

Appendix D. Combined PD Verification for 2nd Generation of Qualcomm Smart Transmit

Verification Criteria 1 (PD per beam):

In the case of UE employing 2nd generation of Qualcomm Smart Transmit, measured PD results should meet Measured PD $\leq (bj^*PD_design_target + total uncertainty of QTM)$

where *PD_design_target* is as shown in Part 0 report; '*bj* is the backoff value for QTM '*j* printed in "Qualcomm MG script", as shown in below table:

PD_design_target (W/m2):		4.75	
Total uncertainty (dB):		2	
Module	Printed backoff value bj (linear)	bj*PD_design_target + total uncertainty (W/m2)	Highest measured PD per QTM out of all the beams and bands(W/m2)
QTM 0	0.977	7.31	4.21
QTM 1	0.977	7.31	3.75

Verification Criteria 2 (combined PD):

Additionally, based on the measured PD data, beams having the highest measured PD per QTM should be identified first, and then combined PD for these identified PD beams should be evaluated at each QTM's dominant surface and should meet below criteria: combined PD at QTMj location = {c(p,j) *meas.PD.beamp + c(q,j) *meas.PD.beamq} \leq (PD_design_target + total uncertainty) where, meas.PD.beami = measured 4cm2 PD for beam i, i = p, q c(i,j) = contribution factor from beami to QTMj, i = p, q and j = 0, 1

Beam p = beam having the highest measured PD among all beams tested for QTM0 Beam q = beam having the highest measured PD among all beams tested for QTM1

The evaluation procedures are:

1. Identify beams per QTM having highest measured PD and their corresponding worst surface listed below:

Module	Identified Beam/beam-pair ID	Measured PD (W/m2)	Dominant surface
QTM 0	31	4.21	Left Side
QTM 1	36	3.75	Right Side

Enter the above beam ID and dominant surfaces in "Qualcomm MG script" to obtain the below contribution factors provided by manufacture:

Boom ID	Contribution Factor		
Dealli ID	Left Side	Right side	
31	1	0.0025	
36	0.0023	1	

Combined PD at dominant surfaces of all QTMs and show that combined PD ≤ 7.53 W/m2 (=PD_design_target + 2.0dB total uncertainty)

Combined PD				
PD_design_target(W/m^2)	4.75			
Total uncertainty	2dB			
Location	Combined PD (W/m^2)			
QTM 0/ Left	=1*4.21+0.0023*3.75=4.22			
QTM 1/ Right	=0.0025*4.21+1*3.75=3.76			