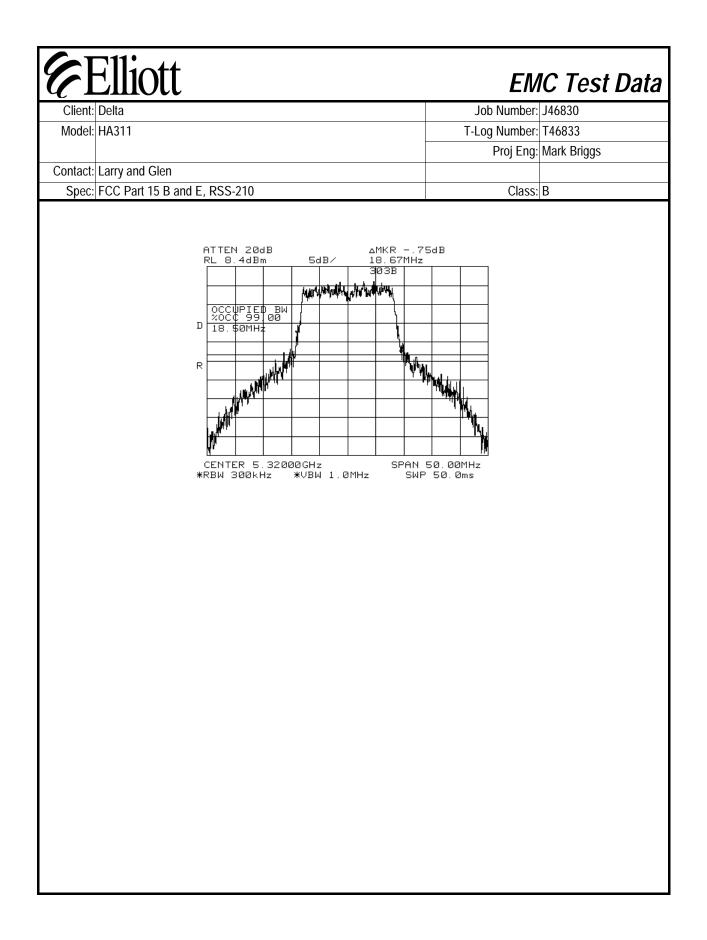


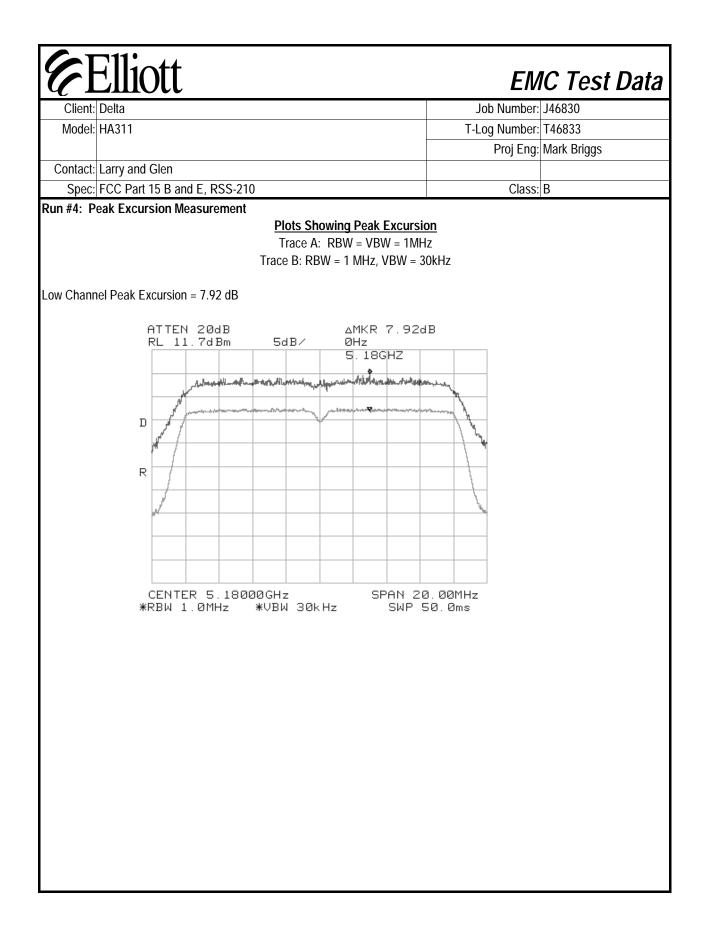

-	Elliott				IC Test Data
Client:				Job Number:	
Model:	HA311			T-Log Number:	
				Proj Eng:	Mark Briggs
Contact:	Larry and Glen				
Spec:	FCC Part 15 B and	I E, RSS-210		Class:	В
Run #2: Po	ower Spectral Der Antenna Gain:	nsity <u>3</u> dBi			
Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	FCC Limit (dBm) note 2	Peak Power Spectral Density (dBm)	Graph Reference
low	5180	-3.18	4.0	5.82	201a & 201b
mid	5260	-1.68	11.0	5.90	202a & 202b
high	5320	-0.77	11.0	8.50	203a & 203b
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	•	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.
	band) so no restric	tion is placed on the ou	itput power or average P	SD with respect to RSS	210.

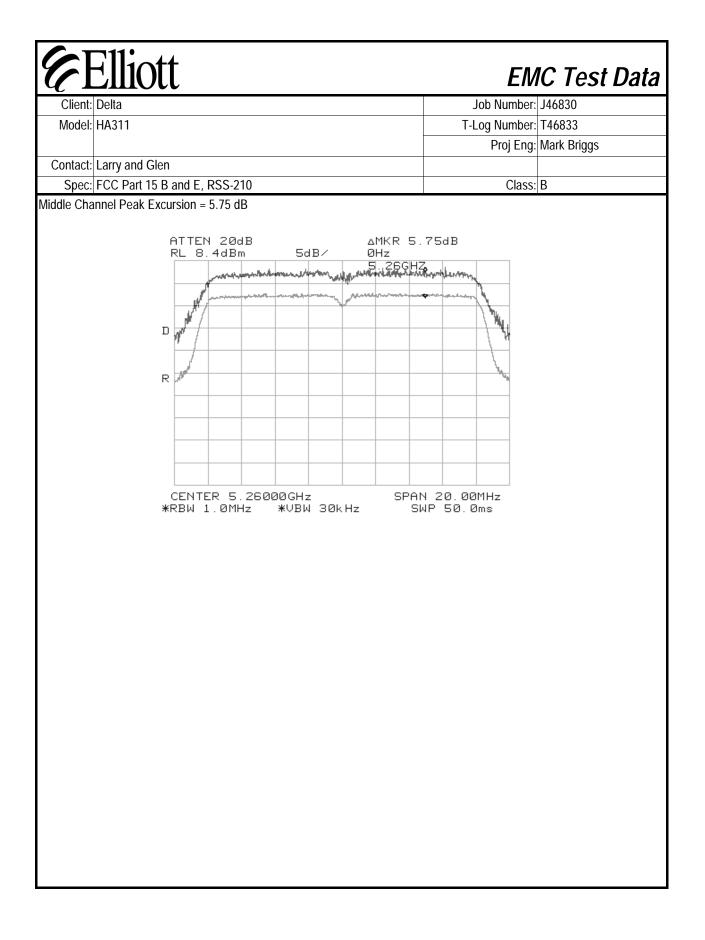


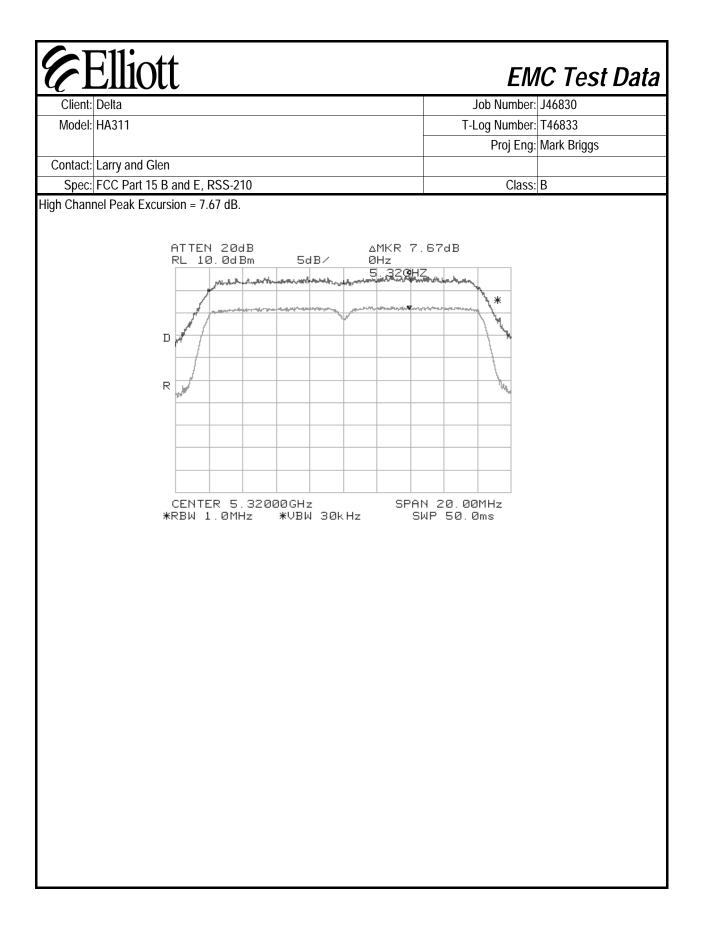




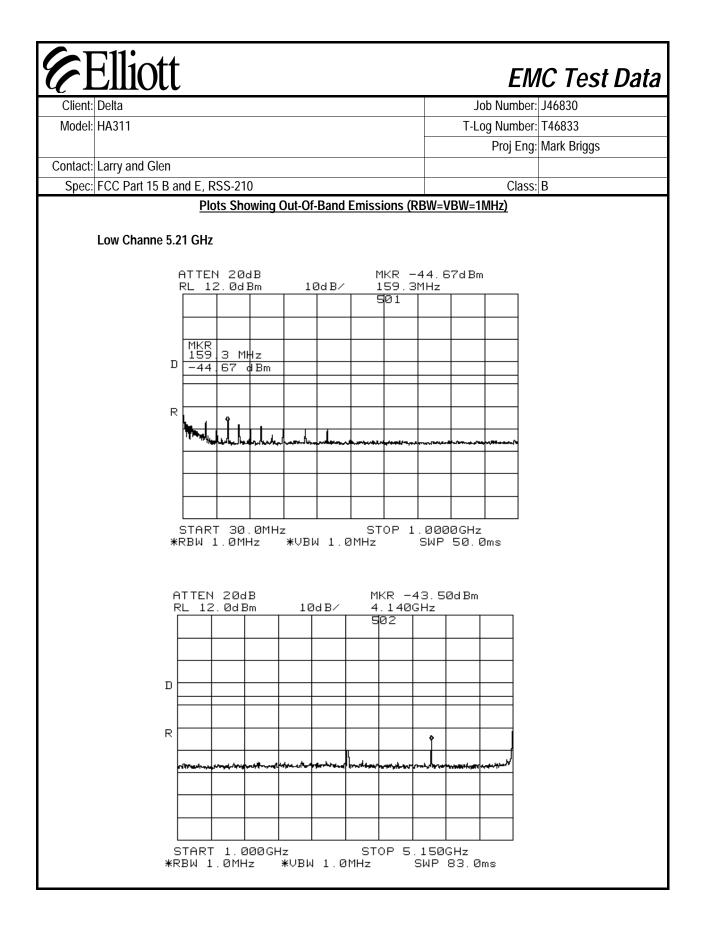


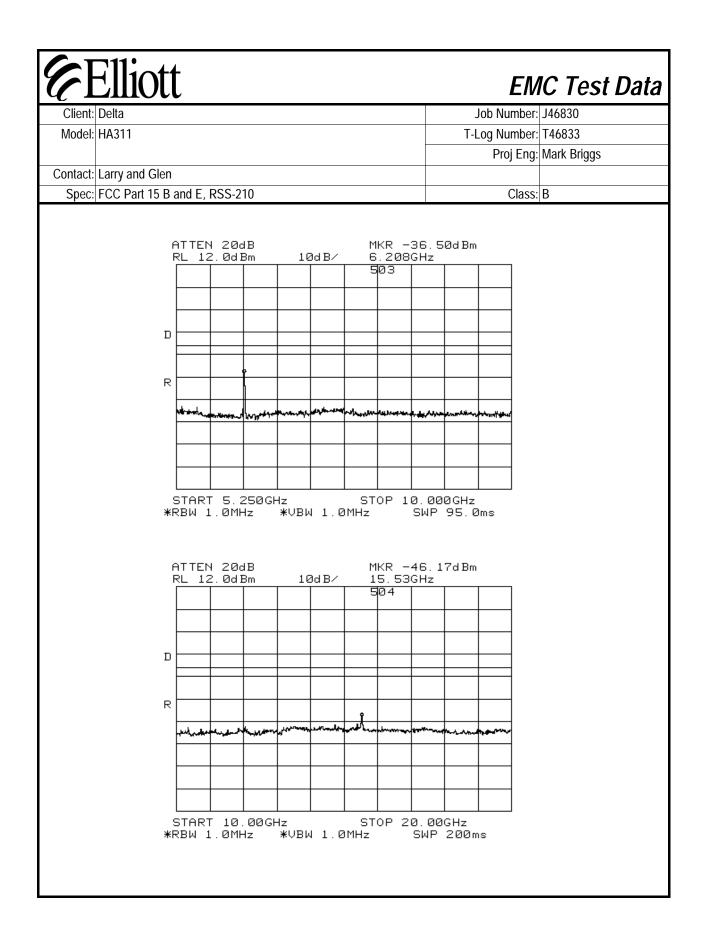


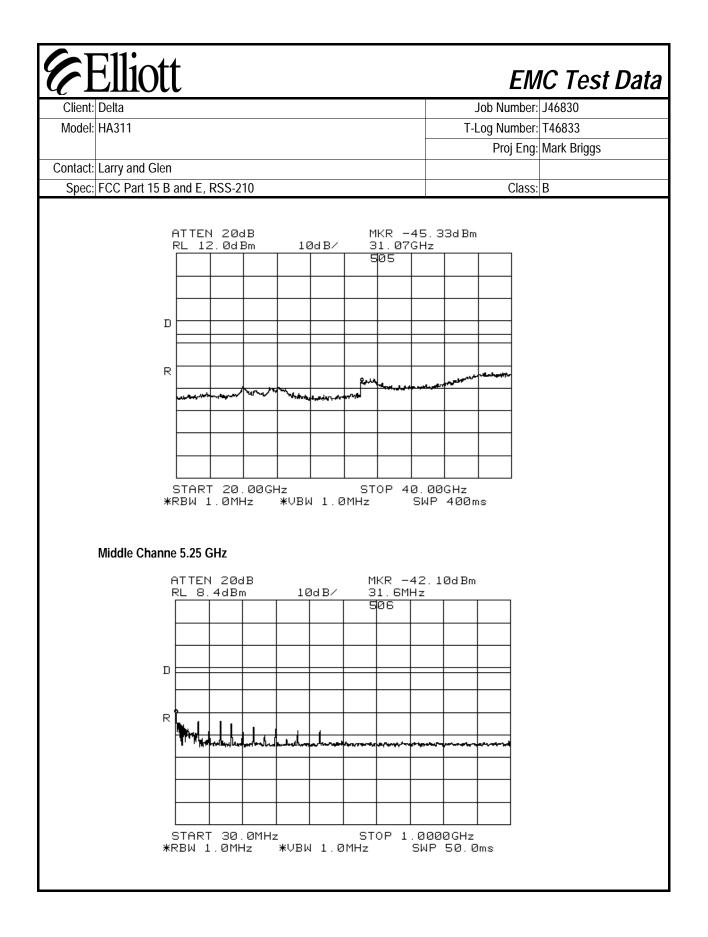


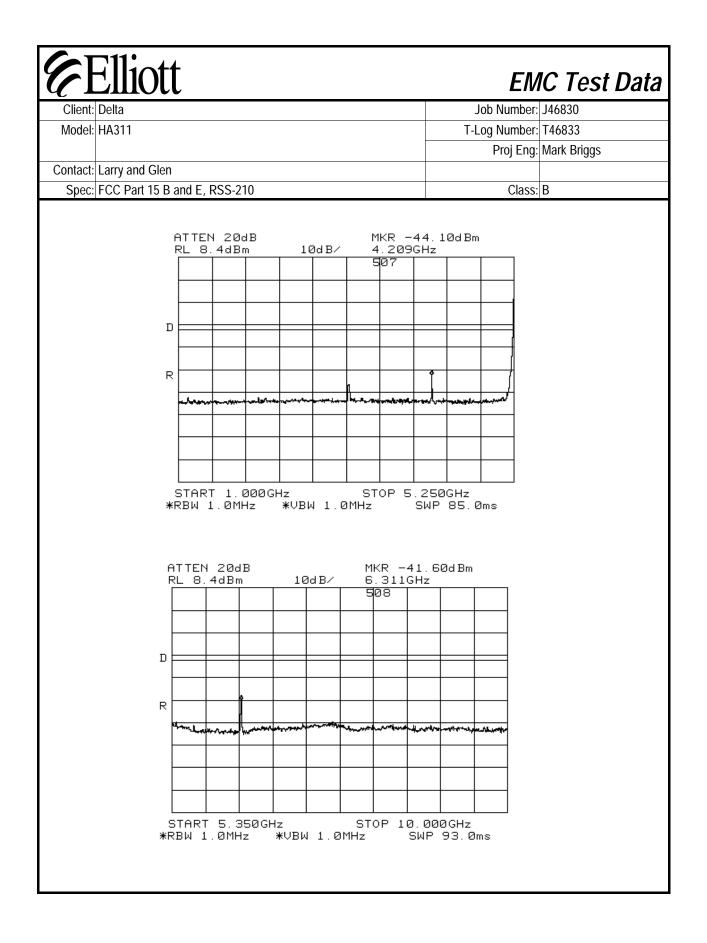


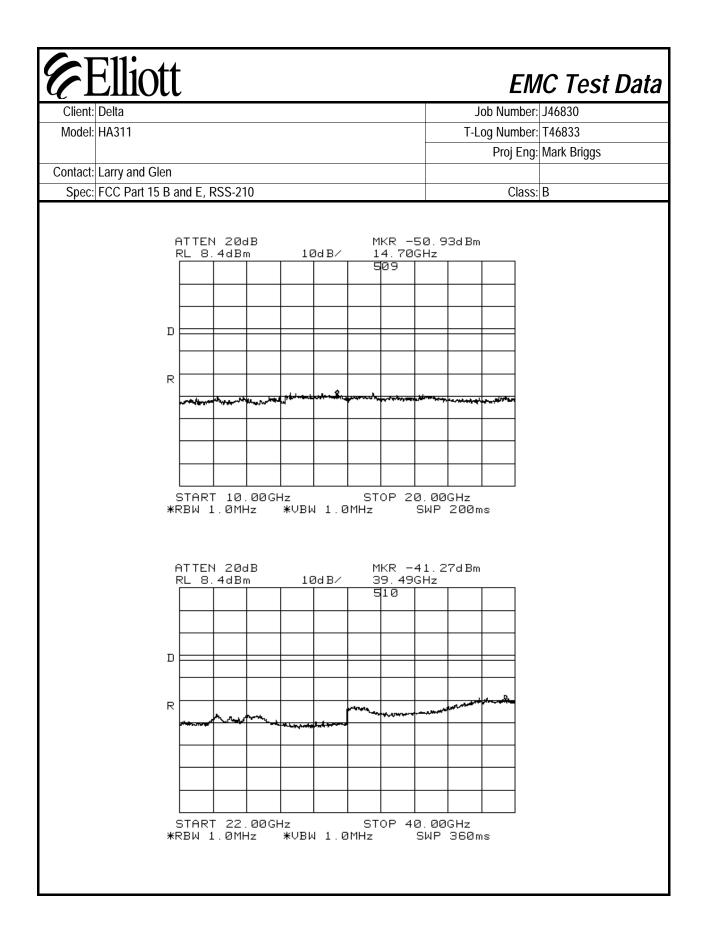
Elliott

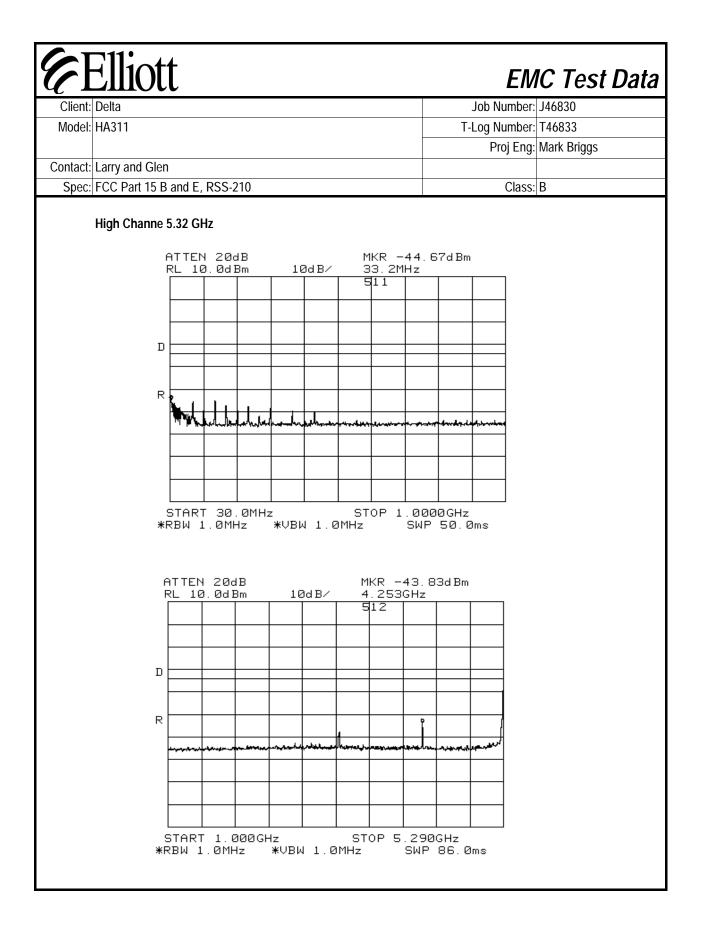

EMC Test Data

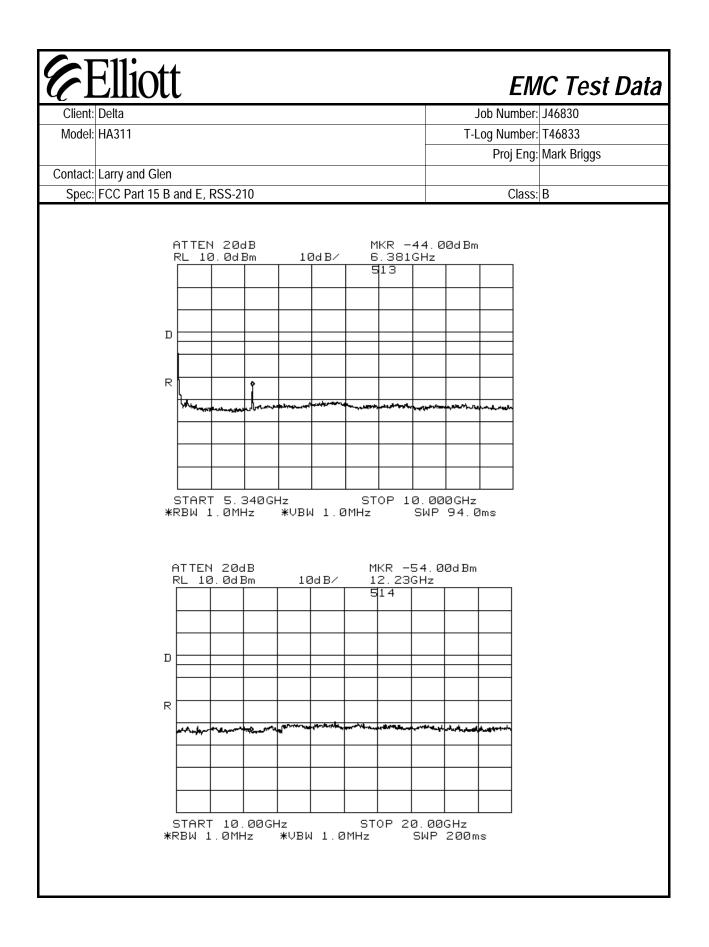

Client:	Delta	Job Number:	J46830
Model:	HA311	T-Log Number:	T46833
		Proj Eng:	Mark Briggs
Contact:	Larry and Glen		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В

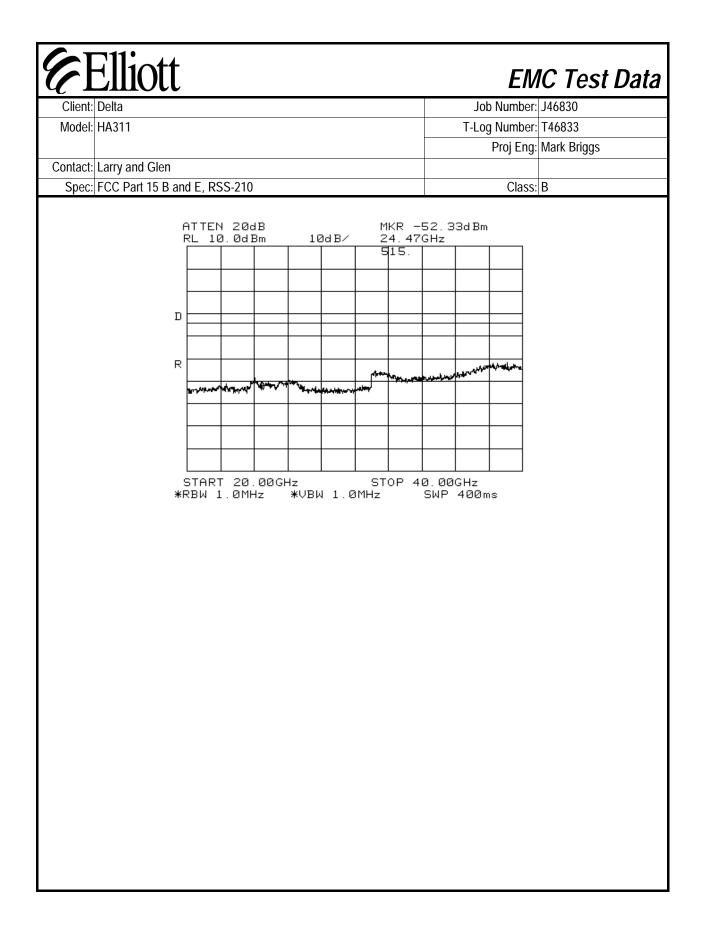

Run #5: Out Of Band Spurious Emissions - Antenna Conducted


The antenna gain of the radios integral antenna is 3 dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -30.0 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 3 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.


Channel	Frequency (MHz)	Frequency Range	Highest Spurious Signal	Graph reference #
	5180	30 - 1000 MHz	Note 4	501
		1 to 5.15 GHz	3103 MHz (-48.2 dBm, Note 2), 4140 MHz (-43.8 dBm, Note 1)	502
Low		5.25 to 10 GHz	6208 MHz (-36.5 dBm, Note 2)	503
		10 GHz to 20 GHz	15530 MHz (-46.2 dBm, Note 1)	504
		20 GHz to 40 GHz	None	505
		30 - 1000 MHz	Note 4	506
		1 to 5.25 GHz	3153 MHz (-48.2 dBm, Note 2), 4202 MHz (-44.1 dBm, Note 1)	507
Midd	5260	5.35 to 10 GHz	6311 MHz (-42.27 dBm, Note 2)	508
		10 GHz to 20 GHz	None	509
		20 GHz to 40 GHz	None	510
		30 - 1000 MHz	Note 4	511
Lliab	5330	1 to 5.29 GHz	3195 MHz (-47.8 dBm, Note 2), 4253 MHz (-43.8 dBm, Note 1)	512
High	5320	5.34 to 10 GHz	6381 MHz (-44.0 dBm, Note 2)	513
		10 GHz to 20 GHz	None	514
		20 GHz to 40 GHz	None	515







E	Ellio	ott			EM	IC Tes	t Data
Client:	Delta			J	ob Number:	J46830	
Model:	HA311			T-L	og Number:	T46833	
					Proj Eng:	Mark Briggs	
Contact:	Larry and	Glen					
Spec:	FCC Part	15 B and E, RSS-210			Class:	В	
Test Spe		Radiated Er The objective of this test session specification listed above.	missions-Norr			UT with respe	ect to the
	te of Test: Engineer:		Config. Used: Config Change:				
	•	SVOATS #4	EUT Voltage	120V/60Hz	1		
The host On the C and 3m f Note, for	system an ATS, the from the E testing ab	nfiguration nd all local support equipment we measurement antenna was local UT for the frequency range 1 - 1 hove 1 GHz, the FCC specifies th y emission above 1 GHz, can no	ed 10 meters from the E 0 GHz. e limit as an average me	UT for the near	neasuremer	nt range 30 -	
Ambient Summar		Rel. Humidity:					
Rur	า #	Test Performed	Limit	Result	Ma	argin	1
1		RE, 1 - 40 GHz, Turbo Mode	RSS 210 / FCC 15E	Pass		₽ 10507.82	
							-

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	IC Test Data
Client:							J	ob Number:	J46830
Model:								og Number:	
mouon								3	Mark Briggs
Contact	Larry and	Clon						T TOJ Elig.	Mark Driggs
				10				Class	D
			d E, RSS-2					Class:	В
EUT Card #					INS ADOVE I	GHz, EUT T	K @ 3.29 G	HZ	
*ATTEN		40.15		R 33. 17d B		ATTEN ØdB RL 67.7dB	uV 10		KR 35.84dB 8.01MHz
RL 67.	<u>7α Βμ</u> Ο	10d B		32MHz AC 10					DAC 10
-	·····						v * _		
			Colden Protocology	_	+ - 1				
	32 MHz 'dB		The grange of a strates	T		35.84 dB			
			_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ta Manual and a second				
			_						
	5.27278 ØMHz			5.351000 SWP 50		START 5.2 RBW 1.0MH;		STO 10Hz	P 5.35100GHz E SWP 20.0sec '
	01112			0 00				10.12	
	Channel /	/ Mode /	Data Rate:	5.29 GHz /	turbo / 6Mb	/s	_		
		Out	put Power:		dBm		PCDAC:	10	
Fie	ld Strengt	h of Fur	ndamental:	Avg:	87.1	dBuV/m			
				Peak:	96.9	dBuV/m			
Frequency	Level	Pol	RSS21	0 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	51.3	V	54.0	-2.7	Avg	210	1.2	Band Edge	- note 2,6, -35.8dBc
15870.00		V	54.0	-3.3	Avg	330	1.0	ļ	
4232.000	50.5	V	54.0	-3.5	Avg	210	1.2	ļ	
15870.00	49.4	H	54.0	-4.7	Avg	347	1.0		
21160.00	48.8	H	54.0	-5.2	Avg	30	1.0		
10580.00	59.6	V	68.3	-8.8	-	15	1.0	Note 4	
15870.00	64.5	V	74.0	-9.5	Pk	330	1.0		
5350.000	63.7	V	74.0	-10.3	Pk	210	1.2	Band Edge	- note 2,6, -33.2dBc
15870.00	63.6	Н	74.0	-10.4	Pk	347	1.0		
4232.000	63.5	V	74.0	-10.5	Pk	210	1.2		
21160.00	62.7	H	74.0	-11.3	Pk	30	1.0	Not: 4	
10580.00	52.0	Н	68.3	-16.3	-	348	1.0	Note 4	

Client:								lob Number:	J46830	a
Model:								og Number:		
Model	1 // 10 1 1							•	Mark Briggs	
Contact	Larry and	Glen						r toj Eng.	Mark Driggs	
	5		d E, RSS-2	10				Class:	B	
					ns Abovo 1		Tx @ 5.21 G		D	
		_11113310	iis - Spuric							
*ATTEN I RL 64.		10d B		R 34.83dI 59MHz	3 *	KATTEN Ø⊄ RL 67.7⊄			1KR 36.00dB 4.35MHz	
				AC 6	manan			P	CDAC 6]
]
			will some			AMKR 64.35 M	1Hz			1
	- Ward	WIND THE REAL			I	36.00 0	1B			1
Particular production of										1
						v				1
										1
										1
										1
										1
START !	5. 14900	GHz	STOP	5.226270	GHz E	START 5.	14900GHz	ST()P 5.22700GHz SWP 20.0sec	E
		Out	put Power:				PCDAC	- 6		
Frequency	Level	Pol	RSS2	10/15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments		
10429.49	50.0	V	54.0	-4.0	Avg	12	1.0	Average re	ading, average limit	
5150.000	49.5	٧	54.0	-4.5	Avg	210	1.2	ě	- note 2,6, -36dBc	
15624.41	46.5	V	54.0	-7.5	Avg	23	1.0		ading, average limit	
10430.61	44.9	Н	54.0	-9.1	Avg	0	0.0	Average re	ading, average limit	
15638.37	44.8	Н	54.0	-9.2	Avg	59	1.0	Average re	ading, average limit	
4167.980	44.3	٧	54.0	-9.7	Pk	237	1.2	RBW = 3kH	Iz - note ??	
10429.74	63.7	۷	74.0	-10.3	Pk	12	1.0	Peak readi	ng, peak limit	
5150.000	60.7	۷	74.0	-13.3	Pk	210	1.2	v v	- note 2,6, -34.8dBc	
15624.65	59.6	V	74.0	-14.4	Pk	23	1.0		ng, peak limit	
15639.07	57.6	Н	74.0	-16.4	Pk	59	1.0		ng, peak limit	
10430.78	57.6	H	74.0	-16.4	Pk	0	0.0		ng, peak limit	
20840.00	54.7	Н	74.0	-16.4	Pk	0	1.0		ng, peak limit	
20840.00	40.3	Н	54.0	-16.4	Avg	0	1.0 ficant signals		ng, peak limit	

E	Ellic	ott						EN	IC Test Data
Client:							J	lob Number:	J46830
Model:	HA311						T-L	og Number:	T46833
								•	Mark Briggs
Contact:	Larry and	Glen						1107 - 119.	Mark Driggs
	3		d E, RSS-21	10				Class:	B
					ons Above 1	IGHz, EUT T	x @ 5.25 G		12
			rear of PCB		10710010	0.12, 201			
					/ turbo / 6Mb/	ls			
			put Power:		dBm		PCDAC:	. 11	
Fie	Id Strengt	th of Fur	ndamental:	Avg:		dBuV/m			
				Peak:	100.3	dBuV/m			
Frequency		Pol		0/15E	Detector	Azimuth	Height	Comments	,
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	Ň	meters		
10507.82		V	54.0	-0.1	Avg	0	0.0		ading, average limit
21000.00		V	54.0	-2.1	Avg	352	1.0		ading, average limit
10504.22	50.3	Н	54.0	-3.7	Avg	8	1.0	× ×	ading, average limit
10508.02		V	74.0	-6.2	Pk	0	0.0		ing, peak limit
15752.37	45.9	V	54.0	-8.1	Avg	18	1.0	-	ading, average limit
21000.00		V	74.0	-9.2	Pk	352	1.0		ing, peak limit
10504.37		Н	74.0	-10.1	Pk	8	1.0		ing, peak limit
15753.55		Н	54.0	-10.2	Avg	359	1.0	<u> </u>	eading, average limit
26250.00		V	54.0	-12.7	Avg	352	1.0		eading, average limit
4200.000		V	54.0	-13.0	Avg	200	1.0		Hz - note ??
15752.49		V	74.0	-14.8	Pk	18	1.0		ing, peak limit
15753.79		Н	74.0	-17.4	Pk	359	1.0		ng, peak limit
26250.00		V	74.0	-20.5	Pk	352	1.0		ng, peak limit
4200.000	45.3	V	74.0	-28.7	Pk	200	1.0	RBW = 3k⊦	Hz - note ??
Note 1:			-			n 15.205 the field strength	-		apply. For all other
Note 2:	Signal is i	n a restri	icted band						
	Restricted	Band P	'eak Measur	ements: Re	solution and	J Video BW: 1	1 MHz, Res	tricted Band	Average Measurements:
Note 3:	Resolution	n Bw: 1M	/Hz and Vid	eo Bw: 10 F	Hz. All other	measureme	nts, RBW =	1MHz and	VBW = 3MHz, video
) samples).						
Note 4:	• •		all in a restric	ted band.					
	3				olution band	width of 3 kF	Iz The instru	umentation r	noise floor was too high to
									e EUT operating the
						•		•	nt shape factor to reject
Note 5:		•							band signal (as verified
		-				-	-		3kHz bandwidth would be
	•				-	•		•	has been compared with
	the average			~			, ,	v	
'		<u>je</u> :							

E	Elliott	EM	IC Test Data
Client:	Delta	Job Number:	J46830
Model:	HA311	T-Log Number:	T46833
		Proj Eng:	Mark Briggs
Contact:	Larry and Glen		
Spec:	FCC Part 15 B and E, RSS-210	Class:	В
Test		ons-Normal Mode	
Test Spe			
	Objective: The objective of this test session is to per specification listed above.	form final qualification testing of the El	JT with respect to the

Date of Test: 4/8/2002 Test Engineer: mfaustino Test Location: SVOATS #4

Config. Used: Config Change: EUT Voltage 120V/60Hz

General Test Configuration

The host system and all local support equipment were located on the turntable for radiated emissions testing. On the OATS, the measurement antenna was located 10 meters from the EUT for the measurement range 30 - 1000 MHz and 3m from the EUT for the frequency range 1 - 10 GHz.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions: Temperature: 15°C

Rel. Humidity: 64%

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 1 - 40 GHz, Normal mode	RSS 210 / FCC 15E	Pass	-0.1dB @ 10638.29

Modifications Made During Testing:

Rear shield soldered to PCB along front and re-seated the circuit board during testing to reduce the levels of emissions.

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	IC Te	st Data
Client:								ob Number:		
Model:								og Number:		
	HAJTI						1-L	÷	Mark Brig	a c
Contrat		Class						PIUJ EIIY.	IVIAIK DIIY	ys
	Larry and							0	_	
			1 E, RSS-21					Class:	В	
			ns - Spurio ear of PCB		ns Above 1	GHz, EUT T	x @ 5.32 G	Hz		
		•				TTEN ØdB	.11 102		KR 53.6 0.99MHz	
*ATTEN 0 RL 95.0		10d B⁄		48.16dB)0MHz	- 	<u>L 95.0dB</u>			DAC 10	
	**		PCDAC			\sim	~			
	14	ų.				START	\rightarrow			
		Part and the second second				START 5.31900 (GHz			
			WAR AND A WAR					_		
			~							
				Alletaning (
		_								
*RBW 1.0	Channel /	vвw 1. ′Mode / Outj	ØMHz Data Rate: out Power:				_	10Hz 10	P 5.351 SWP	8.00sec
	u ou onge	ii or i ui		Peak:		dBuV/m				
Frequency	Level	Pol	RSS21	0 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
10638.29	53.9	V	54.0	-0.1	Avg	350	1.1			
5350.000	51.6	V	54.0	-2.5	Avg	244	1.2	Band Edge		
4255.990	51.4	V	54.0	-2.6	Avg	237	1.2	RBW = 3k⊦	Iz - note ?	?
10638.29	50.5	Н	54.0	-3.5	Avg	215	1.6			
15960.00	48.5	V	54.0	-5.5	Avg	195	1.0			
10638.54	67.7	V	74.0	-6.3	Pk	350	1.1	ļ		
15960.00	44.4	Н	54.0	-9.6	Avg	195	1.0			
10638.54	62.7	Н	74.0	-11.3	Pk	215	1.6			
15960.00	59.7	V	74.0	-14.3	Pk	195	1.0			
15960.00	57.9	Н	74.0	-16.1	Pk	195	1.0			
5350.000	54.4	V	74.0	-19.6	Pk	244	1.2	Band Edge		-
4255.990	52.9	V	74.0	-21.1	Pk	237	1.2	RBW = 3kH	Iz - note ?	?
21280.00	59.3	V	74.0	-14.7	Pk	18	1.2	ļ		
21280.00	46.4	V	54.0	-7.7	Avg	18	1.2			
26600.00	55.0	V	68.3	-13.3	Pk	360	1.0			
26600.00	57.0	h	68.3	-11.3	Pk	0	1.1			

E	Ellic	ott						EMC Test Data
Client:							J	lob Number: J46830
Model:	HA311						T-L	.og Number: T46833
								Proj Eng: Mark Briggs
Contact:	Larry and	Glen						
Spec:	FCC Part	15 B and	d E, RSS-21	10				Class: B
					ons Above 1	GHz, EUT T	x @ 5.18 G	Hz
*ATTEN RL 97.	ØdB	10dB	ΔMKF	R 46.00d) L6MHz	_	ATTEN ØdB		∆MKR 50.33dB
		1040				RL 97.0dB		3d B/ 27.82MHz
				P	*			
			La Natar			∆MKR 27.82 MH	_	
			politic participation of the second s			50.33 dB	z	
		A/1						
No. 4. A.								
START	5. 14900	GHz	STOP	5.18300	GHz	START 5.1	4900GHz	STOP 5.18300GHz
		Out	put Power:	Avg:	802.11 / 6M dBm 101.75 111.85	dBuV/m	PCDAC:	<u> </u>
Frequency	Level	Pol	RSS21	0 / 15E	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	J	meters	
15540.00		Н	54.0	-0.2	Avg	250	1.0	
15540.00	53.7	V	54.0	-0.3	Avg	251	1.0	reseated board, PCDAC 6
5150.000		V V	54.0	-2.6	Avg	244	1.0	Band Edge - note 2,6, -50.3dBc
15540.00			74.0	-5.4	Pk	244	1.0 1.0	reseated board, PCDAC 6
15540.00 5150.000	68.6 65.9	H V	74.0 74.0	-5.4 -8.1	Pk Pk	250	1.0	Band Edge - note 2,6, -46dBc
10360.00	54.2	V	68.3	-8.1	Avg			Reseated board, PCDAC 6
10360.00	50.5	H	68.3	-14.1	Avg	225	1.6	
4144.000	35.3	V	54.0	-18.7	Avg	220		RBW = 3kHz - note ??
10360.00	66.6	V	88.3	-21.7	Pk			Reseated board, PCDAC 6
10360.00	64.1	Н	88.3	-24.2	Pk	225	1.6	
4144.000	46.6	٧	74.0	-27.4	Pk			RBW = 3kHz - note ??
20720.00	54.7	V	74.0	-19.3	Pk	37	1.0	
20720.00	45.1	۷	54.0	-8.9	Avg	37	1.0	
25900.00	55.2	V	68.3	-13.1	Pk	328	1.0	
25900.00	53.5	h	68.3	-14.8	Pk	312	1.1	

E	Ellic	ott						EM	IC Test Data
Client:							J	ob Number:	J46830
Model:	HA311						T-L	og Number:	T46833
								Proj Eng:	Mark Briggs
Contact:	Larry and	Glen						, ,	
	-		d E, RSS-21	0				Class:	В
Run #1c:	Radiated I	Emissio	ns - Spurio	us Emissio	ns Above 1	GHz, EUT T	x @ 5.26 G	Hz	
	Channel /				802.11 / 6M	b/s	_		
			put Power:		dBm		PCDAC:	10	
Fie	ld Strengt	h of Fur	ndamental:	•		dBuV/m			
				Peak:	70.9	ubuv/III			
Frequency	Level	Pol	RSS21	0/15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
15780.00	53.7	V	54.0	-0.3	Avg	334	1.1	Rear shield s	soldered to PCB along front
15780.00	51.5	Η	54.0	-2.5	Avg	6	1.0	Rear shield s	soldered to PCB along front
5260.000		٧	74.0	-3.1	Pk			Ŭ	e - note 2,6, dBc
15780.00	63.2	Н	74.0	-10.8	Pk				soldered to PCB along front
15780.00		V	54.0	-3.7	Avg	33	1.1		soldered to PCB along front
5260.000		V	54.0	-13.1	Avg	000	1.0	Band Edge	e - note 2,6, dBc
10520.00		H V	68.3	-13.6	-	282	1.0		
10520.00 6311.98		V V	68.3 68.3	-14.3 -14.7	-				
4208.000		V	54.0	-14.7	Pk				
21040.00		h	74.0	-6.1	Pk	241	1.0		
21040.00		h	54.0	-2.4	Avg	241	1.0		
21040.00	66.5	٧	74.0	-7.5	Pk	195	1.0		
21040.00		V	54.0	-0.9	Avg	195	1.0		
26299.00		V	68.3	-13.3	Pk	189	1.0		
26299.00	54.2	h	68.3	-14.1	Pk	0	1.0		
Note 1:	emissions	the limit	t is EIRP < -:		ds detailed ir uivalent to a		-		apply. For all other
Note 2:	- v		icted band						
Note 3:	Resolution	n Bw: 1N							Average Measurements: VBW = 3MHz, video
Note 4:	0		ll in a restric						
Note 5:	allow mea intentiona the intenti during the the same	Isurement I signal v onally tra conduct as that i	nts with RBV would overlo ansmitted sig ted antenna	V = 1MHz b ad the amp gnal but pas measurem	ecause a pro lifier and the ss the spurio ents) and so	eamplifier co re is no low ous signal). T the amplitud	uld not be u pass filter v he signal w de (peak/av	used (with th with sufficien as a narrowl erage) in a 3	noise floor was too high to e EUT operating the t shape factor to reject band signal (as verified 3kHz bandwidth would be has been compared with
	the average	ge limit.							

Elliot	J	EM	C Test
Client:		Job Number:	
	HA311	T-Log Number:	
		Proj Eng:	Mark Briggs
	Larry and Glen		
missions Spec:	FCC Part 15 B and E, RSS-210	Class:	В
mmunity Spec:	Ν/Α	Environment:	-
	EMC Test Da	ta	
		tu i	
	For The		
	Delta		
	Model		
	HA311		

Ellio	tt			EM	IC Test Data
Client:	Delta			Job Number:	J46830
Model:	HA311			T-Log Number:	T46889
				Proj Eng:	Mark Briggs
	Larry and Glen				
	FCC Part 15 B an	d E, RSS-210		Class:	В
Immunity Spec:	N/A			Environment:	-
is PCI card which is de in 802.11 mode (nomir of 50 MHz). Normally, the host sys	signed to be install nal bandwidth of 25 tem would be table	Gene ed to operate ir led into a desk MHz) and dat -top during ope	top PC. The card p a rates of up to 72 eration. The host s	and 5.25-5.35GHz UNII/I provides data rates of up t	o 54 Mb/s while operating mode (nominal bandwidth e-top equipment during
Manufacturer	Model	Equipr	ment Under Tes	st Serial Number	FCC ID
Delta	HA311		INII PCI Card	Card #1	
The EUT does not hav	e an enclosure as i	it is designed t	T Enclosure o be installed withir fication History	n the enclosure of a host o	computer.
Mod. #	Test	Date		Modification	
1	-	-		None	

	Larry and Glen FCC Part 15 B and E, RS	SS-210	T-Log Number: Proj Eng: Class:	Mark Bri	
Emissions Spec:	FCC Part 15 B and E, RS	SS-210	Class:		
Emissions Spec:	FCC Part 15 B and E, RS	SS-210		-	ggs
		SS-210			_
Immunity Spec:	N/A				3
			Environment:		-
		t Configuration			
		cal Support Equipme		r —	
Manufacturer	Model	Description	Serial Number		FCC ID
Dell	DHS	PC	599GJ01	A.1/ 0	DoC
Dell	D1726T-HS	Monitor	7172104		GDM17SE2
Hewlett Packard	E03633HLUS-C	Keyboard	51825521 ADA0013241		1GE03633 MFBP9528
Epson	P952A Pilot 1000	Pinter			
US Robotics Logitech	M-S69	PDA Mouse	604819965702 LNA11311085		MQ90001 NZ211443
Manufacturer	Model	note Support Equipm			
None required	Model	Description	Serial Number		FCC ID
	Woudi	Description	Serial Number		FCC ID
			Serial Number Cable(s)		FCC ID
	Connected To			ded	FCC ID
None required Port PC SVGA		Interface Ports	Cable(s)	ded	
None required Port PC SVGA PC PS2	Connected To Monitor Keyboard	Interface Ports Description Multiconductor Multiconductor	Cable(s) Shielded or Unshiel Shielded Shielded	ded	Length(2 2
None required Port PC SVGA PC PS2 PC PS2	Connected To Monitor Keyboard Mouse	Interface Ports Description Multiconductor Multiconductor Multiconductor	Cable(s) Shielded or Unshiel Shielded Shielded Shielded	ded	Length(2 2 2
None required Port PC SVGA PC PS2 PC PS2 PC DB9	Connected To Monitor Keyboard Mouse PDA	Interface Ports Description Multiconductor Multiconductor Multiconductor Multiconductor Multiconductor	Cable(s) Shielded or Unshiel Shielded Shielded Shielded Shielded	ded	Length(2 2 2 3
None required Port PC SVGA PC PS2 PC PS2	Connected To Monitor Keyboard Mouse	Interface Ports Description Multiconductor Multiconductor Multiconductor	Cable(s) Shielded or Unshiel Shielded Shielded Shielded	ded	Length(2 2 2

	<u>Ellic</u>	<i><i></i></i>		EMC Test					
Client:				Job Number:					
Model:	HA311			T-l	og Number:				
					Proj Eng:	Mark Briggs			
	Larry and								
Spec:	FCC Part	15 B and E, RSS-210			Class:	В			
		Radia	ated Emissio	ns					
Test Spe	cifics								
-	Objective:	The objective of this test session specification listed above.	is to perform final quali	fication tes	ting of the E	UT with respe			
Dat	te of Test:	4/10/2002	Config. Used:						
Dui				5					
	Engineer:	Marissa Faustino	Config Change:						
Test Test General The EUT On the C	Location: Test Cor and all loc DATS, the r	SVOATS #1 Ifiguration cal support equipment were locat measurement antenna was locate	EUT Voltage: ed on the turntable for r ed 3 meters from the EL	120V/60H adiated em	issions testi				
Test Test General The EUT On the C and 3m f Note, pre measure of the me Note, for	Location: Test Cor and all loc DATS, the r from the El eliminary from the El eliminary from the test testing ab ding of any	SVOATS #1 nfiguration cal support equipment were locat measurement antenna was locate JT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated it antenna, <u>and</u> manipulation of the ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not	EUT Voltage: ed on the turntable for r ed 3 meters from the EL GHz. ns were maximized by o d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim	120V/60H radiated em JT for the n prientation o re maximiz es. easuremen	hissions testi heasurement of the EUT a ed by orienta t. In additior	t range 30 - 1 nd elevation of ation of the El			
Test Test General The EUT On the C and 3m f Note, pre measure of the me Note, for peak rea	Location: Test Cor and all loc DATS, the r from the El eliminary from the El eliminar	SVOATS #1 nfiguration cal support equipment were locat measurement antenna was locate JT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated it antenna, <u>and</u> manipulation of th ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not DNS: Temperature: 2 Rel. Humidity: 4	EUT Voltage: ed on the turntable for r ed 3 meters from the EL GHz. ns were maximized by o d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim	120V/60H radiated em JT for the n prientation o re maximiz es. easuremen	hissions testi heasurement of the EUT a ed by orienta t. In additior	t range 30 - 1 nd elevation of ation of the El			
Test Test The EUT On the C and 3m f Note, pro measure of the me Note, for peak rea Ambient	Location: Test Cor and all loc DATS, the r from the El eliminary ment anter easurement testing ab ding of any Condition	SVOATS #1 nfiguration cal support equipment were locat measurement antenna was locate JT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated it antenna, <u>and</u> manipulation of th ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not DNS: Temperature: 2 Rel. Humidity: 4	EUT Voltage: ed on the turntable for r ed 3 meters from the EL GHz. ns were maximized by o d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim	120V/60H radiated em JT for the n orientation o re maximiz es. easuremen nit by more	hissions testi heasurement of the EUT a ed by orienta t. In additior than 20 dB.	t range 30 - 1 nd elevation o ation of the El			
Test Test General The EUT On the C and 3m f Note, pre measure of the me Note, for peak rea	Location: Test Cor and all loc DATS, the r from the El eliminary from the El eliminary from the El easurement testing ab ding of any Condition y of Res	SVOATS #1 nfiguration cal support equipment were locat measurement antenna was located JT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated it antenna, <u>and</u> manipulation of th ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not ons: Temperature: 2 Rel. Humidity: 4 ults	EUT Voltage: ed on the turntable for r ed 3 meters from the EU GHz. ns were maximized by o d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim 21°C	120V/60H radiated em JT for the n prientation o re maximiz es. easuremen	hissions testi heasurement of the EUT a ed by orienta t. In additior than 20 dB.	t range 30 - 1 nd elevation of ation of the El			
Test Test The EUT On the C and 3m f Note, pre measure of the me Note, for peak rea Ambient	Location: Test Cor and all loc DATS, the r from the El eliminary f ment anter easurement testing ab ding of any Condition y of Res	SVOATS #1 figuration cal support equipment were locat measurement antenna was locate UT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated at antenna, and manipulation of th ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not ons: Temperature: 2 Rel. Humidity: 4 ults Test Performed RE, Preliminary Scan 30 -	EUT Voltage: ed on the turntable for r ed 3 meters from the EU GHz. ns were maximized by c d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim 21°C 13%	120V/60H radiated em JT for the n orientation o re maximiz es. easuremeni nit by more Result	hissions testi heasurement of the EUT a ed by orienta t. In additior than 20 dB. Main 20 dB.	t range 30 - 1 nd elevation o ation of the El n, the FCC sta			
Test Test The EUT On the C and 3m f Note, pre measure of the me Note, for peak rea Ambient	Location: Test Cor and all loc DATS, the in- from the Ele eliminary from the Ele easurement testing ab ding of any Condition y of Resson	SVOATS #1 figuration cal support equipment were locat measurement antenna was locate UT for the frequency range 1 - 10 testing indicates that the emission nna. Maximized testing indicated t antenna, and manipulation of th ove 1 GHz, the FCC specifies the y emission above 1 GHz, can not ons: Temperature: 2 Rel. Humidity: 4 ults Test Performed RE, Preliminary Scan 30 - 1000 MHz RE, 30 - 1000MHz -	EUT Voltage: ed on the turntable for r ed 3 meters from the EU GHz. ns were maximized by c d that the emissions we he EUT's interface cable e limit as an average me exceed the average lim 21°C 13% Limit FCC B	120V/60H radiated em JT for the n orientation o re maximiz es. easuremeni nit by more <u>Result</u> Eval	hissions testi heasurement of the EUT a ed by orienta t. In additior than 20 dB. Main 20 dB.	argin ation.995MHz			

No deviations were made from the requirements of the standard.

Client:	Delta	ott				J46830			
Model:	HA311						T-Log Number: T46889		
									Mark Briggs
Contact:	Larry and	Glen							
	-		d E, RSS-21		Class:	R			
	-		ed Emission) MHz			01033.	D
un <i>"</i> 1. 1	, ciiriniai y	Ruuluk		13, 30 1000					
requency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
319.995	41.9	Н	46.0	-4.1	QP	308	1.0		
319.995	41.3	V	46.0	-4.7	QP	170	1.5		
816.120	38.5	Н	46.0	-7.5	QP	169	1.0		
816.120	38.1	V	46.0	-7.9	QP	177	1.0		
336.050	38.1	Н	46.0	-7.9	QP	133	1.0		
607.985	36.3	V	46.0	-9.7	QP	222	1.0		
666.450	35.5	Н	46.0	-10.5	QP	45	1.0		
528.070	35.4	V	46.0	-10.6	QP	133	1.0		
299.745	35.3	Н	46.0	-10.7	QP	7	1.0		
798.545	34.0	V	46.0	-12.0	QP	230	1.0		
336.050	33.7	V	46.0	-12.3	QP	50	2.2		
528.070	33.6	Н	46.0	-12.4	QP	67	1.0		
288.040	32.7	Н	46.0	-13.3	QP	91	1.2		
256.000	32.5	Н	46.0	-13.5	QP	94	1.3		
298.360	32.5	Н	46.0	-13.5	QP	1	1.2		
299.745	31.9	V	46.0	-14.1	QP	247	1.6		
299.220	31.3	Н	46.0	-14.7	QP	69	1.0		
272.030	31.0	Н	46.0	-15.0	QP	128	1.3		
399.290	30.0	V	46.0	-16.0	QP	175	1.0		
288.040	29.9	٧	46.0	-16.1	QP	48	1.0		
298.360	29.5	V	46.0	-16.5	QP	135	1.0		
300.690	29.3	Н	46.0	-16.7	QP	3	1.0		
299.220		V	46.0	-17.0	QP	72	1.0		
267.000	29.0	Н	46.0	-17.0	QP	115	1.0		
186.140	25.8	Н	43.5	-17.7	QP	267	1.8		
166.360	25.7	٧	43.5	-17.8	QP	224	1.0		
272.030	28.1	٧	46.0	-17.9	QP	64	1.0		
666.450		V	46.0	-18.0	QP	24	1.0		
798.545	28.0	Н	46.0	-18.0	QP	128	1.0		
186.140		V	43.5	-18.5	QP	355	1.0		
166.360		Н	43.5	-18.5	QP	123	1.0		
256.000	26.7	V	46.0	-19.3	QP	64	1.0		
300.690	26.7	V	46.0	-19.3	QP	207	1.0		
399.290	26.0	Н	46.0	-20.0	QP	294	1.0		
232.390	25.6	Н	46.0	-20.4	QP	200	1.0		
266.260		V	46.0	-20.7	QP	302	1.0	1	

E	Ellio	ott						EM	IC Test Data	
Client:	Delta					Job Number: J46830				
Model:	HA311						T-L	og Number:	T46889	
								Proj Eng:	Mark Briggs	
Contact:	Larry and	Glen								
Spec:	FCC Part	15 B and	d E, RSS-21	0				Class:	В	
		Readinç	gs From Ru	n #1						
Frequency	Level	Pol	FC	СВ	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
319.995	42.6	Н	46.0	-3.4	QP	308	1.0			
319.995	41.3	V	46.0	-4.7	QP	170	1.5			
816.120	39.1	Н	46.0	-6.9	QP	169	1.0			
336.050	38.4	Н	46.0	-7.6	QP	133	1.0			
816.120	38.1	V	46.0	-7.9	QP	177	1.0			

Run #3: Maximized readings, 1000 - 6000 MHz Measurements made at 3m per FCC requirements.

607.985

36.3

۷

46.0

-9.7

measaren											
Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
4382.960	46.6	V	54.0	-7.4	Avg	0	2.0				
4382.960	46.6	Н	54.0	-7.4	Avg	0	1.0				
4382.960	61.0	V	74.0	-13.0	Pk	0	2.0				
4382.960	58.0	Н	74.0	-16.0	Pk	0	1.0				

QP

222

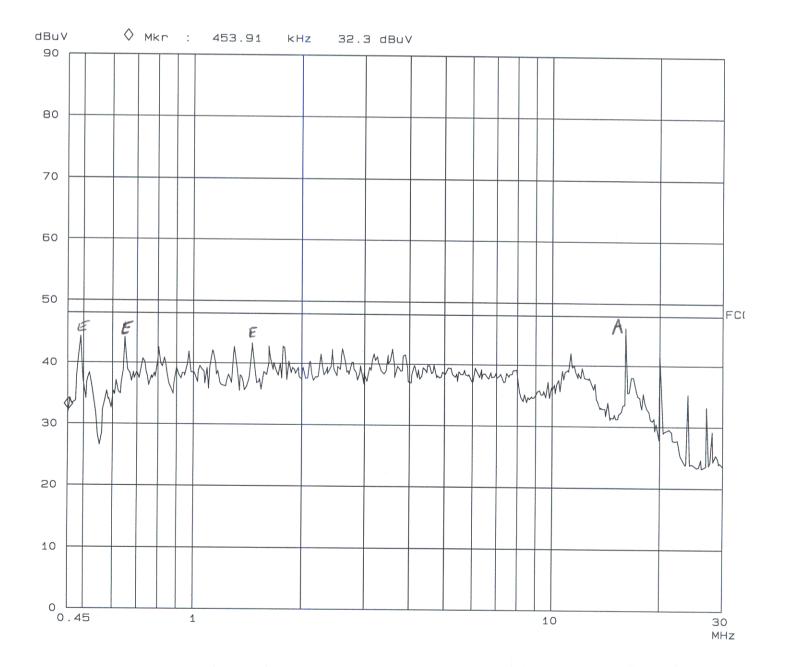
1.0

E	Elli	ott				EMC Test Data					
Client:	Delta						J	ob Number:	J46830		
Model:	HA311						T-L	og Number:	T46889		
								Proj Eng:	Mark Briggs		
Contact:	Larry and	l Glen									
Spec:	FCC Part	t 15 B and	d E, RSS-2			Class:	В				
			Cond	ucted E	Emissi	ons - Po	ower P	orts			
Test Spe	cifics										
	Objective:	-	ective of this ation listed a		n is to perfo	orm final quali	fication testi	ng of the E	UT with respect to the		
Da	te of Test:	4/10/200)2		(Config. Used:					
	Engineer:					onfig Change:					
Test	Location:	SVOATS	S #1		I	EUT Voltage:	120V/60Hz				
General	Test Co	nfigura	tion								
	LISN. A	second I ons:	LISN was u Te	emperature:	cal support 21°C				pling plane and 80cm		
Rur	o #	<u> </u>	Test Perfori	mod	1	imit	Result	N/I	argin		
Kui 1			C Power 12			CC B	Pass		argin ହ.489MHz		
No modii Deviatio No devia	fications w ns From ations were	vere made The St e made fr	a ndard om the requ	T during tes	the standa						
					1	120V/60Hz					
Frequency		AC		C B	Detector	Comments					
MHz	dBμV 42.2	Line	Limit	Margin	QP/Ave QP						
0.4891		Neutral Neutral	48.0 48.0	-5.8 -6.6	QP QP						
1.4000		Neutral	48.0	-0.0	QP QP						
0.4891	41.0	Line	48.0	-7.0	QP QP						
0.6492		Line	40.0	-6.6	QP						

Line

48.0

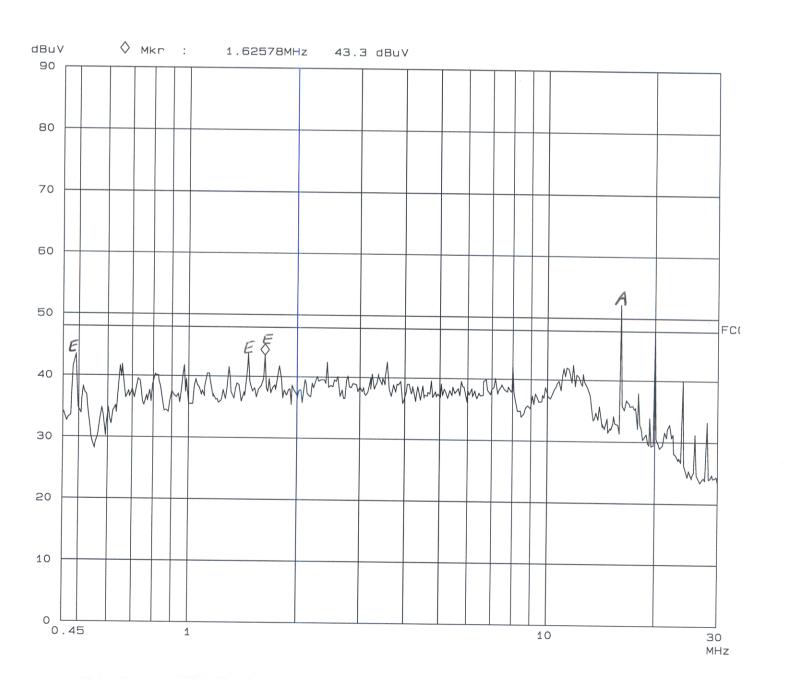
-6.6


QP

41.4

1.4620

Elliott Laboratories AC Conducted Emissions


EUT: HA311 PCI card Manuf: Delta Op Cond: Run1 Line Operator: Marissa Faustino Test Spec: FCC B Comment: 120V/60Hz J46830/T46833

10. Apr 02 16:21

Elliott Laboratories AC Conducted Emissions

EUT: Manuf: Op Cond: Operator: Test Spec: Comment: HA311 PCI card Delta Run1 Neutral Marissa Faustino FCC B 120V/60Hz J46B30/T46B33

10. Apr 02 16:07

EXHIBIT 3: Test Configuration Photographs

3 Pages

EXHIBIT 4: Proposed FCC ID Label & Label Location

2 Pages

EXHIBIT 5: Detailed Photographs of Netgear Model HA311Construction

External Photographs 2 Pages Internal Photographs 2 Pages

EXHIBIT 6: Operator's Manual for Netgear Model HA311

22 Pages

EXHIBIT 7: Block Diagram of Netgear Model HA311

1 Page

EXHIBIT 8: Schematic Diagrams for Netgear Model HA311

Schematics 4 Pages Layout 12 Pages

EXHIBIT 9: Theory of Operation for Netgear Model HA311

1 Page

EXHIBIT 10: Advertising Literature

None available at this time.

EXHIBIT 11: RF Exposure Information

1 Page