

FCC Test Report

	(Co-Located)			
Report No.:	RFBBQZ-WTW-P20110869-2			
FCC ID:	PY320400514			
Test Model:	EAX12			
Series Model:	EAX11v2 (refer to item 3.1 for more details)			
Received Date:	Nov. 27, 2020			
Test Date:	Feb. 24 ~ Apr. 27, 2021			
Issued Date:	Apr. 27, 2021			
Applicant and Manufacturer:	NETGEAR Inc.			
Address:	350 East Plumeria Drive, San Jose, CA 95134, USA			
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories			
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan			
Test Location:	No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan			
FCC Registration / Designation Number:	788550 / TW0003			

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

R	elease	e Control Record	. 3
1	С	ertificate of Conformity	. 4
2	S	ummary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	eneral Information	. 6
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards	. 8 . 9 10 10
4	Т	est Types and Results	11
	$\begin{array}{c} 4.1.2 \\ 4.1.3 \\ 4.1.4 \\ 4.1.5 \\ 4.1.6 \\ 4.1.7 \\ 4.2 \\ 4.2.1 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \\ 4.2.7 \end{array}$	Radiated Emission and Bandedge Measurement. Limits of Radiated Emission and Bandedge Measurement	11 12 13 13 14 15 16 20 20 20 20 20 20 20 20 21
5	Р	ictures of Test Arrangements	22
A	ppend	lix – Information of the Testing Laboratories	23

Release Control Record

Issue No.	Description	Date Issued
RFBBQZ-WTW-P20110869-2	Original release	Apr. 27, 2021

1 **Certificate of Conformity**

Product:	AX1600 Mesh Extender	
Brand:	Netgear	
Test Model:	EAX12	
Series Model:	EAX11v2 (refer to item 3.1 for more details)	
Sample Status:	Engineering sample	
Applicant and	NETGEAR Inc.	
Manufacturer:		
Test Date:	Feb. 24 ~ Apr. 27, 2021	
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)	
	47 CFR FCC Part 15, Subpart E (Section 15.407)	
	ANSI C63.10:2013	

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Approved by :

_____, **Date:**______Apr. 27, 2021

Bruce Chen / Senior Project Engineer

2 Summary of Test Results

Applied Standard:	47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407)			
FCC Clause	Test Item Result Remarks			
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions	Emissions Pass Meet the requirement of limit. 2483.50MHz.		

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
	9kHz ~ 30MHz	3.04 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.63 dB
	200MHz ~1000MHz	3.64 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Test Model E	Netgear	
	EAX12	
Series Model E	EAX11v2	
Model Difference F	For marketing purposes only	
Sample Status E	Engineering sample	
•	100-240Vac, 50-60Hz, 0.5A	
	CCK, DQPSK, DBPSK for DSSS	
Modulation Type 2	256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM	
	1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDMA	
	802.11b: 11.0/ 5.5/ 2.0/ 1.0Mbps	
	802.11g: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps	
	802.11a: 54/48/36/24/18/12/9/6Mbps	
I rangtar Rata	802.11n: up to 400Mbps (For 2.4G Band)	
8	802.11n: up to 300Mbps (For 5G Band)	
	802.11ac: up to 867Mbps (For 5G Band)	
	802.11ax: up to 574Mbps (For 2.4G Band)	
	802.11ax: up to 1200Mbps (For 5G Band)	
()perating Frequency	2.4GHz: 2412 ~ 2462MHz	
	5.0GHz: 5180 ~ 5240MHz, 5745 ~ 5825MHz	
	2412 ~ 2462MHz:	
	802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20), 802.11ax (HE20): 11	
	802.11n (HT40), 802.11n (VHT40), 802.11ax (HE40): 7	
	5180 ~ 5240MHz:	
	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 4	
	802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2	
	802.11ac (VHT80), 802.11ax (HE80): 1 5745 ~ 5825MHz:	
	802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 5 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2	
	802.111 (H140), 802.11ac (VH140), 802.11ax (HE40). 2	
	CDD Mode:	
	2412~2462MHz: 403.254mW	
	5180~5240MHz: 705.616mW	
F	5745~5825MHz: 678.148mW	
Olitolit Power	Beamforming Mode:	
	2412~2462MHz: 403.254mW	
	5180~5240MHz: 698.451mW	
	5745~5825MHz: 678.148mW	
	Refer to note	
2 1	Refer to note	
Accessory Device	NA	
Cable Supplied	NA	

Note:

1. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

Band	Modulation Mode	Beamforming Mode	TX Function
	802.11b	Not Support	2TX
	802.11g	Not Support	2TX
	802.11n (HT20)	Support	2TX
	802.11n (HT40)	Support	2TX
2.4GHz Band	802.11n (VHT20)	Support	2TX
	802.11n (VHT40)	Support	2TX
	802.11ax (HE20)	Support	2TX
	802.11ax (HE40)	Support	2TX
	802.11a	Not Support	2TX
	802.11n (HT20)	Support	2TX
	802.11n (HT40)	Support	2TX
	802.11ac (VHT20)	Support	2TX
5GHz Band	802.11ac (VHT40)	Support	2TX
	802.11ac (VHT80)	Support	2TX
	802.11ax (HE20)	Support	2TX
	802.11ax (HE40)	Support	2TX
	802.11ax (HE80)	Support	2TX

* The bandwidth and modulation are similar for HT20/HT40 on 802.11n mode and VHT20/VHT40/VHT80 on 802.11ac mode and HE20/HE40/HE80 on 802.11ax mode. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1)

* For 802.11n and 802.11ac, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting.

2. The following antennas were provided to the EUT.

Ant. Type	PIFA		
Connector	NA		
Antenna Gain (dBi)	DB1	DB2	
2.4GHz	2.97	3.17	
5GHz Band 1	3.37	3.62	
5GHz Band 4	3.63	3.78	

*The max. gain was chosen for final test and presented in the test report

*More detailed information, please refer to antenna specification.

3. The EUT has two different thermal absorber source, after pretest the mode 1 was the worst case for final test.

Mode	Description	
1	1st Thermal absorber source	
2	2nd Thermal absorber source	

*The detail information please refer to "Internal Photo"

4. WLAN 2.4GHz & WLAN 5GHz technology can transmit at same time.

3.2 Description of Test Modes

For 2.4GHz

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40), 802.11n (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

For 5180 ~ 5240MHz:

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency	
38	5190 MHz	46	5230 MHz	

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency
42	5210MHz

For 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20):

Channel	Frequency	Frequency Channel	
149	5745MHz	161	5805MHz
153	5765MHz	165	5825MHz
157	5785MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40):

Channel	Frequency	Channel	Frequency
151	5755MHz	159	5795MHz

1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80):

Channel	Frequency
155	5775MHz

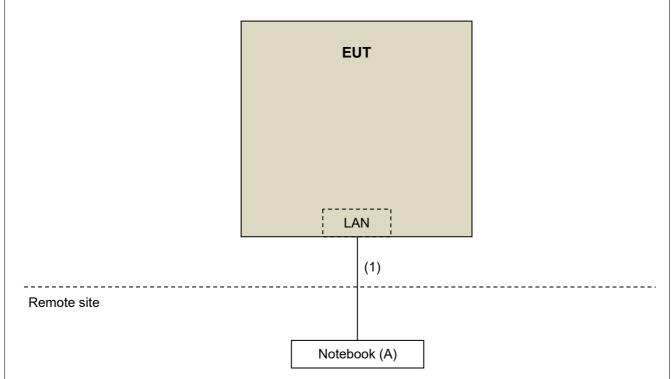
3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applicable to	-		Deee	Description			
Mode	RE≥1G	RE<1G	OB		Desci	ription			
-	\checkmark	\checkmark	√ -						
Meas	G: Radiated Emi surement Conducted Out-Ba		GHz & Bandedge Measurement	RE<1G: Radiate	d Emissio	n below 1GH	Z		
ote: The EUT ha	ad been pre-teste	ed on the posi	tioned of each 3 axi	s. The worst case was f	ound whe	en positioned	on Y-plane .		
adiated Emi	ssion Test (A	Above 1GH	<u> z):</u>						
between architectu	available moo ure).	dulations, d	lata rates and a	vorst-case mode fro ntenna ports (if EU	T with a				
Following	j channel(s) v	vas (were)		final test as listed l	below.				
Configure Mode	Mode	•	Freq. Range (MHz)	Available Channel	Tested	l Channel	Modulation Technology		
	902 11~ + 9	00 11 0	2412 ~ 2462	1 to 11	6	. 40	OFDM		
-	802.11g + 8	02.11a	5180-5240	36 to 48	Ø	+ 48	OFDM		
Pre-Scar between architectu	n has been co available moo ure).	nducted to dulations, d	determine the v lata rates and a	vorst-case mode fro ntenna ports (if EU	T with a				
 Pre-Scar between architectu Following EUT Configure 	n has been co available moo ure).	nducted to dulations, d vas (were)	determine the v lata rates and a selected for the Freq. Range		T with a below.		ersity Modulation		
Pre-Scar between architectu Following EUT	n has been co available moo ure). g channel(s) v	nducted to dulations, d vas (were)	determine the v lata rates and a selected for the Freq. Range (MHz)	ntenna ports (if EU final test as listed l Available Channel	T with a below.	ntenna div	ersity Modulation Technology		
Pre-Scar between architectu Following EUT Configure	n has been co available moo ure). g channel(s) v	nducted to dulations, d vas (were)	determine the v lata rates and a selected for the Freq. Range	ntenna ports (if EU final test as listed l	T with a below. Tested	ntenna div	ersity Modulation		
Pre-Scar between architectu Following EUT Configure Mode - onducted O Pre-Scar between architectu	n has been co available mod ure). g channel(s) v Mode 802.11g + 8 ut-Band Emie n has been co available mod ure).	onducted to dulations, d was (were) 02.11a ssion Mea onducted to dulations, d	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an	ntenna ports (if EU final test as listed l Available Channel 1 to 11 36 to 48	T with a below. Tested 6 om all p T with a	ntenna div I Channel + 48 ossible cor	ersity Modulation Technology OFDM OFDM		
Pre-Scar between architectu Following EUT Configure Mode - onducted O Pre-Scar between architectu Following EUT	n has been co available mod ure). g channel(s) v Mode 802.11g + 8 ut-Band Emie n has been co available mod ure).	onducted to dulations, d was (were) 02.11a ssion Mea onducted to dulations, d was (were)	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an	ntenna ports (if EU final test as listed l Available Channel 1 to 11 36 to 48	T with a below. Tested 6 om all p T with a below.	ntenna div I Channel + 48 ossible cor	ersity Modulation Technology OFDM OFDM		
Pre-Scar between architectu Following EUT Configure Mode - onducted O Pre-Scar between architectu Following EUT Configure Mode	n has been co available mod ure). g channel(s) v Mode 802.11g + 8 ut-Band Emin n has been co available mod ure). g channel(s) v Mode	enducted to dulations, d was (were) o 02.11a ssion Mea onducted to dulations, d was (were)	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an selected for the Freq. Range	ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 vorst-case mode fro ntenna ports (if EU final test as listed I	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div I Channel	ersity Modulation Technology OFDM OFDM mbinations ersity Modulation		
Pre-Scar between architectu Following EUT Configure Mode - onducted O Pre-Scar between architectu Following EUT Configure Mode	n has been co available mod ure). g channel(s) v Mode 802.11g + 8 ut-Band Emin n has been co available mod ure). g channel(s) v	enducted to dulations, d was (were) o 02.11a ssion Mea onducted to dulations, d was (were)	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an selected for the Freq. Range (MHz)	ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 vorst-case mode fro ntenna ports (if EU final test as listed I Available Channel	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div	ersity Modulation Technology OFDM OFDM oFDM ersity Modulation Technology		
Pre-Scar between architectu Following EUT Configure Mode - Onducted O Pre-Scar between architectu Following EUT Configure Mode -	n has been co available mod g channel(s) v Mode 802.11g + 8 ut-Band Emin n has been co available mod ure). g channel(s) v Mode 802.11g + 8	enducted to dulations, d was (were) o 02.11a ssion Mea onducted to dulations, d was (were)	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462	ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 vorst-case mode fro ntenna ports (if EU final test as listed I Available Channel 1 to 11	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div I Channel	ersity Modulation Technology OFDM OFDM mbinations ersity Modulation Technology OFDM		
Pre-Scar between architectu Following EUT Configure Mode - Pre-Scar between architectu Following EUT Configure Mode	n has been co available mod g channel(s) v Mode 802.11g + 8 ut-Band Emin n has been co available mod ure). g channel(s) v Mode 802.11g + 8	enducted to dulations, d was (were) o 02.11a ssion Mea onducted to dulations, d was (were)	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240	ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 vorst-case mode fro ntenna ports (if EU final test as listed I Available Channel 1 to 11	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div I Channel + 48	ersity Modulation Technology OFDM OFDM mbinations ersity Modulation Technology OFDM		
between architectu Following EUT Configure Mode - Onducted O Pre-Scar between architectu Following EUT Configure Mode -	n has been co available mod g channel(s) v 802.11g + 8 ut-Band Emis n has been co available mod ure). g channel(s) v Mode 802.11g + 8	enducted to dulations, d was (were) o 02.11a ssion Mea onducted to dulations, d was (were) o 02.11a	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 Surement determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240	final test as listed I final test as listed I Available Channel 1 to 11 36 to 48 worst-case mode frontenna ports (if EU) final test as listed I Available Channel 1 to 11 36 to 48 Available Channel 1 to 11 36 to 48	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div I Channel + 48	ersity Modulation Technology OFDM OFDM oFDM Modulation Technology OFDM OFDM		
Pre-Scar between architectu Following EUT Configure Mode - Onducted O Pre-Scar between architectu Pre-Scar between architectu Following EUT Configure Mode - est Conditio Applicable to	n has been co available mod g channel(s) v Mode 802.11g + 8 ut-Band Emin n has been co available mod ure). g channel(s) v Mode 802.11g + 8 0 802.11g + 8	onducted to dulations, d vas (were) 02.11a ssion Mea onducted to dulations, d vas (were) 02.11a	determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240 surement determine the v lata rates and an selected for the Freq. Range (MHz) 2412 ~ 2462 5180-5240	ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 vorst-case mode from ntenna ports (if EU final test as listed I Available Channel 1 to 11 36 to 48 Input Power	T with a below. Tested 6 om all p T with a below. Tested	ntenna div I Channel + 48 ossible cor ntenna div I Channel + 48	ersity Modulation Technology OFDM OFDM oFDM Modulations ersity Modulation Technology OFDM OFDM		

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	E5410	1HC2XM1	FCC DoC Approved	-


Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as a communication partner to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	LAN cable	1	7	Ν	0	Provided by Lab. RJ45, Cat5e

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

FCC Part 15, Subpart E (15.407)

ANSI C63.10:2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To		Limit			
789033 D02 Genera	al UN	II Test Procedure	Field Strength at 3m		
New Ru	les v()2r01	PK: 74 (dBμV/m)	AV: 54 (dBµV/m)	
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz		15.407(b)(1)			
5250~5350 MHz		15.407(b)(2)	PK: -27 (dBm/MHz)	PK: 68.2(dBµV/m)	
5470~5725 MHz		15.407(b)(3)			
5725~5850 MHz		15.407(b)(4)(i)	PK: -27 (dBm/MHz) ^{*1} PK: 10 (dBm/MHz) ^{*2} PK: 15.6 (dBm/MHz) ^{*3} PK: 27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK: 105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK: 122.2 (dBµV/m) ^{*4}	
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)		
 *1 beyond 75 MHz or *3 below the band ed of 15.6 dBm/MHz a 	lge in at 5 M	creasing linearly to IHz above.	a level ^{*4} from 5 MHz at 25 MH a level ^{*4} from 5 MHz above of increasing linearly t the band edge.	or below the band edge o a level of 27 dBm/MHz at	
Note: The following fo	rmula	is used to convert	the equipment isotropic radiated	d power (eirp) to field strength:	
$E = \frac{1000000\sqrt{30P}}{3} \mu V/m, \text{ where P is the eirp (Watts).}$					

4.1.2 Test Instruments

	NA 1 1 1 1		0.1.5.4	0 1 5
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Dec. 31, 2020	Dec. 30, 2021
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100040	Sep. 16, 2020	Sep. 15, 2021
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Nov. 03, 2020	Nov. 02, 2021
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-1170	Nov. 22, 2020	Nov. 21, 2021
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 22, 2020	Nov. 21, 2021
Loop Antenna TESEQ	HLA 6121	45745	Jul. 06, 2020	Jul. 05, 2021
Preamplifier Agilent (Below 1GHz)	8447D	2944A10631	Jun. 08, 2020	Jun. 07, 2021
Preamplifier KEYSIGHT (Above 1GHz)	83017A	MY53270295	Jun. 08, 2020	Jun. 07, 2021
RF Coaxial Cable WOKEN With 5dB PAD	8D-FB	Cable-CH4-01	Aug. 16, 2020	Aug. 15, 2021
RF Coaxial Cable EMCI	EMC102-KM-KM- 3000	150929	Aug. 16, 2020	Aug. 15, 2021
RF Coaxial Cable EMCI	EMC102-KM-KM- 600	150928	Aug. 16, 2020	Aug. 15, 2021
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MY 13380+295012/04	Jun. 08, 2020	Jun. 07, 2021
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH4-03 (250724)	Jun. 08, 2020	Jun. 07, 2021
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021703	NA	NA
Turn Table BV ADT	TT100	TT93021703	NA	NA
Turn Table Controller BV ADT	SC100	SC93021703	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY5519000 4/MY55190007/MY55210 005	Jul. 13, 2020	Jul. 12, 2021
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Sep. 04, 2020	Sep. 03, 2021

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 4.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

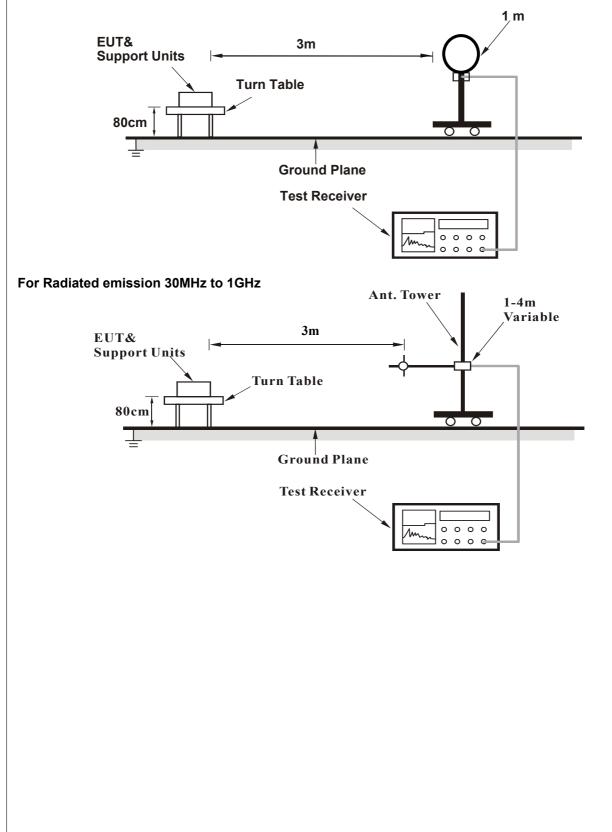
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

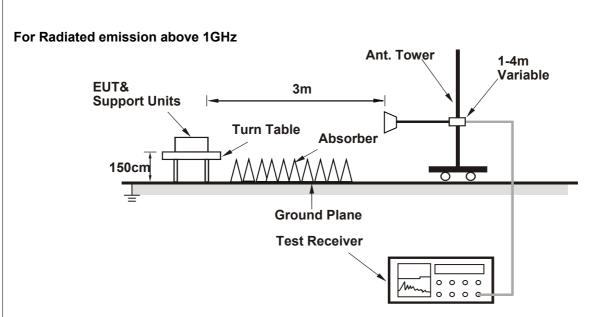
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

802.11g + 802.11a

CHANNEL	CH 6 + CH 48	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	DETECTOR FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	72.0 PK	74.0	-2.0	1.66 H	333	39.0	33.0
2	2390.00	53.1 AV	54.0	-0.9	1.66 H	333	20.1	33.0
3	*2437.00	120.7 PK			1.66 H	333	87.7	33.0
4	*2437.00	110.6 AV			1.66 H	333	77.6	33.0
5	2483.50	73.5 PK	74.0	-0.5	1.66 H	333	40.4	33.1
6	2483.50	53.6 AV	54.0	-0.4	1.66 H	333	20.5	33.1
7	4874.00	52.8 PK	74.0	-21.2	1.73 H	359	41.5	11.3
8	4874.00	43.4 AV	54.0	-10.6	1.73 H	359	32.1	11.3
9	5150.00	59.5 PK	74.0	-14.5	2.19 H	111	48.9	10.6
10	5150.00	48.7 AV	54.0	-5.3	2.19 H	111	38.1	10.6
11	*5240.00	119.8 PK			2.19 H	111	80.2	39.6
12	*5240.00	111.0 AV			2.19 H	111	71.4	39.6
13	5350.00	57.0 PK	74.0	-17.0	2.19 H	111	46.8	10.2
14	5350.00	46.9 AV	54.0	-7.1	2.19 H	111	36.7	10.2
15	#10480.00	59.9 PK	68.2	-8.3	1.60 H	222	39.0	20.9
16	15720.00	61.1 PK	74.0	-12.9	1.90 H	1	38.4	22.7
17	15720.00	51.3 AV	54.0	-2.7	1.90 H	1	28.6	22.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

CHANNEL	CH 6 + CH 48	DETECTOR FUNCTION	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz		Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	72.4 PK	74.0	-1.6	1.32 V	300	39.4	33.0
2	2390.00	53.4 AV	54.0	-0.6	1.32 V	300	20.4	33.0
3	*2437.00	120.8 PK			1.32 V	300	87.8	33.0
4	*2437.00	110.8 AV			1.32 V	300	77.8	33.0
5	2483.50	73.7 PK	74.0	-0.3	1.32 V	300	40.6	33.1
6	2483.50	53.9 AV	54.0	-0.1	1.32 V	300	20.8	33.1
7	4874.00	52.5 PK	74.0	-21.5	1.49 V	33	41.2	11.3
8	4874.00	42.0 AV	54.0	-12.0	1.49 V	33	30.7	11.3
9	5150.00	62.2 PK	74.0	-11.8	1.86 V	123	51.6	10.6
10	5150.00	50.0 AV	54.0	-4.0	1.86 V	120	39.4	10.6
11	*5240.00	124.4 PK			1.86 V	123	84.8	39.6
12	*5240.00	115.0 AV			1.86 V	123	75.4	39.6
13	5350.00	58.9 PK	74.0	-15.1	1.86 V	123	48.7	10.2
14	5350.00	47.7 AV	54.0	-6.3	1.86 V	123	37.5	10.2
15	#10480.00	60.0 PK	68.2	-8.2	1.50 V	349	39.1	20.9
16	15720.00	63.5 PK	74.0	-10.5	2.01 V	160	40.8	22.7
17	15720.00	53.3 AV	54.0	-0.7	2.01 V	160	30.6	22.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

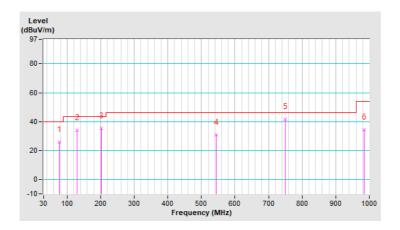
3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. " # ": The radiated frequency is out of the restricted band.

Below 1GHz data

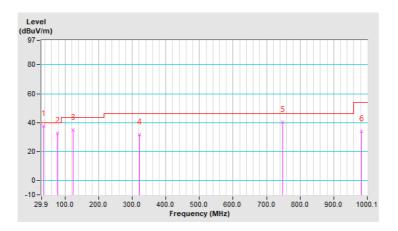

802.11g + 802.11a

CHANNEL	CH 6 + CH 48	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	77.44	25.9 QP	40.0	-14.1	2.00 H	206	38.4	-12.5	
2	129.83	33.9 QP	43.5	-9.6	1.50 H	298	44.1	-10.2	
3	202.60	35.3 QP	43.5	-8.2	1.50 H	298	47.1	-11.8	
4	544.11	30.7 QP	46.0	-15.3	1.50 H	314	33.7	-3.0	
5	749.79	41.8 QP	46.0	-4.2	1.01 H	175	39.1	2.7	
6	984.58	34.5 QP	54.0	-19.5	1.50 H	13	26.8	7.7	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



CHANNEL	CH 6 + CH 48	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	35.72	37.5 QP	40.0	-2.5	1.50 V	18	47.6	-10.1	
2	77.44	32.6 QP	40.0	-7.4	1.00 V	301	45.1	-12.5	
3	123.04	34.9 QP	43.5	-8.6	1.00 V	310	45.7	-10.8	
4	320.96	31.8 QP	46.0	-14.2	1.99 V	298	39.0	-7.2	
5	746.88	40.5 QP	46.0	-5.5	1.00 V	18	37.9	2.6	
6	981.67	34.2 QP	54.0	-19.8	1.00 V	316	26.6	7.6	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



4.2 Conducted Out of Band Emission Measurement

4.2.1 Limits of Conducted Out of Band Emission Measurement

Below -30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

MEASUREMENT PROCEDURE REF

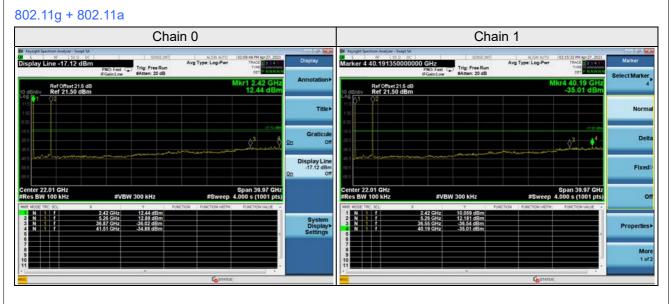
- a. Set the RBW = 100 kHz.
- b. Set the VBW \geq 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW \ge 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

4.2.5 Deviation from Test Standard

No deviation.


4.2.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.2.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---