

Supplemental "Transmit Simultaneously" Test Report

Report No.: RFBBQZ-WTW-P22010396-4

FCC ID: PY322100555

Test Model: RAX50v2, RAX43v2, XR1000v2

Series Model: RAX42v2, RAX41v2

Received Date: 2022/1/7

Test Date: 2022/3/25 ~ 2022/4/1

Issued Date: 2022/5/13

Applicant and

NETGEAR, Inc. Manufacturer:

Address: 350 East Plumeria Drive San Jose, CA 95134

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

FCC Registration /

723255 / TW2022 **Designation Number:**

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 1 / 37 Report Format Version: 6.1.1

Table of Contents

R	Release Control Record3					
1	C	Certificate of Conformity	4			
2	Summary of Test Results		5			
_		·				
	2.1 2.2	Measurement Uncertainty				
3	C	General Information	6			
	3.1	General Description of EUT	6			
	3.1.1	Test Mode Applicability and Tested Channel Detail	. 9			
	3.2	Description of Support Units				
	3.2.1	Configuration of System under Test	.11			
4	Т	est Types and Results	12			
	4.1	Radiated Emission and Bandedge Measurement	12			
	4.1.1					
	4.1.2	Test Instruments				
	4.1.3	Test Procedures	15			
	4.1.4	Deviation from Test Standard	15			
	4.1.5	Test Setup	16			
		EUT Operating Conditions				
		Test Results (Mode A)				
		Test Results (Mode B)				
		Test Results (Mode C)				
	4.2	Conducted Emission Measurement				
	4.2.1					
		Test Instruments				
		Test Procedures				
		Deviation from Test Standard Test Setup				
		EUT Operating Conditions				
		Test Results (Mode A)				
	4.2.8					
		Test Results (Mode C)				
	4.3	Conducted Out of Band Emission Measurement				
	4.3.1					
		Test Setup				
		Test Instruments				
	4.3.4	Test Procedures	34			
	4.3.5	Deviation from Test Standard	34			
	4.3.6	EUT Operating Conditions	34			
	4.3.7	Test Results	34			
5	F	Pictures of Test Arrangements	36			
Α	ppend	lix – Information of the Testing Laboratories	37			

Release Control Record

Issue No.	Description	Date Issued
RFBBQZ-WTW-P22010396-4	Original release.	2022/5/13

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 3 / 37 Report Format Version: 6.1.1

Certificate of Conformity 1

Product: NIGHTHAWK AX6 AX5400 6-Stream WiFi Router,

NIGHTHAWK AX5 AX4200 5-Stream WiFi Router, NIGHTHAWK AX5 AX3600 5-Stream WiFi Router,

NIGHTHAWK Pro Gaming Router

Brand: NETGEAR

Test Model: RAX50v2, RAX43v2, XR1000v2

Series Model: RAX42v2, RAX41v2

Sample Status: Engineering sample

Applicant and Manufacturer: NETGEAR, Inc.

Test Date: 2022/3/25 ~ 2022/4/1

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

Prepared by: Vivian Huana

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

riepared by .	A LA LOLL I LACOLOGICA	_ , Date	2022/3/13	
	Vivian Huang / Specialist			
	\mathcal{M}			
A		Doto	2022/5/42	

May Chen / Manager

2 Summary of Test Results

	FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)					
FCC Test Item		Result	Remarks			
15.207 15.407(b)(6)	AO I OWEI COINCICCO		Meet the requirement of limit. Minimum passing margin is -15.28dB at 0.15391MHz.			
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -5.7dB at 440.01MHz.			

Note:

Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.5 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.1 dB
Radiated Emissions above 1 GHz	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Ocheral Description of Eor					
	NIGHTHAWK AX6 AX5400 6-Stream WiFi Router, NIGHTHAWK AX5 AX4200 5-Stream WiFi Router,				
Product	NIGHTHAWK AX5 AX3600 5-Stream WiFi Router,				
	NIGHTHAWK Pro Gaming Router				
Brand	NETGEAR				
Test Model	RAX50v2, RAX43v2, XR1000v2				
Series Model	RAX42v2, RAX41v2				
Status of EUT	Engineering sample				
Power Supply Rating	12Vdc from adapter				
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz 1024QAM for OFDMA in 11ax HE mode				
Modulation Technology	DSSS, OFDM, OFDMA				
Operating Frequency	2.4GHz: 2.412GHz ~ 2.462GHz 5GHz: 5.180 ~ 5.250 GHz, 5.260 ~ 5.320 GHz, 5.500 ~ 5.720 GHz, 5.745 ~ 5,825 GHz				
Antenna Type	Refer to Note				
Antenna Connector	Refer to Note				

Note:

1. The EUT has below model names which are identical to each other in all aspects except for the following table:

Product Name	Model Name	Description
NIGHTHAWK AX6		
AX5400 6-Stream WiFi	RAX50v2	2.4GHz 2x2, 5G 4x4
Router		
NIGHTHAWK AX5		
AX4200 5-Stream WiFi	RAX43v2	2.4GHz 2x2, 5G 3X3, (de-pop 1 RF chain from RAX50v2)
Router		
NIGHTHAWK AX5		
AX4200 5-Stream WiFi	RAX42v2	2.4GHz 2x2, 5G 3X3, (de-pop 1 RF chain from RAX50v2)
Router		
NIGHTHAWK AX5		
AX3600 5-Stream WiFi	RAX41v2	2.4GHz 2x2, 5G 3X3, (de-pop 1 RF chain from RAX50v2)
Router		
NIGHTHAWK Pro	XR1000v2	XR1000v2 has a different housing with a different antenna and new
		functions like Geo-filter, new QoS, and network monitor.
Gaming Router		Note: RF function and MIMO spec is same as RAX50v2

Note: From the above models, model: RAX50v2, RAX43v2, XR1000v2 were selected as representative model for the test and its data was recorded in this report.

2. The EUT has below radios as following table:

Radio 1	Radio 2
WLAN 2.4GHz	WLAN 5GHz

3. Simultaneously transmission condition.

Condition	Techr	nology				
1	WLAN 2.4GHz	WLAN 5GHz				
Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.						

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 6 / 37 Report Format Version: 6.1.1

4. The EUT uses following accessories.

AC Adapter 1							
Brand Model		Part N	umber	Specification			
ADS-40FPA-12		332-11	525-02	AC Input: 100-120 50/60 1.0A DC Output: 12V 2.5A DC Output Cable: 1.8m non-shielded and without core Plug: FCC/Canada/Taiwan			
r 2							
Brand Model				Specification			
2ABL030F	1 NA			AC Input: 100-120V 50/60Hz 1.0A DC Output: 12V 2.5A DC Output Cable: 1.8m non-shielded and without core Plug: FCC/Canada/Taiwan			
RJ45 Cable							
Brand Mode		el		Specification			
NETGEAR			Signal Line: 1.8 m				
	ADS-40 r 2 Mo 2ABL030F	Model ADS-40FPA-12 T 2 Model 2ABL030F 1 NA and Model EAR N/A	Model Part N ADS-40FPA-12 332-11 r 2 Model Part N 2ABL030F 1 NA 332-1 and Model Model EAR N/A N/A	Model Part Number ADS-40FPA-12 332-11525-02 r 2 Model Part Number 2ABL030F 1 NA 332-10758-02 end Model Model			

Note: From the above models, the radiated emissions & conducted emissions worst case were found in **Model: ADS-40FPA-12.** Therefore only the test data of the mode was recorded in this report.

5. The directional antenna gain, please refer to the following table:

Model: RAX50v2, XR1000v2						
Frequency Range (GHz) Directional Antenna Gain (dBi)		Antenna Type	Antenna Connector			
2.4~2.4835	2.4~2.4835 3.73					
5.15 ~ 5.25	6.65					
5.25 ~ 5.35	6.69	Dipole	R-SMA			
5.47 ~ 5.725	6.27					
5.725 ~ 5.85	5.725 ~ 5.85 6.57					
	Model: RAX43v2					
Frequency Range (GHz) Directional Antenna Gain (dBi)		Antenna Type	Antenna Connector			
2.4~2.4835	3.73					
5.15 ~ 5.25	5.87					
5.25 ~ 5.35 6.4 5.47 ~ 5.725 6.16 5.725 ~ 5.85 6.18		Dipole	R-SMA			
Note: More detailed information, please refer to antenna specification.						

6. The EUT incorporates a MIMO function:

6. The EUT incorporates	2.4GHz Band				
MODULATION MODE TX & RX CONFIGURATION					
802.11b	2TX	2RX			
802.11g	2TX	2RX			
802.11n (HT20)	2TX	2RX			
802.11n (HT40)	2TX	2RX			
VHT20	2TX	2RX			
VHT40	2TX	2RX			
802.11ax (HE20)	2TX	2RX			
802.11ax (HE40)	2TX	2RX			
, ,	5 GHz Band				
	Model: RAX50v2, XR1000	v2			
MODULATION MODE	TX & RX CON	FIGURATION			
802.11a	4TX	4RX			
802.11n (HT20)	4TX	4RX			
802.11n (HT40)	4TX	4RX			
802.11ac (VHT20)	4TX	4RX			
802.11ac (VHT40)	4TX	4RX			
802.11ac (VHT80)	4TX	4RX			
802.11ac (VHT160)	4TX	4RX			
802.11ax (HE20)	4TX	4RX			
802.11ax (HE40)	4TX	4RX			
802.11ax (HE80)	4TX	4RX			
802.11ax (HE160)	4TX	4RX			
	Model: RAX43v2				
MODULATION MODE	TX & RX CON				
802.11a	3TX	3RX			
802.11n (HT20)	3TX	3RX			
802.11n (HT40)	3TX	3RX			
802.11ac (VHT20)	3TX	3RX			
802.11ac (VHT40)	3TX	3RX			
802.11ac (VHT80)	3TX	3RX			
802.11ac (VHT160)	3TX	3RX			
802.11ax (HE20)	3TX	3RX			
802.11ax (HE40)	3TX	3RX			
802.11ax (HE80)	3TX	3RX			
802.11ax (HE160)	3TX	3RX			
Note:					

Note

- 1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.
- 2. The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.
- 7. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.1.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To		Description	
Mode	RE≥1G	RE<1G	PLC	ОВ		
А	√	√	√	√	Model: RAX50v2	
В	V	V	V	-	Model: RAX43v2	
С	-	V	\checkmark	-	Model: XR1000v2	

Where **RE≥1G:** Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

OB: Conducted Out-Band Emission Measurement

Note: The EUT had been pre-tested on the positioned of Lying-flat and wall-mount. The worst case was found when positioned of on Lying -flat.

Radiated Emission Test (Above 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
	2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
A, B	+ 5GHz: 802.11ax (HE20)	36 to 64 100 to 144 149 to 165	40	OFDMA	BPSK

Radiated Emission Test (Below 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

Notice Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
	2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
A, B, C	+ 5GHz: 802.11ax (HE20)	36 to 64 100 to 144 149 to 165	40	OFDMA	BPSK

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 9 / 37 Report Format Version: 6.1.1

Power Line Conducted Emission Test:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

☑ Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
	2.4GHz: 802.11ax (HE20)	1 to 11	6	OFDMA	BPSK
A, B, C	+ 5GHz: 802.11ax (HE20)	36 to 64 100 to 144 149 to 165	40	OFDMA	BPSK

Conducted Out-Band Emission Measurement:

☐ The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

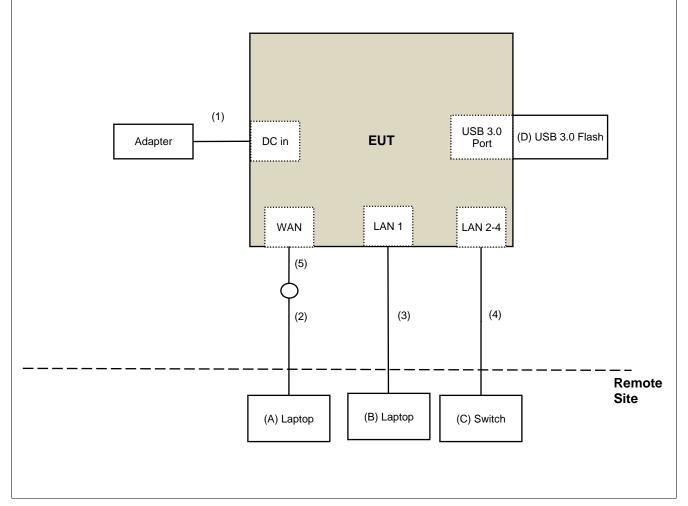
☑ Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
	2.4GHz: 802.11ax (HE20)	1 to 11	6	DSSS	DBPSK
A	+ 5GHz:	36 to 64 100 to 144	165	OFDMA	BPSK
	802.11ax (HE20)	149 to 165			

Test Condition:

Applicable To	Environmental Conditions	INPUT POWER	Tested By
RE≥1G	RE≥1G 20deg. C, 70%RH		Viv Huang
RE<1G 22deg. C, 70%RH		120Vac, 60Hz	Ryan Du
PLC 25deg. C, 75%RH		120Vac, 60Hz	Ryan Du
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Eric Peng

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 10 / 37 Report Format Version: 6.1.1


3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Laptop	Lenovo	20U5S01X00 L14	PF-28LKK7	N/A	Provided by Lab
В	Laptop	Lenovo	20U5S01X00 L14	PF-1ANPYA	N/A	Provided by Lab
С	Switch	D-Link	DGS-1005D	DR8WC92000523	N/A	Provided by Lab
D	USB 3.0 Flash	Transcend	JetFlash 700	N/A	N/A	Provided by Lab

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.8	No	0	Supplied by applicant
2	RJ-45 Cable	1	10	No	0	Provided by Lab
3	RJ-45 Cable	1	10	No	0	Provided by Lab
4	RJ-45 Cable	3	10	No	0	Provided by Lab
5	RJ-45 Cable	1	1.8	No	0	Supplied by applicant

3.2.1 Configuration of System under Test

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applic	able To	Limit		
789033 D02 Genera	I UNII Test Procedure	Field Strength at 3m		
New Rules v02r01		PK:74 (dBµV/m)	AV:54 (dBμV/m)	
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz	15.407(b)(1)			
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz	15.407(b)(3)			
5725~5850 MHz	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4	
		1 /	PK:122.2 (dBµV/m) *4	

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 12 / 37 Report Format Version: 6.1.1

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 Test Instruments

For Radiated Emission test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver	N9038A	MY51210202	2021/11/19	2022/11/18
Agilent				
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Boresight Antenna Tower & Turn Table Max-Full	MF-7802BS	MF780208530	NA	NA
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23
LOOP ANTENNA Electro-Metrics	EM-6879	264	2022/3/18	2023/3/17
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5
Pre_Amplifier EMCI	EMC330N	980701	2022/3/8	2023/3/7
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-406	2021/10/27	2022/10/26
RF Coaxial Cable COMMATE/PEWC	8D	966-4-1	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-2	2022/3/8	2023/3/7
RF Coaxial Cable COMMATE/PEWC	8D	966-4-3	2022/3/8	2023/3/7
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-ATT5-03	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9120D	9120D-783	2021/11/14	2022/11/13
Pre_Amplifier EMCI	EMC 12630 SE	980638	2021/4/7	2022/4/6
RF Cable-Frequency Range : 1-26.5GHz EMCI	EMC104-SM-SM-1200	160922	2021/12/24	2022/12/23
RF Coaxial Cable EMCI	EMC104-SM-SM-2000	180502	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-6000	210704	2021/11/9	2022/11/8
Pre_Amplifier EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 4.
- 3. Tested Date: 2022/4/1

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	101516	2021/5/31	2022/5/30
Attenuator WOKEN	MDCS18N-10	MDCS18N-10-01	2021/4/13	2022/4/12
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE: 1. The test was performed in Oven room 2.

- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: 2022/3/25

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

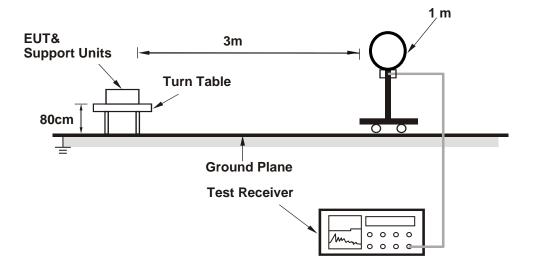
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

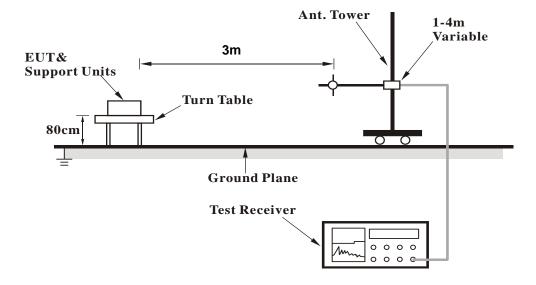
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

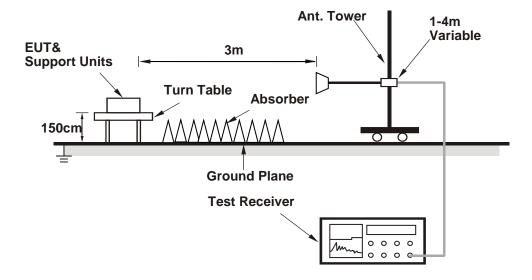

No deviation.

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 15 / 37 Report Format Version: 6.1.1



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (accessMTool_REL_3_1_0_1) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results (Mode A)

Above 1GHz Data:

FREQUENCY RANGE 1GHz ~ 40G	DETECTOR FUNCTION	Peak (PK) Average (AV)
----------------------------	-------------------	---------------------------

		Ante	enna Polarity	/ & Test Dist	ance : Horiz	ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	4874.00	45.8 PK	74.0	-28.2	2.09 H	149	46.0	-0.2
2	4874.00	43.6 AV	54.0	-10.4	2.09 H	149	43.8	-0.2
3	7311.00	45.3 PK	74.0	-28.7	1.77 H	257	39.1	6.2
4	7311.00	32.0 AV	54.0	-22.0	1.77 H	257	25.8	6.2
5	#10400.00	57.2 PK	68.2	-11.0	1.05 H	328	46.5	10.7
6	15600.00	49.0 PK	74.0	-25.0	1.96 H	52	37.3	11.7
7	15600.00	39.1 AV	54.0	-14.9	1.96 H	52	27.4	11.7
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	4874.00	48.8 PK	74.0	-25.2	2.38 V	3	49.0	-0.2
2	4874.00	47.4 AV	54.0	-6.6	2.38 V	3	47.6	-0.2
3	7311.00	44.5 PK	74.0	-29.5	1.93 V	9	38.3	6.2
4	7311.00	33.3 AV	54.0	-20.7	1.93 V	9	27.1	6.2
5	#10400.00	47.2 PK	68.2	-21.0	2.54 V	331	36.5	10.7
6	15600.00	45.5 PK	74.0	-28.5	2.35 V	158	33.8	11.7

Remarks:

15600.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

54.0

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

2.35 V

21.7

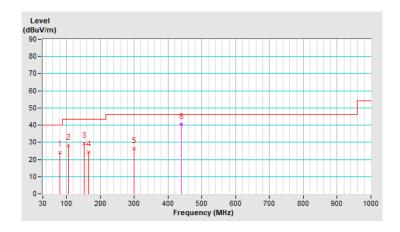
11.7

-20.6

3. Margin value = Emission Level – Limit value

33.4 AV

- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

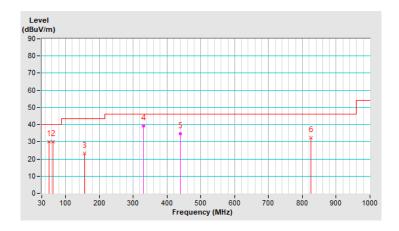


Below 1GHz Data:

FREQUENCY RANGE 9kHz ~ 1GHz DETECTOR FUNCTION Quasi-Peak (QP)	
---	--

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	80.03	24.2 QP	40.0	-15.8	2.00 H	243	41.2	-17.0		
2	105.07	28.1 QP	43.5	-15.4	2.00 H	197	43.4	-15.3		
3	152.38	29.2 QP	43.5	-14.3	1.00 H	48	40.8	-11.6		
4	166.71	24.3 QP	43.5	-19.2	1.00 H	163	36.3	-12.0		
5	300.62	26.2 QP	46.0	-19.8	2.00 H	142	36.6	-10.4		
6	440.01	40.3 QP	46.0	-5.7	2.00 H	159	46.2	-5.9		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)
-----------------	-------------	-------------------	-----------------

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	51.08	30.2 QP	40.0	-9.8	1.00 V	19	42.4	-12.2	
2	63.19	30.1 QP	40.0	-9.9	2.00 V	26	43.4	-13.3	
3	156.34	23.4 QP	43.5	-20.1	2.00 V	16	35.0	-11.6	
4	330.08	39.2 QP	46.0	-6.8	1.50 V	58	48.6	-9.4	
5	440.01	34.7 QP	46.0	-11.3	1.50 V	78	40.6	-5.9	
6	825.01	32.4 QP	46.0	-13.6	2.00 V	299	30.2	2.2	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz \sim 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.1.8 Test Results (Mode B)

Above 1GHz Data:

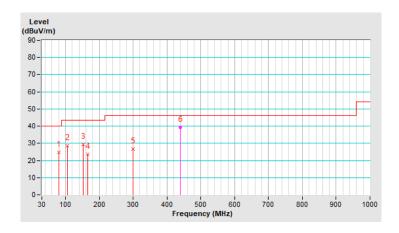
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK)
Trequency Range	10112 400112	Detector i unction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	4874.00	46.0 PK	74.0	-28.0	2.15 H	147	46.2	-0.2	
2	4874.00	43.7 AV	54.0	-10.3	2.15 H	147	43.9	-0.2	
3	7311.00	45.8 PK	74.0	-28.2	1.73 H	273	39.6	6.2	
4	7311.00	32.2 AV	54.0	-21.8	1.73 H	273	26.0	6.2	
5	11590.00	56.7 PK	74.0	-17.3	1.09 H	338	45.4	11.3	
6	11590.00	44.1 AV	54.0	-9.9	1.09 H	338	32.8	11.3	
7	#17385.00	48.9 PK	68.2	-19.3	1.98 H	56	32.1	16.8	
		Δn	tenna Polari	ty & Tast Die	stance · Vert	ical at 3 m			

Antenna Polarity & Test Distance : Vertical at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	4874.00	48.5 PK	74.0	-25.5	2.36 V	15	48.7	-0.2
2	4874.00	47.2 AV	54.0	-6.8	2.36 V	15	47.4	-0.2
3	7311.00	44.4 PK	74.0	-29.6	1.91 V	22	38.2	6.2
4	7311.00	33.4 AV	54.0	-20.6	1.91 V	22	27.2	6.2
5	11590.00	46.9 PK	74.0	-27.1	2.58 V	330	35.6	11.3
6	11590.00	34.6 AV	54.0	-19.4	2.58 V	330	23.3	11.3
7	#17385.00	45.0 PK	68.2	-23.2	2.30 V	145	28.2	16.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

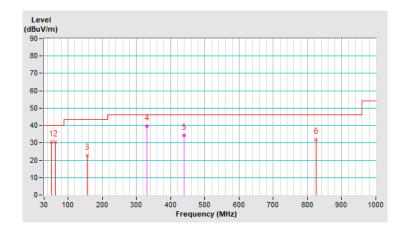


Below 1GHz Data:

FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)	

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	80.00	24.6 QP	40.0	-15.4	1.50 H	297	41.5	-16.9		
2	104.70	28.5 QP	43.5	-15.0	2.00 H	210	43.9	-15.4		
3	152.61	29.4 QP	43.5	-14.1	1.50 H	94	41.0	-11.6		
4	166.41	23.7 QP	43.5	-19.8	1.00 H	120	35.7	-12.0		
5	300.35	26.6 QP	46.0	-19.4	2.00 H	179	37.0	-10.4		
6	439.40	39.2 QP	46.0	-6.8	1.50 H	132	45.1	-5.9		

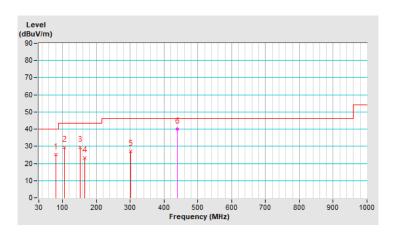
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)
-----------------	-------------	-------------------	-----------------

		An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	51.21	30.6 QP	40.0	-9.4	1.00 V	12	42.8	-12.2
2	63.51	30.5 QP	40.0	-9.5	2.00 V	59	43.7	-13.2
3	155.82	23.0 QP	43.5	-20.5	1.50 V	60	34.6	-11.6
4	330.41	39.6 QP	46.0	-6.4	2.00 V	100	49.0	-9.4
5	439.79	34.3 QP	46.0	-11.7	1.50 V	111	40.2	-5.9
6	825.44	31.9 QP	46.0	-14.1	2.00 V	267	29.7	2.2

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

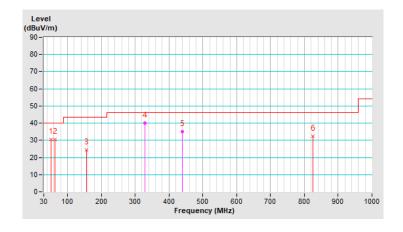

4.1.9 Test Results (Mode C)

Below 1GHz Data:

FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)	
-----------------	-------------	-------------------	-----------------	--

		Ante	enna Polarity	/ & Test Dist	ance : Horiz	ontal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	80.16	25.2 QP	40.0	-14.8	2.00 H	349	42.2	-17.0
2	105.28	29.2 QP	43.5	-14.3	2.00 H	3	44.5	-15.3
3	152.92	29.2 QP	43.5	-14.3	1.00 H	65	40.8	-11.6
4	166.07	23.4 QP	43.5	-20.1	1.50 H	162	35.3	-11.9
5	301.17	27.0 QP	46.0	-19.0	2.00 H	187	37.4	-10.4
6	439.61	40.1 QP	46.0	-5.9	1.50 H	171	46.0	-5.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



 FREQUENCY RANGE
 9kHz ~ 1GHz
 DETECTOR FUNCTION
 Quasi-Peak (QP)

		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	51.09	30.5 QP	40.0	-9.5	1.00 V	45	42.7	-12.2
2	62.70	30.6 QP	40.0	-9.4	2.00 V	62	43.9	-13.3
3	155.51	24.4 QP	43.5	-19.1	1.00 V	355	35.9	-11.5
4	329.40	39.9 QP	46.0	-6.1	1.50 V	68	49.4	-9.5
5	439.51	35.0 QP	46.0	-11.0	1.00 V	108	40.9	-5.9
6	825.31	32.5 QP	46.0	-13.5	1.50 V	266	30.3	2.2

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MUz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

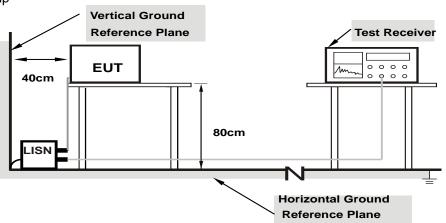
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
TEST RECEIVER R&S	ESCS 30	847124/029	2021/10/13	2022/10/12
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
50 ohms Terminator NA	50	3	2021/10/27	2022/10/26
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
Software BVADT	BVADT_Cond_V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: 2022/4/1

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

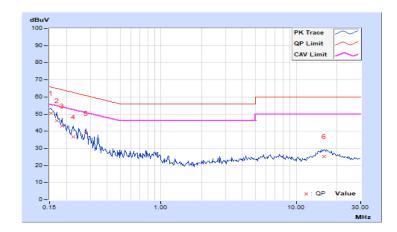
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

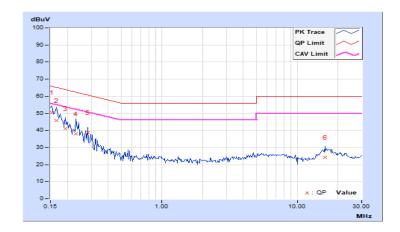


4.2.7 Test Results (Mode A)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector Function	Average (AV)

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		ng Value Emission Level BuV) (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.07	40.44	22.63	50.51	32.70	65.79	55.79	-15.28	-23.09	
2	0.16953	10.07	36.09	19.23	46.16	29.30	64.98	54.98	-18.82	-25.68	
3	0.18516	10.08	32.85	18.14	42.93	28.22	64.25	54.25	-21.32	-26.03	
4	0.22422	10.08	26.48	13.92	36.56	24.00	62.66	52.66	-26.10	-28.66	
5	0.27891	10.09	28.74	20.80	38.83	30.89	60.85	50.85	-22.02	-19.96	
6	16.13281	11.27	14.01	8.20	25.28	19.47	60.00	50.00	-34.72	-30.53	

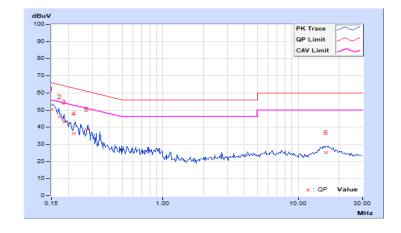
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) /
rilase		Detector i unction	Average (AV)

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.05	40.34	22.89	50.39	32.94	65.79	55.79	-15.40	-22.85	
2	0.16562	10.06	35.60	20.60	45.66	30.66	65.18	55.18	-19.52	-24.52	
3	0.19297	10.08	30.90	12.52	40.98	22.60	63.91	53.91	-22.93	-31.31	
4	0.23203	10.08	27.98	15.26	38.06	25.34	62.38	52.38	-24.32	-27.04	
5	0.28281	10.09	28.56	16.54	38.65	26.63	60.73	50.73	-22.08	-24.10	
6	16.08984	11.05	13.10	7.32	24.15	18.37	60.00	50.00	-35.85	-31.63	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

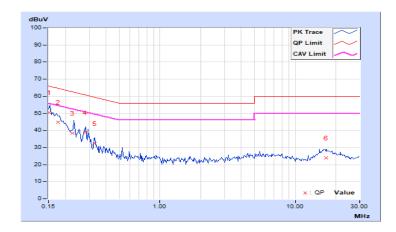


4.2.8 Test Results (Mode B)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
	()		Average (AV)

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15041	10.05	40.31	22.71	50.36	32.76	65.98	55.98	-15.62	-23.22	
2	0.17154	10.05	36.19	19.34	46.24	29.39	64.89	54.89	-18.65	-25.50	
3	0.18708	10.05	32.92	18.34	42.97	28.39	64.17	54.17	-21.20	-25.78	
4	0.21843	10.05	26.37	13.76	36.42	23.81	62.88	52.88	-26.46	-29.07	
5	0.27192	10.06	28.64	20.67	38.70	30.73	61.06	51.06	-22.36	-20.33	
6	16.13549	10.99	14.12	8.34	25.11	19.33	60.00	50.00	-34.89	-30.67	

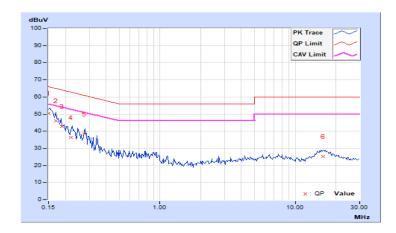
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) /
		Detector Function	Average (AV)

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)			Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15167	10.05	40.38	23.15	50.43	33.20	65.91	55.91	-15.48	-22.71	
2	0.17657	10.07	34.73	19.15	44.80	29.22	64.65	54.65	-19.85	-25.43	
3	0.22534	10.08	28.31	15.56	38.39	25.64	62.62	52.62	-24.23	-26.98	
4	0.27824	10.09	28.64	16.53	38.73	26.62	60.87	50.87	-22.14	-24.25	
5	0.33155	10.09	22.16	8.67	32.25	18.76	59.41	49.41	-27.16	-30.65	
6	17.04095	11.11	12.76	6.64	23.87	17.75	60.00	50.00	-36.13	-32.25	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

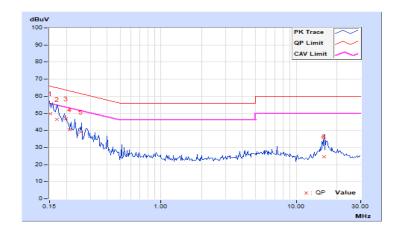


4.2.9 Test Results (Mode C)

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase		Botootor i driotion	Average (AV)

	Phase Of Power : Line (L)									
No	Frequency	Correction Factor	Reading Value En		Emission Level Limit (dBuV)			Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15001	10.05	40.43	22.65	50.48	32.70	66.00	56.00	-15.52	-23.30
2	0.17071	10.05	36.03	19.25	46.08	29.30	64.93	54.93	-18.85	-25.63
3	0.18815	10.05	32.76	18.06	42.81	28.11	64.12	54.12	-21.31	-26.01
4	0.21994	10.05	26.43	13.71	36.48	23.76	62.82	52.82	-26.34	-29.06
5	0.27533	10.06	28.37	20.52	38.43	30.58	60.96	50.96	-22.53	-20.38
6	16.13762	10.99	14.26	8.43	25.25	19.42	60.00	50.00	-34.75	-30.58

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) /
		Detector Function	Average (AV)

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level Limi (dBuV) (dBuV					
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15171	10.05	39.73	23.35	49.78	33.40	65.91	55.91	-16.13	-22.51
2	0.17092	10.06	36.42	22.10	46.48	32.16	64.92	54.92	-18.44	-22.76
3	0.19917	10.08	36.60	19.19	46.68	29.27	63.65	53.65	-16.97	-24.38
4	0.21151	10.08	30.37	12.56	40.45	22.64	63.15	53.15	-22.70	-30.51
5	0.25711	10.09	28.82	15.50	38.91	25.59	61.52	51.52	-22.61	-25.93
6	16.18624	11.05	13.43	7.35	24.48	18.40	60.00	50.00	-35.52	-31.60

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

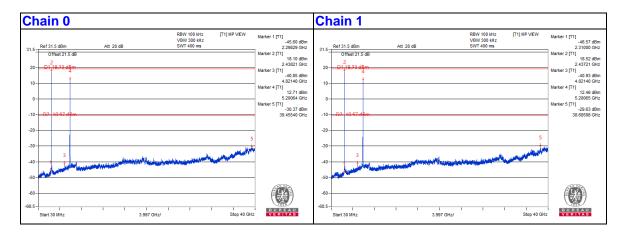
- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = \max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.


4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 34 / 37 Report Format Version: 6.1.1

2.4GHz_802.11ax (HE20) CH6 + 5GHz_802.11ax (HE20) CH165

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 36 / 37 Report Format Version: 6.1.1

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBBQZ-WTW-P22010396-4 Page No. 37 / 37 Report Format Version: 6.1.1