

A Test Lab Techno Corp.

Changan Lab: No. 140-1, Changan Street, Bade District, Taoyuan City 33465, Taiwan (R.O.C).

Tel: 886-3-271-0188 / Fax: 886-3-271-0190

SAR Spot-Check REPORT

Test Report No. : 1604FS12-01

Applicant : Netgear Inc.

Product Type : Mobile Hot Spot

Trade Name : Netgear

Model Number : AC779S-200

Date of Received : Apr. 07, 2016

Test Period : Apr. 25, 2016

Date of Issued : May 06, 2016

Test Environment : Ambient Temperature : $22 \pm 2 \degree C$

(Bill Hu)

Relative Humidity: 40 - 70 %

Standard : ANSI/IEEE C95.1-1992 / IEEE Std. 1528-2013

KDB 865664 D01 v01r04 KDB 865664 D02 v01r02 KDB 447498 D01 v06 47 CFR Part §2.1093;

Test Lab Location : Chang-an Lab

- The test operations have to be performed with cautious behavior, the test results are as attached.
- The test results are under chamber environment of A Test Lab Techno Corp. A Test Lab Techno Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples.
- The measurement report has to be written approval of A Test Lab Techno Corp. It may only be reproduced or published in full. This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. The test results in the report only apply to the tested sample.

Approved By

Tested By

(Mark Duan)

Contents

1.	Sumn	mary of Maximum Reported SAR Value	3
2.	Descr	ription of Equipment under Test (EUT)	4
3.	Introd	fluction	5
	3.1	SAR Definition	5
4.	SAR I	Measurement Setup	6
	4.1	DASY E-Field Probe System	7
	4.1.1	E-Field Probe Specification	7
	4.1.2	Page 15 E-Field Probe Calibration process	8
	4.2	Data Acquisition Electronic (DAE) System	9
	4.3	Robot	
	4.4	Measurement Server	9
	4.5	Device Holder	
	4.6	Oval Flat Phantom - ELI 5.0	10
	4.7	Data Storage and Evaluation	11
	4.7.1	Data Storage	11
		Pata Evaluation	
5.	Tissue	e Simulating Liquids	14
	5.1	Ingredients	15
	5.2	Recipes	15
	5.3	Liquid Depth	16
6.	SAR	Testing with RF Transmitters	17
	6.1	SAR Testing with LTE-FDD Transmitters	17
	6.2	LTE Frequency range and channel bandwidth	17
	6.2.1	Maximum power reduction (MPR)	18
	6.3	Power reduction	18
	6.4	Conducted Power	19
7.	Syste	m Verification and Validation	26
	7.1	Symmetric Dipoles for System Verification	26
	7.2	Verification Summary	27
	7.3	Validation Summary	27
	7.4	Test Equipment List	28
8.	Meas	urement Uncertainty	29
9.	Meas	urement Procedure	31
	9.1	Spatial Peak SAR Evaluation	31
	9.2	Area & Zoom Scan Procedures	32
	9.3	Volume Scan Procedures	32
	9.4	SAR Averaged Methods	32
	9.5	Power Drift Monitoring	32
10.	.SAR	Test Results Summary	33
	10.1	Body Measurement SAR	33
		Sum of 1-g SAR of all simultaneously transmitting	
	10.3	Std. C95.1-1992 RF Exposure Limit	34
11.	Refer	rences	35
Ар	pendix	x A - System Performance Check	36
Аp	pendix	x B - SAR Measurement Data	37
Ap	pendix	x C - Calibration	38

1. Summary of Maximum Reported SAR Value

		Highest Reported						
Equipment Class	Mode	Head SAR _{1g} (W/kg)	Body-Worn SAR _{1g} (1.0 cm) (W/kg)	Body-Worn stand alone SAR _{1g} (1.0 cm) (W/kg)	Hotspot SAR _{1g} (1.0 cm Gap) (W/kg)			
PCB	LTE	N/A	1.37	N/A	N/A			
	Highest Simultaneous Transmission SAR		Body-Worn SAR _{1g} (W/kg)	Body-Worn Stand alone SAR _{1g} (W/kg)	Hotspot SAR _{1g} (W/kg)			
PO	CB+DTS	N/A	1.42	N/A	N/A			

- Note 1: The SAR limit (Head & Body: SAR1g 1.6 W/kg) for general population / uncontrolled exposure is specified in ANSI/IEEE C95.1-1992.
- Note 2: For this case, there are only modify model number of battery for original case (FCC ID PY3AC779S), and this EUT no any changes for RF unit; therefore, no affect for RF exposure.

Report Number: 1604FS12-01 Page 3 of 60

2. Description of Equipment under Test (EUT)

Applicant	Netgear Inc. 350 East Plumeria Drive, San Jose, CA 95134							
	Netgear Inc.							
Manufacture	Suite 168 – 10760 Shellbridge Way, Richmond, BC Canada V6X 3H1							
Product Type	Mobile Hot Spot							
Trade Name	Netgear							
Model Number	AC779S-200							
IMEI No.	014260000002034							
Hardware Version	REV.2	REV.2						
Software Version	FXC9X15B_45.00.03.01_MFG							
FCC ID	PY3AC779S							
Class II Permissive Change	Adding new battery, model: W-8a.							
RF Function	LTE Band 4							
	IEEE 802.11b							
Tx Frequency	Band	Operate Frequency (MHz)						
	LTE Band 4 (BW 1.4, 3, 5, 10, 15, 20 MHz)	1710.7	- 1754.3					
	IEEE 802.11b	2412 - 2462						
RF Conducted Power	Band	Max. Avg. Power						
		W	dBm					
(Avg.)	LTE Band 4	0.173	22.37					
	IEEE 802.11b	0.010	9.85					
Antenna Type	FPC Antenna							
Device Category	Portable Device							
Battery Option	Standard							
	Original Trade Name: NETGEAR Model: W-8 Spec: DC 3.8V / 2500mAh modify(1) Trade Name: NETGEAR Model: W-8a Spec: DC 3.8V / 2500mAh							
RF Exposure Environment	General Population / Uncontrolled							
Application Type	Certification							

Note: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Report Number: 1604FS12-01 Page 4 of 60

3. Introduction

The A Test Lab Techno Corp. has performed measurements of the maximum potential exposure to the user of **Netgear Inc. Trade Name: Netgear Model(s): AC779S-200**. The test procedures, as described in American National Standards, Institute C95.1-1999 [1] were employed and they specify the maximum exposure limit of 1.6mW/g as averaged over any 1 gram of tissue for portable devices being used within 20cm between user and EUT in the uncontrolled environment. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the equipment used are included within this test report.

3.1 SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 2).

$$SAR = \frac{d}{dt} \left(\frac{dw}{dm} \right) = \frac{d}{dt} \left(\frac{dw}{\rho dv} \right)$$

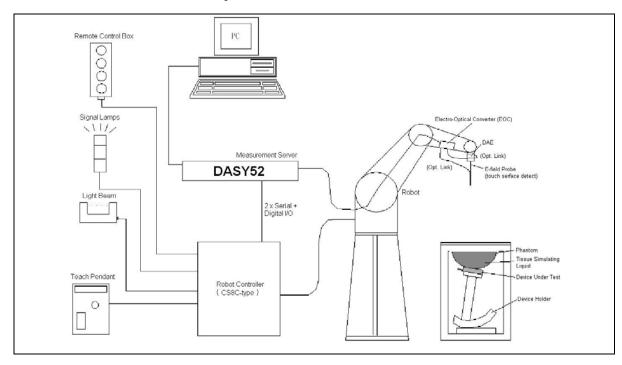
Figure 2. SAR Mathematical Equation

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m3)


E = RMS electric field strength (V/m)

*Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane [2]

4. SAR Measurement Setup

The DASY52 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli TX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 5. A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- 6. A computer operating Windows 2000 or Windows XP.
- 7. DASY52 software.
- 8. Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- 9. The SAM twin phantom enabling testing left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. Validation dipole kits allowing validating the proper functioning of the system.

Report Number: 1604FS12-01 Page 6 of 60

4.1 DASY E-Field Probe System

The SAR measurements were conducted with the dosimetric probe (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probes is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

4.1.1 E-Field Probe Specification

Construction Symmetrical design with triangular core

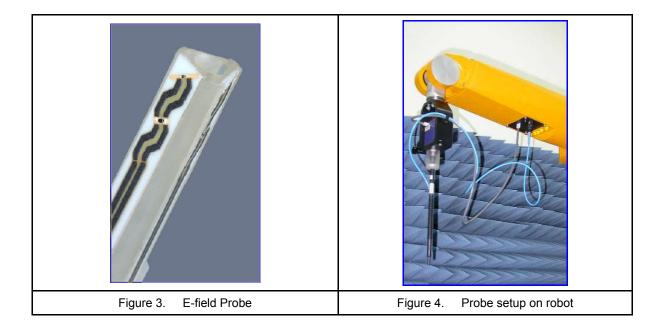
Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)


Directivity ±0.3 dB in brain tissue (rotation around probe axis)

±0.5 dB in brain tissue (rotation normal probe axis)

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Report Number: 1604FS12-01 Page 7 of 60

4.1.2 E-Field Probe Calibration process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (head or body),

Δ T = Temperature increase due to RF exposure.

Or SAR =
$$\frac{|E|^2 \sigma}{\rho}$$

Where:

σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

4.2 Data Acquisition Electronic (DAE) System

Model: DAE3, DAE4

Construction: Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for

communication with DASY4/5 embedded system (fully remote controlled). Two step

probe touch detector for mechanical surface detection and emergency robot stop.

Measurement Range: -100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)

Input Offset Voltage : $< 5\mu V$ (with auto zero)

Input Bias Current: < 50 fA

Dimensions: 60 x 60 x 68 mm

4.3 Robot

Positioner: Stäubli Unimation Corp. Robot Model: TX90XL

Repeatability: ±0.02 mm

No. of Axis:

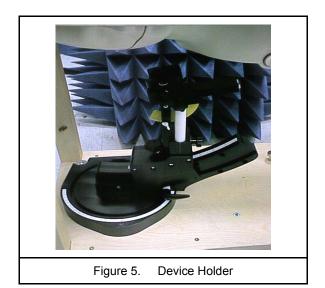
4.4 Measurement Server

Processor: PC/104 with a 400MHz intel ULV Celeron

I/O-board: Link to DAE4 (or DAE3)

16-bit A/D converter for surface detection system

Digital I/O interface Serial link to robot


Direct emergency stop output for robot

Report Number: 1604FS12-01 Page 9 of 60

4.5 Device Holder

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

4.6 Oval Flat Phantom - ELI 5.0

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (Oval Flat) phantom defined in IEEE 1528-2013, CENELEC 50361 and IEC 62209-2. It enables the dosimetric evaluation of wireless portable device usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

and moderation gride	and medicine in gride by mandally teaching times							
Shell Thickness	2 ±0.2 mm							
Filling Volume	Approx. 30 liters							
Dimensions	190×600×400 mm (H×L×W)							
Table 1. Spe	cification of ELI 5.0							

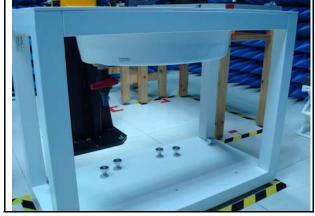


Figure 6. Oval Flat Phantom

4.7 Data Storage and Evaluation

4.7.1 Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension DA4 or DA5. The post processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Report Number: 1604FS12-01 Page 11 of 60

4.7.2 Data Evaluation

The DASY post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi

- Diode compression point dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters : - Conductivity of

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

H-field probes :

with Vi = compensated signal of channel i (i = x, y, z)

Normi= sensor sensitivity of channel i (i = x, y, z)

μV/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm3

*Note: That the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = \frac{H_{tot}^2}{37.7}$

with *Ppwe* = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

5. Tissue Simulating Liquids

The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue. The dielectric parameters of the liquids were verified prior to the SAR evaluation using an 85070C Dielectric Probe Kit and an E5071B Network Analyzer.

IEEE SCC-34/SC-2 in 1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in human head. Other head and body tissue parameters that have not been specified in 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equation and extrapolated according to the head parameter specified in 1528.

Target Frequency	He	ad	Во	ody
(MHz)	εr	σ (S/m)	٤r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00
	(εr = relative permitt	ivity, σ = conductivity a	and $\rho = 1000 \text{ kg/m3}$)	

Table 2. Tissue dielectric parameters for head and body phantoms

Report Number: 1604FS12-01 Page 14 of 60

5.1 Ingredients

The following ingredients are used:

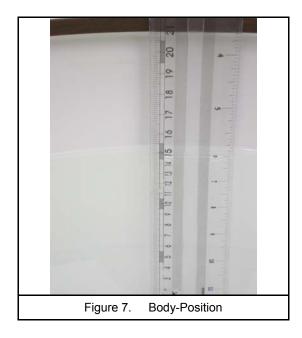
- Water: deionized water (pure H_20), resistivity \geq 16 M Ω -as basis for the liquid
- Sugar: refied white sugar (typically 99.7 % sucrose, available as crystal sugar in food shops)
 to reduce relative permittivity
- Salt: pure NaCl -to increase conductivity
- Cellulose: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20 C), CAS # 54290 -to increase viscosity and to keep sugar in solution.
- Preservative: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS # 55965-84-9 -to prevent the spread of bacteria and molds
- DGBE: Diethylenglycol-monobuthyl ether (DGBE), Fluka Chemie GmbH, CAS # 112-34-5 -to reduce relative permittivity

5.2 Recipes

The following tables give the recipes for tissue simulating liquids to be used in different frequency bands. Note: The goal dielectric parameters (at 22 $^{\circ}$ C) must be achieved within a tolerance of ±5% for ϵ and ±5% for σ .

Ingredients		Frequency (MHz)										Frequency (GHz)		
(% by weight)	75	50	83	35	17	50	19	000	24	50	2600		5GHz	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.30	41.45	52.40	54.50	40.20	54.90	40.40	62.70	73.20	60.30	71.40	65.5	78.6
Salt (NaCl)	1.47	1.42	1.45	1.50	0.17	0.49	0.18	0.50	0.50	0.10	0.60	0.20	0.00	0.00
Sugar	58.15	46.18	56.00	45.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Bactericide	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Dielectric Constant	41.88	54.60	42.54	56.10	40.10	53.60	39.90	54.00	39.80	52.50	39.80	52.50	0.00	0.00
Conductivity (S/m)	0.90	0.97	0.91	0.95	1.39	1.49	1.42	1.45	1.88	1.78	1.88	1.78	0.00	0.00
Diethylene Glycol Mono-hexlether	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.3	10.7

Salt: $99^+\%$ Pure Sodium Chloride Sugar: $98^+\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]


Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Report Number: 1604FS12-01 Page 15 of 60

5.3 Liquid Depth

According to KDB865664 ,the depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm with \leq \pm 0.5 cm variation for SAR measurements \geq 3 GHz and \geq 10.0 cm with \leq \pm 0.5 cm variation for measurements > 3 GHz.

6. SAR Testing with RF Transmitters

6.1 SAR Testing with LTE-FDD Transmitters

All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. Configure the basestation to support LTE tests in respect to the 3GPP 36.521-1, and set ch , RB allocation number ,RB allocation offset , and send continuously Up power control commands to the device.

MPR was enabled for this device. A-MPR was disabled for all SAR test measurements.

6.2 LTE Frequency range and channel bandwidth

Channel bandwidth support:

Pand		BW (MHz)								
Band	1.4	3	5	10	15	20				
LTE Band 4	V	V	V	V	V	V				

LTE Band	Bandwidth (MHz)	Test requency ID	N_{UL}	Frequency of Uplink (MHz)
		Low Range	19957	1710.7
	1.4	Mid Range	20175	1732.5
		High Range	20393	1754.3
		Low Range	19965	1711.5
	3	Mid Range	20175	1732.5
		High Range	20385	1753.5
	5	Low Range	19975	1712.5
		Mid Range	20175	1732.5
LTE Band 4		High Range	20375	1752.5
LIE Ballu 4		Low Range	20000	1715.0
	10	Mid Range	20175	1732.5
		High Range	20350	1750.0
		Low Range	20025	1717.5
	15	Mid Range	20175	1732.5
		High Range	20325	1747.5
		Low Range	20050	1720.0
	20	Mid Range	20175	1732.5
		High Range	20300	1745.0

Report Number: 1604FS12-01 Page 17 of 60

6.2.1 Maximum power reduction (MPR)

Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc.

The voice and data transmission:

Data only device.

Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design:

- ♦ Maximum Power Reduction (MPR) is mandatory, i.e. built-in by design.
- ◆ A-MPR (additional MPR) must be disabled
- A-MPR was disabled during testing.

		0 0								
Maximum Power Reduction (MPR) for Power Class 3										
	Channel bandwidth / Transmission bandwidth configuration (RB)									
Modulation	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20MHz	MPR (dB)			
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			

6.3 Power reduction

No power reduction issue.

Report Number: 1604FS12-01 Page 18 of 60

6.4 Conducted Power

Band	Channel	Modulation	Channel	Frequency	RB Conf	iguration		e Power Bm)
Dana	Bandwidth	Woddiano.	Ond mo	(MHz)	Size	Offset	Original	modify(1)
					1	0	21.96	21.94
					1	2	22.01	22.00
					1	5	22.02	21.99
			19957	1710.7	3	0	21.99	21.98
					3	1	22.03	22.03
					3	3	22.03	22.02
					6	0	21.07	21.06
					1	0	22.16	22.14
					1	2	22.18	22.17
				1732.5	1	5	22.21	22.20
		QPSK	20175		3	0	22.2	22.18
					3	1	22.23	22.20
					3	3	22.2	22.18
					6	0	21.23	21.22
				1754.3	1	0	22.06	22.02
					1	2	22.07	22.06
					1	5	22.05	22.02
			20393		3	0	22.08	22.08
					3	1	22.05	22.05
	1.4MHz				3	3	22.01	21.99
LTE					6	0	21.08	21.07
Band 4				1710.7	1	0	21.57	21.57
					1	2	21.55	21.53
					1	5	21.55	21.51
			19957		3	0	21.06	21.05
					3	1	21.03	21.03
					3	3	21.1	21.09
					6	0	20.56	20.55
					1	0	21.12	21.10
					1	2 5	21.2	21.20
		160 4 14	20175	1732.5	3	0	21.17 21.26	21.17 21.26
		16QAM	20175	1732.5	3	1	21.26	21.20
					3	3	21.23	21.21
					6	0	20.27	20.27
				 	1	0	21.52	21.52
					1	2	21.55	21.52
					1	5	21.53	21.55
			20393	1754.3	3	0	21.1	21.09
			20000	1,754.0	3	1	21.09	21.09
					3	3	21.06	21.06
					6	0	20.52	20.51

Report Number: 1604FS12-01 Page 19 of 60

Band	Channel	Modulation	Channel	Frequency	RB Conf	iguration		e Power 3m)
Dana	Bandwidth	Woddiano.	Ond mo	(MHz)	Size	Offset	Original	modify(1)
					1	0	21.98	21.96
					1	7	22.01	22.00
					1	14	22.05	22.04
			19965	1711.5	8	0	21.03	21.03
					8	3	21.07	21.06
					8	7	21.12	21.12
					15	0	21.05	21.03
					1	0	22.17	22.17
					1	7	22.2	22.18
				1732.5	1	14	22.19	22.19
		QPSK	20175		8	0	21.26	21.26
		,			8	3	21.25	21.23
					8	7	21.2	21.18
					15	0	21.17	21.17
				1753.5	1	0	22.09	22.08
					1	7	22.04	22.04
			20385		1	14	22.03	22.03
			20363		8	3	21.08	21.06
	3MHz				8 8	7	21.05	21.03
LTE					15	0	21.09 21.1	21.08 21.10
Band 4			19965	1711.5	1	0	21	20.98
Dana 1					1	7	21.03	21.01
					1	14	21.1	21.09
					8	0	19.98	19.98
					8	3	19.98	19.98
					8	7	19.98	19.97
					15	0	20.07	20.07
					1	0	21.17	21.15
					1	7	21.17	21.16
					1	14	21.18	21.18
		16QAM	20175	1732.5	8	0	20.17	20.16
					8	3	20.19	20.19
					8	7	20.18	20.16
					15	0	20.23	20.22
					1	0	21.1	21.10
					1	7	21.05	21.04
					1	14	21.01	20.99
			20385	1753.5	8	0	20.07	20.06
					8	3	20.02	20.01
					8	7	19.98	19.96
				<u> </u>	15	0	20.08	20.07

Manda (Ministrict) 1	Band	Channel	Modulation	Channel	Frequency	RB Conf	iguration	Average (dE	e Power 3m)
Harting State 19975 1712.5 1		Bandwidth			(MHZ)	Size	Offset	Original	modify(1)
Harting State 19975 1712.5 1						1	0	21.97	21.96
A THE Band 4 19975 1712.5 1						1	12		
PART PROPRET NAME AND ADDRESS OF A STATE OF						1	24		
APSK 20175 1732.5 12 0 21.11 21.09 20.06 20.06 21.06 21.08 21.15 21.16 2			QPSK	19975	1712.5	12	0	21.07	21.07
A Desk Signature of the property of the proper						12	6	21.14	21.14
PSK 20175 1732.5 1						12	13	21.11	21.09
QPSK 20175 1732.5 1 12 22.15 22.15 1 24 22.21 22.21 1 2 0 21.20 21.19 12 6 21.28 21.27 12 13 21.27 21.26 25 0 21.24 21.33 21.27 21.26 25 0 21.24 21.33 21.27 21.26 11 24 21.96 21.95 12 6 21.16 21.15 12 13 21.08 21.06 25 0 21.02 21.18 12 13 21.08 21.06 25 0 21.02 21.00 21.00 12 20.00						25	0	21.11	21.10
A CAME THE BAING A CAME TO						1	0	22.13	22.12
A PSK 20175 1732.5 12 0 21.20 21.19 12 6 21.27 21.26 25 0 21.24 21.23 21.27 21.26 25 0 21.24 21.23 21.27 21.26 25 0 21.24 21.23 21.27 21.26 25 0 21.24 21.23 21.27 21.26 25 0 21.24 21.23 21.27 21.26 25 0 21.24 21.23 21.25 21.26 2						1	12	22.15	22.15
Band 4 12					1732.5	1	24	22.21	22.21
Band 4 12				20175					
ELTE Band 4 SMHz S						12		21.28	
Band 4 5MHz 100 22.03 22.06 22.06 1 12 24 21.96 21.95 12 6 21.16 21.15 12 13 21.08 21.00 25 0 20.99 12.00 12.20 21.00 12.20 21.00 12.20 21.00 12.20 21.00 12.20 12.100 12.106 1									
LTE Band 4 5MHz 1752.5 1752.5 1752.5 11						25	0		
ELTE Band 4 5MHz EACH Part of the part o						1			
LTE Band 4 5MHz 5MHz 100 21.20 21.18 112 6 21.16 21.15 112 13 21.08 21.06 25 0 21.02 21.00 1 0 20.99 20.99 1 12 21.06 21.06 1 12 21.06 21.06 1 12 21.06 21.06 1 12 21.06 21.06 1 12 21.08 21.06 1 12 21.08 21.06 1 12 21.08 21.06 1 12 21.08 21.06 1 12 6 20.14 20.12 12 13 20.13 20.12 25 0 20.01 20.01 12 13 20.13 20.12 25 0 20.01 20.01 1 1 12 21.18 21.17 1 1 12 21.18 21.17 1 1 24 21.23 21.22 1 1 1 2 21.18 21.17 1 1 24 21.23 21.22 1 1 2 13 20.25 20.23 1 1 2 6 20.26 20.25 1 2 13 20.25 20.23 1 2 6 20.26 20.25 1 2 13 20.25 20.23 2 5 0 20.21 20.21 1 1 1 2 21.08 21.06 1 1 24 20.97 20.97 20.375 1752.5 12 0 20.17 20.17 1 2 6 20.17 20.17 1 2 6 20.17 20.15 1 2 6 20.17 20.15 1 2 6 20.17 20.15 1 2 6 20.17 20.15 1 2 6 20.17 20.15						1			
LTE Band 4 5MHz 5MHz 100 20.99 20.99 10.06 21							24	21.96	
LTE Band 4 5MHz 5MHz 19975 1712.5 100 250 21.02 21.00 100 20.99 20.99 110 120 110 20.99 20.99 110 210 21.06 21.06 21.06 21.06 21.06 110 21.18 21.16 120 250 200.07 20.06 120 120 120 130 20.13 20.12 250 200.01 20.02 20.02 20.03 20.02 20.03 20.02 20.03 20.02 20.03				20375	1752.5				
LTE Band 4 SMHz									
Band 4 19975		5MHz							
19975 1712.5 1712.5 1 0 20.99 20.99 1 1 12 21.06 21.06 21.06 1 24 21.18 21.16 20.12 12 6 20.14 20.12 12 13 20.13 20.12 25 0 20.01 20.01 20.01 1 12 21.18 21.17 1 24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.23 21.22 12.24 21.24 21.23 21.22 12.24 21.24 21.23 21.22 12.24 21.24 21.23 21.22 12.24 21.24 21.23 21.22 12.24 21.24 21.23 21.22 12.24 21.24 21.25 21.25 12 21.24 21.25 21.25 12 21.25 21.25 12 21.25 21.25 12 21.25 21.25 12 21.25 21.25 12 21.25 21.25 12 21.25 21.25 21.25 12 21.25 21.2									
19975 1712.5 12 0 20.07 20.06 12 6 20.14 20.12 12 13 20.13 20.12 25 0 20.01 20.01 10 21.16 11 12 21.18 21.17 1 24 21.23 21.22 12 13 20.25 20.23 12 6 20.25 20.23 12 6 20.25 20.23 12 13 20.25 20.23 12 13 20.25 20.23 25 0 20.21 20.21 12 13 20.25 20.23 25 0 20.21 20.21 12 13 20.25 20.23 25 0 20.21 20.21 11 12 21.08 21.06 1 24 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.97 20.15 12 6 20.17 20.15 12 11 20.08 20.07	Band 4	J		19975	1712.5				
19975						-			
12 6 20.14 20.12 12 13 20.13 20.12 25 0 20.01 20.01 1 0 21.16 21.16 1 12 21.18 21.17 1 24 21.23 21.22 1 0 20.25 20.23 1 0 20.26 20.25 1 12 13 20.25 20.23 25 0 20.21 20.21 20375 1752.5 1 2 0 20.17 20.17 1 24 20.97 20.97 1 24 20.97 20.97 1 24 20.97 20.97 1 2 6 20.17 20.15 1 2 6 20.17 20.15 1 2 6 20.17 20.15									
12 13 20.13 20.12 25 0 20.01 20.01 1 0 21.16 21.16 1 12 21.18 21.17 1 24 21.23 21.22 1 2 0 20.25 20.23 1 2 6 20.26 20.25 1 2 13 20.25 20.23 2 5 0 20.21 20.21 2 1 0 21.03 21.02 1 0 21.03 21.02 1 1 2 21.08 21.06 1 12 21.08 21.06 1 24 20.97 20.97 20375 1752.5 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
16QAM 20175 1732.5 12 0 20.01 20.01 20.01 1 1 2 21.18 21.17 1 24 21.23 21.22 1 2 6 20.26 20.25 1 2 13 20.25 20.23 25 0 20.21 2									
16QAM 20175 1732.5 10 21.16 21.16 21.16 1 12 21.18 21.17 1 24 21.23 21.22 12 0 20.25 20.23 12 6 20.26 20.25 12 13 20.25 20.23 25 0 20.21 20.21 20.21 10 12 21.08 21.06 1 12 24 20.97 20.97 12 6 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
16QAM 20175 1732.5 12 21.18 21.17 1 24 21.23 21.22 12 0 20.25 20.23 12 6 20.26 20.25 12 13 20.25 20.23 25 0 20.21 20.21 25 0 20.21 20.21 1 0 21.03 21.02 1 1 12 21.08 21.06 1 24 20.97 20.97 12 6 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
16QAM 20175 1732.5 1 24 21.23 21.22 1 2 0 20.25 20.23 1 2 6 20.26 20.25 1 2 13 20.25 20.23 25 0 20.21 20.21 25 0 20.21 20.21 20.21 1 0 21.03 21.02 1 1 12 21.08 21.06 1 24 20.97 20.97 1 2 6 20.17 20.17 1 2 6 20.17 20.15 1 2 11 20.08 20.07									
16QAM 20175 1732.5 12 0 20.25 20.23 12 6 20.26 20.25 12 13 20.25 20.23 25 0 20.21 20.21 25 0 20.21 20.21 20.21 1 1 2 21.08 21.06 1 24 20.97 20.97 12 6 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
12 6 20.26 20.25 12 13 20.25 20.23 25 0 20.21 20.21 1 0 21.03 21.02 1 12 21.08 21.06 1 24 20.97 20.97 1 2 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07			100 4 14	20475	4700 5				
12			IOQAIVI	20175	1/32.5				
25 0 20.21 20.21 1 0 21.03 21.02 1 12 21.08 21.06 1 24 20.97 20.97 1752.5 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
20375 1752.5 1 0 21.03 21.02 1 12 21.08 21.06 1 24 20.97 20.97 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
20375 1752.5 1 12 21.08 21.06 1 24 20.97 20.97 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
20375 1752.5 1 24 20.97 20.97 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07									
20375 1752.5 12 0 20.17 20.17 12 6 20.17 20.15 12 11 20.08 20.07						-			
12 6 20.17 20.15 12 11 20.08 20.07				20275	1752 5				
12 11 20.08 20.07				20375	1732.3				
						25	0	20.08	20.07

Band	Channel	Modulation	Channel	Frequency	RB Conf	iguration	Average (dE	e Power 3m)
20	Bandwidth		0.100.	(MHz)	Size	Offset	Original	modify(1)
					1	0	21.96	21.94
					1	24	22.15	22.14
					1	49	22.16	22.16
			20000	1715.0	25	0	21.10	21.10
					25	12	21.16	21.14
					25	25	21.23	21.22
					50	0	21.11	21.11
					1	0	22.12	22.11
					1	24	22.18	22.18
				1732.5	1	49	22.11	22.10
		QPSK	20175		25	0	21.15	21.15
					25	12	21.24	21.22
					25	25	21.26	21.25
					50	0	21.10	21.09
			20350	1750.0	1	0	22.04	22.03
					1	24	22.03	22.03
					1	49	22.00	22.00
					25	0	21.12	21.11
					25	12	21.11	21.09
					25	25	21.06	21.05
LTE	10MHz				50	0	20.97	20.96
Band 4	1011112				1	0	21.04	21.03
					1	24	21.22	21.20
					1	49	21.24	21.23
			20000	1715.0	25	0	20.03	20.02
					25	12	20.16	20.15
					25	25	20.21	20.21
					50	0	20.08	20.08
					1	0	21.10	21.10
					1	24	21.21	21.20
					1	49	21.08	21.07
		16QAM	20175	1732.5	25	0	20.13	20.11
					25	12	20.21	20.20
					25	25	20.23	20.23
					50	0	20.15	20.13
					1	0	21.03	21.02
					1	24	21.00	20.99
			00050	4750.0	1	49	20.99	20.99
			20350	1750.0	25	0	20.11	20.11
					25	12	20.12	20.11
					25	25	20.11	20.10
				<u> </u>	50	0	19.97	19.97

Report Number: 1604FS12-01 Page 22 of 60

Band	Channel	Modulation	Channel	Frequency	RB Conf	iguration	Average (dE	e Power 3m)
20	Bandwidth			(MHz)	Size	Offset	Original	modify(1)
					1	0	22.03	22.03
					1	37	22.11	22.09
					1	74	22.14	22.13
			20025	1717.5	36	0	21.05	21.03
					36	19	21.19	21.18
					36	39	21.19	21.19
					75	0	21.12	21.11
					1	0	22.16	22.16
					1	37	22.17	22.17
					1	74	22.13	22.13
		QPSK	20175	1732.5	36	0	21.13	21.11
					36	19	21.08	21.07
					36	39	21.15	21.14
					75	0	21.11	21.09
					1	0	22.19	22.19
				1747.5	1	37	22.12	22.10
					1	74	22.00	21.99
			20325		36	0	21.14	21.13
					36	19	20.99	20.98
					36	39	21.05	21.05
LTE	15MHz				75	0	20.96	20.95
Band 4	ISIVINZ				1	0	21.04	21.03
					1	37	21.17	21.17
					1	74	21.18	21.16
			20025	1717.5	36	0	20.10	20.09
					36	19	20.21	20.21
					36	39	20.13	20.13
					75	0	20.01	19.99
					1	0	21.19	21.18
					1	37	21.20	21.19
					1	74	21.08	21.06
		16QAM	20175	1732.5	36	0	20.11	20.10
					36	19	20.15	20.15
					36	39	20.19	20.19
					75	0	20.07	20.07
					1	0	21.15	21.14
					1	37	21.13	21.12
					1	74	20.97	20.96
			20325	1747.5	36	0	20.11	20.09
			20325	1747.5	36	19	20.04	20.03
					36	39	20.07	20.06
					75	0	20.01	20.01

Band	Channel	Modulation	Channel	Frequency	RB Conf	figuration		e Power 3m)
Barra	Bandwidth	Modelation	O'lamo	(MHz)	Size	Offset	Original	modify(1)
					1	0	22.17	22.16
					1	49	22.37	22.37
					1	99	22.21	22.21
			20050	1720.0	50	0	21.30	21.29
					50	25	21.30	21.29
					50	50	21.32	21.32
					100	0	21.23	21.21
					1	0	22.36	22.35
					1	49	22.34	22.32
					1	99	22.23	22.22
		QPSK	20175	1732.5	50	0	21.36	21.36
					50	25	21.32	21.32
					50	50	21.28	21.26
					100	0	21.33	21.32
				1745.0	1	0	22.31	22.31
					1	49	22.17	22.16
					1	99	22.11	22.11
LTE	20MHz		20300		50	0	21.34	21.34
Band 4	201011 12				50	25	21.20	21.18
					50	50	21.09	21.08
					100	0	21.14	21.12
					1	0	21.25	21.25
					1	49	21.43	21.42
			20050	1720.0	1	99	21.25	21.25
					50	0	20.27	20.27
					50	25	20.28	20.26
					50	50	20.30	20.29
					100	0	20.22	20.22
		16QAM	20175	1732.5	1	0	21.40	21.39
					1	49	21.34	21.32
					1	99	21.28	21.27
					50	0	20.33	20.31
					50	25	20.27	20.26
			20300	1745.0	50	50	20.35	20.34
			20300	1745.0	100	0	20.28	20.26
					1	0	21.39	21.38

Band	Data Rate	СН	Frequency (MHz)	Average Power (dBm) Original
		1	2412.0	9.85
	1M	6	2437.0	9.66
IEEE 802.11b		11	2462.0	9.64
IEEE OUZ.IID	2M	6	2437.0	9.61
	5.5M	6	2437.0	9.60
	11M	6	2437.0	9.57

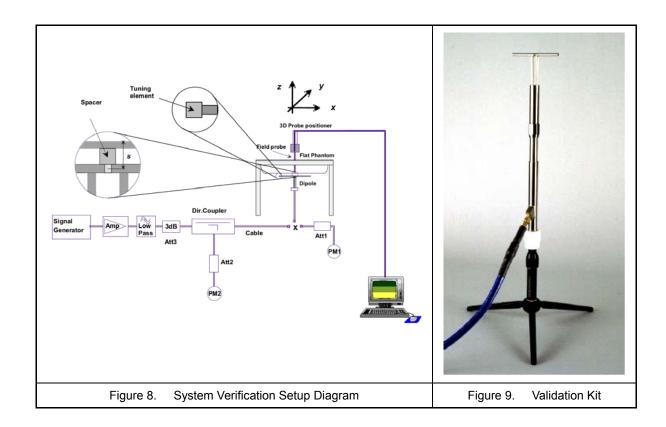
7. System Verification and Validation

7.1 Symmetric Dipoles for System Verification

Construction Symmetrical dipole with I/4 balun enables measurement of feed point impedance with NWA

matched for use near flat phantoms filled with head simulating solutions Includes distance holder and tripod adaptor Calibration Calibrated SAR value for specified position and input

power at the flat phantom in head simulating solutions.


Frequency 1750 MHz

Return Loss > 20 dB at specified verification position Power Capability > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Options Dipoles for other frequencies or solutions and other calibration conditions are available upon

request

Dimensions D1750V2: dipole length 75.2 mm; overall height 301.5 mm

Report Number: 1604FS12-01 Page 26 of 60

Liquid Verif	- y							
Ambient Te	mperature :	22 ± 2	°C;Relative	Humidity:	40 -70%			
Liquid Type	Frequency	Temp (°C)	Parameters	Target Value	Measured Value	Deviation (%)	Limit (%)	Measured Date
	4700141-	00.0	٤r	53.56	54.19	1.12%	± 5	
	1700MHz	22.0	σ	1.457	1.478	1.37%	± 5	
1750MHz	1750MU¬	22.0	٤r	53.43	54.02	1.12%	± 5	2016/04/25
(Body)	1750MHz	22.0	σ	1.488	1.522	2.01%	± 5	2010/04/25
	47C0MII-	22.0	٤r	53.41	53.98	1.12%	± 5	
	1760MHz	22.0	σ	1.495	1.525	2.69%	± 5	

Table 3. Measured Tissue dielectric parameters for body phantoms -2

7.2 Verification Summary

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of \pm 7%. The verification was performed at 1750 MHz.

Mixture Frequency Type (MHz)		Power	Power	Power	Power	SAR _{1g}	SAR _{10g}	Drift	-	rence ntage	Probe	Dipole	1W T	arget	Date
		1 OWEI	(W/Kg)	(W/Kg)	(dB)	1g	10g	Model / Serial No.	Model / Serial No.	SAR _{1g} (mW/g)	SAR _{10g} (mW/g)	Date			
		250 mW	9.54	5				EX3DV4	D1750V2						
Body	1750	Normalize to 1 Watt	38.16	20.00	0.03	1.5%	-2.0%	SN3977	SN1023	37.60	20.40	Apr. 25, 2016			

7.3 Validation Summary

Per FCC KDB 865664 D02 v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters as below.

Prohe Tyne	Probe Type Prob Cal. Hood		Cond.	Perm.	C'	W Validatio	n	Mod	. Validation	1	
Model /	Point Rody		cr	~	Sensitivity	Probe	Probe	Mod Typo	Duty	PAR	Date
Serial No. (MHz)			Er	σ	Sensitivity	Linearity	Isotropy	Mod. Type	Factor	FAR	
EX3DV4 SN3977	1750	Body	54.02	1.522	Pass	Pass	Pass	QPSK	Pass	N/A	Apr. 25, 2016

Report Number: 1604FS12-01 Page 27 of 60

7.4 Test Equipment List

				Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	1750MHz System Validation Kit	D1750V2	1023	Jun. 23, 2015	Jun. 23, 2016
SPEAG	Dosimetric E-Field Probe	EX3DV4	3977	Mar. 09, 2016	Mar. 09, 2017
SPEAG	Data Acquisition Electronics	DAE4	779	Mar. 02, 2016	Mar. 02, 2017
SPEAG	Device Holder	N/A	N/A	NO	CR
SPEAG	Measurement Server	SE UMS 011 AA	1025	NO	CR
SPEAG	Phantom (ELI V5.0	QDOVA002AA	TP-1133	NO	CR
SPEAG	Robot	Staubli TX90XL	F07/564ZA1/C/01	NO	CR
SPEAG	Software	DASY52 V52.8 (8)	N/A	NO	CR
SPEAG	Software	SEMCAD X V14.6.10 (7331)	N/A	NO	CR
Agilent	Dielectric Probe Kit	85070C	US99360094	NCR	
Agilent	ENA Series Network Analyzer	E5071B	MY42404655	Apr. 13, 2016	Apr. 13, 2017
R&S	Power Sensor	NRP-Z22	100179	Jun. 01, 2015	Jun. 01, 2016
Agilent	Power Sensor	8481H	3318A20779	Jun. 15, 2015	Jun. 15, 2016
Agilent	Power Meter	EDM Series E4418B	GB40206143	Jun. 15, 2015	Jun. 15, 2016
Anritsu	Power Meter	ML2495A	1135009	Aug. 24, 2015	Aug. 24, 2016
Agilent	MXF-G-B RF Vector Signal Generator	N5182B	MY53050382	May 28, 2015	May 28, 2016
Agilent	Dual Directional Coupler	778D	50334	NO	CR
Mini-Circuits	Power Amplifier	ZHL-42W-SMA	D111103#5	NCR	
Mini-Circuits	Power Amplifier	ZVE-8G-SMA	D042005 671800514	NCR	
Aisi	Attenuator	IEAT 3dB	N/A	NO	CR

Table 4. Test Equipment List

Report Number: 1604FS12-01 Page 28 of 60

8. Measurement Uncertainty

Measurement uncertainties in SAR measurements are difficult to quantify due to several variables including biological, physiological, and environmental. However, we estimate the measurement uncertainties in SAR_{1g} to be less than ± 21.76 % for $300MHz \sim 3GHz$.

According to Std. C95.3 [9], the overall uncertainties are difficult to assess and will vary with the type of meter and usage situation. However, accuracy's of \pm 1 to 3 dB can be expected in practice, with greater uncertainties in near-field situations and at higher frequencies (shorter wavelengths), or areas where large reflecting objects are present. Under optimum measurement conditions, SAR measurement uncertainties of at least \pm 2dB can be expected.

Report Number: 1604FS12-01 Page 29 of 60

Uncertainty of a Measure SAR of EUT with DASY System

Item	Uncertainty Component	Uncertainty Value	Prob. Dist	Div.	<i>c_i</i> (1g)	c _i (10g)	Std. Unc.	Std. Unc. (10-g)	$egin{array}{c} oldsymbol{v_i} \ oldsymbol{or} \ oldsymbol{V_{eff}} \end{array}$
Meas	urement System								
u1	Probe Calibration (<i>k</i> =1)	±6.0%	Normal	1	1	1	±6.0%	±6.0%	8
u2	Axial Isotropy	±4.7%	Rectangular	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
u3	Hemispherical Isotropy	±9.6%	Rectangular	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	
u4	Boundary Effect	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
u5	Linearity	±4.7%	Rectangular	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
u6	System Detection Limit	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
u7	Readout Electronics	±0.3%	Normal	1	1	1	±0.3%	±0.3%	8
u8	Response Time	±0.8%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
u9	Integration Time	±1.9%	Rectangular	$\sqrt{3}$	1	1	±1.1%	±1.1%	8
u10	RF Ambient Conditions	±3.0%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
u11	RF Ambient Reflections	±3.0%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
u12	Probe Positioner Mechanical Tolerance	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
u13	Probe Positioning with respect to Phantom Shell	±2.9%	Rectangular	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
u14	Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
		Test	sample Relate	ed					
u15	Test sample Positioning	±3.6%	Normal	1	1	1	±3.6%	±3.6%	89
u16	Device Holder Uncertainty	±2.7%	Normal	1	1	1	±2.7%	±2.7%	5
u17	Output Power Variation - SAR drift measurement	±5.0%	Rectangular	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
		Phantom a	ınd Tissue Par	amete	ers				
u18	Phantom Uncertainty (shape and thickness tolerances)	±4.0%	Rectangular	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
u19	Liquid Conductivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
u20	Liquid Conductivity - measurement uncertainty	±2.5%	Normal	1	0.64	0.43	±1.6%	±1.08%	69
u21	Liquid Permittivity - deviation from target values	±5.0%	Rectangular	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
u22	Liquid Permittivity - measurement uncertainty	Normal	1	0.6	0.49	±1.5%	±1.23%	69	
	Combined standard uncerta	inty	RSS				±10.88%	±10.66%	313
	Expanded uncertainty (95% CONFIDENCE LEVE	L)	k=2				±21.76%	±21.31%	

Table 5. Uncertainty Budget for frequency range 300MHz to 3GHz

Report Number: 1604FS12-01 Page 30 of 60

9. Measurement Procedure

The measurement procedures are as follows:

- For WLAN function, engineering testing software installed on Notebook can provide continuous transmitting signal.
- 2. Measure output power through RF cable and power meter
- 3. Set scan area, grid size and other setting on the DASY software
- 4. Find out the largest SAR result on these testing positions of each band
- 5. Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- 1. Power reference measurement
- 2. Area scan
- 3. Zoom scan
- 4. Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages

- 1. Extraction of the measured data (grid and values) from the Zoom Scan
- 2. Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. Generation of a high-resolution mesh within the measured volume
- 4. Interpolation of all measured values form the measurement grid to the high-resolution grid
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. Calculation of the averaged SAR within masses of 1g and 10g

Report Number: 1604FS12-01 Page 31 of 60

9.2 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures points and step size follow as below. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

Grid Type	Frequ	uency	Step size (mm)			X*Y*Z	(Cube size	Э	Step size		
			Χ	Υ	Z	(Point)	Χ	Υ	Z	Χ	Υ	Ζ
	\leq 3GHz	≦2GHz	≤ 8	≤ 8	≤ 5	5*5*7	32	32	30	8	8	5
uniform arid		2G - 3G	≤ 5	≤ 5	≤ 5	7*7*7	30	30	30	5	5	5
uniform grid		3 - 4GHz	≤ 5	≤ 5	≤ 4	7*7*8	30	30	28	5	5	4
	3 - 6GHz	4 - 5GHz	≤ 4	≤ 4	≤ 3	8*8*10	28	28	27	4	4	3
		5 - 6GHz	≤ 4	≤ 4	≤2	8*8*12	28	28	22	4	4	2

(Our measure settings are refer KDB Publication 865664 D01v01r04)

9.3 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.4 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

9.5 Power Drift Monitoring

All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report Number: 1604FS12-01 Page 32 of 60

10. SAR Test Results Summary

- 1. For this case, there are only modify model number of battery for original case (FCC ID PY3AC779S), and this EUT no any changes for RF unit; therefore, no affect for RF exposure.
- 2. Based on the above reasons, we choose the most worst-case configuration to retest.

10.1 Body Measurement SAR

Index.	Position	Band	Ch.	BW (MHz)	RB Size	RB Offset	Test Position	Spacing (mm)	SAR 1g (W/kg)	Power Drift	Avg Power	Max tune-up	Reported SAR 1g\ (W/kg)
Original	Flat	LTE Band 4	20300	20	1	0	1	10	1.23	-0.03	22.31	23	1.44
modify(1)	Flat	(QPSK)	20300	20	1	0	1	10	1.17	0.03	22.31	23	1.37

Note: The original result is refer FCC ID: PY3AC779S original SAR test report.

Index.	Position	Band	Ch.	or or	Side to Phantom	Spacing (mm)	SAR _{1g} (W/Kg)	Power Drift	Avg Power	Max tune-up	Reported SAR 1g
Original	Flat	IEEE 802.11b	1	1M	1	10	0.046	-0.09	9.85	10	0.05

10.2 Sum of 1-g SAR of all simultaneously transmitting

When the sum of 1-g SAR of all simultaneously transmitting antennas in and operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration.

Sum of 1-g SAR of summary as below:

Phantom Position		Spacing (mm)	ASSY	WWAN		WLAN			
				Band	SAR _{1g} (W/Kg)	Band	SAR _{1g} (W/Kg)	∑ SAR _{1g} (W/Kg)	Event
Flat	Side 1	10	N/A	LTE Band4	1.37	IEEE 802.11b	0.05	1.42	<1.6

^{*=}Estimated SAR

Note: We used LTE Band4 test data after repeat validation of position side1 and IEEE 802.11b test data of the same position side1 of the original report to perform the simultaneously transmitting result.

Report Number: 1604FS12-01 Page 33 of 60

^{**}The Estimated SAR 0.4W/Kg , test separation distances is > 50 mm

10.3 Std. C95.1-1992 RF Exposure Limit

	Population	Occupational	
	Uncontrolled	Controlled	
Human Exposure	Exposure	Exposure	
	(W/kg) or (mW/g)	(W/kg) or (mW/g)	
Spatial Peak SAR*	4.60	8.00	
(head)	1.60		
Spatial Peak SAR**	0.00	0.40	
(Whole Body)	0.08		
Spatial Peak SAR***	4.00	8.00	
(Partial-Body)	1.60		
Spatial Peak SAR****	4.00	20.00	
(Hands / Feet / Ankle / Wrist)	4.00		

Table 6. Safety Limits for Partial Body Exposure

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue.(defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Average value of the SAR averaged over the partial body.
- **** The Spatial Peak value of the SAR averaged over any 10 grams of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Population / Uncontrolled Environments : are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational / **Controlled Environments**: are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

Report Number: 1604FS12-01 Page 34 of 60

11. References

- [1] Std. C95.1-1992, "American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300KHz to 100GHz", New York.
- [2] NCRP, National Council on Radiation Protection and Measurements, "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields", NCRP report NO. 86, 1986.
- [3] T. Schmid, O. Egger, and N. Kuster, "Automatic E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp, 105-113, Jan. 1996.
- [4] K. Pokovi^c, T. Schmid, and N. Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequency", in ICECOM'97, Dubrovnik, October 15-17, 1997, pp.120-124.
- [5] K. Pokovi ^c, T. Schmid, and N. Kuster, "E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [6] N. Kuster, and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz", IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [7] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148.
- [8] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [9] Std. C95.3-1991, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, Aug. 1992.
- [10] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10KHz-300GHz, Jan. 1995.
- [11] IEEE Std 1528™-2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques

Report Number: 1604FS12-01 Page 35 of 60

Appendix A - System Performance Check

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2016/4/25 AM 11:50:28

System Performance Check at 1750MHz_20160425_Body

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.589 \text{ S/m}$; $\varepsilon_r = 53.718$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

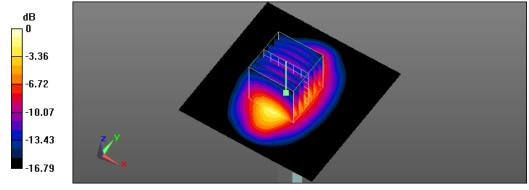
DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(8, 8, 8); Calibrated: 2016/3/9;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2016/3/2
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at 1750MHz/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 13.5 W/kg

System Performance Check at 1750MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 94.40 V/m: Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.54 W/kg; SAR(10 g) = 5 W/kg

Maximum value of SAR (measured) = 13.5 W/kg

0 dB = 13.5 W/kg = 11.30 dBW/kg

Report Number: 1604FS12-01 Page 36 of 60

Appendix B - SAR Measurement Data

Test Laboratory: A Test Lab Techno Corp. Date/Time: 2016/4/25 PM 03:23:39

modify(1)_Flat_LTE Band4 BW 20M CH20300_QPSK with 1 RB Size 0 RB Offset side 1 surface to

phantom 10mm_254_New_1

DUT: AC779S-200; Type: Mobile Hot Spot

Communication System: UID 0, Generic LTE (0); Frequency: 1745 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1745 MHz; σ = 1.52 S/m; ε_r = 54.05; ρ = 1000 kg/m³

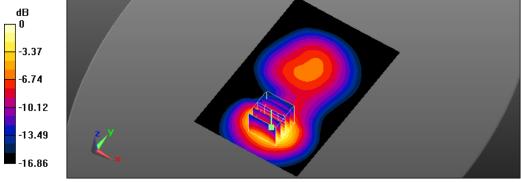
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5.2 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0dB and with a peak SAR value greater than 0.5 W/Kg
- Probe: EX3DV4 SN3977; ConvF(8, 8, 8); Calibrated: 2016/3/9;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn779; Calibrated: 2016/3/2
- Phantom: ELI v5.0 (20deg probe tilt); Type: QDOVA002AA; Serial: TP:1133
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Flat/Area Scan (81x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.55 W/kg


Flat/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.41 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.86 W/kg

SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.669 W/kg

Maximum value of SAR (measured) = 1.56 W/kg

0 dB = 1.56 W/kg = 1.93 dBW/kg

Report Number: 1604FS12-01 Page 37 of 60

Appendix C - Calibration

All of the instruments Calibration information are listed below.

- Dipole _ D1750V2 SN:1023 Calibration No.D1750V2-1023_Jun15
- Probe _ EX3DV4 SN:3977 Calibration No.Z16-97020
- DAE _ DAE4 SN:779 Calibration No.Z16-97019

Report Number: 1604FS12-01 Page 38 of 60

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Auden

Certificate No: D1750V2-1023_Jun15

CALIBRATION CERTIFICATE

Object D1750V2 - SN:1023

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe ES3DV3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name Michael Weber Function Laboratory Technician

Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: June 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1023_Jun15

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1023_Jun15

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.37 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		(Heer)

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.48 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.4 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1023_Jun15

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.8 \Omega + 0.6 j\Omega$
Return Loss	- 40.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω + 0.6 jΩ	
Return Loss	- 29.7 dB	17.7

General Antenna Parameters and Design

1.218 ns	
	1.218 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 20, 2009

Certificate No: D1750V2-1023_Jun15

DASY5 Validation Report for Head TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

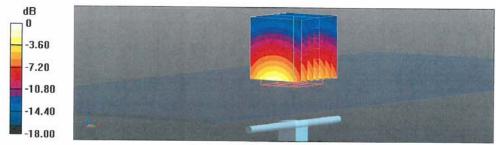
DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

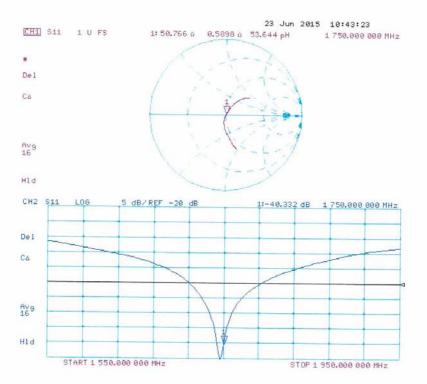

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.92 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.37 W/kg; SAR(10 g) = 5 W/kg

Maximum value of SAR (measured) = 11.9 W/kg


0 dB = 11.9 W/kg = 10.76 dBW/kg

Certificate No: D1750V2-1023_Jun15

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1023_Jun15

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 23.06.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1023

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.49$ S/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

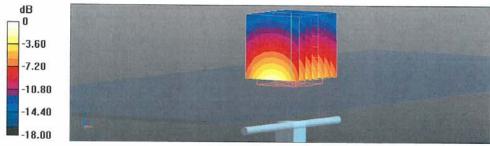
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

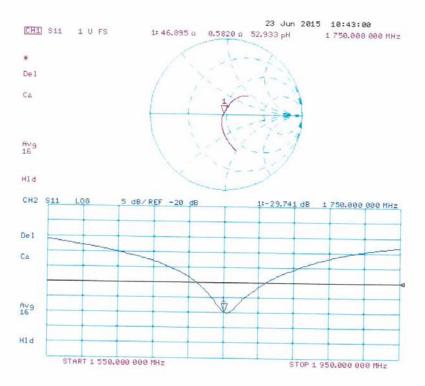

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.37 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.2 W/kg SAR(1 g) = 9.48 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (measured) = 11.9 W/kg


0 dB = 11.9 W/kg = 10.76 dBW/kg

Certificate No: D1750V2-1023_Jun15

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D1750V2-1023_Jun15

In Collaboration with

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Client

ATL

Certificate No: Z16-97020

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3977

Calibration Procedure(s)

FD-Z11-2-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

March 09, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.) Scheduled Ca	
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101548	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC,No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC,No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Aug-16
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan15)	Jan -17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-15 (CTTL, No.J15X04255)	Jun-16
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	AM
Reviewed by:	Qi Dianyuan	SAR Project Leader	208
Approved by:	Lu Bingsong	Deputy Director of the laboratory	32 instr
		Issued: March	10, 2016

Certificate No: Z16-97020

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z16-97020

Page 2 of 11

Probe EX3DV4

SN: 3977

Calibrated: March 09, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z16-97020

Page 3 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²) ^A	0.53	0.58	0.51	±10.8%
DCP(mV) ^B	102.9	103.1	100.6	

Modulation Calibration Parameters

UID	Communication		Α	В	С	D	VR	Unc E
	System Name		dB	dBõV		dB	mV	(k=2)
0	CM	X	0.0	0.0	1.0	0.00	208.7	±2.2%
		Y	0.0	0.0	1.0		215.6	
		Z	0.0	0.0	1.0		202.6	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97020

Page 4 of 11

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Calibration Parameter Determined in Head Tissue Simulating Media

						_		
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.75	±12%
835	41.5	0.90	9.62	9.62	9.62	0.15	1.37	±12%
900	41.5	0.97	9.55	9.55	9.55	0.12	1.62	±12%
1750	40.1	1.37	8.36	8.36	8.36	0.14	1.88	±12%
1900	40.0	1.40	8.02	8.02	8.02	0.14	1.96	±12%
2000	40.0	1.40	8.02	8.02	8.02	0.12	2.81	±12%
2300	39.5	1.67	7.69	7.69	7.69	0.37	0.92	±12%
2450	39.2	1.80	7.28	7.28	7.28	0.29	1.21	±12%
2600	39.0	1.96	7.18	7.18	7.18	0.31	1.20	±12%
5200	36.0	4.66	5.45	5.45	5.45	0.48	1.28	±13%
5300	35.9	4.76	5.25	5.25	5.25	0.48	1.32	±13%
5500	35.6	4.96	5.05	5.05	5.05	0.48	1.25	±13%
5600	35.5	5.07	4.82	4.82	4.82	0.50	1.33	±13%
5800	35.3	5.27	4.83	4.83	4.83	0.50	1.41	±13%

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z16-97020

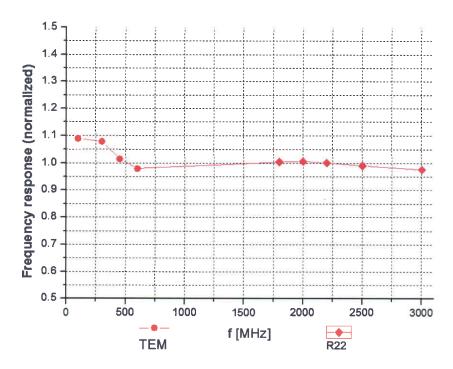
Page 5 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.95	9.95	9.95	0.38	0.82	±12%
835	55.2	0.97	9.82	9.82	9.82	0.14	1.60	±12%
900	55.0	1.05	9.67	9.67	9.67	0.18	1.35	±12%
1750	53.4	1.49	8.00	8.00	8.00	0.15	2.18	±12%
1900	53.3	1.52	7.66	7.66	7.66	0.15	2.66	±12%
2000	53.3	1.52	7.80	7.80	7.80	0.15	3.21	±12%
2300	52.9	1.81	7.33	7.33	7.33	0.28	1.43	±12%
2450	52.7	1.95	7.30	7.30	7.30	0.30	1.40	±12%
2600	52.5	2.16	7.08	7.08	7.08	0.37	1.05	±12%
5200	49.0	5.30	4.81	4.81	4.81	0.44	1.58	±13%
5300	48.9	5.42	4.61	4.61	4.61	0.44	1.80	±13%
5500	48.6	5.65	4.31	4.31	4.31	0.46	1.80	±13%
5600	48.5	5.77	4.21	4.21	4.21	0.48	1.85	±13%
5800	48.2	6.00	4.33	4.33	4.33	0.50	1.60	±13%

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z16-97020

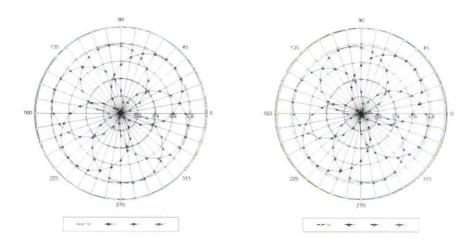
Page 6 of 11

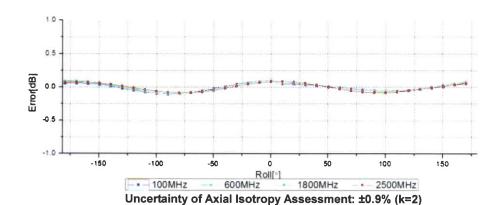
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Certificate No: Z16-97020

Page 7 of 11

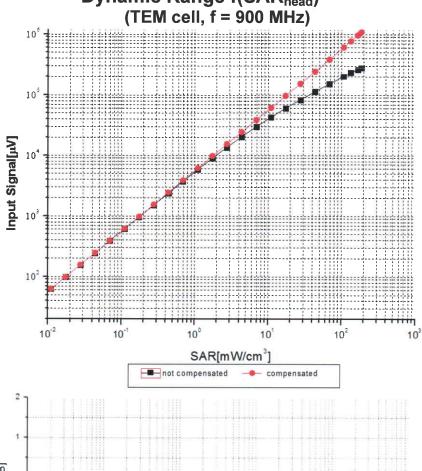


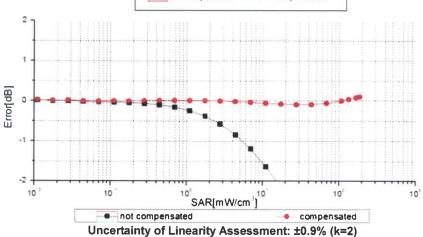


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

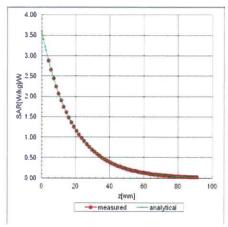

Certificate No: Z16-97020

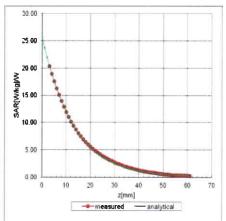

Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

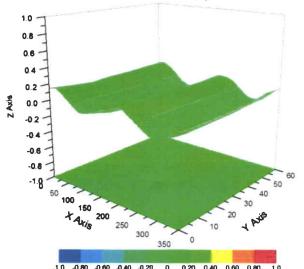
Certificate No: Z16-97020

Page 9 of 11





Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

1 0 -0 80 -0 60 -0 40 -0 20 0 0 20 0 40 0 60 0 80 1 0
Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: Z16-97020

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3977

Other Probe Parameters

Other Frobe Faranicters	
Sensor Arrangement	Triangular
Connector Angle (°)	26.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z16-97020

Page 11 of 11

Client:

ATL

Certificate No: Z16-97019

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 779

Calibration Procedure(s)

FD-Z11-2-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

March 2, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	06-July-15 (CTTL, No:J15X04257)	July-16

Calibrated by:

Name Function

Lu Bingsong

Signature

Yu Zongying SAR Test Engineer

Reviewed by:
Approved by:

Qi Dianyuan SAR Project Leader

Issued March 3, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97019

Page 1 of 3

Deputy Director of the laboratory

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z16-97019

Page 2 of 3

DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1μ V, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	404.044 ± 0.15% (k=2)	403.722 ± 0.15% (k=2)	403.947 ± 0.15% (k=2)
Low Range	3.97041 ± 0.7% (k=2)	3.98123 ± 0.7% (k=2)	3.99689 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system 158 ± 1 °

Certificate No: Z16-97019

Page 3 of 3