Appendix C - Calibration All of the instruments Calibration information are listed below. - Dipole _ D835V2 SN:4d082 Calibration No.D835V2-4d082_Jul12 - Dipole _ D1900V2 SN:5d111 Calibration No.D1900V2-5d111_Jul12 - Dipole _ D2450V2 SN:869 Calibration No.D2450V2-869_Jun12 - Dipole _ D2600V2 SN:1007 Calibration No.D2600V2-1007_Sep12 - Probe _ EX3DV4 SN:3820 Calibration No.EX3-3820_Dec12 - Probe _ EX3DV4 SN:3898 Calibration No.EX3-3898_Jan13 - Probe _ EX3DV3 SN:3519 Calibration No.EX3-3519_Feb13 - DAE _ DAE4 SN:913 Calibration No.DAE4-913_Jan13 - DAE _ DAE4 SN:779 Calibration No.DAE4-799_Feb13 Report Number: 1304FS11-05 Page 280 of 355 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: July 25, 2012 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Accreditation No.: SCS 108 S C Certificate No: D835V2-4d082_Jul12 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d082 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 25, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Jaraa El Daore | | Approved by: | Katja Pokovic | Technical Manager | 2011 | Certificate No: D835V2-4d082_Jul12 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 ## **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d082_Jul12 Page 2 of 8 ## Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (| **** | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.33 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.35 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 1.52 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.10 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.3 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 2.44 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.54 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 1.60 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.29 mW / g ± 16.5 % (k=2) | Certificate No: D835V2-4d082_Jul12 # Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9 Ω - 3.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.3 dB | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.0 Ω - 5.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.389 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------
------------------| | Manufactured on | October 17, 2008 | Certificate No: D835V2-4d082_Jul12 Page 4 of 8 #### DASY5 Validation Report for Head TSL Date: 25.07.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 · Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.079 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.436 mW/g SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.71 mW/g -2.40 -4.80 -7.20 0 dB = 2.71 mW/g = 8.66 dB mW/g Certificate No: D835V2-4d082_Jul12 # Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d082_Jul12 Page 6 of 8 ## **DASY5 Validation Report for Body TSL** Date: 25.07.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d082 Communication System: CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.616 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.563 mW/g SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g Maximum value of SAR (measured) = 2.85 mW/g 0 dB = 2.85 mW/g = 9.10 dB mW/g Certificate No: D835V2-4d082_Jul12 # Impedance Measurement Plot for Body TSL Certificate No: D835V2-4d082_Jul12 Page 8 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA. Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Accreditation No.: SCS 108 Certificate No: D1900V2-5d111_Jul12 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d111 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 20, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No, DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Dimce Illev | Laboratory Technician | D. Kier | | | | | | This calibration certificate shall not be reproduced except in full without written approval of the laboratory, Issued: July 20, 2012 Certificate No: D1900V2-5d111_Jul12 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d111 Jul12 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|----------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | 7100-2010-00-0 | | Frequency | 1900 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 39.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.82 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 39.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.8 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 10,1 mW / g | | SAR for nominal Body TSL
parameters | normalized to 1W | 40.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 5,33 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW / g ± 16.5 % (k=2) | Certificate No: D1900V2-5d111_Jul12 Page 3 of 8 # **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $49.9 \Omega + 5.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 25.0 dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.2 Ω + 6.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.5 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 28, 2008 | Certificate No: D1900V2-5d111_Jul12 Page 4 of 8 ## DASY5 Validation Report for Head TSL Date: 20.07.2012 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.871 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.499 mW/g SAR(1 g) = 9.82 mW/g; SAR(10 g) = 5.18 mW/g Maximum value of SAR (measured) = 12.1 mW/g 0 dB = 12.1 mW/g = 21.66 dB mW/g Certificate No: D1900V2-5d111_Jul12 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d111_Jul12 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 20.07.2012 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d111 Communication System: CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.399 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.454 mW/g SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 12.7 mW/g 0 dB = 12.7 mW/g = 22.08 dB mW/g Certificate No: D1900V2-5d111_Jul12 # Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d111_Jul12 Page 8 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Issued: June 18, 2012 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Accreditation No.: SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates tlent Auden Certificate No: D2450V2-869_Jun12 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 869 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 15, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|--------------------------------|-----------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP 8481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | m am. | CAL COA | Dr. L. C. W. DACCCON, LAND | 1.1.40 | | DAE4 | SN: 601 | 04-Jul-11 (No. DAE4-601_Jul11) | Jul-12 | | Secondary Standards | 1D # | Check Date (in house) | Scheduled Check | | Secondary Standards | About 1 | | | | | 1D # | Check Date (in house) | Scheduled Check | Name Function Signatu Calibrated by: Claudio Laubier Laboratory Technician Approved by: Katja Pokovic Technical Manager • This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-869_Jun12 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - Federal Communications Commission Office of Engineering & Technology (FCC OET). "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-869_Jun12 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The
following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | **** | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.8 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 54.3 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.41 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.4 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.6 ± 6 % | 2.01 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.0 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.06 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 mW / g ± 16.5 % (k=2) | Certificate No: D2450V2-869_Jun12 ## Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.0 Ω + 6.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.7 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.0~\Omega + 6.4~j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.8 dB | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.159 ns | |--|--| | 1 Committee Control Co | The Control of Co | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 18, 2010 | Certificate No: D2450V2-869_Jun12 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 15.06.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type; D2450V2; Serial: D2450V2 - SN: 869 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) · Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 99.524 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 28.407 mW/g SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.41 mW/gMaximum value of SAR (measured) = 17.5 mW/g 0 dB = 17.5 mW/g = 24.86 dB mW/g Certificate No: D2450V2-869_Jun12 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D2450V2-869_Jun12 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 14.06.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 869 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 51.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.1(838); SEMCAD X 14.6.5(6469) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.289 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.649 mW/g SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g Maximum value of SAR (measured) = 17.0 mW/g 0 dB = 17.0 mW/g = 24.61 dB
mW/g Certificate No: D2450V2-869_Jun12 # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-869_Jun12 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Issued: September 25, 2012 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 Client ATL (Auden) Certificate No: D2600V2-1007_Sep12 # CALIBRATION CERTIFICATE Object D2600V2 - SN: 1007 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 25, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Power sensor HP B481A | US37292783 | 05-Oct-11 (No. 217-01451) | Oct-12 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-11 (No. ES3-3205_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Israu El-Jaen | | Approved by: | Katja Pokovic | Technical Manager | 20 11. | This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D2600V2-1007_Sep12 Page 1 of 8 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1007_Sep12 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.2 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 2.00 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 2000 | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 14.7 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 58.4 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.58 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 26.2 mW /g ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22,0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) "C | 50.6 ± 6 % | 2.19 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | - | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 14.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 55.2 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.26 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.8 mW / g ± 16.5 % (k=2) | ## Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.9 Ω - 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 31.1 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.5 Ω - 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.0 dB | | # General Antenna Parameters and Design | 1.153 ns | | |----------|----------| | | 1.153 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 23, 2006 | Certificate No: D2600V2-1007_Sep12 Page 4 of 8 ## DASY5 Validation Report for Head TSL Date: 25.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1007 Communication System: CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.39,
4.39, 4.39); Calibrated: 30.12,2011; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.327 mW/g SAR(1 g) = 14.7 mW/g; SAR(10 g) = 6.58 mW/g Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.0 W/kg = 25.58 dB W/kg # Impedance Measurement Plot for Head TSL # DASY5 Validation Report for Body TSL Date: 25.09.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1007 Communication System: CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.19 \text{ mho/m}$; $\varepsilon_r = 50.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.16, 4.16, 4.16); Calibrated: 30.12.2011; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.06.2012 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.4 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.350 mW/g SAR(1 g) = 14 mW/g; SAR(10 g) = 6.26 mW/g Maximum value of SAR (measured) = 18.5 W/kg 0 dB = 18.5 W/kg = 25.34 dB W/kg # Impedance Measurement Plot for Body TSL Certificate No: D2600V2-1007_Sep12 Page 8 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Certificate No: EX3-3820 Dec12 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3820 Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: December 10, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: December 11, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3820_Dec12 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.; SCS 108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3820_Dec12 Page 2 of 11 EX3DV4 - SN:3820 December 10, 2012 # Probe EX3DV4 SN:3820 Manufactured: September 2, 2011 Calibrated: December 10, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3820_Dec12 Page 3 of 11 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.44 | 0.35 | 0.44 | ±10.1% | | DCP (mV) ⁸ | 99.1 | 100.3 | 99.4 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc*
(k=2) | |-----|---------------------------|------|---|---------|---------|---------|----------|---------------| | 0 | CW | 0.00 | X | 0.0 | 0.0 | 1.0 | 149.3 | ±3.0 % | | | | | Y | 0.0 | 0.0 | 1.0 | 179.2 | | | | | | Z | 0.0 | 0.0 | 1.0 | 147.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3820_Dec12 Page 316 of 355 The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 835 | 41.5 | 0.90 | 9.19 | 9.19 | 9.19 | 0.80 | 0.66 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.81 | 7.81 | 7.81 | 0.49 | 0.77 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.51 | 7.51 | 7.51 | 0.46 | 0.78 | ± 12.0 % | | 2100 | 39.8 | 1,49
 7.64 | 7.64 | 7.64 | 0.42 | 0.81 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.74 | 6.74 | 6.74 | 0.37 | 0.89 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.01 | 5.01 | 5.01 | 0.45 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.76 | 4.76 | 4.76 | 0.45 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.58 | 4.58 | 4.58 | 0.45 | 1.80 | ±13,1 % | | 5600 | 35.5 | 5.07 | 4.31 | 4.31 | 4.31 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.52 | 4.52 | 4.52 | 0.45 | 1.80 | ± 13.1 % | Certificate No: EX3-3820_Dec12 ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 835 | 55.2 | 0.97 | 9.07 | 9.07 | 9.07 | 0.32 | 1.10 | ± 12.0 % | | 1750 | 53.4 | 1,49 | 7.60 | 7.60 | 7.60 | 0.37 | 0.91 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.30 | 7.30 | 7.30 | 0.26 | 1,19 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 7.56 | 7.56 | 7.56 | 0.25 | 1.17 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.84 | 6.84 | 6.84 | 0.80 | 0.61 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.23 | 4.23 | 4.23 | 0.50 | 1.90 | ± 13.1 9 | | 5300 | 48.9 | 5.42 | 3.95 | 3.95 | 3.95 | 0.55 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.63 | 3.63 | 3.63 | 0.60 | 1.90 | ± 13.1 9 | | 5600 | 48.5 | 5.77 | 3.39 | 3.39 | 3.39 | 0.65 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.83 | 3.83 | 3.83 | 0.60 | 1.90 | ± 13.1 % | Certificate No: EX3-3820_Dec12 Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3820_Dec12 Page 7 of 11 ### Receiving Pattern (\$\phi\$), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3820_Dec12 Page 8 of 11 ### Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3820_Dec12 Page 9 of 11 ### **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Certificate No: EX3-3820_Dec12 Page 10 of 11 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3820 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (") | -69.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | Certificate No: EX3-3820_Dec12 Page 11 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Auden Accreditation No.: SCS 108 Certificate No: EX3-3898 Jan13 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3898 Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: January 14, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID: | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 20-Jun-12 (No. DAE4-660_Jun12) | Jun-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 14, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3898_Jan13 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch
antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3898_Jan13 Page 2 of 11 EX3DV4 - SN:3898 January 14, 2013 # Probe EX3DV4 SN:3898 Manufactured: October 9, 2012 Calibrated: January 14, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3898_Jan13 Page 3 of 11 EX3DV4-SN:3898 January 14, 2013 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.54 | 0.54 | 0.50 | ± 10.1 % | | DCP (mV) ⁶ | 102.3 | 99.7 | 98.7 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | C | D
dB | VR
mV | Unc ^b
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 173.3 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 173.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 165.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^{The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the} field value. EX3DV4- SN:3898 January 14, 2013 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k≃2) | |----------------------|--------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 10.23 | 10.23 | 10.23 | 0.33 | 0.94 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.70 | 9.70 | 9.70 | 0.25 | 1.01 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.67 | 9.67 | 9.67 | 0.33 | 0.94 | ± 12.0 % | | 1750 | 40,1 | 1.37 | 8.19 | 8.19 | 8.19 | 0.56 | 0.74 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.94 | 7.94 | 7.94 | 0.62 | 0.69 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.87 | 7.87 | 7.87 | 0.46 | 0.73 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.25 | 7.25 | 7,25 | 0.33 | 0.95 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.16 | 7.16 | 7.16 | 0.41 | 0.88 | ± 12.0 % | Certificate No: EX3-3898_Jan13 ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. FAt frequencies below 3 GHz, the validity of tissue parameters (ε and ε) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and ε) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4-SN:3898 January 14, 2013 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.87 | 9.87 | 9.87 | 0.52 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.58 | 9.58 | 9.58 | 0.35 | 1.02 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.52 | 9.52 | 9.52 | 0.44 | 0.89 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.04 | 8.04 | 8.04 | 0.40 | 0.84 | ± 12.0 % | | 1900 | 53.3 | 1,52 | 7.52 | 7.52 | 7.52 | 0.41 | 0.87 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.65 | 7.65 | 7.65 | 0.40 | 0.89 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.17 | 7.17 | 7.17 | 0.75 | 0.57 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.99 | 6.99 | 6.99 | 0.80 | 0.50 | ± 12.0 % | Certificate No: EX3-3898_Jan13 Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. EX3DV4-SN:3898 January 14, 2013 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3898_Jan13 Page 7 of 11 EX3DV4- SN:3898 January 14, 2013 ### Receiving Pattern (6), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3898_Jan13 Page 8 of 11 EX3DV4- SN:3898 January 14, 2013 ### Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3898_Jan13 Page 9 of 11 EX3DV4-SN:3898 January 14, 2013 ### **Conversion Factor Assessment** ## Deviation from Isotropy in Liquid Error (ø, 9), f = 900 MHz -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3898_Jan13 Page 10 of 11 EX3DV4- SN:3898 January 14, 2013 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3898 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (*) | -104.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | Certificate No: EX3-3898_Jan13 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ATL (Auden) Certificate No: EX3-3519_Feb13 Accreditation No.: SCS 108 ### CALIBRATION CERTIFICATE Object EX3DV3 - SN:3519 Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: February 20, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | 1D | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 28-Dec-12 (No. ES3-3013_Dec12) | Dec-13 | | DAE4 | SN: 660 | 31-Jan-13 (No. DAE4-660_Jan13) | Jan-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | | | | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 22, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3519_Feb13 Page 1 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 8 = 0 is normal to probe axis #### Calibration is Performed According to the
Following Standards: IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". December 2003 Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i,e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3519_Feb13 Page 2 of 11 # Probe EX3DV3 SN:3519 Manufactured: March 8, 2004 Calibrated: February 20, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3519_Feb13 Page 3 of 11 ### DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.82 | 0.70 | 0.72 | ± 10.1 % | | DCP (mV) ^{II} | 100.2 | 99.1 | 102.5 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc*
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 112.7 | ±3.0 % | | | | Y | 0.0 | 0.0 | 1.0 | | 116.6 | | | | | Z | 0.0 | 0.0 | 1.0 | | 142.1 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^{The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max: deviation from linear response applying rectangular distribution and is expressed for the square of the} ### DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|--------------------------|-------------------------|---------|---------|---------|-------|---------------|----------------| | 450 | 43.5 | 0.87 | 10.80 | 10.80 | 10.80 | 0.13 | 1.43 | ± 13.4 9 | | 750 | 41.9 | 0.89 | 11.12 | 11.12 | 11.12 | 0.18 | 1.41 | ± 12.0 9 | | 835 | 41.5 | 0.90 | 10.73 | 10.73 | 10.73 | 0.12 | 1.92 | ± 12.0 9 | | 900 | 41.5 | 0.97 | 10.72 | 10.72 | 10.72 | 0.31 | 0.90 | ± 12.0 9 | | 1750 | 40.1 | 1,37 | 9.03 | 9.03 | 9.03 | 0.30 | 0.91 | ± 12.0 9 | | 1810 | 40.0 | 1.40 | 8.85 | 8.85 | 8.85 | 0.46 | 0.72 | ± 12.0 9 | | 1900 | 40.0 | 1.40 | 8.79 | 8.79 | 8.79 | 0.34 | 0.83 | ± 12.0 9 | | 2000 | 40.0 | 1.40 | 8.76 | 8.76 | 8.76 | 0.38 | 0.83 | ± 12.0 9 | | 2100 | 39.8 | 1.49 | 8.93 | 8.93 | 8.93 | 0.76 | 0.57 | ± 12.0 9 | | 2300 | 39.5 | 1.67 | 8.40 | 8.40 | 8.40 | 0.39 | 0.80 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.94 | 7.94 | 7.94 | 0.31 | 0.92 | ± 12.0 9 | | 2600 | 39.0 | 1.96 | 7.69 | 7.69 | 7.69 | 0.36 | 0.89 | ± 12.0 9 | | 5200 | 36.0 | 4.66 | 4.99 | 4.99 | 4.99 | 0.41 | 1.80 | ± 13.1 9 | | 5300 | 35.9 | 4.76 | 4.86 | 4.86 | 4.86 | 0.42 | 1.80 | ± 13.1 9 | | 5500 | 35.6 | 4.96 | 4.51 | 4.51 | 4.51 | 0.45 | 1.80 | ± 13.1 9 | | 5600 | 35.5 | 5,07 | 4.31 | 4,31 | 4.31 | 0.45 | 1.80 | ± 13.1 9 | | 5800 | 35.3 | 5.27 | 4.28 | 4.28 | 4.28 | 0.48 | 1.80 | ± 13.1 9 | Certificate No: EX3-3519_Feb13 ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ### DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------| | 450 | 56.7 | 0.94 | 11.79 | 11.79 | 11.79 | 0.05 | 1.25 | ± 13.4 % | | 750 | 55.5 | 0.96 | 10.78 | 10.78 | 10.78 | 0.42 | 0.86 | ± 12.0 9 | | 835 | 55.2 | 0.97 | 10.56 | 10.56 | 10.56 | 0.20 | 1.37 | ± 12.0 9 | | 900 | 55.0 | 1.05 | 10.46 | 10.46 | 10.46 | 0.36 | 0.93 | ± 12.0 9 | | 1750 | 53.4 | 1.49 | 8.99 | 8.99 | 8.99 | 0.49 | 0.69 | ± 12.0 9 | | 1810 | 53.3 | 1.52 | 8.79 | 8.79 | 8.79 | 0.54 | 0.68 | ± 12.0 9 | | 1900 | 53.3 | 1.52 | 8.58 | 8.58 | 8.58 | 0.26 | 1.00 | ± 12.0 9 | | 2000 | 53.3 | 1.52 | 8.61 | 8.61 | 8.61 | 0.38 | 0.80 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 8.72 | 8.72 | 8.72 | 0.24 | 1.09 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 8.13 | 8.13 | 8.13 | 0.57 | 0.67 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 7.88 | 7.88 | 7.88 | 0.80 | 0.50 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 7.61 | 7.61 | 7.61 | 0.62 | 0.50 | ± 12.0 9 | | 3500 | 51.3 | 3.31 | 7.14 | 7.14 | 7.14 | 0.33 | 1.24 | ± 13.1 9 | | 5200 | 49.0 | 5.30 | 4.49 | 4.49 | 4.49 | 0.50 | 1.90 | ± 13.1 9 | | 5300 | 48.9 | 5.42 | 4.27 | 4.27 | 4.27 | 0.50 | 1.90 | ± 13.1 9 | | 5500 | 48.6 | 5.65 | 3.96 | 3.96 | 3,96 | 0.55 | 1.90 | ± 13.1 9 | | 5600 | 48.5 | 5.77 | 3.63 | 3.63 | 3.63 | 0.60 | 1.90 | ± 13.1 9 | | 5800 | 48.2 | 6.00 | 3.88 | 3.88 | 3.88 | 0.59 | 1.90 | ±13.19 | Certificate No: EX3-3519_Feb13 ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^C At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3519_Feb13 Page 7 of 11 ## Receiving Pattern (\$\phi\$), \$\text{9} = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3519_Feb13 Page 8 of 11 ### Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3519_Feb13 Page 9 of 11 ### Conversion Factor Assessment ### Deviation from Isotropy in Liquid Error (\$\phi\$, \$\text{8}\$), f = 900 MHz Certificate No: EX3-3519_Feb13 Page 10 of 11 EX3DV3-SN:3519 February 20, 2013 ## DASY/EASY - Parameters of Probe: EX3DV3 - SN:3519 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -93.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |
Certificate No: EX3-3519_Feb13 Page 11 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Accreditation No.: SCS 108 Certificate No: DAE4-913 Jan13 #### Auden CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BK - SN: 913 Object QA CAL-06.v25 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) January 17, 2013 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-Oct-12 (No:12728) Oct-13 ID# Check Date (in house) Scheduled Check Secondary Standards SE UWS 053 AA 1001 07-Jan-13 (in house check) Auto DAF Calibration Unit In house check: Jan-14 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-13 (in house check) In house check: Jan-14 Name Function Calibrated by: R.Mayoraz Technician Approved by: Fin Bombolt Deputy Technical Manager Issued: January 17, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: DAE4-913_Jan13 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-913_Jan13 Page 2 of 5 ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.111 ± 0.02% (k=2) | 404.505 ± 0.02% (k=2) | 405.059 ± 0.02% (k=2) | | Low Range | 3.98038 ± 1.55% (k=2) | 4.00381 ± 1.55% (k=2) | 4.00723 ± 1.55% (k=2) | #### Connector Angle | Connector Angle to be used in DASY system | 166.5 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE4-913_Jan13 Page 3 of 5 #### Appendix 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199992.18 | -3.17 | -0.00 | | Channel X + Input | 20004.64 | 4.17 | 0.02 | | Channel X - Input | -19999.26 | 1.36 | -0.01 | | Channel Y + Input | 199992.90 | -2.62 | -0.00 | | Channel Y + Input | 20002.29 | 1.82 | 0.01 | | Channel Y - Input | -20001.68 | -0.85 | 0.00 | | Channel Z + Input | 199993.44 | -1.64 | -0.00 | | Channel Z + Input | 20001.93 | 1.54 | 0.01 | | Channel Z - Input | -20003.09 | -2.21 | 0.01 | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.84 | 1.07 | 0.05 | | Channel X + Input | 202.14 | 0.85 | 0.42 | | Channel X - Input | -197.36 | 1,42 | -0.71 | | Channel Y + Input | 2001,54 | 1.00 | 0.05 | | Channel Y + Input | 201.60 | 0.58 | 0.29 | | Channel Y - Input | -198.30 | 0.53 | -0.27 | | Channel Z + Input | 2001.66 | 0.97 | 0.05 | | Channel Z + Input | 199.65 | -1.47 | -0.73 | | Channel Z - Input | -200.39 | -1.51 | 0.76 | | | | | | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -13.74 | -15.38 | | | - 200 | 16.94 | 15.33 | | Channel Y | 200 | -5.53 | -5.64 | | | - 200 | 4.24 | 3.88 | | Channel Z | 200 | 10.67 | 10.40 | | | - 200 | -12.85 | -13.37 | | | | | | Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 0.78 | -4.35 | | Channel Y | 200 | 7.34 | | 0.99 | | Channel Z | 200 | 10.17 | 5.58 | | Certificate No: DAE4-913_Jan13 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15750 | 15632 | | Channel Y | 15959 | 16616 | | Channel Z | 16001 | 16838 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(µV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 1.01 | -0.20 | 2.50 | 0.55 | | Channel Y | -0.10 | -2.09 | 1.79 | 0.75 | | Channel Z | -0.93 | -2.56 | 0.26 | 0.58 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-913_Jan13 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | Object | DAE4 - SD 000 D04 BJ - SN: 779 | | | |---|---|---|--| | Calibration procedure(s) | QA CAL-06.v25
Calibration proced | dure for the data acquisition electr | onics (DAE) | | Calibration date: | February 13, 2013 | 3 | | | The measurements and the unce | ertainties with confidence pro | onal standards, which realize the physical units
obability are given on the following pages and | | | | | f facility: environment
temperature (22 \pm 3)°C a | and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | Cal Date (Certificate No.) | and humidity < 70%. Scheduled Calibration | | Calibration Equipment used (M& | TE critical for calibration) | | | | Calibration Equipment used (M&
Primary Standards
Kelthley Multimeter Type 2001
Secondary Standards | TE critical for calibration) ID # SN: 0810278 ID # | Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) | Scheduled Calibration Oct-13 Scheduled Check | | All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | ID # SN: 0810278 ID # SE UWS 053 AA 1001 | Cal Date (Certificate No.)
02-Oct-12 (No:12728) | Scheduled Calibration Oct-13 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit | ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) | Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14 | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001
Secondary Standards
Auto DAE Calibration Unit | ID # SN: 0810278 ID # SE UWS 053 AA 1001 | Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) | Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 | Certificate No: DAE4-779_Feb13 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-779_Feb13 Page 2 of 5 #### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1µV, Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.452 ± 0.02% (k=2) | 403.694 ± 0.02% (k=2) | 403.914 ± 0.02% (k=2) | | Low Range | 3.96902 ± 1.55% (k=2) | 3.97887 ± 1.55% (k=2) | 3.99319 ± 1.55% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 156.5°±1° | |---|-----------| |---|-----------| Certificate No: DAE4-779_Feb13 #### Appendix 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199996,96 | 1.92 | 0.00 | | Channel X + Input | 20001.89 | 1.69 | 0.01 | | Channel X - Input | -19996.92 | 3.97 | -0.02 | | Channel Y + Input | 199996.16 | 1.24 | 0.00 | | Channel Y + Input | 19999.20 | -0.93 | -0.00 | | Channel Y - Input | -20000,26 | 0.76 | -0.00 | | Channel Z + Input | 199997.40 | 2.46 | 0.00 | | Channel Z + Input | 20001.63 | 1.50 | 0.01 | | Channel Z - Input | ~19998.30 | 2.69 | -0.01 | | Low Range | Reading (µV) | Difference (µV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.21 | 0.58 | 0.03 | | Channel X + Input | 201.35 | 0.31 | 0.15 | | Channel X - Input | -198.61 | 0.26 | -0.13 | | Channel Y + Input | 2000.66 | 0.18 | 0.01 | | Channel Y + Input | 200,39 | -0.58 | -0.29 | | Channel Y - Input | -199.01 | 0.03 | -0.01 | | Channel Z + Input | 2000.62 | 0.22 | 0.01 | | Channel Z + Input | 200.34 | -0.52 | -0.26 | | Channel Z - Input | -199.81 | -0.83 | 0.42 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -2.78 | -4.73 | | | -200 | 5.70 | 4.22 | | Channel Y | 200 | 14.58 | 13.79 | | | - 200 | -15.41 | -15.51 | | Channel Z | 200 | 2.91 | 3.09 | | | - 200 | -4.86 | -4.74 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (µV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -2.01 | -3.72 | | Channel Y | 200 | 10.67 | | -0.58 | | Channel Z | 200 | 7.80 | 8.55 | - | Certificate No: DAE4-779_Feb13 Page 4 of 5 #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15602 | 13837 | | Channel Y | 15845 | 15843 | | Channel Z | 16202 | 15651 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.26 | -0.87 | 2.39 | 0.52 | | Channel Y | -0.70 | -2.45 | 1.01 | 0.66 | | Channel Z | -0.84 | -1.90 | 0.45 | 0.44 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-779_Feb13