

FCC 47 CFR Parts 1 & 2 Published RF Exposure KDB Procedures IEEE Std 1528-2003 and IEEE Std 1528a-2005

SAR EVALUATION REPORT

For CDMA + WiFi + LTE Mobile Hotspot

> Model: AC778S FCC ID: PY3AC778S

Report Number: 13U15465-5 Issue Date: 9/23/2013

Prepared for NETGEAR INC. 2200 FARADAY AVENUE, CARLSBAD, CA 92008

Prepared by UL Verification Services 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

<u>Rev.</u>	Issue Date	Revisions	Revised By
	09/23/2013	Initial issue	

Page 2 of 56

Table of Contents

1.	Atte	estation of Test Results	5
2.	Tes	t Methodology	6
3.	Fac	ilities and Accreditation	6
4.	Cali	ibration and Uncertainty	7
4	[!] .1.	Measuring Instrument Calibration	7
4	^l .2.	Measurement Uncertainty	9
5.	Меа	asurement System Description and Setup	10
6.	SAF	R Measurement Procedure	11
6	5.1.	Normal SAR Measurement Procedure	11
6	6.2.	Volume Scan Procedures	13
7.	Dev	vice Under Test	14
7	.1.	General Information	14
7	7.2.	Wireless Technologies	14
7	7.3.	RF Output Power Tune-up Tolerance	15
7	.4.	Simultaneous Transmission Condition	15
7	7.5 .	General LTE SAR Test and Reporting Considerations	16
	7.5.	1. TDD LTE Considerations	17
8.	Exp	oosure Conditions	18
9.	RF	Output Power Measurement	19
ç	0.1.	CDMA	19
ç	0.2.	LTE	20
ç	0.3.	WiFi (2.4 GHz Band)	31
10.	т	issue Dielectric Properties	32
1	0.1.	Composition of Ingredients for the Tissue Material Used in the SAR Tests	33
1	0.2.	Tissue Dielectric Parameter Check Results	34
11.	S	ystem Performance Check	36
1	1.1.	System Performance Check Measurement Conditions	36
1	1.2.	Reference SAR Values for System Performance Check	36
1	1.3.	System Performance Check Results	37
	S	AR Test Results	38
12.			
12. 1	2.1.	CDMA BC 0	38

Page 3 of 56

Report No.: 13U15465-5 FCC ID: PY3AC778S

12.2	2.	CDMA BC 1	. 38
12.	3.	CDMA BC 10	. 39
12.4	4.	LTE FDD Band 25 (10 MHz Bandwidth)	. 40
12.	5.	LTE FDD Band 26 (10 MHz Bandwidth)	. 41
12.	6.	LTE TDD Band 41 (20 MHz Bandwidth)	. 42
12.	7.	WiFi (2.4GHz Band)	. 44
13.	SAF	R Measurement Variability	. 45
13.	1.	The Highest Measured SAR Configuration in Each Frequency Band	. 45
13.2	2.	Repeated Measurement Results	. 45
14.	Sim	ultaneous Transmission SAR Analysis	. 46
14.	1.	Sum of the SAR for CDMA & WiFi	. 47
14.2	2.	Sum of the SAR for LTE & WiFi	. 48
15.	Арр	oendices	. 49
15.	1.	System Performance Check Plots	. 49
15.2	2.	Highest SAR Test Plots	. 49
15.	3.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3686	. 49
15.	4.	Calibration Certificate for E-Field Probe EX3DV4 - SN 3929	. 49
15.	5.	Calibration Certificate for D835V2 - SN 4d142	. 49
15.	6.	Calibration Certificate for D835V2 - SN 4d002	. 49
15.	7.	Calibration Certificate for D1900V2 - SN 5d163	. 49
15.8	8.	Calibration Certificate for D2450V2 - SN 899	. 49
15.	9.	Calibration Certificate for D2600V2 - SN 1036	. 49
16.	Exte	ernal Photos	. 50
17.	Ant	enna Dimensions & Separation Distances	. 52
18.	Set	up Photos	. 53
18.	1.	Hotspot Exposure Conditions	. 54

Page 4 of 56

1. Attestation of Test Results

Applicant	Netgear Inc.				
DUT description	CDMA + WiFi + LTE USB Mobile Hotspot				
Model	AC778S				
Test device is	An identical prototype				
Device category	Portable and Mobile				
Exposure category	General Population/Uncontrollec	d Exposure			
Date tested	08/16/2013 - 09/13/2013				
The highest reported	RF exposure conditions	Licensed	DTS	UNII	
SAR values	Wireless Router (Hotspot)	1.476 W/kg	0.181 W/kg	N/A	
	Simultaneous Transmission	1.517 W/kg	1.517 W/kg	N/A	
Applicable Standards	Applicable Standards FCC 47 CFR Parts 1 & 2				
Published RF Exposure KDB Procedures, and TCB workshop updates			es		
	IEEE Std 1528-2003 and IEEE Std 1528a-2005				
Test Results	Pass				

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Page 5 of 56

Approved & Released By:

Dave Weaver WiSE Program Manager UL Verification Services Inc. Prepared By:

Remet C Mak

Kenneth Mak WiSE Laboratory Engineer UL Verification Services Inc.

FORM NO: CCSUP4031G FAX: (510) 661-0888 TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

2. Test Methodology

The tests documented in this report were performed in accordance with FCC 47 CFR Parts 1 & 2, IEEE STD 1528-2003, IEEE Std 1528a-2005, the following FCC Published RF exposure KDB procedures, and TCB workshop updates:

- o 941225 D01 SAR test for 3G devices v02
- o 941225 D05 SAR for LTE Devices v02r02
- 447498 D01 General RF Exposure Guidance v05r01
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01
- o 865664 D02 SAR Reporting v01r01
- 248227 D01 SAR meas for 802.11abg v01r02
- 941225 D06 Hotspot Mode SAR v01r01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 & 47266 Benicia Street, Fremont, California, USA.

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	
SAR Lab F	

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com.</u>

Page 6 of 56

4. Calibration and Uncertainty

Measuring Instrument Calibration 4.1.

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Tissue Dielectric Properties

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
S-Parameter Network Analyzer	Agilent	8753ES	MY40000980	2/20/2014
Dielectronic Probe kit	SPEAG	SM DAK 040 CA	1082	9/18/2013
ENA Series Network Analyzer	Agilent	E5071B	MY42100131	2/21/2014
Dielectronic Probe kit	HP	85070E	594	N/A
Thermometer	TRACEABLE	4242	122529162	9/19/2013

System Performance Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthesized Signal Generator	HP	8665B	3546A00784	3/26/2014
Power Meter	HP	438A	3513U04320	9/24/2013
Power Sensor A	HP	8481A	2237A31744	9/24/2013
Power Sensor B	HP	8481A	1926A16917	8/28/2014
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795093	N/A
Directional coupler	Werlatone	C8060-102	2711	N/A
DC Power Supply	Sorensen	XT20-3	1318A00529	N/A
Synthesized Signal Generator	HP	8665B	3744A01084	5/7/2014
Power Meter	HP	437B	3125U12345	7/29/2014
Power Meter	HP	437B	3125U09248	9/24/2013
Power Sensor A	HP	8481A	1926A27048	7/29/2014
Power Sensor B	HP	8481A	3318A95392	9/24/2013
Amplifier	MITEQ	4D00400600-50-30P	1620606	N/A
Directional coupler	Werlatone	C8060-102	2141	N/A
DC Power Supply	Sorensen	XT 20-3	1318A00530	N/A
System Validation Dipole	SPEAG	D835V2	4d142	10/4/2013
System Validation Dipole	SPEAG	D835V2	4d002	10/24/2013
System Validation Dipole	SPEAG	D1900V2	5d163	10/4/2013
System Validation Dipole	SPEAG	D2450V2	899	10/5/2013
System Validation Dipole	SPEAG	D2600V2	1036	3/11/2014

Page 7 of 56

DASY System

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date
E-Field Probe (SAR D)	SPEAG	EX3DV4	3686	3/11/2014
Data Acquisition Electronics (SAR D)	SPEAG	DAE4	1360	2/7/2014
E-Field Probe (SAR 1)	SPEAG	EX3DV4	3929	6/24/2014
Data Acquisition Electronics (SAR 1)	SPEAG	DAE4	1259	2/7/2014

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due date
Base Station Simulator	Agilent	8960	GB46160222	11/10/2013
Base Station Simulator	Agilent	8960	GB47050526	9/20/2013
Base Station Simulator	R & S	CMW500	124594-HX	7/2/2014

Page 8 of 56

4.2. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01 Section 2.8.1., when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2003 is not required in SAR reports submitted for equipment approval.

Page 9 of 56

5. Measurement System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 10 of 56

6. SAR Measurement Procedure

6.1. Normal SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	$20^{\circ} \pm 1^{\circ}$	
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page 11 of 56

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01 (Draft)

			\leq 3 GHz	> 3 GHz
Maximum zoom scan	spatial reso	blution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3-4$ GHz: ≤ 5 mm $4-6$ GHz: ≤ 4 mm
	uniform	grid: Δz _{Zoom} (n)	\leq 5 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 2.5 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
	grid ∆z _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume x. y. z		\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

P1528-2011 for details.

When zoom scan is required and the reported SAR from the area scan based I-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Zdirection.

Page 12 of 56

6.2. Volume Scan Procedures

Step 1: Repeat Step 1-4 in Section 6.1

Step 2: Volume Scan

Volume Scans are used to assess peak SAR and averaged SAR measurements in largely extended 3-dimensional volumes within any phantom. This measurement does not need any previous area scan. The grid can be anchored to a user specific point or to the current probe location.

Step 3: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Page 13 of 56

7. Device Under Test

7.1. General Information

CDMA + WiFi + LTE Mobile Hotspot

Operating Configuration(s)	Body-worn device/body-supported device
Exposure Condition(s)	Front, Rear, Edge 1, Edge 2, Edge3, and Edge 4
Device dimension	Overall (Length x Width): 60.5 mm x 109.5 mm Overall Diagonal: 116 mm Display Diagonal: 47.5 mm
Battery Options	Standard – Lithium-ion battery, Rating 3.7 Vdc, 6.66 Wh

7.2. Wireless Technologies

Wireless Technology and Frequency Bands	CDMA BC0 / BC1 / BC10 LTE FDD Band 25, 26, and TDD Band 41 WLAN/Wi-Fi (2.4GHz bgn 20/40MHz)
Mode	CDMA: 1xRTT 1xEv-Do (Rel. 0) 1xEv-Do (Rev. A) LTE: QPSK, 16QAM
Duty Cycle	CDMA BC0, BC1, BC10: 100% LTE (FDD) Band 25, 26: 100% LTE (TDD) Band 41: 63% WLAN/Wi-Fi (2.4GHz bgn 20/40MHz): 100%

Page 14 of 56

7.3. RF Output Power Tune-up Tolerance

Upper limit (dB):	1.0	RF Output F	Power (dBm)				
RF Air interface	Mode	Target	Max. tune-up tolerance limit				
	1xRTT	23.5	24.5				
	1xAdvanced	23.5	24.5				
CDIVIA BCU	1xEVDO Rel. 0	23.5	24.5				
	1xEVDO Rev. A	23.5	24.5				
	1xRTT	22.5	23.5				
	1xAdvanced	22.5	23.5				
	1xEVDO Rel. 0	22.5	23.5				
	1xEVDO Rev. A	22.5	23.5				
	1xRTT	23.5	24.5				
	1xAdvanced	23.5	24.5				
CDIMA BC 10	1xEVDO Rel. 0	23.5	24.5				
	1xEVDO Rev. A	23.5	24.5				
Upper limit (dB):	1.0	RF Output Power (dBm)					
RF Air interface	Mode	Target	Max. tune-up tolerance limit				
LTE Band 25	QPSK	23.0	24.0				
LTE Band 26	QPSK	23.0	24.0				
LTE Band 41	QPSK	23.0	24.0				
Upper limit (dB):	0.0	RF Output F	Power (dBm)				
RF Air interface	Mode	Target	Max. tune-up tolerance limit				
	802.11b	12.0	12.0				
	802.11g	12.0	12.0				
VVI-FI 2.4 GHZ	802.11n HT20	12.0	12.0				
	802.11n HT40	12.0	12.0				

7.4. Simultaneous Transmission Condition

RF Exposure Condition Capable Transmit Configurations						
Wireless Router	1. CDMA 1xEVDO BC0 / BC1 / BC10 + WiFi 2.4GHz					
(Hotspot)	2. LTE Band 25 / 26 / 41 + Wi-Fi 2.4GHz					
Note:						
1. CDMA or LTE radio may transmit simultaneously with Wi-Fi.						

Page 15 of 56

7.5. General LTE SAR Test and Reporting Considerations

Item	Description	on								
Frequency range, Channel Bandwidth,				Freque	ency ra	nge: ′	1850 - 19 [.]	15 MHz		
Numbers and Frequencies	Band 25	nd 25 Channel Bandwidth								
		20 M	IHz	15 MHz	10 M	Hz	5 MHz	3 MHz	1.4 MHz	
	Low				2609 185	90/ 5	26065/ 1852.5	26055/ 1851.5		
	Mid				2636	65/ 25	26365/	26365/		
	High				2664	10/	26665/	26675/		
				Fre		vranc	1912.0 1e: 814 - 8	1913.5 849 MHz		
	Band 26				Chan	nel R	andwidth	10 10112		
	Dana 20	20 M	IHz	15 MHz	10 M	Hz	5 MHz	3 MHz	1.4 MHz	
	Low				2674	0/	26715/	26705/	26697/	
					819.0)	816.5	815.5	814.7	
	Mid				2686	5/	26865/	26865/	26865/	
					831.5	5	831.5	831.5	831.5	
	High				26990	0/	27015/	27025/	27033/	
					844.0)	846.5	847.5	848.3	
	Rand 41			Freque	Chan	nge: 2 nel B	2496 - 263 andwidth			
	Dana 41	20 M	IH _Z	15 MHz	10 M		5 MHz	3 MHz	1 4 MHz	
	Low	3975	50/	39725/	3970	0/	0 11112			
		2506	6.0	2503.5	2501.	.0				
	Low-Mid	4018	85/	40173/	40148	8/				
	Minl	2549).5).5	2548.3	2545.	.8				
	IVIIO	4062	20/	40620/ 2593.0	40620	0/				
	Mid-Hiah	4105	5/	41067/	4109	.0 2/				
	5	2636	5.5	2637.75	2640.	.25				
	High	4149	0/	41515/	41540	0/				
		2680	0.0	2682.5	2685.	.0				
LTE transmitter and antenna implementation	LTE and (CDMA	share	e the same	Tx/Rx	and F	Rx antenn	а		
	Refer to S	Section	17 fc	or antenna	locatior	าร		28 - X.22 - X.1	2	
Maximum power reduction (MPR)	Та	ble 6.2.3	3-1: M	aximum Pov	ver Redu	uction	(MPR) for	Power Class	3	
	Modulatio	n	Ch	annel bandwi	idth / Trar	nsmiss	ion bandwid	ith (RB)	MPR (dB)	
			1.4	3.0	5	10	15	20	1	
	OPSK		>5	>4	>8	> 12	> 16	> 18	\$1	
	16 QAM		≲5	\$4	≤8	≤ 12	≤ 16	≤ 18	≤1	
	16 QAM		>5	>4	>8	> 12	> 16	> 18	≤2	
	MPR Bui	ilt-in by additio	y des	sign MPR) wae	s dieah	lod d	lurina SA	R testing		
Power reduction		auditit	Jiail	wir it) was	s uisaD	neu u	iunny SP	in testing		
Spectrum plots for RB configurations	A properly	/ config	gured	basestatic	on simu	lator v	was used	for the SAF	Rand	
	power me offset con	asuren figurati	nents ion ar	; therefore re not inclu	, spectr ded in t	rum pl the S/	lots for ea AR report.	ch RB alloc	ation and	

Page 16 of 56

7.5.1. TDD LTE Considerations

According to KDB 941225 D05 SAR for LTE Devices v02r02, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special subframe configuration 7.

LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	N	lormal cyclic prefix in d	ownlink	Extended cyclic prefix in downlink				
Special subframe	DwPTS	UpF	PTS	DwPTS	Up	PTS		
configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	$6592 \cdot T_{s}$			$7680 \cdot T_{\rm s}$				
1	$19760 \cdot T_s$			$20480 \cdot T_s$	2102.T	2560.T		
2	$21952 \cdot T_s$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{s}$	$23040 \cdot T_s$		2500 T _s		
3	$24144 \cdot T_s$			$25600 \cdot T_s$				
4	$26336 \cdot T_s$			$7680 \cdot T_{\rm s}$				
5	$6592 \cdot T_s$		-	$20480 \cdot T_s$	1381.T	5120.T		
6	$19760 \cdot T_s$			$23040 \cdot T_s$	-30+1 _s	5120°1 _s		
7	$21952 \cdot T_s$	$4384 \cdot T_{s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_s$				
8	$24144 \cdot T_s$			-	-	-		
9	$13168 \cdot T_s$			-	-	-		

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to- Subframe number										
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Calculated Duty Cycle

Uplink-	Subframe Number									Coloulated		
Downlink Configuration	Uplink Switch- point Periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = 5120 x [1/(15000 x 2048)] x 2 + 6 ms = 63.33% where

 $T_s = 1/(15000 \times 2048)$ seconds

UL Verification Services Inc.

Page 17 of 56

8. Exposure Conditions

Refer to Section 17 "Antenna Dimensions and Separation Distances" for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

For WWAN (**①**)

	Antenna-to-	SAR	
Test Configurations	edge/surface	Required	Note
Rear	2.0 mm	Yes	
Front	2.0 mm	Yes	
Edge 1 (Top)	6.5 mm	Yes	
Edge 2 (Right)	3.0 mm	Yes	
Edge 3 (Bottom)	7.4 mm	Yes	
Edge 4 (Left)	91.8 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01

For WiFi (2)

	Antenna-to-	SAR	
Test Configurations	edge/surface	Required	Note
Rear	7.1 mm	Yes	
Front	4.9 mm	Yes	
Edge 1 (Top)	2.4 mm	Yes	
Edge 2 (Right)	63.7 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01
Edge 3 (Bottom)	52.3 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01
Edge 4 (Left)	39.6 mm	No	SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR v01r01

Page 18 of 56

9. RF Output Power Measurement

9.1. **CDMA**

1xRTT Measured Results

Band	Mode	Ch	Freq.(MHz)	Avg Pwr (dBm)
	PC3 5032		824.7	23.6
BC 0	BC 0 (+F-SCH)	1013	836.52	23.5
			848.31	23.5
	PC3 5032		1851.25	22.9
BC 1	(±E-SCH)	Ch F	1880	23.4
			1908.75	23.0
	PC3 5032		817.9	23.8
BC 10		476	820.5	23.8
			823.1	23.8

1xEv-Do Rel. 0 Measured Results

Band	FTAP Rate	RTAP Rate	Channel	Freq. (MHz)	Avg Pwr (dBm)
	207.0 khao		1013	824.7	23.7
BC 0	(2 slot, QPSK)	153.6 kbps	384	836.52	23.6
			777	848.31	23.5
	307.2 kbps (2 slot: OPSK)		25	1851.25	23.0
BC1		153.6 kbps	600	1880.0	23.5
			1175	1908.8	23.1
			476	817.9	23.9
BC10	307.2 KDps (2 slot OPSK)	153.6 kbps	580	820.5	23.9
	(2 SIOL, QPSK)		684	823.1	24.0

1xEv-Do Rev. A Measured Results

Band	FETAP Traffic Format	RETAP Data Payload Size	Channel	Freq. (MHz)	Avg Pwr (dBm)
	207 2K ODSK/ACK shannel is		1013	824.7	23.4
BC 0	307.2K, QPSK/ ACK channel is	4096	384	836.52	23.3
			777	848.31	23.2
			25	1851.25	22.6
BC1	transmitted at all the slots	4096	600	1880.0	23.1
			1175	1908.8	22.7
			476	817.9	23.6
BC10	307.2k, QPSK/ ACK channel is	4096	580	820.5	23.7
			684	823.1	23.6

Page 19 of 56

9.2. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	nnel bandw	ridth / Tra	ansmission	bandwidth ((RB)	MPR (dB)
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	•
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 1 6	≤ 1 8	≤ 1
16 QAM	> 5	> 4	>8	> 12	> 16	> 18	≤ <mark>2</mark>

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signalling Value of "NS 01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
		0 4 10 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4, 10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
NS 04	NS 04 66222 41		5	>6	≤ 1
110_04	0.0.2.2.2		10, 15, 20	See Tab	le 6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ <mark>5</mark> 0	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS 07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6 2 4-2
110_07	6.6.3.3.2			14010 0.2.4 2	14010 0.2.4 2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ <mark>3</mark>
	66004	01	10.15	> 40	≤ 1
NS_09	0.0.3.3.4	21	10, 15	> 55	≤ <mark>2</mark>
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32	-	-	-	-	-
Note 1: A	pplies to the lower	block of Band 23, i.e.	. a carrier place	d in the 2000-201	10 MHz region.

UL Verification Services Inc.

Page 20 of 56

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

LTE Band 25 Measured Results

Band BW		Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Danu	(MHz)	wode	Allocation	offset	MPR	MPR	1860 MHz	1882.5 MHz	1905 MHz
			1	0	0	0	24.0	23.9	23.4
			1	25	0	0	23.8	23.6	23.4
			1	49	0	0	23.9	23.5	23.2
		QPSK	25	0	1	0	23.1	23.0	22.9
	LTE 10 and 25		25	12	1	0	23.1	23.0	22.8
			25	25	1	0	23.2	22.9	22.7
LTE			50	0	1	0	23.2	22.9	22.7
Band 25			1	0	1	0	23.5	23.1	22.7
			1	25	1	0	23.4	23.1	22.6
			1	49	1	0	23.3	22.9	22.5
		16QAM	25	0	2	0	22.3	22.1	21.9
			25	12	2	0	22.1	22.1	21.8
			25	25	2	0	22.3	22.0	21.7
			50	0	2	0	22.2	21.9	21.7
Band	BW	Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Dana	(MHz)	Mode	Allocation	offset	MPR	MPR	1857.5 MHz	1882.5 MHz	1907.5 MHz
			1	0	0	0	23.9	23.7	23.5
		QPSK	1	12	0	0	23.8	23.6	23.4
			1	24	0	0	23.8	23.6	23.3
			12	0	1	0	23.4	23.1	22.9
			12	6	1	0	23.4	23.1	22.8
			12	11	1	0	23.3	23.0	22.7
LTE	5		25	0	1	0	23.2	22.9	22.7
Band 25	Ū		1	0	1	0	23.3	23.1	22.9
		16QAM	1	12	1	0	23.1	23.0	22.8
			1	24	1	0	23.0	23.0	22.7
			12	0	2	0	22.4	22.1	21.9
			12	6	2	0	22.4	22.1	21.8
			12	11	2	0	22.3	22.0	21.8
			25	0	2	0	22.2	22.0	21.6
Band	BW	Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Dana	(MHz)	Wode	Allocation	offset	MPR	MPR	1855 MHz	1882.5 MHz	1910 MHz
			1	0	0	0	23.9	23.6	23.2
			1	7	0	0	23.8	23.5	23.1
			1	14	0	0	23.8	23.5	23.1
		QPSK	8	0	1	0	23.4	23.1	22.8
			8	4	1	0	23.3	23.0	22.7
			8	7	1	0	23.4	23.0	22.7
LTE	3		15	0	1	0	23.3	22.9	22.7
Band 25	J		1	0	1	0	23.4	23.1	22.5
			1	7	1	0	23.3	23.1	22.5
			1	14	1	0	23.2	23.0	22.4
		16QAM	8	0	2	0	22.4	22.0	21.8
			8	4	2	0	22.4	22.0	21.7
			8	7	2	0	22.4	22.0	21.7
			15	0	2	0	22.3	22.0	21.7

UL Verification Services Inc.

Page 21 of 56

LTE Band 26 Measured Results

Dand	BW	Mada	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Band	(MHz)	wode	Allocation	offset	MPR	MPR	821 MHz	831.5 MHz	844 MHz
			1	0	0	0	23.4	23.1	23.8
			1	25	0	0	23.3	23.8	24.0
		QPSK	1	49	0	0	22.9	23.8	23.7
			25	0	1	1	22.4	22.5	22.7
			25	12	1	1	22.3	22.8	22.6
	TE 10		25	25	1	1	22.1	22.8	22.6
LTE			50	0	1	1	22.3	22.5	22.6
Band 26	10		1	0	1	2	22.0	22.3	22.2
			1	25	1	1	22.0	23.0	21.9
			1	49	1	1	21.6	23.0	22.1
		16QAM	25	0	2	2	21.5	21.6	21.8
			25	12	2	2	21.4	21.8	21.7
			25	25	2	2	21.2	21.8	21.7
			50	0	2	2	21.3	21.6	21.7
Band	BW	Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Dand	(MHz)	WOOC	Allocation	offset	MPR	MPR	818.5 MHz	831.5 MHz	846.5 MHz
			1	0	0	0	23.4	23.5	23.5
		QPSK	1	12	0	0	23.6	23.8	23.7
			1	24	0	0	23.5	23.8	23.7
			12	0	1	0	22.4	22.7	23.6
			12	6	1	1	22.5	22.8	22.8
			12	11	1	1	22.5	22.7	22.7
LTE	5		25	0	1	1	22.5	22.7	22.7
Band 26	5		1	0	1	1	22.3	21.7	22.5
		16QAM	1	12	1	1	22.5	22.0	22.7
			1	24	1	1	22.5	22.1	22.8
			12	0	2	2	21.4	21.8	21.7
			12	6	2	2	21.6	21.8	21.8
			12	11	2	2	21.5	21.8	21.8
			25	0	2	2	21.5	21.8	21.8
Band	BW	Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)	
Dana	(MHz)	Mode	Allocation	offset	MPR	MPR	817.5 MHz	831.5 MHz	847.5 MHz
			1	0	0	0	23.2	23.7	23.6
			1	7	0	0	23.4	23.7	23.6
			1	14	0	0	23.4	23.7	23.7
		QPSK	8	0	1	0	22.3	22.8	22.7
			8	4	1	0	22.4	22.8	22.7
			8	7	1	0	22.4	22.8	22.8
LTE	з		15	0	1	0	22.3	22.8	22.7
Band 26	J		1	0	1	0	22.4	22.1	22.5
			1	7	1	0	22.5	22.1	22.4
			1	14	1	0	22.6	22.1	22.7
		16QAM	8	0	2	0	21.3	21.8	21.9
			8	4	2	0	21.4	21.8	21.7
			8	7	2	0	21.4	21.8	21.9
			15	0	2	0	21.3	21.8	21.7

UL Verification Services Inc.

Page 22 of 56

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-08 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

LTE Band 26 Measured Results (continued)

Band	BW	Mode	RB	RB	Target	Meas.		Avg Pwr (dBm)			
Danu	(MHz)		Allocation	offset	MPR	MPR	816.7 MHz	831.5 MHz	841.5 MHz		
			1	0	0	0	23.4	23.8	23.6		
			1	2	0	0	23.4	23.7	23.6		
			1	5	0	0	23.4	23.8	23.7		
		QPSK	3	0	0	0	23.3	23.8	23.7		
			3	1	0	0	23.4	23.8	23.7		
		4 16QAM	3	2	0	0	23.4	23.7	23.7		
LTE	1 /		6	0	1	0	22.5	22.7	22.7		
Band 26	1.4		1	0	1	0	21.9	22.9	22.0		
			1	2	1	0	21.9	22.9	22.0		
			1	5	1	0	22.0	22.9	22.0		
			3	0	1	0	22.4	22.8	22.8		
			3	1	1	0	22.5	22.8	22.8		
			3	2	1	0	22.5	22.8	22.8		
			6	0	2	0	21.6	21.6	21.9		

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 56

LTE Band 41 Measured Results

Procedure used to establish SAR test signal for LTE TDD Band 41

Set to CMW-500 with following parameters:

- Turn the LTE Signaling off using "ON | OFF" key
- Operating Band: Select Band 41 and TDD
- Go to "Config...."

LTE Signaling 1 - X3.2.10.6				LTE
Connection Status	PCC S	icc]		
Sell 🙀	Operating Band	Band 41	- TDD -	TX Meas.
acket Switched		Downlink	Uplink	}
RC State Idle	Channel	40620 Ch	40620 Ch	LTE 1 Ext.BLER
Event Log	Frequency	2593.0 MHz	2593.0 MHz	<u> </u>
3:21:26 🚯 State 'Cell Off'	Cell Bandwidth	20.0 MHz	🝷 20.0 MHz 🛛 🖉	Go to
3:21:17 State 'Cell On' 3:21:16 Signaling Failure	RS EPRE	-85.8 dBm/15k	Hz	
3:21:13 (*) Network Originated Detach	Full Cell BW Pow	.55.0 dBm		[
3:21:02 State 'Connection Established'	PUSCH Open Lo	Routing		
3:20:57 State 'Attached'	PUSCH Closed L	oop Target Power	23.0 dBm	
3:20:57 🖨 FPS Default Rearer Established	Connection Set	hin		
UE Info 🗾 🔲	Scheduling RM	ар С	-	<u>}</u>
IMEI	100			
IMSI UE IPv4 Address [0]		Downlink	Uplink	
UE IPv6 Prefix [0]	#RB	100 -	100 -	
	RB Pos./Start RE	B low 🕶 0	low 🕶 0	
	Modulation	QPSK 🔻	QPSK 👻	
	TBS ldx / Value	5 8760	2 4584	Signaling
	Throughput	3.970 Mbit/s	1.834 Mbit/s	OFF
	1	T I	ar i	Config

Page 24 of 56

- Go to "Physical Cell Setup"
- Select "TDD" and Set "Uplink Downlink Configuration" to "0" Turn the cell on using "ON | OFF" key

🚯 LTE Sign	aling Configuration			LTE
PCC Path: Phys	SCC	Jownlink Configuration		LTE 1 TX Meas.
-Duple>	x Mode rio tings	TDD Standard Cell		LTE 1 Ext.BLER
⊕ Nr Ser ⊕ Downl ⊕ Uplink ⊡ Physic	ink Power Levels Power Control al Cell Setup		-	Go to
DL UL Ph	Cell Bandwidth Cell Bandwidth vsical Cell ID	20.0 MHz ▼ #RB Max: 100 20.0 MHz ▼ 0		Routing
Cyo So	clic Prefix unding RS (SRS)	Normal	-	
⊕-PR	Uplink Downlink Configu Subframe Number Direction Special Subframe ACH rk	ation 0 0 1 2 3 4 5 6 7 8 9 ↓ S ↑ ↑ ↓ S ↑ ↑ ↑ 7		
⊕-CQIRe ⊕-UEMe	ction eporting asurement Report			LTE Signaling ON
	<u> </u>			Config

Page 25 of 56

Connect to EUT

- Turn the cell on using "ON | OFF" key
- After EUT is Attached
- Select "Connect"

ETE Signaling 1 - X3.2.10.6				LTE		
Connection Status	PCC S	CC		LTE 1		
Cell	Operating Band	Band 41 👻	TDD	TX Meas.		
Packet Switched Attached		Downlink	Uplink	}		
RRC State Connected	Channel	40620 Ch	40620 Ch	LTE 1 Ext.BLER		
Front Log	Frequency	2593.0 MHz	2593.0 MHz	<u> </u>		
3:31:31 (†) State 'Attached'	Cell Bandwidth	20.0 MHz 👻	20.0 MHz	Go to		
3:31:31 EPS Default Bearer Established	RS EPRE	-85.8 dBm/15kHz				
3:31:31 😗 RRC Connection Established	Full Cell BW Pow	-55.0 dBm				
3:31:00 🕜 State 'Cell Off'	PUSCH Open Loo	PUSCH Open Loop Nom.Power				
3:30:23 🕜 State 'Cell On' 3:30:22 🕜 Signaling Failure	PUSCH Closed L	oop Target Power	23.0 dBm	<u></u>		
13:30:19 A Network Originated Detach						
UE Info 👻 🗖	Connection Set	up				
NUT 004027000000000	Scheduling RMC	C		2		
IMEL 0010270099999998 IMSI 001010123456789		Downlink U	plink			
UE IPv6 Prefix [0] fc01:abab:cdcd:efe0::	#RB	100 -	100 🔻			
	RB Pos./Start RE	B low 🔻 0	low 🕶 0			
	Modulation	QPSK -	QPSK 🔻			
	TBS Idx / Value	5 8760	2 4584	LTE		
	Throughput	3.970 Mbit/s	1.834 Mbit/s			
Detach Connect		Send SMS	Handover	Config		

Page 26 of 56

Max Power Setting

Ż

Select "LTE 1 TX Meas."

Press "RESTART | STOP" Soft key

🚯 LTE Signaling 1 - X3.2.10.6				LTE
Connection Status	PCC S	CC]		LTE 1
Cell	Operating Band	Band 41 🔹	TDD	TX Meas.
Packet Switched Connection Established		Downlink	Uplink	
RRC State Connected	Channel	40620 Ch	40620 Ch	LTE 1 Ext.BLER
EventLog	Frequency	2593.0 MHz	2593.0 MHz	
03:33:07 (1) State 'Connection Established'	Cell Bandwidth	20.0 MHz 🔹	20.0 MHz 📝	Go to
03:33:07 CPS Dedicated Bearer Established	RS EPRE	-85.8 dBm/15kHz		
03:31:31 CPS Default Bearer Established	Full Cell BW Pow	-55.0 dBm		
03:31:31 RRC Connection Established	PUSCH Open Loc	pp Nom.Power	23 dBm	Routing
03:31:00 State 'Cell Off'	PUSCH Closed L	oop Target Power	23.0 dBm	<u> </u>
03:30:23 🐴 State 'Cell On'				
UE Info 👻 🔲	Connection Set	up		
IMEL 001027009999998	Scheduling RMC	·		
IMSI 001010123456789		Downlink Up	link	
UE IPv4 Address [0] 192.168.48.129 UE IPv6 Prefix [0] fc01:abab:cdcd:efe0::	#RB	100 💌	100 🕶	
	RB Pos./Start RE	3 low 🕶 0	low 🕶 0	
	Modulation	QPSK 🕶	QPSK 🔻	
	TBS ldx / Value	5 8760	2 4584	LTE Signaling
	Throughput	3.970 Mbit/s	1.834 Mbit/s	
Detach Disconnect	Ĩ	Send SMS	Handover	Config

Page 27 of 56

- Select "Signaling Parameter"
- Select "TX Power Control (TPC)" > Select "Active TPC Setup" to "Max Power" > Set "Closed Loop Target Power" to "23 dBm"

🚯 LTE Measur	ement - X3.2.10.6 - TX Measu	rement				LTE
😑 Multi Eva	ntuation ORACH	SRS				Multi
Mode: TDD Fi	req.: 2593.0 MHz Ref. Level:	44.80 dBm Bandwidth	n: 20.0 MHz - Cyclic	: Prefix : Normal	Meas Subfr.: 0	Evaluation
EVM						
						RF Settings
Inband Emis	ssions					<u>}</u>
dB					Resource Block	Trigger
Equalizer Sp	pectrum Flatness					
dB					Subcarrier	
Spectrum A	CLR				URRENT	
dBm			-			Display
Spectrum	🚯 Signaling TPC	t in dat				
dBm	TX Power Control (TPC)					
	Active TPC Setup		Max Power			
TX Measu	Closed Loop Target P	ower	23.0 dBm			Signaling Parameter
PS:						LTE Signaling
Cell Setup	Connection Setup	DL Error Insertion .	. ТРС	Power	Enable	Config

Page 28 of 56

View TX Power

- Go to "Display"
- Select "Select View..."
- Select "Spectrum Emission Mask"

Page 29 of 56

LTE Band 41 Measured Results (continued)

	D\M/				Torget	Maga		A	vg Pwr (dBr	n)	
Band	(MHz)	Mode	Allocation	offset	MPR	MPR	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz
			1	0	0	0	22.4	23.1	22.4	22.4	22.4
			1	50	0	0	22.4	22.7	22.4	22.3	22.3
			1	99	0	0	22.5	22.6	22.3	22.3	22.2
		QPSK	50	0	1	1	21.6	21.3	21.4	21.2	21.0
			50	25	1	1	21.4	21.4	21.4	21.3	21.1
			50	50	1	1	21.5	21.2	21.5	21.3	21.0
LTE	LTE 20 - Band 41		100	0	1	1	21.4	21.3	21.4	21.3	21.0
Band 41			1	0	1	1	21.7	21.8	21.5	21.7	21.3
			1	50	1	1	21.8	21.5	21.5	21.6	21.1
			1	99	1	1	21.9	21.4	21.4	21.7	21.2
		16QAM	50	0	2	2	20.3	20.3	20.4	20.1	20.0
			50	25	2	2	21.3	20.3	20.4	20.2	20.0
			50	50	2	2	20.3	20.1	20.4	20.2	20.0
			100	0	2	2	20.4	20.4	20.6	20.3	20.1
				DD	Tannat	Maga		A	vg Pwr (dBn	n)	
Band	(MHz)	Mode	Allocation	offset	MPR	MPR	2503.5 MHz	2548.3 MHz	2593 MHz	2637.75 MHz	2682.5 MHz
		1	0	0	0	22.4	23.0	22.4	22.3	22.4	
			1	36	0	0	22.5	22.7	22.3	22.3	22.3
			1	74	0	0	22.5	22.7	22.3	22.3	22.3
		QPSK	36	0	1	1	21.6	21.4	21.4	21.2	21.0
			36	18	1	1	21.6	21.4	21.4	21.3	21.1
			36	37	1	1	21.5	21.2	21.3	21.3	21.0
LTE	15		75	0	1	1	21.4	21.3	21.4	21.3	21.0
Band 41	15		1	0	1	1	21.8	21.5	21.4	21.6	21.3
		16QAM	1	36	1	1	21.8	21.5	21.5	21.6	21.1
			1	74	1	1	21.9	21.4	21.4	21.7	21.2
			36	0	2	2	20.3	20.3	20.4	20.2	20.0
			36	18	2	2	20.5	20.3	20.4	20.2	20.0
			36	37	2	2	20.3	20.2	20.4	20.2	20.1
			75	0	2	2	20.4	20.4	20.5	20.3	20.1
	D\\/		DD	DD	Torget	Maga		A	vg Pwr (dBr	n)	
Band	(MHz)	Mode	Allocation	offset	MPR	MPR	2498.5 MHz	2545.8 MHz	2593 MHz	2640.25 MHz	2687.5 MHz
			1	0	0	0	22.4	22.8	22.4	22.3	22.2
			1	25	0	0	22.4	22.7	22.4	22.2	22.3
			1	49	0	0	22.4	22.7	22.3	22.1	22.3
		QPSK	25	0	1	1	21.6	21.2	21.4	21.2	21.0
			25	12	1	1	21.5	21.3	21.2	21.1	21.1
			25	25	1	1	21.5	21.2	21.3	21.3	21.1
LTE	10		50	0	1	1	21.4	21.3	21.3	21.1	21.0
Band 41	10		1	0	1	1	21.8	21.5	21.4	21.6	21.3
			1	25	1	1	21.8	21.5	21.2	21.5	21.1
			1	49	1	1	21.8	21.4	21.2	21.7	21.2
		16QAM	25	0	2	2	20.3	20.3	20.2	20.2	20.0
			25	12	2	2	20.5	20.2	20.2	20.3	20.1
			25	25	2	2	20.3	20.2	20.4	20.2	20.1
			50	0	2	2	20.4	20.4	20.4	20.3	20.3

Page 30 of 56

UL Verification Services Inc.

9.3. WiFi (2.4 GHz Band)

Required Test Channels per KDB 248227 D01

Mada	Dond		Channel	"Default Test Channels"			
IVIODE	Mode Band GHZ		Channel	802.11b	802.11g		
802.11b/g	2.4 GHz	2.412	1#	\checkmark	∇		
		2.437	6	\checkmark	∇		
		2.462	11 [#]	\checkmark	∇		

Notes:

 $\sqrt{}$ = "default test channels"

 ∇ = possible 802.11g channels with maximum average output 1⁄4 dB \geq the "default test channels"

[#] = when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

Measured Results

Band (GHz)	Mode	Ch #	Freq. (MHz)	Avg Pwr (dBm)
		1	2412	11.3
	802.11b	6	2437	11.4
		11	2462	11.4
		1	2412	10.2
	802.11g	6	2437	10.9
2.4		11	2462	10.9
2.4		1	2412	10.6
	802.11h (HT20)	6	2437	10.8
	(11120)	11	2462	10.8
	000.44+	3	2422	10.3
	602.11h (HT40)	6	2437	10.6
	(11140)	9	2452	10.6

Note(s):

Per KDB 248227 D01, SAR is not required for 802.11g/HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.

Page 31 of 56

10. Tissue Dielectric Properties

IEEE Std 1528-2003 Table 2

Target Frequency (MHz)	He	ad
Target Frequency (IMITZ)	ε _r	σ (S/m)
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1800 – 2000	40.0	1.40
2450	39.2	1.80
2600	39.0	1.96
3000	38.5	2.40

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

Target Frequency (MHz)	He	ead	Bo	ody
raiget Frequency (Miriz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

10.1. Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients			Frequency (MHz)							
(% by weight)	45	50	83	35	9′	15	19	00	2450	-2600
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Page 33 of 56

10.2. Tissue Dielectric Parameter Check Results

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

SAR Room D

	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Rody 1000	e'	52.8500	Relative Permittivity (ε_r):	52.85	53.30	-0.84	5
	Body 1900	e"	14.4400	Conductivity (σ):	1.53	1.52	0.36	5
9/16/2012	Rody 1850	e'	53.0600	Relative Permittivity (c _r):	53.06	53.30	-0.45	5
0/10/2013	Body 1850	e"	14.3100	Conductivity (o):	1.47	1.52	-3.16	5
	Body 1915	e'	52.8000	Relative Permittivity (ε_r):	52.80	53.30	-0.94	5
	Body 1919	e"	14.4600	Conductivity (o):	1.54	1.52	1.30	5
	Body 835	e'	53.1800	Relative Permittivity (ε_r):	53.18	55.20	-3.66	5
	Body 000	e"	21.8200	Conductivity (o):	1.01	0.97	4.44	5
8/20/2013	Body 820	e'	53.3500	Relative Permittivity (c _r):	53.35	55.28	-3.49	5
0/20/2013	B00y 020	e"	21.8600	Conductivity (o):	1.00	0.97	2.92	5
	Body 850	e'	53.0500	Relative Permittivity (ε_r):	53.05	55.16	-3.82	5
	Body 000	e"	21.6800	Conductivity (o):	1.02	0.99	3.80	5
	Body 835	e'	53.3900	Relative Permittivity (c _r):	53.39	55.20	-3.28	5
	Body 000	e"	21.7100	Conductivity (o):	1.01	0.97	3.91	5
9/9/2013	Body 820	e'	53.5500	Relative Permittivity (ε_r):	53.55	55.28	-3.12	5
3/3/2013	B00y 020	e"	21.7300	Conductivity (o):	0.99	0.97	2.30	5
	Body 850	e'	53.2500	Relative Permittivity (ε_r):	53.25	55.16	-3.46	5
	Body 666	e"	21.6500	Conductivity (o):	1.02	0.99	3.66	5
	Body 835	e'	53.7700	Relative Permittivity (ε_r):	53.77	55.20	-2.59	5
	Body 000	e"	21.6900	Conductivity (o):	1.01	0.97	3.82	5
9/13/2013	Body 820	e'	53.9200	Relative Permittivity (ε_r):	53.92	55.28	-2.45	5
5/15/2013	500y 020	e"	21.7300	Conductivity (o):	0.99	0.97	2.30	5
	Body 850	e'	53.6100	Relative Permittivity (ε_r):	53.61	55.16	-2.80	5
	Dody 000	e"	21.6000	Conductivity (o):	1.02	0.99	3.42	5

Page 34 of 56

Tissue Dielectric Parameter Check Results (continued)

SAR Room 1 (continued)

	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Rody 1000	e'	51.9000	Relative Permittivity (ε_r):	51.90	53.30	-2.63	5
	BOUY 1900	e"	14.6200	Conductivity (o):	1.54	1.52	1.61	5
9/21/2012	Rody 1950	e'	52.0700	Relative Permittivity (ε_r):	52.07	53.30	-2.31	5
0/21/2013	BOUY 1050	e"	14.5100	Conductivity (o):	1.49	1.52	-1.80	5
	Body 1010	e'	51.8800	Relative Permittivity (ε_r):	51.88	53.30	-2.66	5
	BOUY 1910	e"	14.6500	Conductivity (σ):	1.56	1.52	2.63	5
	Rody 2450	e'	52.0200	Relative Permittivity (c _r):	52.02	52.70	-1.29	5
	B00y 2450	e"	14.2600	Conductivity (σ):	1.94	1.95	-0.38	5
9/22/2012	Body 2400	e'	52.1600	Relative Permittivity (ε_r):	52.16	52.77	-1.16	5
0/22/2013	B00y 2400	e"	14.1200	Conductivity (σ):	1.88	1.90	-0.72	5
	Body 2490	e'	51.9400	Relative Permittivity (ε_r):	51.94	52.66	-1.37	5
	B00y 2400	e"	14.3700	Conductivity (σ):	1.98	1.99	-0.53	5
	Body 925	e'	53.1000	Relative Permittivity (ε_r):	53.10	55.20	-3.80	5
	BOUY 035	e"	21.9200	Conductivity (o):	1.02	0.97	4.92	5
9/26/2012	Body 820	e'	53.2400	Relative Permittivity (ε_r):	53.24	55.28	-3.68	5
0/20/2013	BOUY 620	e"	21.9900	Conductivity (o):	1.00	0.97	3.53	5
	Body 850	e'	52.9700	Relative Permittivity (ε_r):	52.97	55.16	-3.97	5
	BOUY 650	e"	21.8000	Conductivity (o):	1.03	0.99	4.37	5
	Body 1000	e'	52.9900	Relative Permittivity (c _r):	52.99	53.30	-0.58	5
	BOUY 1900	e"	14.2700	Conductivity (o):	1.51	1.52	-0.82	5
9/29/2012	Body 1950	e'	53.1800	Relative Permittivity (ε_r):	53.18	53.30	-0.23	5
0/20/2013	B00y 1850	e"	14.0800	Conductivity (σ):	1.45	1.52	-4.71	5
	Body 1015	e'	52.9400	Relative Permittivity (c _r):	52.94	53.30	-0.68	5
	Body 1915	e"	14.3100	Conductivity (o):	1.52	1.52	0.25	5
	Rody 2450	e'	51.0500	Relative Permittivity (ε_r):	51.05	52.70	-3.13	5
	B00y 2450	e"	15.0000	Conductivity (o):	2.04	1.95	4.79	5
8/28/2013	Body 2400	e'	51.2100	Relative Permittivity (ε_r):	51.21	52.77	-2.96	5
0/20/2013	D00y 2400	e"	14.8600	Conductivity (σ):	1.98	1.90	4.48	5
	Body 2480	e'	51.0000	Relative Permittivity (c _r):	51.00	52.66	-3.16	5
	D00y 2400	e"	15.0800	Conductivity (o):	2.08	1.99	4.38	5
	Body 2600	e'	51.4400	Relative Permittivity (c _r):	51.44	52.51	-2.04	5
	D00y 2000	e"	15.1300	Conductivity (o):	2.19	2.16	1.23	5
8/30/2013	Body 2495	e'	51.8300	Relative Permittivity (c _r):	51.83	52.64	-1.54	5
0/00/2010	DOUY 2490	e"	14.7300	Conductivity (o):	2.04	2.01	1.50	5
	Body 2690	e'	51.0200	Relative Permittivity (c _r):	51.02	52.40	-2.63	5
	BOUY 2090	e"	15.5300	Conductivity (o):	2.32	2.29	1.55	5

Page 35 of 56

11. System Performance Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

11.1. System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm ± 0.5 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm ± 0.5 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm. For 5 GHz band - Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

11.2. Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System Dipolo	Sorial No.	Cal Data		Target SAR Values (mW/g)				
System Dipole	Senar No.	Cal. Dale		1g/10g	Head	Body		
	14140	10/4/2012	025	1g	9.45	9.50		
D035V2	40142	10/4/2012	030	10g	6.23	6.29		
D925\/2	44002	10/24/2012	925	1g	9.58	9.48		
D033VZ	40002	10/24/2012	000	10g	6.28	6.26		
D1000\/2	Ed160	10/4/2012	1000	1g	39.4	39.6		
D1900V2	50105	10/4/2012	1900	10g	20.7	21.1		
D2450\/2	800	10/5/2012	2450	1g	53.6	51.7		
D2450V2	2450V2 899 10/5/2012		2450	10g	25.0	24.3		
	D2600\/2 1036 3/		2600	1g	57.8	55.2		
D2000V2	1030	3/11/2013	2000	10g	25.9	24.4		

UL Verification Services Inc.

Page 36 of 56

11.3. System Performance Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR Lab D

Dete	System	Dipole	т	<u></u>	Me	easured Resu	ults	Target	Dalta	Est./Zoom	Diet
Tested	Туре	Serial #	Liq	s. Juid	Area Scan	Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	Ratio ±3 %	No.
8/16/2013	D1000\/2	5d163	Body	1g	3.81	3.85	38.50	39.60	-2.78	-1.05	12
0/10/2013	D1900v2	50105	Bouy	10g	1.91	2.07	20.70	21.10	-1.90		1,2
8/20/2013	D8351/2	44142	Body	1g	0.96	0.94	9.39	9.50	-1.16	2.29	3.4
0/20/2013	D03372	40142	Bouy	10g	0.64	0.63	6.27	6.29	-0.32		5,4
0/0/2012	D8351/2	44002	Body	1g	0.96	0.95	9.48	9.48	0.00	1.46	
9/9/2013	D03372	40002	Bouy	10g	0.64	0.63	6.26	6.26	0.00		
0/13/2013	D835\/2	44002	Body	1g	0.96	0.95	9.51	9.48	0.32	0.83	5.6
3/13/2013	D000V2	40002	Douy	10g	0.64	0.63	6.25	6.26	-0.16		5,0

SAR Lab 1

Dete	System	Dipole	т	<u></u>	Me	easured Resu	ults	Target	Dolto	Est./Zoom	Diet
Tested	Туре	Serial #	Liq	s. Juid	Area Scan	Zoom Scan	Normalize to 1 W	(Ref. Value)	±10 %	Ratio ±3 %	No.
8/21/2013	D1000\/2	5d163	Body	1g	4.20	4.28	42.80	39.60	8.08	-1.90	78
0/21/2013	D1900V2	50105	Douy	10g	2.11	2.27	22.70	21.10	7.58		7,0
8/22/2012	D2450\/2	800	Body	1g	5.67	5.64	56.40	51.70	9.09	0.53	0.10
0/22/2013	D2430V2	099	Bouy	10g	2.59	2.61	26.10	24.30	7.41		9,10
8/26/2012	D835\/2	44142	Body	1g	1.04	1.01	10.10	9.50	6.32	2.88	11 12
0/20/2013	D03372	40142	Bouy	10g	0.70	0.67	6.66	6.29	5.88		11,12
8/28/2012	D1000\/2	54163	Body	1g	3.79	3.83	38.30	39.60	-3.28	-1.06	
0/20/2013	D1900V2	50105	Bouy	10g	1.93	2.05	20.50	21.10	-2.84		
8/28/2012	D2450\/2	800	Body	1g	5.47	5.48	54.80	51.70	6.00	-0.18	
0/20/2013	D2430V2	099	Bouy	10g	2.50	2.55	25.50	24.30	4.94		
8/20/2012	D2600\/2	1026	Body	1g	5.79	5.58	55.80	55.20	1.09	3.63	12 14
0/30/2013	D2000V2	1030	Bouy	10g	2.54	2.44	24.40	24.40	0.00		13,14

SAR Test Results 12.

12.1. CDMA BC 0

	Diet				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	(mm)	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			1013	824.70	24.5	23.7	1.130	1.359		
Rear	10	(Rel_0)	384	836.52	24.5	23.6	1.200	1.476	1	
		(1(0). 0)	777	848.31	24.5	23.5	1.130	1.423		
			1013	824.70	24.5	23.7	0.794	0.955		
Front	10		384	836.52	24.5	23.6	0.875	1.076		
		(1101.0)	777	848.31	24.5	23.5	0.847	1.066		
			1013	824.70	24.5	23.7				
Edge 1	10	(Rel_0)	384	836.52	24.5	23.6	0.499	0.614		
		(1(0). 0)	777	848.31	24.5	23.5				
			1013	824.70	24.5	23.7				
Edge 2	10	(Rel 0)	384	836.52	24.5	23.6	0.058	0.071		
		(1(0). 0)	777	848.31	24.5	23.5				
			1013	824.70	24.5	23.7				
Edge 3 10	10	(Rel 0)	384	836.52	24.5	23.6	0.417	0.513		
		(1(0). 0)	777	848.31	24.5	23.5				

12.2. CDMA BC 1

	Diet				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	(mm)	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			25	1851.25	23.5	23.0				
Rear	10	(Rel 0)	600	1880.00	23.5	23.5	0.546	0.546		
		(1101.0)	1175	1908.75	23.5	23.1				
			25	1851.25	23.5	23.0				
Front	10		600	1880.00	23.5	23.5	0.753	0.753	2	
		(1001.0)	1175	1908.75	23.5	23.2				
			25	1851.25	23.5	23.0				
Edge 1	10	1xEVDO (Rel 0)	600	1880.00	23.5	23.5	0.320	0.320		
		(1101.0)	1175	1908.75	23.5	23.1				
			25	1851.25	23.5	23.0				
Edge 2	10	(Rel 0)	600	1880.00	23.5	23.5	0.100	0.100		
		(1101.0)	1175	1908.75	23.5	23.1				
			25	1851.25	23.5	23.0				
Edge 3 1	10	1xEVDO (Rel 0)	600	1880.00	23.5	23.5	0.365	0.365		
		(1.01.0)	1175	1908.75	23.5	23.1				

Note(s):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 \cdot ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

· ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA

Page 38 of 56

12.3. CDMA BC 10

	Dict				Power	(dBm)	1-g SAF	R (W/kg)	Plot	
Test Position	(mm)	Mode	Ch #.	Freq. (MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			476	817.90	24.5	23.9	1.110	1.274	3	
Rear	10	(Rel 0)	580	820.50	24.5	23.9	1.110	1.274	4	
		(1(0). 0)	684	823.10	24.5	24.0	1.120	1.257		
			476	817.90	24.5	23.9	0.764	0.877		
Front	10	(Rel 0)	580	820.50	24.5	23.9	0.777	0.892		
		(1(c), 0)	684	823.10	24.5	24.0	0.794	0.891		
		1xEVDO (Rel. 0)	476	817.90	24.5	23.9				
Edge 1	10		580	820.50	24.5	23.9	0.413	0.474		
			684	823.10	24.5	24.0				
			476	817.90	24.5	23.9				
Edge 2	10		580	820.50	24.5	23.9	0.047	0.054		
		(1(0). 0)	684	823.10	24.5	24.0				
Edge 3 10			476	817.90	24.5	23.9				
	10	1xEVDO	580	820.50	24.5	23.9	0.342	0.393		
			684	823.10	24.5	24.0				

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

· ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

• ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

UL Verification Services Inc. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4031G TEL: (510) 771-1000 FAX: (510) 661-0888 Inc.

Page 39 of 56

12.4. LTE FDD Band 25 (10 MHz Bandwidth)

		Dist					Power	(dBm)	1-g SAR (W/kg)		Plot	
Test Position	Mode	(mm)	Ch #.	Freq. (MHz)	Allocation	Start	Tune-up limit	Meas.	Meas.	Scaled	No.	
			26000	1860.0	1							
			20090	1000.0	25							
Rear	OPSK	10	26365	1882 5	1	0	24.0	23.7	0.715	0.766		
Itea	QI OIX	10	20303	1002.0	25	0	23.0	23.0	0.612	0.612		
			26640	1905.0	1							
				1000.0	25							
			26090	1860.0	1							
Front QPSK 10				25								
	10	26365	1882.5	1	0	24.0	23.9	0.754	0.772	5		
	10		1002.0	25	0	23.0	23.0	0.701	0.701			
		26640	1905.0	1								
		20010		25								
		K 10	26090	1860.0	1							
			20000		25							
Edge 1	OPSK		26365	1882.5	1	0	24.0	23.7	0.328	0.351		
Lago	di on		20000		25	0	23.0	23.0	0.293	0.293		
			26640	1905.0	1							
			20010	1303.0	25							
				26090	1860.0	1						
			20000	1000.0	25							
Edge 2	OPSK	10	26365	1882.5	1	0	24.0	23.7	0.100	0.107		
Lago L	di on	10	20000	1002.0	25	0	23.0	23.0	0.082	0.082		
			26640	1905.0	1							
					25							
			26090	1860.0	1							
			20000	1000.0	25							
Edge 3	OPSK	10	26365	1882.5	1	0	24.0	23.7	0.347	0.372		
Lago o		10	26365	1002.0	25	0	23.0	23.0	0.335	0.335		
			26640	1905.0	1							
			20010	1000.0	25							

Note(s):

2.

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 $\Box \le 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

 $\Box \le 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz $\Box \le 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.

Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 40 of 56

12.5. LTE FDD Band 26 (10 MHz Bandwidth)

		Dist		Freq			Power	(dBm)	1-g SAR (W/kg)		Plot																
Test Position	Mode	(mm)	Ch #.	(MHz)	Allocation	Start	Tune-up limit	Meas.	Meas.	Scaled	No.																
			26740	810.0	1	0	24.0	23.4	1.060	1.217																	
			20740	019.0	25	0	23.0	22.4	0.865	0.993																	
			26865	831.5	1	24	24.0	23.8	1.340	1.403	6																
Rear	QPSK	10	20005	031.5	25	12	23.0	22.8	1.060	1.110																	
					1	24	24.0	24.0	1.220	1.220																	
			26990	844.0	25	0	23.0	22.7	1.040	1.114																	
					50	0	23.0	22.6	1.000	1.096																	
			26740	810.0	1	0	24.0	23.4	0.798	0.916																	
			20740	013.0	25	0	23.0	22.4	0.661	0.759																	
Front QPSK		26865	831 5	1	24	24.0	23.8	1.040	1.089																		
	10	20005	001.0	25	12	23.0	22.8	0.820	0.859																		
				1	24	24.0	24.0	0.961	0.961																		
		26990	844.0	25	0	23.0	22.7	0.803	0.860																		
					50	0	23.0	22.6	0.781	0.856																	
		SK 10	26740	819.0	1	0	24.0	23.4	0.492	0.565																	
			20140	013.0	25	0	23.0	22.4																			
Edge 1	OPSK		26865	831 5	1	24	24.0	23.8	0.770	0.806																	
Luge	QI UIX	10	20005	844.0	25	12	23.0	22.8	0.596	0.624																	
					1	24	24.0	24.0	0.523	0.523																	
			20000	0.77.0	25	0	23.0	22.7																			
			26740	819.0	1	0	24.0	23.4																			
			20140	010.0	25	0	23.0	22.4																			
Edge 2	OPSK	10	26865	831 5	1	24	24.0	23.8	0.059	0.062																	
Lago Z	di on	10	20000	001.0	25	12	23.0	22.8	0.047	0.049																	
			26990	844 0	1	24	24.0	24.0																			
			20000	011.0	25	0	23.0	22.7																			
			26740	819.0	1	0	24.0	23.4																			
Edge 3			20170	010.0	25	0	23.0	22.4																			
	OPSK	10	26865	831 5	1	24	24.0	23.8	0.552	0.578																	
2390 0				001.0	25	12	23.0	22.8	0.425	0.445																	
			26000	844 0	1	24	24.0	24.0																			
																				20000	0-1-1.0	25	0	23.0	22.7		

Note(s):

2.

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 $\Box \le 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

□ ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $\Box \le 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 41 of 56

12.6. LTE TDD Band 41 (20 MHz Bandwidth)

		Dist		Freq			Power	(dBm)	1-g SA	R (W/kg)	Plot	
Test Position	Mode	(mm)	Ch #.	(MHz)	Allocation	Start	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
					1	99	24.0	22.5	0.668	0.944		
			39750	2506.0	50	0	23.0	21.6	0.646	0.892		
					100	0	23.0	21.4				2
			40185		1	0	24.0	23.1	0.504	0.620		
				2549.5	50	24	23.0	21.4	0.568	0.821		
					100	0	23.0	21.3				2
					1	0	24.0	22.4	0.729	1.054		
Rear QPSK	QPSK	10	40620	2593.0	50	49	23.0	21.5	0.747	1.055		
				100	0	23.0	21.4	0.659	0.953			
				1	0	24.0	22.4	0.805	1.164	7		
		41055	2636.5	50	24	23.0	21.3	0.670	0.991			
					100	0	23.0	21.3				2
			41490	2680.0	1	0	24.0	22.4	0.716	1.035		
					50	24	23.0	21.1	0.612	0.948		
					100	0	23.0	21.0				2
			39750	2506.0	1	99	24.0	22.5	0.494	0.698		
					50	0	23.0	21.6	0.475	0.656		
					100	0	23.0	21.4				2
					1	0	24.0	23.1	0.472	0.581		
			40185	2549.5	50	24	23.0	21.4	0.506	0.731		
					100	0	23.0	21.3				2
					1	0	24.0	22.4	0.592	0.856		
Front	QPSK	10	40620	2593.0	50	49	23.0	21.5	0.446	0.630		
					100	0	23.0	21.4	0.425	0.614		
					1	0	24.0	22.4	0.572	0.827		
			41055	2636.5	50	24	23.0	21.3	0.635	0.939		
					100	0	23.0	21.3				2
			41490		1	0	24.0	22.4	0.419	0.606		
				2680.0	50	24	23.0	21.1	0.489	0.757		
					100	0	23.0	21.0				2

Note(s):

2.

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 $\Box \le 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

 $\Box \le 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz $\Box \le 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.

Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

Page 42 of 56

LTE TDD Band 41 (20 MHz Bandwidth) continued

		Dist		Freq			Power	(dBm)	1-g SAR (W/kg)) Plot	
Test Position	Mode	(mm)	Ch #.	(MHz)	Allocation	Start	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			30750	2506.0	1	99	24.0	22.5				1
			39730	2000.0	50	0	23.0	21.6				1
			40185	2549.5	1	0	24.0	23.1				1
			40105	2049.0	50	24	23.0	21.4				1
Edge 1	OPSK	10	40620	2503.0	1	0	24.0	22.4	0.412	0.596		
Luge		10	40020	2000.0	50	49	23.0	21.5	0.399	0.564		
		41055	2636.5	1	0	24.0	22.4				1	
		41000	2030.5	50	24	23.0	21.3				1	
		41490	2680.0	1	0	24.0	22.4				1	
		41450	2000.0	50	24	23.0	21.1				1	
		20750	2506.0	1	99	24.0	22.5				1	
		39730	2500.0	50	0	23.0	21.6				1	
		'SK 10	40185	2549.5	1	0	24.0	23.1				1
			40100		50	24	23.0	21.4	0.217	0.314		
Edge 2	OPSK		40620	2503.0	1	0	24.0	22.4	0.401	0.580		
Luge 2			40020	2000.0	50	49	23.0	21.5	0.442	0.624		
			41055	2636.5	1	0	24.0	22.4				1
			41055	2030.3	50	24	23.0	21.3	0.436	0.645		
			41490	2680.0	1	0	24.0	22.4				1
			41430	2000.0	50	24	23.0	21.1	0.506	0.784		
			30750	2506.0	1	99	24.0	22.5				1
			39730	2000.0	50	0	23.0	21.6				1
			40185	25/0.5	1	0	24.0	23.1				1
			40100	2040.0	50	24	23.0	21.4				1
Edge 3 QP	OPSK	10	40620	2503.0	1	0	24.0	22.4	0.124	0.179		
		10	40020	2000.0	50	49	23.0	21.5	0.138	0.195		
			41055	2636 5	1	0	24.0	22.4				1
			41000	2000.0	50	24	23.0	21.3				1
			41400	2680.0	1	0	24.0	22.4				1
			41430	2000.0	50	24	23.0	21.1				1

Note(s):

2.

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the 1. mid-band or highest output power channel is:

 $\Box \leq 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

 $\Box \le 0.6$ W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $\Box \le 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz Per KDB 941225 D05 SAR for LTE Devices v02, SAR test reduction is applied using the following criteria:

Testing for Low and High Channel is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are ≥ 0.8 W/kg. Testing for the remaining required channels is

not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.

Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.

Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.

UL Verification Services Inc.

Page 43 of 56

12.7. WiFi (2.4GHz Band)

Test		Diet		Freq	Power	(dBm)	1-g SAR	(W/kg)	Plot	
Position	Mode	(mm)	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.	Note
			1	2412	12.0	11.3				1
Rear	802.11b	10	6	2437	12.0	11.4	0.035	0.041		
			11	2462	12.0	11.4				1
			1	2412	12.0	11.3				1
Front	802.11b	10	6	2437	12.0	11.4	0.101	0.116		
			11	2462	12.0	11.4				1
			1	2412	12.0	11.3				1
Edge 1	802.11b	10	6	2437	12.0	11.4	0.158	0.181	8	
			11	2462	12.0	11.4				1

Note(s):

1. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz

• ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz

 $\cdot \leq$ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

2. Apply usual 802.11 test exclusion considerations, but include 802.11ac SAR for highest 802.11a configuration in each frequency band and each exposure condition according to April 2013 TCB Workshop Updates.

13. SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. 2)
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-q SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg 4) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

13.1. The Highest Measured SAR Configuration in Each Frequency Band

Frequency Band (MHz)	Air Interface	Hotspot (W/kg)
	CDMA BC0	1.200
850	CDMA BC10	1.120
	LTE Band 26	1.340
1000	CDMA BC1	0.753
1900	LTE Band 25	0.754
2400	WiFi 802.11b/g/n	0.158
2600	LTE Band 41	0.805

Repeated Measurement Results 13.2.

Hotspot Exposure Condition

				Ener	Meas. SAR (W/kg)		Largest to	
Frequency band	Test Position	Mode	Ch #.	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Note
LTE Band 26	Rear	QPSK	26865	831.5	1.340	1.260	1.06	1
LTE Band 41	Rear	QPSK	41055	2636.5	0.805	0.764	1.05	1

Note(s):

Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

Page 45 of 56

14. Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v05, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

$$SPLSR = (SAR_1 + SAR_2)^{1.5} / Ri$$

Where:

SAR¹ is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest measured or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

R*i* is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5} / Ri < 0.04$

14.1. Sum of the SAR for CDMA & WiFi

RF Exposure	Test	Simultaneous Scer	Transmission nario	∑ 1-g SAR	SPLSR
conditions	Position	CDMA BC 0	WiFi 2.4GHz	(mW/g)	(Yes/ No)
	Rear	1.476	0.041	1.517	No
	Front	1.076	0.116	1.192	No
Hotspot	Edge 1	0.614	0.181	0.795	No
	Edge 2	0.071		0.071	No
	Edge 3	0.513		0.513	No
RF Exposure	Test	Simultaneous Scei	Transmission nario	∑ 1-g SAR	SPLSR
conditions	Position	CDMA BC 1	WiFi 2.4GHz	(mW/g)	(Yes/ No)
	Rear	0.546	0.041	0.587	No
	Front	0.753	0.116	0.869	No
Hotspot	Edge 1	0.320	0.181	0.501	No
	Edge 2	0.100		0.100	No
	Edge 3	0.365		0.365	No
RF Exposure	Test	Simultaneous Scer	Transmission nario	∑ 1-g SAR	SPLSR
conditions	Position	CDMA BC 10	WiFi 2.4GHz	(mvv/g)	(Yes/INO)
	Rear	1.274	0.041	1.315	No
	Front	0.892	0.116	1.008	No
Hotspot	Edge 1	0.474	0.181	0.655	No
	Edge 2	0.054		0.054	No
	Edge 3	0.393		0.393	No

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Page 47 of 56

14.2. Sum of the SAR for LTE & WiFi

RF Exposure	Test	Simultaneous Scei	Transmission nario	∑ 1-g SAR	SPLSR
conditions	Position	LTE Band 25	WiFi 2.4GHz	(mW/g)	(Yes/ No)
	Rear	0.766	0.041	0.807	No
	Front	0.772	0.116	0.888	No
Hotspot	Edge 1	0.351	0.181	0.532	No
	Edge 2	0.107		0.107	No
	Edge 3	0.372		0.372	No
RF Exposure	Test	Simultaneous Scei	Transmission nario	Σ 1-g SAR	SPLSR
conditions	Position	LTE Band 26	WiFi 2.4GHz	(mW/g)	(Yes/ No)
	Rear	1.403	0.041	1.444	No
	Front	1.089	0.116	1.205	No
Hotspot	Edge 1	0.806	0.181	0.987	No
	Edge 2	0.062		0.062	No
	Edge 3	0.578		0.578	No
RF Exposure	Test	Simultaneous Scei	Transmission nario	Σ 1-g SAR	SPLSR
conditions	Position	LTE Band 41	WiFi 2.4GHz	(mvv/g)	(Yes/INO)
	Rear	1.164	0.041	1.205	No
	Front	0.939	0.116	1.055	No
Hotspot	Edge 1	0.596	0.181	0.777	No
	Edge 2	0.784		0.784	No
	Edge 3	0.195		0.195	No

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required.

Page 48 of 56

15. Appendices

Refer to separated files for the following appendices.

- 15.1. System Performance Check Plots
- 15.2. Highest SAR Test Plots
- 15.3. Calibration Certificate for E-Field Probe EX3DV4 SN 3686
- 15.4. Calibration Certificate for E-Field Probe EX3DV4 SN 3929
- 15.5. Calibration Certificate for D835V2 SN 4d142
- 15.6. Calibration Certificate for D835V2 SN 4d002
- 15.7. Calibration Certificate for D1900V2 SN 5d163
- 15.8. Calibration Certificate for D2450V2 SN 899
- 15.9. Calibration Certificate for D2600V2 SN 1036

Page 49 of 56