

Report No.: FR690707AA Project No: CB10510254

FCC Test Report

Equipment

: Powerline WiFi 1000, Powerline WiFi Essentials

Edition 1010

Brand Name

: NETGEAR

Model No.

: PLW1000v2, PLW1010v2

FCC ID

: PY326200346

Standard

: 47 CFR FCC Part 15.247

Operating Band

: 2400 MHz - 2483.5 MHz

Function

: Point-to-multipoint; Point-to-point

Applicant : NETGEAR, Inc.

350 East Plumeria Drive, San Jose, California 95134,

The product sample received on Sep. 06, 2016 and completely tested on Oct. 11, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Sam Chen

SPORTON INTERNATIONAL INC.

FCC Test Report

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	7
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	Test Channel Mode	g
2.2	The Worst Case Measurement Configuration	10
2.3	EUT Operation during Test	11
2.4	Accessories	11
2.5	Support Equipment	11
2.6	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	14
3.1	AC Power-line Conducted Emissions	14
3.2	DTS Bandwidth	16
3.3	Maximum Conducted Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	22
4	TEST EQUIPMENT AND CALIBRATION DATA	26
APPE	ENDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPE	ENDIX B. TEST RESULTS OF DTS BANDWIDTH	
APPE	ENDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPE	ENDIX D. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPE	ENDIX E. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPE	ENDIX F. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPE	ENDIX G. TEST PHOTOS	

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 2 of 27
Report Version : Rev. 01

Report No.: FR690707AA

Issued Date : Oct. 20, 2016

Summary of Test Result

Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Limit	Result	
1.1.2	15.203	Antenna Requirement	FCC 15.203	Complied	
3.1	15.207	AC Power-line Conducted Emissions	FCC 15.207	Complied	
3.2	15.247(a)	DTS Bandwidth	≥500kHz	Complied	
3.3	15.247(b)	Maximum Conducted Output Power	Power [dBm]:30	Complied	
3.4	15.247(e)	Power Spectral Density	PSD [dBm/3kHz]:8	Complied	
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	Non-Restricted Bands: > 30 dBc	Complied	
3.6	15.247(d)	Emissions in Restricted Frequency Bands	Restricted Bands: FCC 15.209	Complied	

SPORTON INTERNATIONAL INC.
TEL: 886-3-3273456
FAX: 886-3-3270973

FCC ID: PY326200346

Page No. : 3 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

Revision History

Report No.	Version	Description	Issued Date
FR690707AA	Rev. 01	Initial issue of report	Oct. 20, 2016

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 4 of 27 Report Version : Rev. 01

Issued Date : Oct. 20, 2016

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20)	2412-2462	1-11 [11]
2400-2483.5	n (HT40)	2422-2452	3-9 [7]

Report No.: FR690707AA

Band	Mode	BWch (MHz)	Nant
2.4G	11b	20	1
2.4G	11g	20	1
2.4G	HT20	20	1
2.4G	HT40	40	1

Note:

- 2.4G is the 2.4GHz Band (2.4-2.4835GHz).
- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2,3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

Ant.	Brand	Model Name	ame Antenna Type		Gain (dBi)	
Air.	Diana	Model Haine	Antenna Type	Connector	2.4G	5G
1	M.gear	C6319-510129-A	Dipole Antenna	MHF	2	-
2	M.gear	C6319-510130-A	Dipole Antenna	MHF	-	2

Note: The EUT has two antennas.

For IEEE 802.11b/g/n mode (1TX/1RX):

Only Ant. 1 can be used as transmitting/receiving antenna.

For IEEE 802.11a/n/ac mode (1TX/1RX):

Only Ant. 2 can be used as transmitting/receiving antenna.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 5 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

FCC Test Report

1.1.3 Mode Test Duty Cycle

Mode	DC	T(s)	VBW(Hz) ≥ 1/T
11b	0.999	n/a (DC>=0.98)	n/a (DC>=0.98)
11g	0.987	n/a (DC>=0.98)	n/a (DC>=0.98)
HT20	0.987	n/a (DC>=0.98)	n/a (DC>=0.98)
HT40	0.973	947.5u	3k

Report No.: FR690707AA

: 6 of 27

: Rev. 01

: Oct. 20, 2016

1.1.4 EUT Operational Condition

EUT Power Type	Internal power supply		
Beamforming Function	☐ With beamforming ☐ Without beamforming		

1.1.5 Table for Multiple Listing

The model names in the following table are all refer to the identical product.

Equipment Name	Model Name	Description
Powerline WiFi 1000	PLW1000v2	There are identical PCBA, only different
Powerline WiFi Essentials Edition 1010	PLW1010v2	skin of housing for different marketing

From the above models, model: PLW1000v2 was selected as representative model for the test and its data was recorded in this report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456

FAX: 886-3-3270973

Issued Date

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR690707AA

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v03r05
- FCC KDB 662911 D01 v02r01
- FCC KDB 412172 D01 v01

1.3 Testing Location Information

	Testing Location					
	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.		
		TEL	:	886-3-327-3456 FAX : 886-3-318-0055		
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.		
		TEL	:	886-3-656-9065 FAX : 886-3-656-9085		

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Andy Tsai	24°C / 55%	Oct. 07, 2016
Radiated	03CH01-CB	Andy Tsai / Lucke Hsieh	24°C / 55%	Oct. 07, 2016 ~ Oct. 11, 2016
AC Conduction	CO02-CB	Edison Lin	24°C / 62%	Sep. 16, 2016

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 7 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR690707AA

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

 SPORTON INTERNATIONAL INC.
 Page No.
 : 8 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

Test Configuration of EUT 2

2.1 **Test Channel Mode**

Band	Mode	BWch (MHz)	Nss-Min	Nant	Ch. (MHz)	Range	Power Setting
2.4G	11b	20	1	1	2412	L	82
2.4G	11b	20	1	1	2437	М	88
2.4G	11b	20	1	1	2462	Н	80
2.4G	11g	20	1	1	2412	L	71
2.4G	11g	20	1	1	2437	М	76
2.4G	11g	20	1	1	2462	Н	64
2.4G	HT20	20	1,(M0)	1	2412	L	65
2.4G	HT20	20	1,(M0)	1	2437	М	75
2.4G	HT20	20	1,(M0)	1	2462	Н	60
2.4G	HT40	40	1,(M0)	1	2422	L	67
2.4G	HT40	40	1,(M0)	1	2437	М	67
2.4G	HT40	40	1,(M0)	1	2452	Н	69

Note:

Test range channel consist of L (Low Ch.), M (Middle Ch.), H (High Ch.), S (Single Ch.) and C (Straddle Band Ch.).

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 9 of 27 Report Version : Rev. 01

Issued Date

: Oct. 20, 2016

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests				
Tests Item	Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral				
Operating Mode	Operating Mode CTX			
1	CTX - 2.4G			
2 CTX - 5G				
For operating mode 1 is the worst case and it was record in this test report.				

Report No.: FR690707AA

The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density	
Test Condition	Conducted measurement at transmit chains	

Th	e Worst Case Mode for Following Conformance Tests
Tests Item	Emissions in Non-restricted Frequency Bands Emissions in Restricted Frequency Bands
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.
Operating Mode < 1GHz	CTX
1	EUT in Y axis - 2.4G
2	EUT in Z axis - 2.4G
Mode 2 has been evaluate this same test mode.	d to be the worst case among Mode 1~2, thus measurement for Mode 3 will follow
3	EUT in Z axis - 5G
For operating mode 2 is th	e worst case and it was record in this test report.
Operating Mode > 1GHz	CTX
1	EUT in Y axis
2	EUT in Z axis
Mode 2 has been evaluate this same test mode.	ed to be the worst case after evaluating. Consequently, measurement will follow

 SPORTON INTERNATIONAL INC.
 Page No.
 : 10 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

FCC Test Report

The Worst Case Mode for Following Conformance Tests				
Tests Item	Tests Item Simultaneous Transmission Analysis			
Operating Mode				
1	WLAN 2.4GHz + 5GHz			
Refer to Sporton Test Report No.: FA690707 for Co-location RF Exposure Evaluation.				

Report No.: FR690707AA

2.3 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

2.4 Accessories

	Others	
RJ-45 cable*1, Non-Shielded, 2m		

2.5 Support Equipment

For Test Site No: CO01-CB

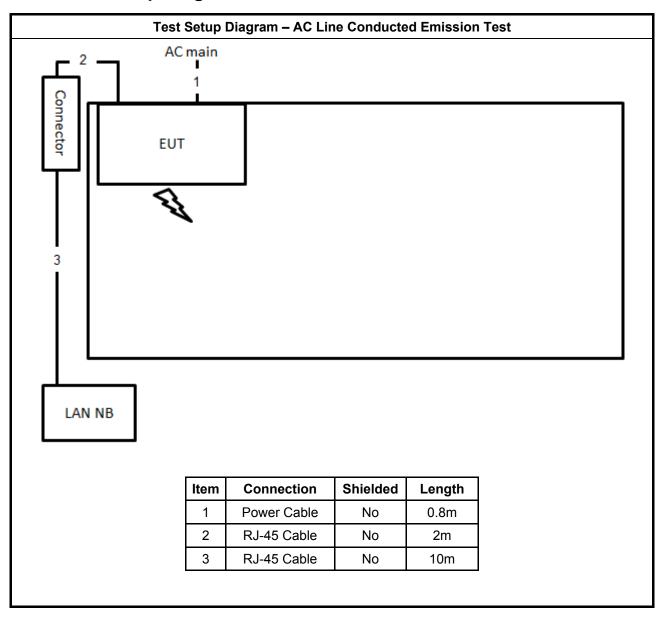
	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
1	NB	DELL	E6430	DoC		

For Test Site No: 03CH01-CB

	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
1	NB	DELL	E4300	DoC		

For Test Site No: TH01-CB

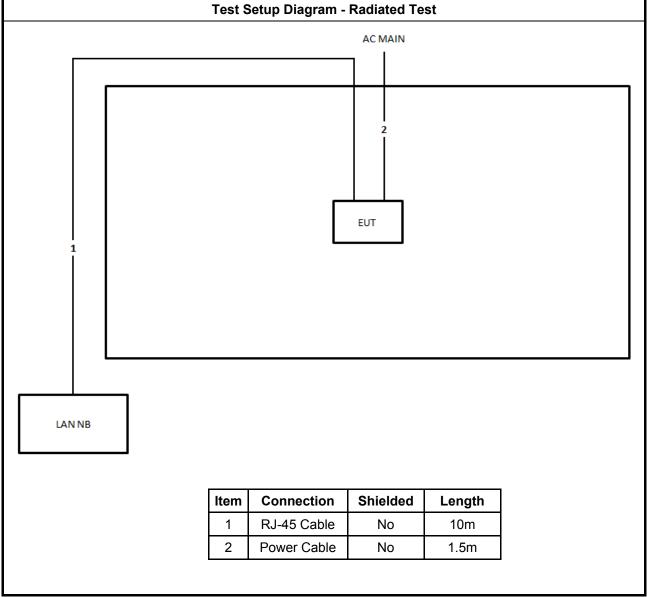
	Support Equipment					
No.	Equipment	Brand Name	Model Name	FCC ID		
1	NB	DELL	E4300	DoC		


 SPORTON INTERNATIONAL INC.
 Page No.
 : 11 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

2.6 Test Setup Diagram



SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 12 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

Report No.: FR690707AA **Test Setup Diagram - Radiated Test**

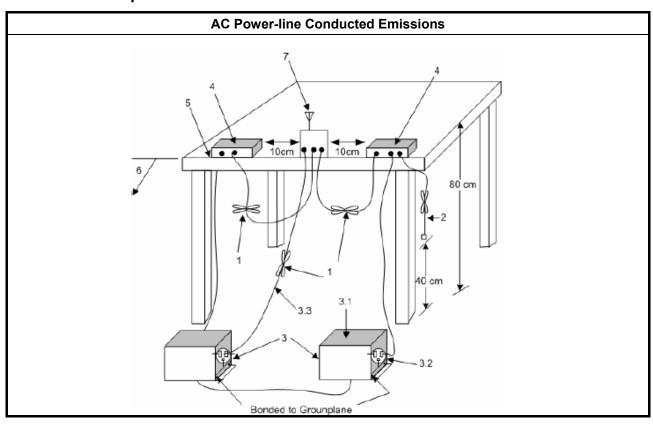
TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 13 of 27 Report Version : Rev. 01 Issued Date : Oct. 20, 2016

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Pow	er-line Conducted Emissions L	imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method	
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line	conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 14 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

FCC ID: PY326200346

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456

Report Ver
FAX: 886-3-3270973

Issued Date

Page No. : 15 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

FCC Test Report

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit				
Systems using digital modulation techniques:				
■ 6 dB bandwidth ≥ 500 kHz.				

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method					
•	For the emission bandwidth shall be measured using one of the options below:					
	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.					
	Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.					
	Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.					

3.2.4 Test Setup

Emission Bandwidth				
Spectrum Analyzer				

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456 FAX: 886-3-3270973

FCC ID: PY326200346

Page No. : 16 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

Report No.: FR690707AA

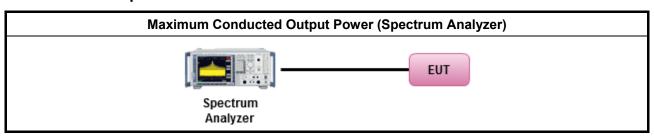
P_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, **G**_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 17 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01


 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

3.3.3 Test Procedures

	Test Method
-	Maximum Peak Conducted Output Power
	Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
	Refer as FCC KDB 558074, clause 9.1.2 Option 2 (peak power meter for VBW ≥ DTS BW)
•	Maximum Conducted Output Power
	[duty cycle ≥ 98% or external video / power trigger]
	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty cycle < 98% and average over on/off periods with duty factor
	Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over on/off periods with duty factor or gated trigger
	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM-G (using an RF average power meter).
-	For conducted measurement.
	■ If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

Report No.: FR690707AA

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

 SPORTON INTERNATIONAL INC.
 Page No.
 : 18 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit	
 Power Spectral Density (PSD) ≤ 8 dBm/3kHz 	

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

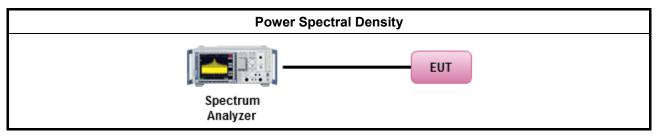
3.4.3 Test Procedures

		Test Method			
•	output the ou condu of the	power spectral density procedures that the same method as used to determine the conducted to power. If maximum peak conducted output power was measured to demonstrate compliance to the toutput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum acted output power was measured to demonstrate compliance to the output power limit, then one average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).			
	⊠ F	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).			
	[duty o	cycle ≥ 98% or external video / power trigger]			
	□ F	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).			
İ	□ F	Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-2 (slow sweep speed)			
	duty c	ycle < 98% and average over on/off periods with duty factor			
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-1 Alt (spectral trace averaging).			
	□ F	Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)			
•	For co	onducted measurement.			
	• I	f The EUT supports multiple transmit chains using options given below:			
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.			
Option 2: Measure and sum spectral maxima across the outputs. With this technique are measured at each output of the device at the required resolution bandwi maximum value (peak) of each spectrum is determined. These maximum values summed mathematically in linear power units across the outputs. These operations performed separately over frequency spans that have different out-of-band or emission limits,					
		Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.			

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456

FAX: 886-3-3270973 FCC ID: PY326200346

 Page No.
 : 19 of 27


 Report Version
 : Rev. 01

 Issued Date
 : Oct. 20, 2016

FCC Test Report

3.4.4 **Test Setup**

Report No.: FR690707AA

Test Result of Power Spectral Density

Refer as Appendix D

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456 FAX: 886-3-3270973

FCC ID: PY326200346

Issued Date

Page No.

Report Version

: 20 of 27

: Rev. 01

: Oct. 20, 2016

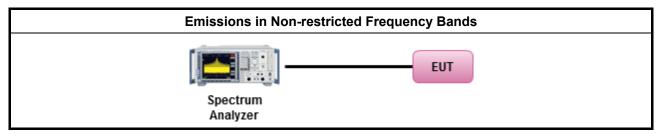
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dB)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR690707AA

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method ■ Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

 SPORTON INTERNATIONAL INC.
 Page No.
 : 21 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Report No.: FR690707AA

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 22 of 27

 TEL: 886-3-3273456
 Report Version
 : Rev. 01

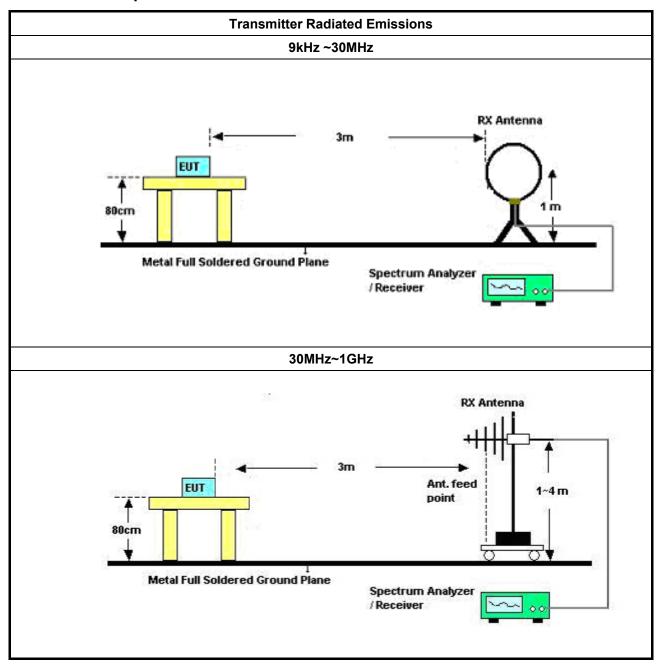
 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016

3.6.3 Test Procedures

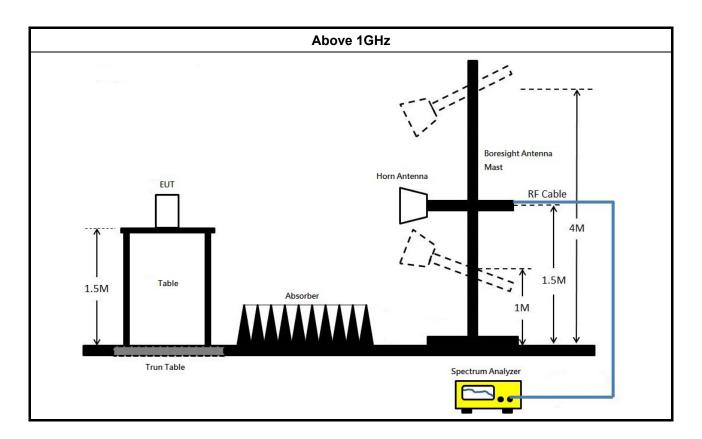
		Test Method
•	The a	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
		as ANSI C63.10, clause 6.9.2.2 band-edge testing shall be performed at the lowest frequency nel and highest frequency channel within the allowed operating band.
•	For th	ne transmitter unwanted emissions shall be measured using following options below:
	•	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 12.2.4 measurement procedure peak limit.
•	For th	ne transmitter band-edge emissions shall be measured using following options below:
		Refer as FCC KDB 558074 clause 13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
		Refer as FCC KDB 558074, clause 13.2 (ANSI C63.10, clause 6.9.3) for marker-delta method for band-edge measurements.
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
•	For c	onducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
		For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

Report No.: FR690707AA

 SPORTON INTERNATIONAL INC.
 Page No.
 : 23 of 27


 TEL: 886-3-3273456
 Report Version
 : Rev. 01

 FAX: 886-3-3270973
 Issued Date
 : Oct. 20, 2016



Report No.: FR690707AA

3.6.4 Test Setup

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 24 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.6.6 Test Result of Transmitter Radiated Unwanted Emissions

Refer as Appendix F

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 25 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 16, 2015	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 13, 2015	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	Jan. 18, 2016	Conduction (CO02-CB)
COND Cable	Woken	Cable	01	0.15MHz ~ 30MHz	Dec. 01, 2015	Conduction (CO02-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F	9561-F073	9kHz ~ 30MHz	Sep. 30, 2015	Conduction (CO02-CB)
BILOG ANTENNA	TESEQ	CBL6112D	37880	20MHz ~ 2GHz	Aug. 30, 2016	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 25, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 16, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB))
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346

 Page No.
 : 26 of 27

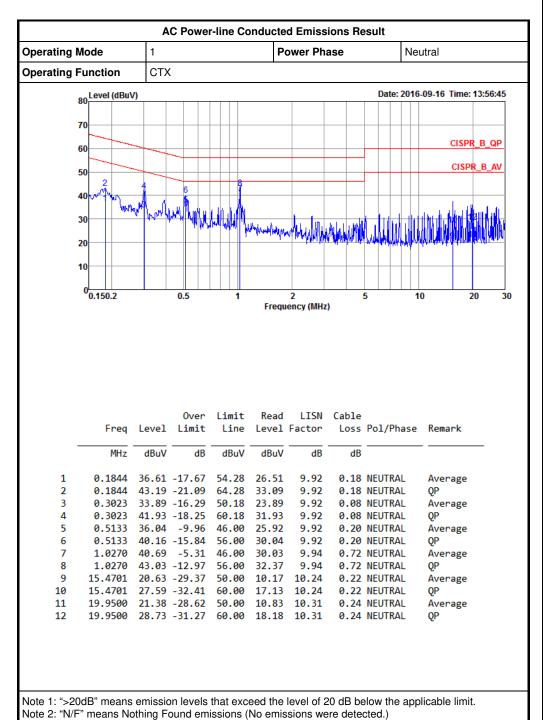
 Report Version
 : Rev. 01

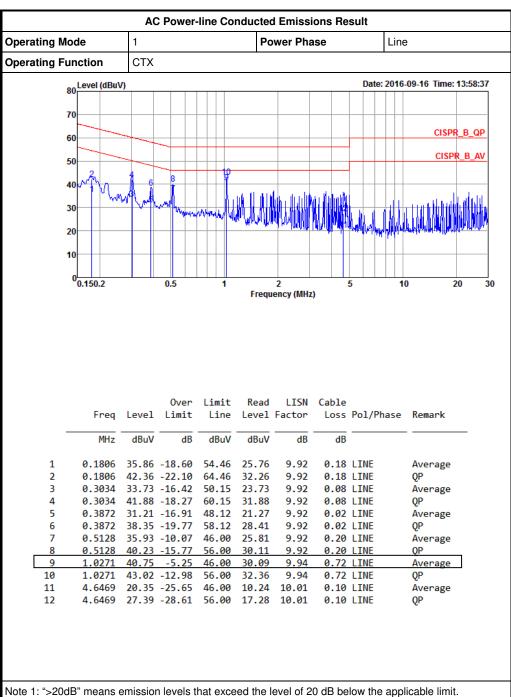
 Issued Date
 : Oct. 20, 2016

FCC Test Report

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.


N.C.R. means Non-Calibration required.


*Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: PY326200346 Page No. : 27 of 27
Report Version : Rev. 01
Issued Date : Oct. 20, 2016

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 1

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

FAX: 886-3-327-0973

EBW Result
Appendix B

Summary

FAX: 886-3-327-0973

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4G;11b;Nss1;Ntx1	8.05M	12.994M	13M0G1D	7.025M	11.719M
2.4G;11g;Nss1;Ntx1	16.325M	16.667M	16M7D1D	16.3M	16.567M
2.4G;HT20;Nss1,(M0);Ntx1	17.575M	17.741M	17M7D1D	17.575M	17.716M
2.4G;HT40;Nss1,(M0);Ntx1	35.3M	35.832M	35M8D1D	35.05M	35.782M

 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 3

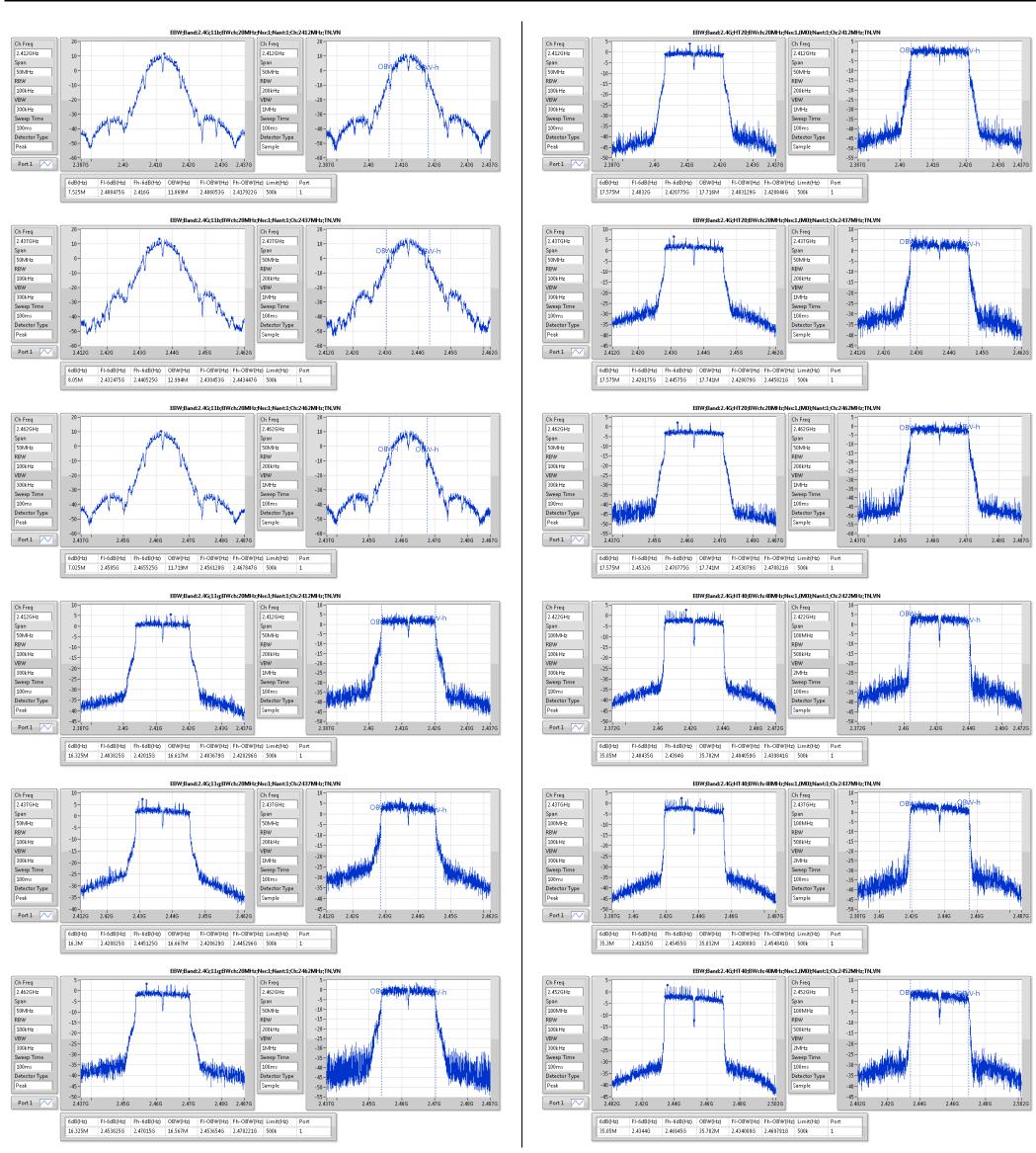
 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

EBW Result
Appendix B

Result

Mode	Result	Limit	P1-N dB	P1-OBW
			(Hz)	(Hz)
2.4G;11b;Nss1;Ntx1;2412	Pass	500k	7.525M	11.869M
2.4G;11b;Nss1;Ntx1;2437	Pass	500k	8.05M	12.994M
2.4G;11b;Nss1;Ntx1;2462	Pass	500k	7.025M	11.719M
2.4G;11g;Nss1;Ntx1;2412	Pass	500k	16.325M	16.617M
2.4G;11g;Nss1;Ntx1;2437	Pass	500k	16.3M	16.667M
2.4G;11g;Nss1;Ntx1;2462	Pass	500k	16.325M	16.567M
2.4G;HT20;Nss1,(M0);Ntx1;2412	Pass	500k	17.575M	17.716M
2.4G;HT20;Nss1,(M0);Ntx1;2437	Pass	500k	17.575M	17.741M
2.4G;HT20;Nss1,(M0);Ntx1;2462	Pass	500k	17.575M	17.741M
2.4G;HT40;Nss1,(M0);Ntx1;2422	Pass	500k	35.05M	35.782M
2.4G;HT40;Nss1,(M0);Ntx1;2437	Pass	500k	35.3M	35.832M
2.4G;HT40;Nss1,(M0);Ntx1;2452	Pass	500k	35.05M	35.782M

 SPORTON INTERNATIONAL INC.
 Page No.
 : 2 of 3


 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

TEL: 886-3-327-3456 FAX: 886-3-327-0973

FAX: 886-3-327-0973

EBW Result
Appendix B

PowerAV Result

Appendix C

Summary

Mode	Sum	Sum	EIRP	EIRP	
	(dBm)	(W)	(dBm)	(W)	
2.4G;11b;Nss1;Ntx1	22.85	0.19275	24.85	0.30549	
2.4G;11g;Nss1;Ntx1	19.60	0.0912	21.60	0.14454	
2.4G;HT20;Nss1,(M0);Ntx1	19.24	0.08395	21.24	0.13305	
2.4G;HT40;Nss1,(M0);Ntx1	18.56	0.07178	20.56	0.11376	

 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 2

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

 FAX: 886-3-327-0973

PowerAV Result

Appendix C

Result

Mode	Result	DG	EIRP	EIRP Lim.	Sum	Sum Lim.	P1
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
2.4G;11b;Nss1;Ntx1;2412	Pass	2.00	22.94	36.00	20.94	30.00	20.94
2.4G;11b;Nss1;Ntx1;2437	Pass	2.00	24.85	36.00	22.85	30.00	22.85
2.4G;11b;Nss1;Ntx1;2462	Pass	2.00	22.47	36.00	20.47	30.00	20.47
2.4G;11g;Nss1;Ntx1;2412	Pass	2.00	20.11	36.00	18.11	30.00	18.11
2.4G;11g;Nss1;Ntx1;2437	Pass	2.00	21.60	36.00	19.60	30.00	19.60
2.4G;11g;Nss1;Ntx1;2462	Pass	2.00	18.57	36.00	16.57	30.00	16.57
2.4G;HT20;Nss1,(M0);Ntx1;2412	Pass	2.00	18.75	36.00	16.75	30.00	16.75
2.4G;HT20;Nss1,(M0);Ntx1;2437	Pass	2.00	21.24	36.00	19.24	30.00	19.24
2.4G;HT20;Nss1,(M0);Ntx1;2462	Pass	2.00	17.38	36.00	15.38	30.00	15.38
2.4G;HT40;Nss1,(M0);Ntx1;2422	Pass	2.00	19.55	36.00	17.55	30.00	17.55
2.4G;HT40;Nss1,(M0);Ntx1;2437	Pass	2.00	19.69	36.00	17.69	30.00	17.69
2.4G;HT40;Nss1,(M0);Ntx1;2452	Pass	2.00	20.56	36.00	18.56	30.00	18.56

 SPORTON INTERNATIONAL INC.
 Page No.
 : 2 of 2

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

TEL: 886-3-327-3456 FAX: 886-3-327-0973

PSD Result
Appendix D

Summary

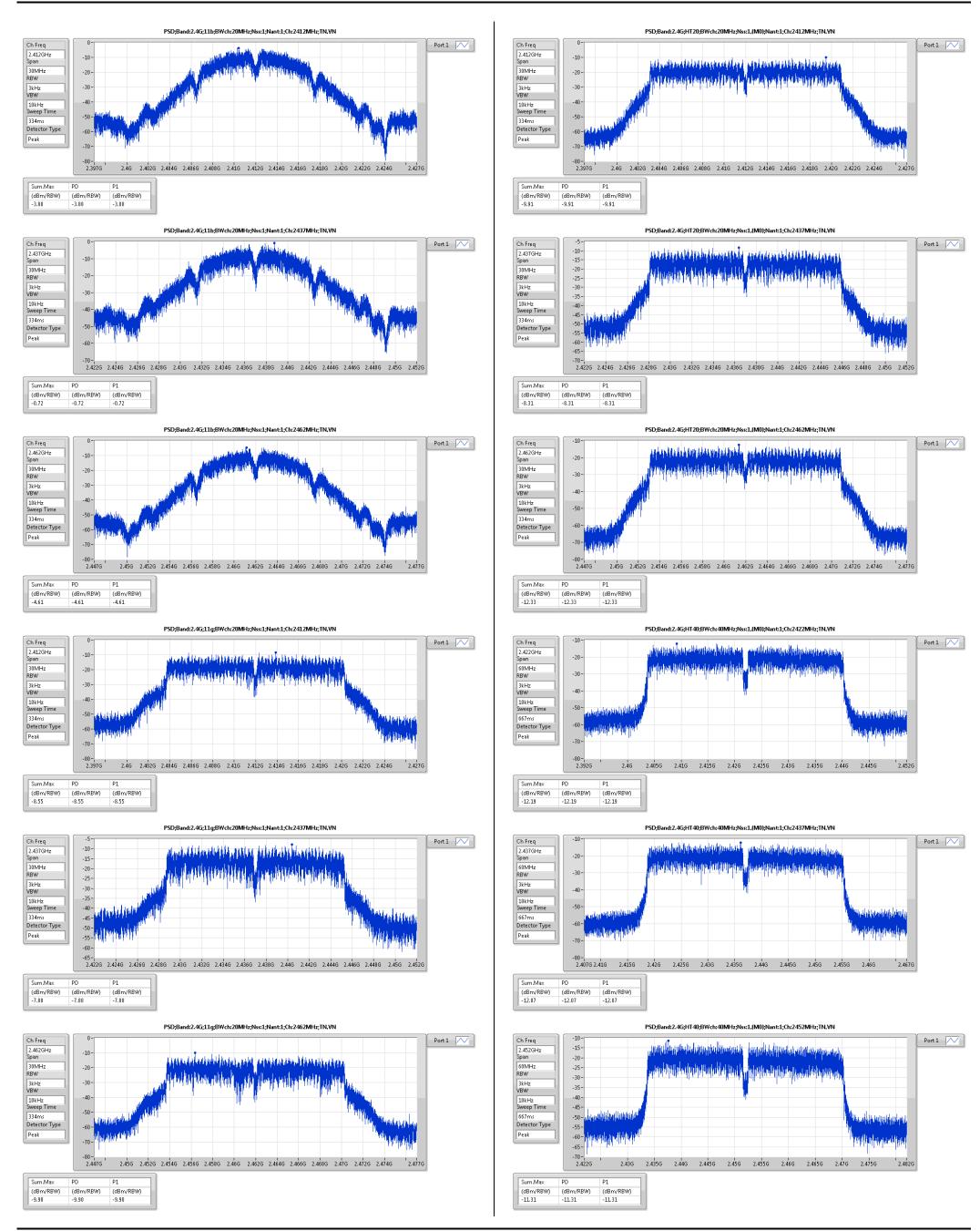
FAX: 886-3-327-0973

Mode	PD	EIRP.PD
	(dBm/RBW)	(dBm/RBW)
2.4G;11b;Nss1;Ntx1	-0.72	1.28
2.4G;11g;Nss1;Ntx1	-7.88	-5.88
2.4G;HT20;Nss1,(M0);Ntx1	-8.31	-6.31
2.4G;HT40;Nss1,(M0);Ntx1	-11.31	-9.31

 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 3

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

Appendix D PSD Result


Result

Mode	Result	Meas.RBW	Lim.RBW	BWCF	DG	PD	PD.Limit	EIRP.PD	EIRP.PD.Lim	P1
		(Hz)	(Hz)	(dB)	(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
2.4G;11b;Nss1;Ntx1;2412	Pass	3k	3k	0.00	2.00	-3.88	8.00	-1.88	Inf	-3.88
2.4G;11b;Nss1;Ntx1;2437	Pass	3k	3k	0.00	2.00	-0.72	8.00	1.28	Inf	-0.72
2.4G;11b;Nss1;Ntx1;2462	Pass	3k	3k	0.00	2.00	-4.61	8.00	-2.61	Inf	-4.61
2.4G;11g;Nss1;Ntx1;2412	Pass	3k	3k	0.00	2.00	-8.55	8.00	-6.55	Inf	-8.55
2.4G;11g;Nss1;Ntx1;2437	Pass	3k	3k	0.00	2.00	-7.88	8.00	-5.88	Inf	-7.88
2.4G;11g;Nss1;Ntx1;2462	Pass	3k	3k	0.00	2.00	-9.90	8.00	-7.90	Inf	-9.90
2.4G;HT20;Nss1,(M0);Ntx1;2412	Pass	3k	3k	0.00	2.00	-9.91	8.00	-7.91	Inf	-9.91
2.4G;HT20;Nss1,(M0);Ntx1;2437	Pass	3k	3k	0.00	2.00	-8.31	8.00	-6.31	Inf	-8.31
2.4G;HT20;Nss1,(M0);Ntx1;2462	Pass	3k	3k	0.00	2.00	-12.33	8.00	-10.33	Inf	-12.33
2.4G;HT40;Nss1,(M0);Ntx1;2422	Pass	3k	3k	0.00	2.00	-12.19	8.00	-10.19	Inf	-12.19
2.4G;HT40;Nss1,(M0);Ntx1;2437	Pass	3k	3k	0.00	2.00	-12.07	8.00	-10.07	Inf	-12.07
2.4G;HT40;Nss1,(M0);Ntx1;2452	Pass	3k	3k	0.00	2.00	-11.31	8.00	-9.31	Inf	-11.31

: 2 of 3 Page No. TEL: 886-3-327-3456 Report Version : Rev. 01 FAX: 886-3-327-0973

PSD Result
Appendix D

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 3 of 3
Report Version : Rev. 01

CSENdB Result
Appendix E

Summary

FAX: 886-3-327-0973

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4G;HT40;Nss1,(M0);Ntx1;2452	Pass	2.436907G	2.73	-27.36	2.30397G	-59.72	2.39808G	-37.31	2.48558G	-29.65	16.339511G	-52.39	1

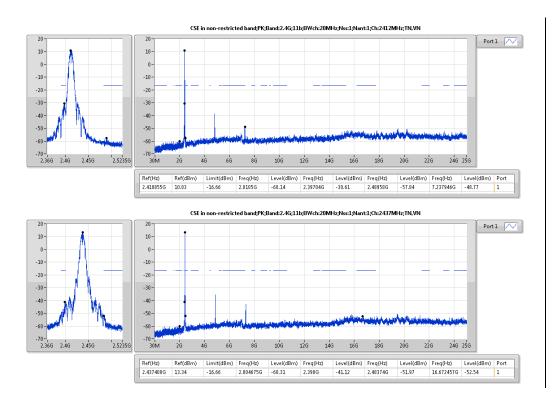
 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 5

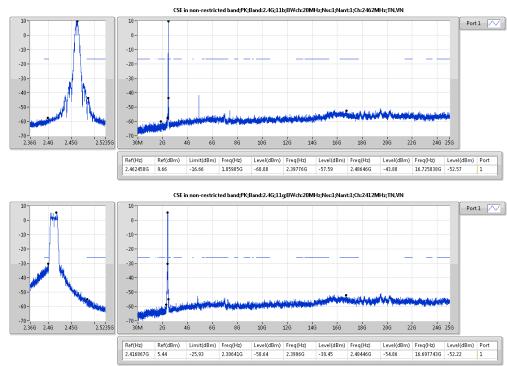
 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

CSENdB Result
Appendix E

Result

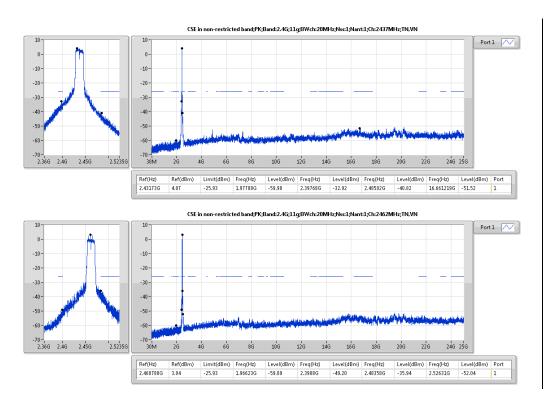
FAX: 886-3-327-0973

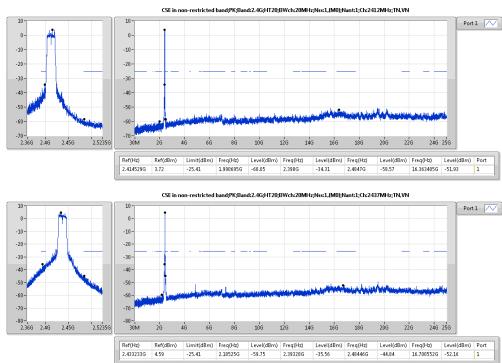

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4G;11b;Nss1;Ntx1;2412	Pass	2.410855G	10.83	-16.66	2.0105G	-60.14	2.39704G	-30.61	2.48958G	-57.84	7.237946G	-48.77	1
2.4G;11b;Nss1;Ntx1;2437	Pass	2.437408G	13.34	-16.66	2.004675G	-60.31	2.398G	-41.12	2.48374G	-51.97	16.672457G	-52.54	1
2.4G;11b;Nss1;Ntx1;2462	Pass	2.462458G	9.66	-16.66	1.85905G	-60.00	2.39776G	-57.59	2.48646G	-43.80	16.725838G	-52.57	1
2.4G;11g;Nss1;Ntx1;2412	Pass	2.416867G	5.44	-25.93	2.30641G	-58.64	2.3996G	-30.45	2.48446G	-54.86	16.697743G	-52.22	1
2.4G;11g;Nss1;Ntx1;2437	Pass	2.43173G	4.07	-25.93	1.97788G	-59.90	2.39768G	-32.92	2.48502G	-40.82	16.661219G	-51.52	1
2.4G;11g;Nss1;Ntx1;2462	Pass	2.460788G	3.04	-25.93	1.96623G	-59.89	2.3988G	-49.20	2.48358G	-35.94	2.52631G	-52.04	1
2.4G;HT20;Nss1,(M0);Ntx1;2412	Pass	2.414529G	3.72	-25.41	1.990695G	-60.05	2.398G	-34.31	2.4847G	-58.57	16.363405G	-51.93	1
2.4G;HT20;Nss1,(M0);Ntx1;2437	Pass	2.433233G	4.59	-25.41	2.18525G	-59.75	2.39328G	-35.56	2.48446G	-44.84	16.700552G	-52.16	1
2.4G;HT20;Nss1,(M0);Ntx1;2462	Pass	2.459619G	-0.28	-25.41	2.07807G	-59.89	2.39624G	-51.56	2.48422G	-41.44	6.965418G	-51.66	1
2.4G;HT40;Nss1,(M0);Ntx1;2422	Pass	2.418203G	2.04	-27.36	2.305115G	-56.46	2.39616G	-30.29	2.48398G	-46.13	16.342316G	-51.85	1
2.4G;HT40;Nss1,(M0);Ntx1;2437	Pass	2.429392G	2.64	-27.36	1.9536G	-59.62	2.39872G	-38.00	2.4851G	-41.81	16.690081G	-51.70	1
2.4G;HT40;Nss1,(M0);Ntx1;2452	Pass	2.436907G	2.73	-27.36	2.30397G	-59.72	2.39808G	-37.31	2.48558G	-29.65	16.339511G	-52.39	1


 SPORTON INTERNATIONAL INC.
 Page No.
 : 2 of 5

 TEL: 886-3-327-3456
 Report Version
 : Rev. 01

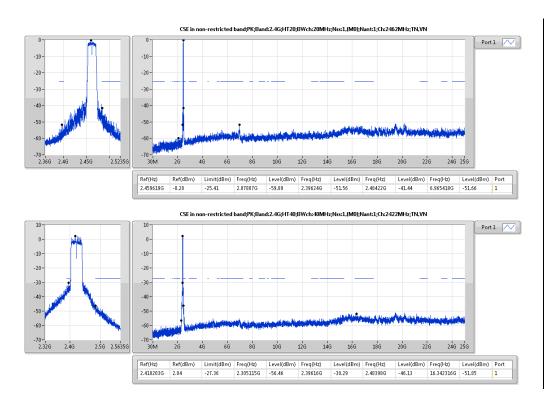
CSENdB Result Appendix E

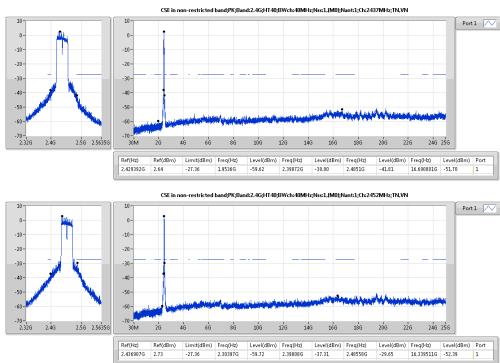



TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 3 of 5

Report Version : Rev. 01

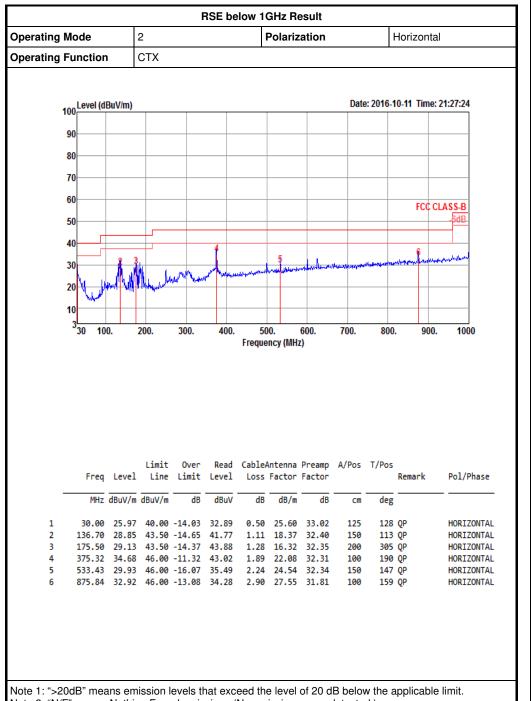
CSENdB Result Appendix E

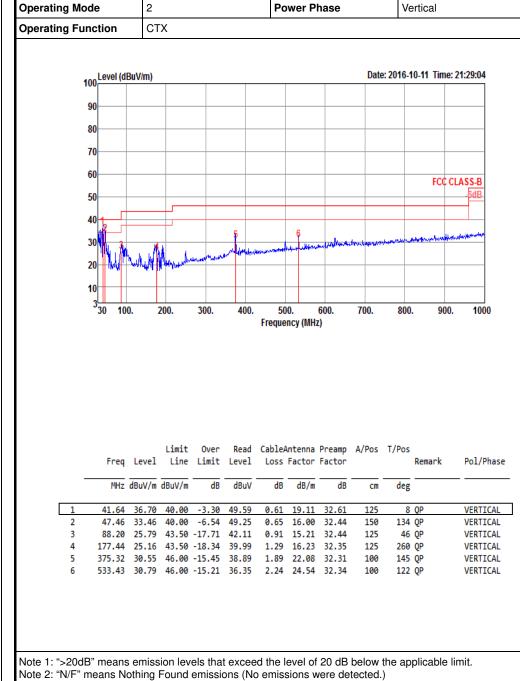



: Rev. 01

Report Version

CSENdB Result Appendix E




: Rev. 01

Report Version

RSE below 1GHz Result Appendix F.1

RSE below 1GHz Result

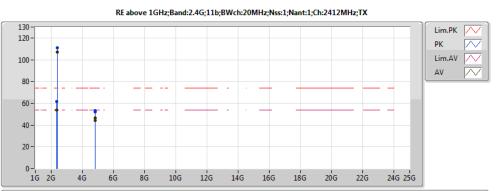
Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

FAX: 886-3-327-0973

Page No. : 1 of 1

Report Version : Rev. 01

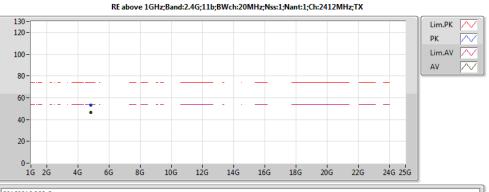
Summary


FAX: 886-3-327-0973

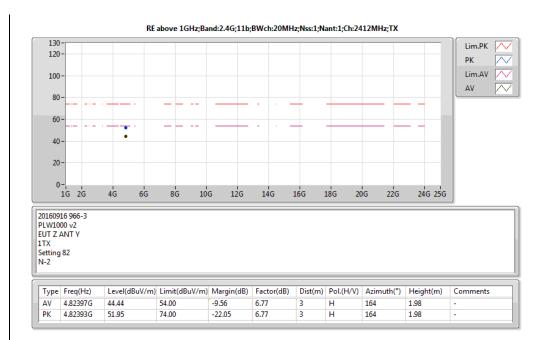
Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Pol.	Azimuth	Height
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(H/V)	(°)	(m)
2.4G;HT20;Nss1,(M0);Ntx1;2437;TX	Pass	AV	2.3898G	53.98	54.00	-0.02	33.28	3	V	40	2.10

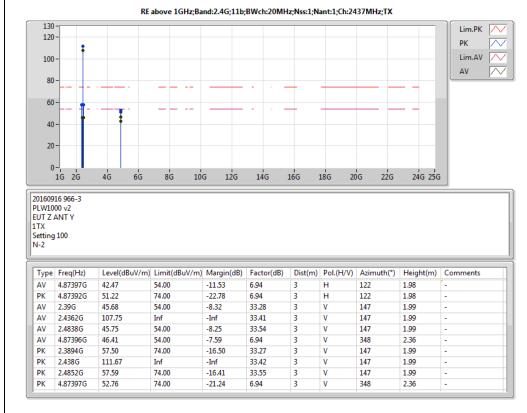
 SPORTON INTERNATIONAL INC.
 Page No.
 : 1 of 9

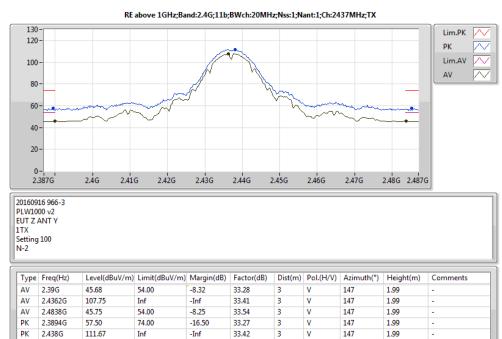
 TEL: 886-3-327-3456
 Report Version
 : Rev. 01



Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	4.82397G	44.44	54.00	-9.56	6.77	3	Н	164	1.98	-
PK	4.82393G	51.95	74.00	-22.05	6.77	3	Н	164	1.98	-
ΑV	2.3852G	53.52	54.00	-0.48	33.26	3	V	241	2.72	-
ΑV	2.4112G	106.87	Inf	-Inf	33.34	3	V	241	2.72	-
ΑV	4.82397G	46.37	54.00	-7.63	6.77	3	V	17	1.97	-
PK	2.3856G	61.80	74.00	-12.20	33.26	3	V	241	2.72	-
PK	2.411G	110.74	Inf	-Inf	33.34	3	V	241	2.72	-
PK	4.82393G	52.99	74.00	-21.01	6.77	3	V	17	1.97	-

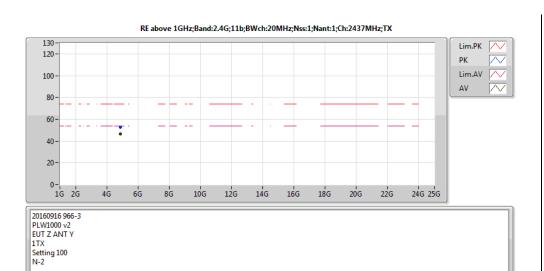

20160916 966-3	
PLW1000 v2	
EUT Z ANT Y	
11TX	
Setting 82 N-2	
N-2	

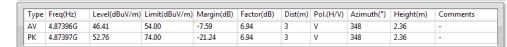

-	F (11)		11 27 18 177 1		F . (10)	D: ./ .	D 1/1100	4	11:14	
Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	2.3852G	53.52	54.00	-0.48	33.26	3	V	241	2.72	-
AV	2.4112G	106.87	Inf	-Inf	33.34	3	V	241	2.72	-
PK	2.3856G	61.80	74.00	-12.20	33.26	3	V	241	2.72	-
PK	2.411G	110.74	Inf	-Inf	33.34	3	V	241	2.72	-



4G	6G	8G	10G	12G	146	16G	186	20G	22G	24G 25G	
	46	46 66	46 06 86	46 66 86 106	46 66 86 106 126	4G 6G 8G 10G 12G 14G	46 66 86 106 126 146 166	46 66 86 106 126 146 166 186	4G 6G 8G 10G 12G 14G 16G 18G 20G	46 66 86 106 126 146 106 186 206 226	46 66 86 106 126 146 106 186 206 226 246 256

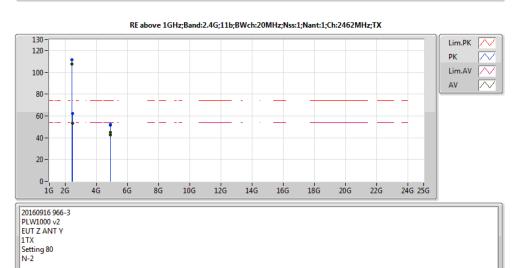
	Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Н	ΑV	4.82397G	46.37	54.00	-7.63	6.77	3	٧	17	1.97	-
	PK	4.82393G	52.99	74.00	-21.01	6.77	3	V	17	1.97	-

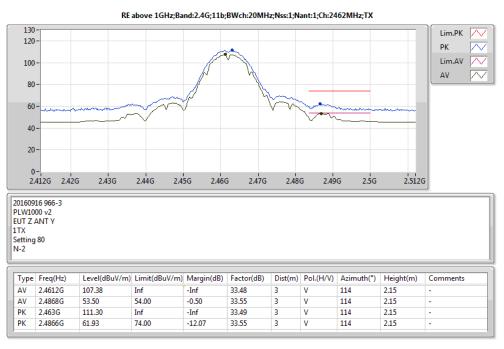


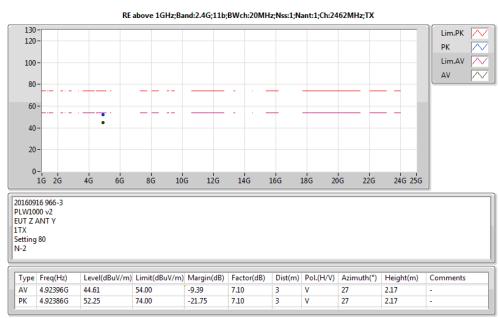

2.4852G

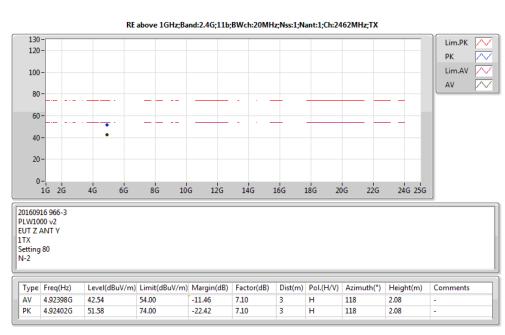
74.00

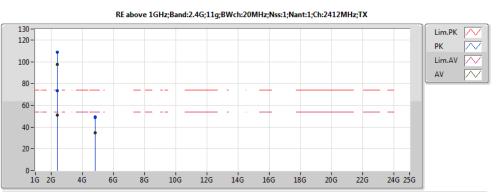
-16.41

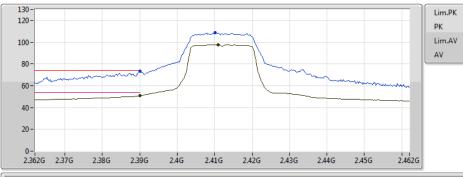






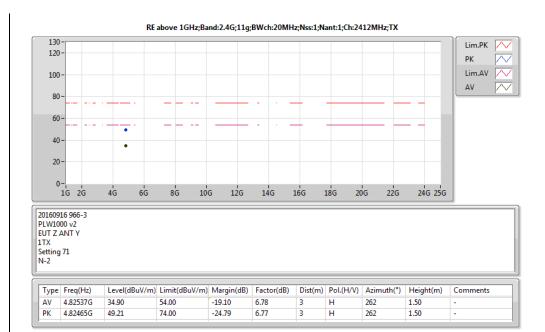

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	4.87397G	42.47	54.00	-11.53	6.94	3	Н	122	1.98	-
PK	4.87392G	51.22	74.00	-22.78	6.94	3	Н	122	1.98	-

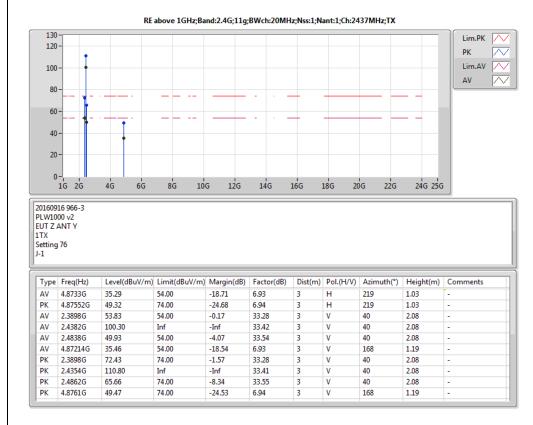

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	4.92398G	42.54	54.00	-11.46	7.10	3	Н	118	2.08	· -
PK	4.92402G	51.58	74.00	-22.42	7.10	3	Н	118	2.08	-
AV	2.4612G	107.38	Inf	-Inf	33.48	3	V	114	2.15	-
ΑV	2.4868G	53.50	54.00	-0.50	33.55	3	V	114	2.15	-
ΑV	4.92396G	44.61	54.00	-9.39	7.10	3	V	27	2.17	-
PK	2.463G	111.30	Inf	-Inf	33.49	3	V	114	2.15	-
PK	2.4866G	61.93	74.00	-12.07	33.55	3	V	114	2.15	-
PK	4.92386G	52.25	74.00	-21.75	7.10	3	V	27	2.17	-

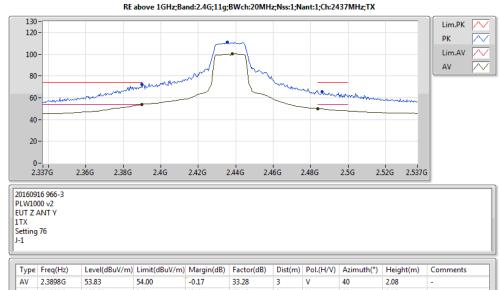


Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	4.82537G	34.90	54.00	-19.10	6.78	3	Н	262	1.50	-
PK	4.82465G	49.21	74.00	-24.79	6.77	3	Н	262	1.50	-
AV	2.39G	50.85	54.00	-3.15	33.28	3	V	248	1.65	-
AV	2.411G	97.66	Inf	-Inf	33.34	3	V	248	1.65	-
AV	4.82488G	34.99	54.00	-19.01	6.77	3	V	360	2.99	-
PK	2.39G	73.36	74.00	-0.64	33.28	3	V	248	1.65	-
PK	2.4102G	108.47	Inf	-Inf	33.34	3	٧	248	1.65	-
PK	4.82587G	48.90	74.00	-25.10	6.78	3	V	360	2.99	-

RE above 1GHz;Band:2.4G;11g;BWch:20MHz;Nss:1;Nant:1;Ch:2412MHz;TX

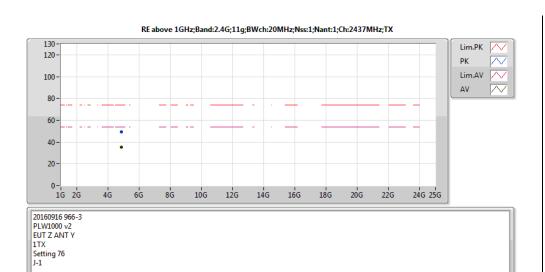

3		
ĺ	20160916 966-3	\neg
ı	PLW1000 v2	
	EUT Z ANT Y	
١	1TX	- 1
ı	Setting 71 N-2	
ı	N-2	
1		


Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	2.39G	50.85	54.00	-3.15	33.28	3	V	248	1.65	-
AV	2.411G	97.66	Inf	-Inf	33.34	3	V	248	1.65	-
PK	2.39G	73.36	74.00	-0.64	33.28	3	V	248	1.65	-
PK	2.4102G	108.47	Inf	-Inf	33.34	3	V	248	1.65	-


RE above 1GHz;Band:2.4G;11g;BWch:20MHz;Nss:1;Nant:1;Ch:2412MHz;TX Lim.PK 120-PK Lim.AV 100 ΑV 80 60 40

1G 2G	46	bG	86	10G	126	146	166	186	20G	226	246 256	
20160916 966-3 PLW1000 v2 EUT Z ANT Y 1TX Setting 71 N-2												

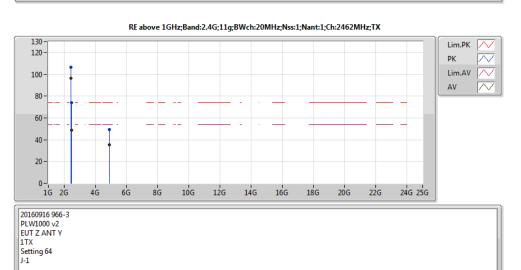
	Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Н	ΑV	4.82488G	34.99	54.00	-19.01	6.77	3	V	360	2.99	-
	PK	4.82587G	48.90	74.00	-25.10	6.78	3	V	360	2.99	-

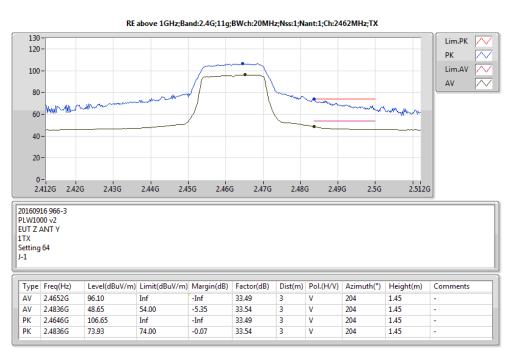


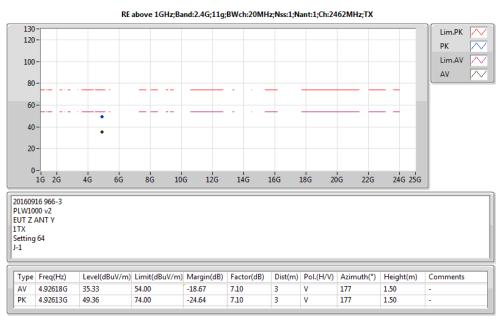
Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	2.3898G	53.83	54.00	-0.17	33.28	3	V	40	2.08	-
ΑV	2.4382G	100.30	Inf	-Inf	33.42	3	V	40	2.08	-
ΑV	2.4838G	49.93	54.00	-4.07	33.54	3	V	40	2.08	-
PK	2.3898G	72.43	74.00	-1.57	33.28	3	V	40	2.08	-
PK	2.4354G	110.80	Inf	-Inf	33.41	3	V	40	2.08	-
PK	2.4862G	65.66	74.00	-8.34	33.55	3	V	40	2.08	-

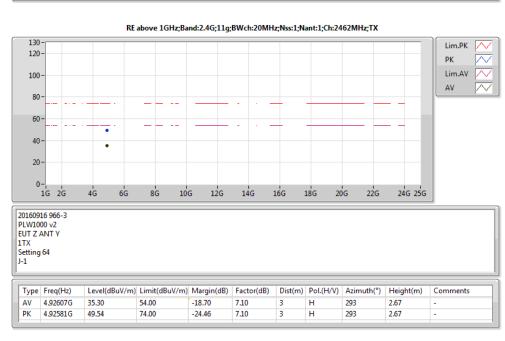
TEL: 886-3-327-3456 FAX: 886-3-327-0973

Page No. Report Version : 4 of 9 : Rev. 01

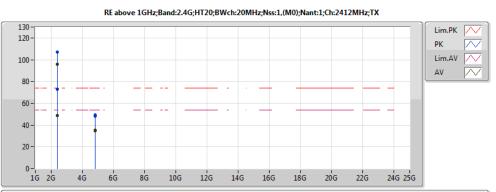



ſ.											
П	Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Н	AV	4.87214G	35.46	54.00	-18.54	6.93	3	٧	168	1.19	-
	PK	4.8761G	49.47	74.00	-24.53	6.94	3	٧	168	1.19	-




_											
T	ype	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Α	V	4.8733G	35.29	54.00	-18.71	6.93	3	Н	219	1.03	-
P	K	4.87552G	49.32	74.00	-24.68	6.94	3	Н	219	1.03	-

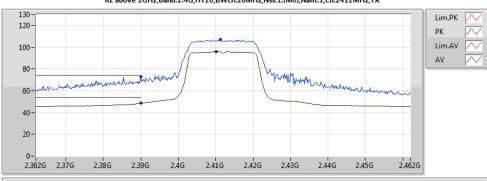
Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	4.92607G	35.30	54.00	-18.70	7.10	3	Н	293	2.67	-
PK	4.92581G	49.54	74.00	-24.46	7.10	3	Н	293	2.67	-
ΑV	2.4652G	96.10	Inf	-Inf	33.49	3	V	204	1.45	-
ΑV	2.4836G	48.65	54.00	-5.35	33.54	3	V	204	1.45	-
ΑV	4.92618G	35.33	54.00	-18.67	7.10	3	V	177	1.50	-
PK	2.4646G	106.65	Inf	-Inf	33.49	3	V	204	1.45	-
PK	2.4836G	73.93	74.00	-0.07	33.54	3	V	204	1.45	-
DK	/ 02613G	40.36	74.00	-24.64	710	3	V	177	1.50	_


PK 4.82297G

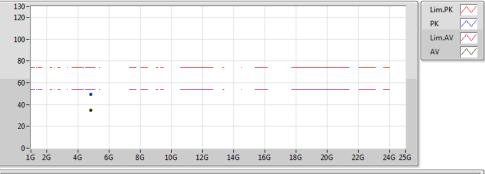
48.46

74.00

-25.54


6.77

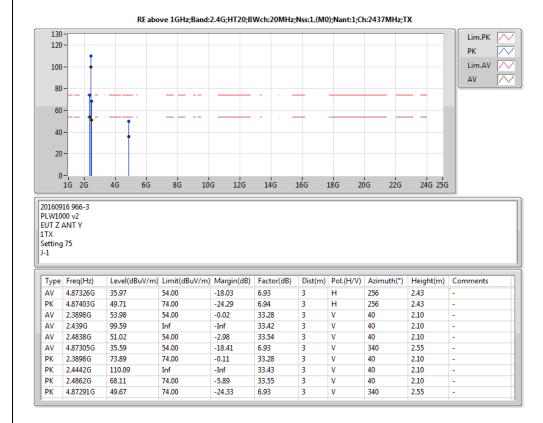
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	4.82509G	35.03	54.00	-18.97	6.78	3	Н	0	1.02	-
PK	4.82297G	48.46	74.00	-25.54	6.77	3	Н	0	1.02	-
ΑV	2.39G	48.54	54.00	-5.46	33.28	3	V	234	1.68	-
ΑV	2.4102G	95.73	Inf	-Inf	33.34	3	V	234	1.68	-
ΑV	4.82333G	34.81	54.00	-19.19	6.77	3	V	123	2.47	-
PK	2.39G	73.12	74.00	-0.88	33.28	3	V	234	1.68	-
PK	2.4112G	107.16	Inf	-Inf	33.34	3	V	234	1.68	-
PK	4.82455G	49.05	74.00	-24.95	6.77	3	V	123	2.47	-

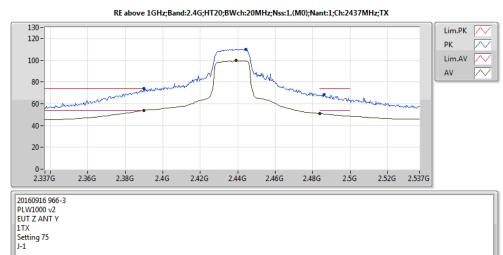

RE above 1GHz;Band:2.4G;HT20;BWch:20MHz;Nss:1,(M0);Nant:1;Ch:2412MHz;TX

Ġ		=
ı	20160916 966-3	1
ı	PLW1000 v2	-
	EUT Z ANT Y	-
ı	1TX	н
Ш	1TX Setting 65 J-1	-1
Ш	J-1	-1
U		_

T	ype	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
Α	۱V	2.39G	48.54	54.00	-5.46	33.28	3	V	234	1.68	-
Α	۱V	2.4102G	95.73	Inf	-Inf	33.34	3	V	234	1.68	-
P	K	2.39G	73.12	74.00	-0.88	33.28	3	V	234	1.68	-
P	K	2.4112G	107.16	Inf	-Inf	33.34	3	V	234	1.68	-

RE above 1GHz;Band:2.4G;HT20;BWch:20MHz;Nss:1,(M0);Nant:1;Ch:2412MHz;TX



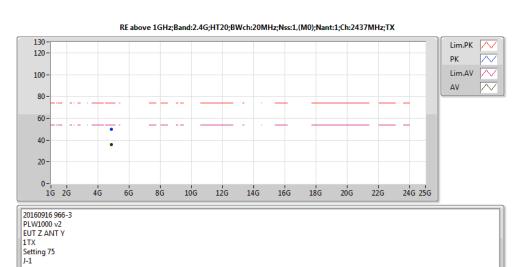

20160916 966-3		
PLW1000 v2		
EUT Z ANT Y		
1TX Setting 65 J-1		
Setting 65		
J-1		
U		

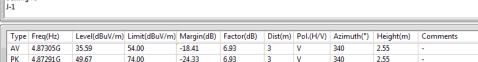
Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	4.82333G	34.81	54.00	-19.19	6.77	3	V	123	2.47	-
PK	4.82455G	49.05	74.00	-24.95	6.77	3	V	123	2.47	-

RE above 1GHz;Band:2.4G;HT20;BWch:20MHz;Nss:1,(M0);Nant:1;Ch:2412MHz;TX Lim.PK 120 -Lim.AV 100 80 40 -20 0-1G 2G 18G 22G 24G 25G 20G 20160916 966-3 PLW1000 v2 EUT Z ANT Y 1TX Setting 65 J-1 Level(dBuV/m) Limit(dBuV/m) Margin(dB) Factor(dB) Dist(m) Pol.(H/V) Azimuth(°) Height(m) Comments AV 4.82509G 35.03 54.00 -18.97 6.78 1.02

1.02

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	2.3898G	53.98	54.00	-0.02	33.28	3	٧	40	2.10	-
ΑV	2.439G	99.59	Inf	-Inf	33.42	3	٧	40	2.10	-
ΑV	2.4838G	51.02	54.00	-2.98	33.54	3	٧	40	2.10	-
PK	2.3898G	73.89	74.00	-0.11	33.28	3	٧	40	2.10	-
PK	2.4442G	110.09	Inf	-Inf	33.43	3	٧	40	2.10	-
PK	2.4862G	68.11	74.00	-5.89	33.55	3	V	40	2.10	-

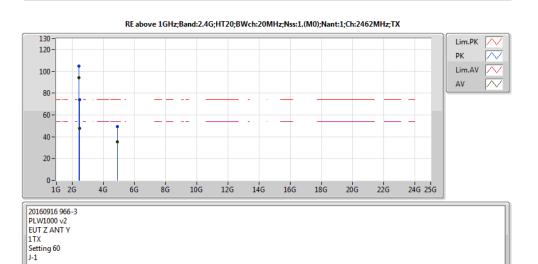

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. Report Version : 6 of 9 : Rev. 01



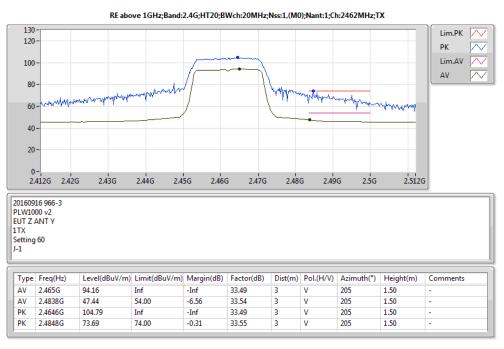
PK 4.87403G 49.71

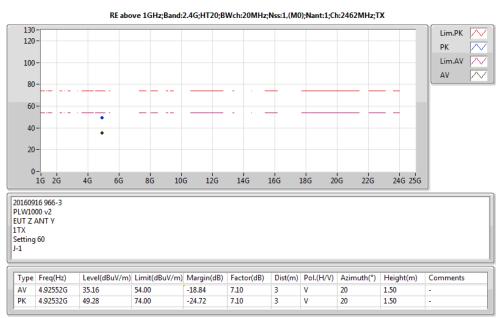
FAX: 886-3-327-0973

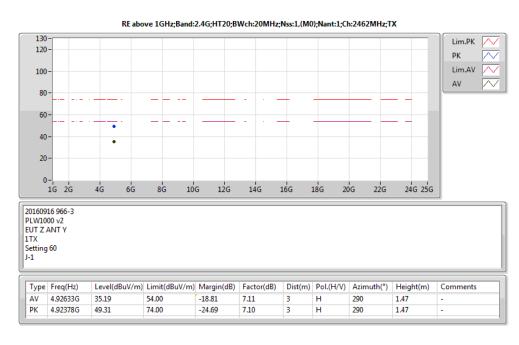
RSE above 1GHz Result Appendix F.2

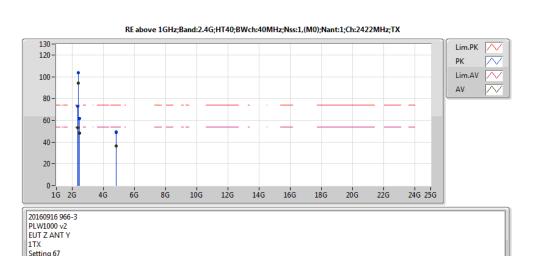

201609: PLW100 EUT Z A 1TX Setting J-1	ANT Y									
Туре	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	4.87326G	35.97	54.00	-18.03	6.93	3	Н	256	2.43	-

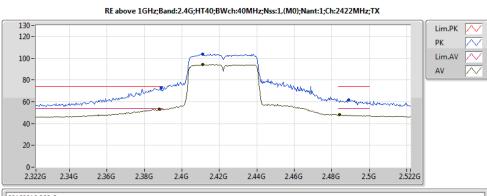
256

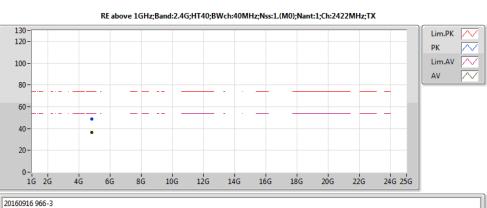

2.43


6.94


-24.29







Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
ΑV	4.84361G	36.50	54.00	-17.50	6.84	3	Н	359	1.50	-
PK	4.84584G	49.19	74.00	-24.81	6.84	3	Н	359	1.50	-
ΑV	2.388G	53.29	54.00	-0.71	33.27	3	V	23	1.50	-
ΑV	2.4112G	93.96	Inf	-Inf	33.34	3	V	23	1.50	-
ΑV	2.484G	48.24	54.00	-5.76	33.55	3	V	23	1.50	-
ΑV	4.84236G	36.48	54.00	-17.52	6.83	3	V	0	2.07	-
PK	2.3888G	72.80	74.00	-1.20	33.27	3	V	23	1.50	-
PK	2.4112G	103.82	Inf	-Inf	33.34	3	V	23	1.50	-
PK	2.4892G	61.83	74.00	-12.17	33.56	3	V	23	1.50	-
PK	4.84386G	48.75	74.00	-25.25	6.84	3	V	0	2.07	-

20160916 966-3 PLW1000 v2 EUT Z ANT Y 1TX Setting 67 J-1

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	2.388G	53.29	54.00	-0.71	33.27	3	V	23	1.50	-
AV	2.4112G	93.96	Inf	-Inf	33.34	3	V	23	1.50	-
AV	2.484G	48.24	54.00	-5.76	33.55	3	V	23	1.50	-
PK	2.3888G	72.80	74.00	-1.20	33.27	3	V	23	1.50	-
PK	2.4112G	103.82	Inf	-Inf	33.34	3	V	23	1.50	-
PK	2.4892G	61.83	74.00	-12.17	33.56	3	V	23	1.50	-

20160916 966-3 PLW1000 v2 EUT Z ANT Y 1TX Setting 67 J-1										
Type Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments	司

6.83

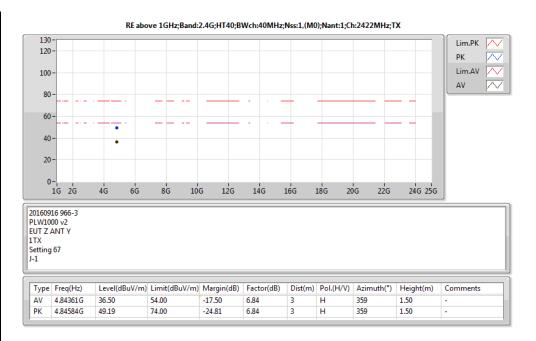
6.84

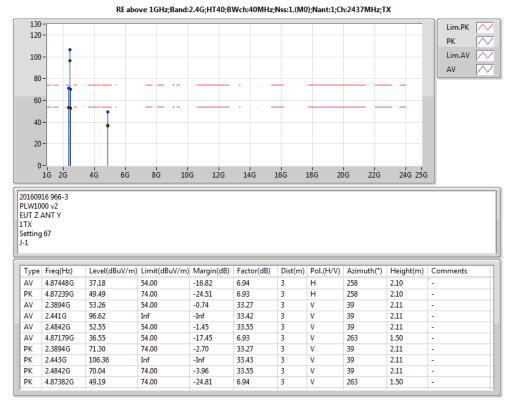
AV 4.84236G

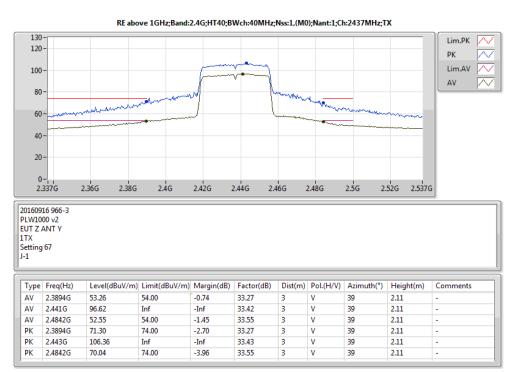
4.84386G

FAX: 886-3-327-0973

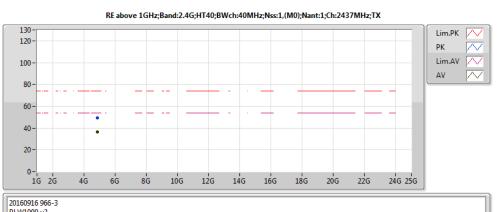
36.48


48.75


54.00


74.00

-17.52


-25.25

Type	Freq(Hz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
AV	4.87179G	36.55	54.00	-17.45	6.93	3	٧	263	1.50	-
PK	4.87382G	49.19	74.00	-24.81	6.94	3	V	263	1.50	-

RE above 1GHz;Band:2.4G;HT40;BWch:40MHz;Nss:1,(M0);Nant:1;Ch:2437MHz;TX 130 Lim.PK 120 PK Lim.AV 100 ΑV 60 20 0-1G 2G

258

258

116

116

116

116

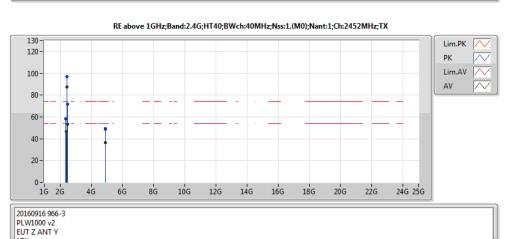
1.10

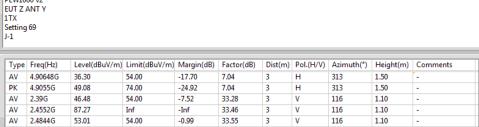
1.50

1.10

1.10

1.10


1.50


2.10

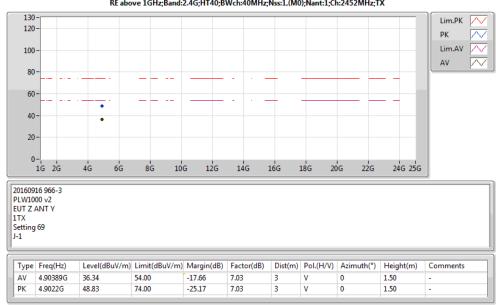
2.10

6.94

6.93

33.55

7.03


33.23

33.42

33.54

7.03

	1-									Lim.PK
120	-									PK [
100	1-			بسننون	·					Lim.AV
				(Vannay.					AV [
80	'-			./	<u> </u>	u				
60			- mary town of what	MV)	\ \frac{1}{x}	Marine	hoyen			
60		anternament		J	l		The state of the s	mann	·	
40								~		
40										
20	_									
0	_									
1609: W100	352G 16 966-3 00 v2 ANT Y	2.38G 2.4	G 2.42G	2.44G	2.46G	2.48G	2.5G	2.52G	2.54G 2.5520	G
2.3 1609: W100 T Z A X tting	352G 16 966-3 00 v2 ANT Y	2.38G 2.4	4G 2.42G	2.44G	2.46G	2.48G	2.5G	2.52G	2.54G 2.5520	G
2.3 1609: W100 T Z A X tting	16 966-3 00 v2 ANT Y									<u> </u>
1609: W100 IT Z A X ttting	352G ' 16 966-3 00 v2 ANT Y 169	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	Comments
1609: W100 IT Z A X tting	16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G	Level(dBuV/m) 46.48	Limit(dBuV/m)	Margin(dB)	Factor(dB)	Dist(m)	Pol.(H/V)	Azimuth(°)	Height(m)	<u> </u>
1609: W100 IT Z A X tting	352G 16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G 2.4552G	Level(dBuV/m) 46.48 87.27	Limit(dBuV/m) 54.00 Inf	Margin(dB) -7.52 -Inf	Factor(dB) 33.28 33.46	Dist(m) 3 3	Pol.(H/V) V	Azimuth(°) 116 116	Height(m) 1.10 1.10	Comments
1609: W100 JT Z A X ttting L	16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G 2.4552G 2.4844G	Level(dBuV/m) 46.48 87.27 53.01	Limit(dBuV/m) 54.00 Inf 54.00	Margin(dB) -7.52 -Inf -0.99	Factor(dB) 33.28 33.46 33.55	Dist(m) 3 3 3 3	Pol.(H/V) V V	Azimuth(*) 116 116 116	Height(m) 1.10 1.10 1.10	Comments
2.: 11609: W100 W1 Z X XX XX XX XX XX XX XX XX XX XX XX XX X	352G 16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G 2.4552G 2.4552G 2.4844G 2.3752G	Level(dBuV/m) 46.48 87.27 53.01 58.25	Limit(dBuV/m) 54.00 Inf 54.00 74.00	Margin(dB) -7.52 -Inf -0.99 -15.75	Factor(dB) 33.28 33.46 33.55 33.23	Dist(m) 3 3	Pol.(H/V) V	Azimuth(°) 116 116	Height(m) 1.10 1.10	Comments -
2.2.1609: W1000 DT Z // XX XX XX XX YYPE WW WW WW WW WW	16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G 2.4552G 2.4844G	Level(dBuV/m) 46.48 87.27 53.01	Limit(dBuV/m) 54.00 Inf 54.00	Margin(dB) -7.52 -Inf -0.99	Factor(dB) 33.28 33.46 33.55	Dist(m) 3 3 3 3	Pol.(H/V) V V	Azimuth(*) 116 116 116	Height(m) 1.10 1.10 1.10	Comments
2.3 1609: W100 JT Z A X tting	352G 16 966-3 00 v2 ANT Y 169 Freq(Hz) 2.39G 2.4552G 2.4552G 2.4844G 2.3752G	Level(dBuV/m) 46.48 87.27 53.01 58.25	Limit(dBuV/m) 54.00 Inf 54.00 74.00	Margin(dB) -7.52 -Inf -0.99 -15.75	Factor(dB) 33.28 33.46 33.55 33.23	Dist(m) 3 3 3 3	Pol.(H/V) V V V	Azimuth(*) 116 116 116 116	Height(m) 1.10 1.10 1.10	Comments

37.18

49.49

PK 4.87239G

2.4844G

4.90389G

2.3752G

2.438G

2.4836G

4.9022G

AV PK PK PK PK

53.01

36.34

96.69

71.73

48.83

54.00

74.00

54.00

54.00

74.00

74.00

74.00

-0.99

-17.66

-15.75

-Inf

-2.27

-25.17

-16.82

-24.51

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. Report Version : 9 of 9 : Rev. 01