Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auder Certificate No: D2600V2-1058_Jun15 Accreditation No.: SCS 0108 #### CALIBRATION CERTIFICATE Object D2600V2 - SN: 1058 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 19, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check; Oct-15 | | | | | | | | Name | Function | Signature | | | | | | Calibrated by: Leif Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 22, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1058_Jun15 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1058_Jun15 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.9 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.4 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 56.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1058_Jun15 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.7 $Ω$ - 5.2 $jΩ$ | | |--------------------------------------|---------------------|--| | Return Loss | - 24.0 dB | | #### General Antenna Parameters and Design | Electrical Delevi (one discretion) | 1.151 ns | |------------------------------------|----------| | Electrical Delay (one direction) | 1,151118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 14, 2012 | Certificate No: D2600V2-1058_Jun15 #### **DASY5 Validation Report for Head TSL** Date: 19.06.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05 \text{ S/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.49, 4.49, 4.49); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface
Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Head/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.57 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg Certificate No: D2600V2-1058_Jun15 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1058_Jun15 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 19.06.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.13, 4.13, 4.13); Calibrated: 30.12.2014; · Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Body/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.96 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kg Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg Certificate No: D2600V2-1058_Jun15 Page 7 of 8 Certificate No: D2600V2-1058_Jun15 Page 8 of 8 Client ATL Certificate No: Z15-97043 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1021 Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: March 17, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by Certificate No.) | Scheduled Calibration | |------------|--|---| | 102083 | 16-Sep-14 (TMC, No.J14X03421) | Sep -15 | | 100595 | 16-Sep-14 (TMC, No. J14X03421) | Sep -15 | | SN 3846 | 24-Sep-14(SPEAG, No. EX3-3846_Sep14) | Sep -15 | | SN 1131 | 20-Jan-15 (CTTL-SPEAG, No.Z15-97011) | Jan -16 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 02-Feb-15 (CTTL, No.J15X00729) | Feb-16 | | MY46110673 | 03-Feb-15 (CTTL, No.J15X00728) | Feb-16 | | | 102083
100595
SN 3846
SN 1131
ID #
MY49071430 | 102083 16-Sep-14 (TMC, No.J14X03421)
100595 16-Sep-14 (TMC, No. J14X03421)
SN 3846 24-Sep-14(SPEAG, No.EX3-3846_Sep14)
SN 1131 20-Jan-15 (CTTL-SPEAG, No.Z15-97011)
ID# Cal Date(Calibrated by, Certificate No.)
MY49071430 02-Feb-15 (CTTL, No.J15X00729) | | La Constitution of the | Name | Function | Signature | |------------------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 支包 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 202 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | many | | | | | | Issued: March 19, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97043 Page 1 of 14 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Field from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6GHz: Human models, Instrumentation, and Procedures"; Part 2:"Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.57 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.06 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 80.1 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.30 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 mW /g ± 22.2 % (k=2) | # Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.92 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.41 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.37 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.5 mW /g ± 22.2 % (k=2) | #### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 5.23 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.04 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 79.9 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.26 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 mW /g ± 22.2 % (k=2) | Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature |
Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.4 ± 6 % | 5.32 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.83mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 78.8 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.20 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.2 mW /g ± 22.2 % (k=2) | Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.0 ± 6 % | 5.76 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | #### SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.34 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 84.0 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.32 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.4 mW /g ± 22.2 % (k=2) | Certificate No: Z15-97043 Report Number: 1511FS14 Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.5 ± 6% | 6.16 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | #### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.71 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 77.6 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.14 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.6 mW /g ± 22.2 % (k=2) | #### Appendix #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 52.3Ω - 9.29jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 20.6dB | | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 50.4Ω - 3.83jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 28.3dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $56.4\Omega + 0.40j\Omega$ | | |--------------------------------------|----------------------------|--| | Return Loss | - 24.4dB | | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.2Ω - 8.45jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.5dB | | #### Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 50.3Ω - 3.04jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 30.3dB | | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 56.8Ω + 2.76jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.2dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.120 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: Z15-97043 Page 7 of 14 The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z15-97043 Page 8 of 14 **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Date: 03.16.2015 Frequency: 5800 MHz, Medium parameters used: f = 5200 MHz; σ = 4.57 mho/m; ϵ r = 35.03; ρ = 1000 kg/m3, Medium parameters used: f = 5500 MHz; σ = 4.92 mho/m; ϵ r = 34.58; ρ = 1000 kg/m3, f = 5800 MHz; σ = 5.23 mho/m; ϵ r = 34.27; ρ = 1000 kg/m3, Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(5,5,5); Calibrated: 2014/9/24, ConvF(4.64,4.64,4.64); Calibrated: 2014/9/24, ConvF(4.44,4.44,4.44); Calibrated: 2014/9/24, - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1131; Calibrated: 20/1/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration for Head Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.1 W/kg Dipole Calibration for Head Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.41 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 38.3 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (measured) = 20.3 W/kg Dipole Calibration for Head Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.02 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 40.3 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.9 W/kg 0 dB = 19.9 W/kg = 12.99 dBW/kg #### Impedance Measurement Plot for Head TSL **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1021 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz, Date: 03.17.2015 Medium parameters used: Medium parameters used: f = 5200 MHz; $\sigma = 5.32$ mho/m; $\epsilon r = 50.39$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5500 MHz; $\sigma = 5.76$ mho/m; $\epsilon r = 49.99$; $\rho = 1000$ kg/m3, Medium parameters used: f = 5800 MHz; $\sigma = 6.16$ mho/m; $\epsilon r = 49.46$; $\rho = 1000$ kg/m3. Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(4.32,4.32,4.32); Calibrated: 2014/9/24, ConvF(3.80,3.80,3.80); Calibrated: 2014/9/24, ConvF(3.86,3.86,3.86); Calibrated: 2014/9/24, - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1131; Calibrated: 20/1/2015 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Dipole Calibration for Body Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.39 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.2 W/kg Dipole Calibration for Body Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.10 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 38.2 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 20.3 W/kg Certificate No: Z15-97043 Page 12 of 14 Dipole Calibration for Body Tissue/Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.07 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 36.8 W/kg SAR(1 g) = 7.71 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.0 W/kg = 12.79 dBW/kg #### Impedance Measurement Plot for Body TSL Certificate No: Z15-97043 Page 421 of 437 February 24, 2015 #### Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-CTTL Dual-Logo Calibration Program to Support FCC Equipment Certification The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by CTTL (China Telecommunication Technology Labs), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between
SPEAG (Schmid & Partner Engineering AG, Switzerland) and CTTL, to support FCC (U.S. Federal Communications Commission) equipment certification are defined and described in the following. The conditions in this KDB are valid until December 31, 2015. - The agreement established between SPEAG and CTTL is only applicable to calibration services performed by CTTL where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. CTTL shall inform the FCC of any changes or early termination to the agreement. - 2) Only a subset of the calibration services specified in the SPEAG-CTTL agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following. - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by CTTL, are excluded and cannot be used for measurements to support FCC equipment certification. - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics or probe sensor model based linearization methods that are not fully described in SAR standards are excluded and cannot be used for measurements to support FCC equipment certification. - b) Calibration of SAR system validation dipoles, excluding HAC dipoles. - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the CTTL QA protocol (a separate attachment to this document). - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by CTTL. Equivalent test equipment and measurement configurations may be considered only when agreed by both SPEAG and the FCC. - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 systems or higher version systems that satisfy the requirements of this KDB. - The SPEAG-CTTL agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by CTTL under this SPEAG- • DET February 24, 2015 CTTL Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. CTTL shall apply the required protocols without modification and, upon request, provide copies of documentation to the FCC to substantiate program implementation. - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the CTTL QA protocol shall be performed between SPEAG and CTTL at least once every 12 months. The ILCE acceptance criteria defined in the CTTL QA protocol shall be satisfied for the CTTL, SPEAG and FCC agreements to remain valid. - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by CTTL. Written confirmation from SPEAG is required for CTTL to issue calibration certificates under the SPEAG-CTTL Dual-Logo calibration program. Quarterly reports for all calibrations performed by CTTL under the program are also issued by SPEAG. - c) The calibration equipment and measurement system used by CTTL shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the CTTL QA protocol before each actual calibration can commence. CTTL shall maintain records of the measurement and calibration system verification results for all calibrations. - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit CTTL facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates. - 4) A copy of this document shall be provided to CTTL clients that accept calibration services according to the SPEAG-CTTL Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval. - CTTL shall address any questions raised by its clients or TCBs relating to the SPEAG-CTTL Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues. Client ATL Certificate No: Z15-97003 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3847 Calibration Procedure(s) FD-Z11-2-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: January 30, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101547 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Power sensor NRP-Z91 | 101548 | 01-Jul-14 (CTTL, No.J14X02146) | Jun-15 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-14(TMC,No.JZ14-1103) | Mar-16 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-14(TMC,No.JZ14-1104) | Mar-16 | | Reference Probe EX3DV4 | SN 3617 | 28-Aug-14(SPEAG,No.EX3-3617_Aug14) | Aug-15 | | DAE4 | SN 777 | 17-Sep-14 (SPEAG, DAE4-777_Sep14) | Sep -15 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 01-Jul-14 (CTTL, No.J14X02145) | Jun-15 | | Network Analyzer E5071C | MY46110673 | 15-Feb-14 (TMC, No.JZ14-781) | Feb-15 | | and the state of t | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | DUK | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 20103 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | marts | Issued: January 31, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97003 Page 1 of 11 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values,
i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z15-97003 Page 2 of 11 Report Number: 1511FS14 Page 425 of 437 # Probe EX3DV4 SN: 3847 Calibrated: January 30, 2015 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z15-97003 Page 3 of 11 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3847 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.45 | 0.35 | 0.42 | ±10.8% | | DCP(mV) ^B | 102.5 | 102.7 | 101.5 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|----------------| | 0 CW | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 176.8 | ±2.7% | | | | Y | 0.0 | 0.0 | 1.0 | | 158.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 170.2 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z15-97003 Page 4 of 11 A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). B Numerical linearization parameter: uncertainty not required. E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3847 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.71 | 9.71 | 9.71 | 0.13 | 1.25 | ±12% | | 835 | 41.5 | 0.90 | 9.12 | 9.12 | 9.12 | 0.14 | 1.26 | ±12% | | 900 | 41.5 | 0.97 | 8.99 | 8.99 | 8.99 | 0.13 | 1.34 | ±12% | | 1750 | 40.1 | 1.37 | 7.92 | 7.92 | 7.92 | 0.16 | 1.40 | ±12% | | 1900 | 40.0 | 1.40 | 7.79 | 7.79 | 7.79 | 0.17 | 1.35 | ±12% | | 2000 | 40.0 | 1.40 | 7.72 | 7.72 | 7.72 | 0.13 | 1.71 | ±12% | | 2300 | 39.5 | 1.67 | 7.48 | 7.48 | 7.48 | 0.28 | 0.91 | ±12% | | 2450 | 39.2 | 1.80 | 7.06 | 7.06 | 7.06 | 0.50 | 0.77 | ±12% | | 2600 | 39.0 | 1.96 | 6.91 | 6.91 | 6.91 | 0.66 | 0.67 | ±12% | | 5200 | 36.0 | 4.66 | 5.32 | 5.32 | 5.32 | 0.45 | 1.16 | ±13% | | 5300 | 35.9 | 4.76 | 5.04 | 5.04 | 5.04 | 0.43 | 1.18 | ±13% | | 5500 | 35.6 | 4.96 | 4.83 | 4.83 | 4.83 | 0.46 | 1.26 | ±13% | | 5600 | 35.5 | 5.07 | 4.77 | 4.77 | 4.77 | 0.52 | 1.10 | ±13% | | 5800 | 35.3 | 5.27 | 4.66 | 4.66 | 4.66 | 0.55 | 1.11 | ±13% | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3847 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.53 | 9.53 | 9.53 | 0.14 | 1.56 | ±12% | | 835 | 55.2 | 0.97 | 9.42 | 9.42 | 9.42 | 0.18 | 1.36 | ±12% | | 900 | 55.0 | 1.05 | 9.19 | 9.19 | 9.19 | 0.20 | 1.24 | ±12% | | 1750 | 53.4 | 1.49 | 7.65 | 7.65 | 7.65 | 0.13 | 1.80 | ±12% | | 1900 | 53.3 | 1.52 | 7.46 | 7.46 | 7.46 | 0.16 | 1.43 | ±12% | | 2000 | 53.3 | 1.52 | 7.65 | 7.65 | 7.65 | 0.13 | 2.07 | ±12% | | 2300 | 52.9 | 1.81 | 7.52 | 7.52 | 7.52 | 0.34 | 1.15 | ±12% | | 2450 | 52.7 | 1.95 | 7.29 | 7.29 | 7.29 | 0.32 | 1.18 | ±12% | | 2600 | 52.5 | 2.16 | 7.19 | 7.19 | 7.19 | 0.42 | 0.91 | ±12% | | 5200 | 49.0 | 5.30 | 4.96 | 4.96 | 4.96 | 0.52 | 1.21 | ±13% | | 5300 | 48.9 | 5.42 | 4.78 | 4.78 | 4.78 | 0.60 | 1.03 | ±13% | | 5500 | 48.6 | 5.65 | 4.42 | 4.42 | 4.42 | 0.58 | 1.19 | ±13% | | 5600 | 48.5 | 5.77 | 4.41 | 4.41 | 4.41 | 0.61 | 1.04 | ±13% | | 5800 | 48.2 | 6.00 | 4.35 | 4.35 | 4.35 | 0.66 | 0.90 | ±13% | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: Z15-97003 Page 6 of 11 # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z15-97003 Page 9 of 11 ## **Conversion Factor Assessment** #### f=900 MHz, WGLS R9(H_convF) #### f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Certificate No: Z15-97003 Page 10 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3847 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 12.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z15-97003 Page 11 of 11 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client : ATL Certificate No: Z15-97004 #### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 541 Calibration Procedure(s) FD-Z11-2-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: February 03, 2015 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and
the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Name Primary Standards ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 01-July-14 (CTTL, No:J14X02147) July-15 Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: February 04, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z15-97004 Page 1 of 3 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z15-97004 Page 2 of 3 # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1 µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.549 ± 0.15% (k=2) | 404.414 ± 0.15% (k=2) | 404.175 ± 0.15% (k=2) | | Low Range | 3.96723 ± 0.7% (k=2) | 3.93603 ± 0.7% (k=2) | 3.97491 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 290.5° ± 1° | |---|-------------| |---|-------------| Certificate No: Z15-97004 Page 3 of 3