

RF Exposure Report

Report No.: SA141008E07D

FCC ID: PY3DC112A

Test Model: DC112A

Received Date: Oct. 19, 2016

Test Date: Nov. 24, 2016

Issued Date: Dec. 02, 2016

Applicant: NETGEAR, Inc.

Address: 350 East Plumeria Drive San Jose, CA 95134

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: SA141008E07D Page No. 1 / 7 Report Format Version: 6.1.1 Reference No.:161019E10

Table of Contents

Relea	ise Control Record	. 3
1	Certificate of Conformity	. 4
2	RF Exposure	. 5
2.1	Limits For Maximum Permissible Exposure (MPE)	. 5
	MPE Calculation Formula	
2.3	Classification	. 5
	Antenna Gain	
2.5	Calculation Result	. 6

Release Control Record

Issue No.	Description	Date Issued
SA141008E07D	Original release.	Dec. 02, 2016

Report No.: SA141008E07D Reference No.:161019E10

1 Certificate of Conformity

Product: AirCard Smart Cradle

Brand: NETGEAR

Test Model: DC112A

Sample Status: ENGINEERING SAMPLE

Applicant: NETGEAR, Inc.

Test Date: Nov. 24, 2016

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

IEEE C95.1-1992

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

	Nico Liu			
Prepared by :	• •	, Date:	Dec. 02, 2016	
	Nico Liu / Specialist			
Approved by :		, Date:	Dec. 02, 2016	
	May Chen / Manager			

2 RF Exposure

2.1 Limits For Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Average Time (minutes)				
	Limits For General Population / Uncontrolled Exposure							
300-1500 F/1500 30								
1500-100,000			1.0	30				

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. So, this device is classified as Mobile Device.

This product could be applied with 2G USB cellular device, and the safe distance is 48cm for collocated radio.

2.4 Antenna Gain

Antenna NO.	PCB Chain NO.	Brand	Model No.	Ant. Gain(dBi) <excluding cable="" loss=""></excluding>	Frequency range (MHz to MHz)	Ant. Type	Connecter Type	Cable Loss(dB)	
1	Chain 0	Master Wave	98619PRSX006	2.48	2400~2500			1	
'	Ghairi	Master Wave	9001911137000	2.96	5150~5850	Dinolo	R-SMA	1.9	
2	Chain 1	Master Wave	98619PRSX006-	2.48	2400~2500	Dipole		0.7	
				2.96	5150~5850				
	WWAN_chain 0 Master				2.5	703~960			
3		Master Wav 9 8P2RZIPF	9 8P2RZIPF000	4.4	1700~ 2170	PCB	i-pex	NA	
					4.5	2300~ 2700			
	WWAN_chain 1 Master Wav 9 8P		2.5	703~960					
4		Master Wav 9 8P2RZIPF000	9 8P2RZIPF000	4.4	1700~ 2170	PCB	i-pex	NA	
				4.5	2300~ 2700				

Report No.: SA141008E07D Page No. 5 / 7 Report Format Version: 6.1.1

Reference No.:161019E10

2.5 Calculation Result

For WLAN:

I OI WEAIT.					
Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
2412-2462	996.75	4.64	20	0.57719	1
5180-5240	498.389	4.27	20	0.26503	1
5745-5825	791.595	4.27	20	0.42095	1

NOTE:

2.4GHz: Directional gain = 10 log[$(10^{G1/20} + 10^{G2/20})^2/2$]= 4.64dBi 5.0GHz: Directional gain = 10 log[$(10^{G1/20} + 10^{G2/20})^2/2$] = 4.27dBi

For WLAN / 2G device coexistence mode:

Condition		Coexistence	Coexistence			
1	WLAN (2.4GHz)	WLAN (5GHz)	-			
2	WLAN (2.4GHz)	WLAN (5GHz)	2G (USB cellular device)			

Condition 1					
Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	996.75	4.64	20	0.57719	1
5745-5825	791.595	4.27	20	0.42095	1
Condition 2					
Frequency Band (MHz)	Max Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	996.75	4.64	48	0.10021	1
5745-5825	791.595	4.27	48	0.07308	1
824-849	11480*	-	48	0.39650	0.5495

^{*} This product can operate with plug-in USB cellular device which has maximum of 7W(ERP) output power.

ERP is then converted to EIRP as follows:

Formula : $EIRP(W) = 1.64 \times ERP(W)$

EIRP= 1.64 x 7 W =11.48 W =11480mW

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Condition 1:

Therefore, the worst-case situation is 0.57719 / 1 + 0.42095 / 1 = 0.99814, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

Condition 2:

Therefore, the worst-case situation is 0.10021 / 1 + 0.07308 / 1 + 0.39650 / 0.5495 = 0.89491, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.

--- END ---