

| Supplemental "Transmit Simultaneously" Test Report |                                                                                                      |  |  |  |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Report No.:                                        | RF161202E10-2                                                                                        |  |  |  |
| FCC ID:                                            | PY316400356                                                                                          |  |  |  |
| Test Model:                                        | D7000v2                                                                                              |  |  |  |
| Received Date:                                     | Dec. 02, 2016                                                                                        |  |  |  |
| Test Date:                                         | Jan. 06 to Mar. 25, 2017                                                                             |  |  |  |
| Issued Date:                                       | Apr. 11, 2017                                                                                        |  |  |  |
| Applicant:                                         | NETGEAR, Inc.                                                                                        |  |  |  |
| Address:                                           | 350 East Plumeria Drive San Jose, CA 95134                                                           |  |  |  |
|                                                    |                                                                                                      |  |  |  |
| Issued By:                                         | Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch<br>Hsin Chu Laboratory         |  |  |  |
| Lab Address:                                       | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwan R.O.C.                |  |  |  |
| Test Location (1):                                 | E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,<br>Taiwan R.O.C.                |  |  |  |
| Test Location (2):                                 | No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin<br>Chu Hsien 307, Taiwan R.O.C. |  |  |  |
|                                                    |                                                                                                      |  |  |  |
|                                                    |                                                                                                      |  |  |  |
|                                                    |                                                                                                      |  |  |  |



This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.



# **Table of Contents**

| Releas                                                                                                                                                                                           | Release Control Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                                                                                                                                                                                                | Certificate of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                              |  |  |
| 2                                                                                                                                                                                                | Summary of Test Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                              |  |  |
| 2.1<br>2.2                                                                                                                                                                                       | Measurement Uncertainty<br>Modification Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>5                                                                                                                         |  |  |
| 3                                                                                                                                                                                                | General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                              |  |  |
| 3.1<br>3.1.1<br>3.2<br>3.2.1                                                                                                                                                                     | General Description of EUT<br>Test Mode Applicability and Tested Channel Detail<br>Description of Support Units<br>Configuration of System under Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8<br>10                                                                                                                        |  |  |
| 4                                                                                                                                                                                                | Test Types and Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                             |  |  |
| 4.1.2<br>4.1.2<br>4.1.4<br>4.1.5<br>4.1.6<br>4.1.7<br>4.2<br>4.2.1<br>4.2.2<br>4.2.2<br>4.2.5<br>4.2.6<br>4.2.7<br>4.2.6<br>4.2.7<br>4.2.8<br>4.3.1<br>4.3.2<br>4.3.1<br>4.3.2<br>4.3.5<br>4.3.6 | Radiated Emission and Bandedge Measurement         Limits of Radiated Emission and Bandedge Measurement         Test Instruments         Test Procedures         Deviation from Test Standard         Test Setup         EUT Operating Conditions         7 Test Results         Conducted Emission Measurement         Limits of Conducted Emission Measurement         Limits of Conducted Emission Measurement         2 Test Instruments         3 Test Procedures         Deviation from Test Standard         5 Test Setup         6 EUT Operating Conditions         7 Test Results         Conducted Emission Measurement         Limits of Conducted Imission Measurement         9 Deviation from Test Standard         10 Test Setup         6 EUT Operating Conditions         7 Test Results (Mode 1)         8 Test Results (Mode 2)         Conducted Out of Band Emission Measurement         Limits of Conducted Out of Band Emission Measurement         1 Test Instruments         1 Test Setup         3 Test Instruments         1 Test Instruments         1 Test Procedures         1 Test Instruments         1 Test Procedures         1 Test Instruments | $\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 19\\ 19\\ 20\\ 20\\ 21\\ 23\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$ |  |  |
| 5                                                                                                                                                                                                | Pictures of Test Arrangements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                             |  |  |
| Appen                                                                                                                                                                                            | dix – Information on the Testing Laboratories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                             |  |  |



# **Release Control Record** Description Date Issued Issue No. RF161202E10-2 Original release. Apr. 11, 2017



# 1 Certificate of Conformity

| Product:       | AC1900 WiFi VDSL/ADSL Modem Router             |
|----------------|------------------------------------------------|
| Brand:         | NETGEAR                                        |
| Test Model:    | D7000v2                                        |
| Sample Status: | ENGINEERING SAMPLE                             |
| Applicant:     | NETGEAR, Inc.                                  |
| Test Date:     | Jan. 06 to Mar. 25, 2017                       |
| Standards:     | 47 CFR FCC Part 15, Subpart C (Section 15.247) |
|                | 47 CFR FCC Part 15, Subpart E (Section 15.407) |
|                | ANSI C63.10: 2013                              |

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

| Prepared by :   | Wondy            | , Date: | Apr. 11, 2017 |  |
|-----------------|------------------|---------|---------------|--|
| -               | Wendy Wu / Speci | alist   |               |  |
| Approved by : _ | $\mathcal{M}$    | , Date: | Apr. 11, 2017 |  |
|                 | May Chen / Mana  | ger     |               |  |



# 2 Summary of Test Results

| 47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407)        |                                                 |        |                                                                                       |  |
|------------------------------------------------------------------|-------------------------------------------------|--------|---------------------------------------------------------------------------------------|--|
| FCC<br>Clause                                                    | Test Item                                       | Result | Remarks                                                                               |  |
| 15.207                                                           | AC Power Conducted<br>Emission                  | PASS   | Meet the requirement of limit.<br>Minimum passing margin is -3.02dB at<br>0.28672MHz. |  |
| 15.205 / 15.209 /<br>15.247(d)<br>15.407(b)<br>(1/2/3/4(i/ii)/6) | Radiated Emissions and Band<br>Edge Measurement | PASS   | Meet the requirement of limit.<br>Minimum passing margin is -0.8dB at<br>17355.00MHz. |  |

# 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                        | Frequency      | Expanded Uncertainty<br>(k=2) (±) |
|------------------------------------|----------------|-----------------------------------|
| Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.84 dB                           |
| Radiated Emissions up to 1 GHz     | 30MHz ~ 1GHz   | 5.30 dB                           |
|                                    | 1GHz ~ 6GHz    | 4.78 dB                           |
| Radiated Emissions above 1 GHz     | 6GHz ~ 18GHz   | 4.52 dB                           |
|                                    | 18GHz ~ 40GHz  | 5.08 dB                           |

# 2.2 Modification Record

There were no modifications required for compliance.



# 3 General Information

# 3.1 General Description of EUT

| 3.1 General Description                                                                                             |                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product                                                                                                             | AC1900 WiFi VDSL/ADSL Modem Router                                                                                                                                                                        |
| Brand                                                                                                               | NETGEAR                                                                                                                                                                                                   |
| Test Model                                                                                                          | D7000v2                                                                                                                                                                                                   |
| Status of EUT                                                                                                       | ENGINEERING SAMPLE                                                                                                                                                                                        |
| Power Supply Rating                                                                                                 | DC 12V from power adapter                                                                                                                                                                                 |
| Modulation Type                                                                                                     | CCK, DQPSK, DBPSK for DSSS<br>64QAM, 16QAM, QPSK, BPSK for OFDM<br>256QAM for OFDM in 11ac mode and VHT20/40 mode of 2.4GHz Band                                                                          |
| Modulation Technology                                                                                               | DSSS,OFDM                                                                                                                                                                                                 |
| Transfer Rate802.11b: up to 11Mbps<br>802.11a/g: up to 54Mbps<br>802.11n: up to 600Mbps<br>802.11ac: up to 1300Mbps |                                                                                                                                                                                                           |
| Onerating Frequency                                                                                                 | <b>2.4GHz:</b> 2.412 ~ 2.462GHz                                                                                                                                                                           |
| Operating Frequency                                                                                                 | <b>5GHz:</b> 5.18 ~ 5.24GHz, 5.745 ~ 5.825GHz                                                                                                                                                             |
| Number of Channel                                                                                                   | 2.4GHz:<br>802.11b, 802.11g, 802.11n (HT20), VHT20: 11<br>802.11n (HT40), VHT40: 7<br>5GHz:<br>802.11a, 802.11n (HT20), 802.11ac (VHT20): 9<br>802.11n (HT40), 802.11ac (VHT40): 4<br>802.11ac (VHT80): 2 |
| Antenna Type                                                                                                        | Refer to Note                                                                                                                                                                                             |
| Antenna Connector                                                                                                   | Refer to Note                                                                                                                                                                                             |
| Accessory Device                                                                                                    | Adapter x 1                                                                                                                                                                                               |
| Data Cable Supplied                                                                                                 | NA                                                                                                                                                                                                        |

Note:

1. The EUT must be supplied with a power adapter and following different models could be chosen as following table:

| No | Brand Name | Model No.  | P/N          | Spec.                                                                                      | Plug |
|----|------------|------------|--------------|--------------------------------------------------------------------------------------------|------|
| 1  | NETGEAR    | 2ABL030F 1 | 332-10758-01 | Input: 100-240Vac, 50/60Hz, 1A<br>Output: 12Vdc, 2.5A<br>DC output cable: 1.8m, unshielded | FCC  |
| 2  | NETGEAR    | AD2067F10  | 332-10797-01 | Input: 100-240Vac, 50/60Hz, 1A<br>Output: 12Vdc, 2.5A<br>DC output cable: 1.8m, unshielded | FCC  |

Note:

1. From the above adapters, the radiated emissions worse case was found in Adapter 1. Therefore only the test data of the mode was recorded in this report.

2. Simultaneously transmission condition.

| Condition                                                                                            | Technology                |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| 1                                                                                                    | WLAN (2.4GHz) WLAN (5GHz) |  |  |  |  |
| Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. |                           |  |  |  |  |



| Antenna<br>No. | Ant. Gain(dBi) | Frequency range<br>(GHz) | Antenna Type  | Connecter Type | Cable<br>Loss(dB) | Cable<br>Length (mm) |
|----------------|----------------|--------------------------|---------------|----------------|-------------------|----------------------|
| - 1            | 0.82           | 2.4~2.4835               | Dinala        |                | 0.37              | 70                   |
| I              | 2.76           | 5.15~5.85                | Dipole        | Re-SMA         | 0.57              | 79                   |
| 2              | 0.82           | 2.4~2.4835               | Dinala        | Re-SMA         | 0.37              | 88                   |
| 2              | 2.76           | 5.15~5.85                | Dipole        |                | 0.62              | 00                   |
| 3              | 0.82           | 2.4~2.4835               | Dinala        |                | 0.575             | 170                  |
|                | 2.76           | 5.15~5.85                | Dipole Re-SMA |                | 0.62              | 170                  |

3. The antennas provided to the EUT, please refer to the following table:

4. The EUT incorporates a MIMO function.

| For 2.4GHz Band                      |                                                    |                          |                   |  |  |
|--------------------------------------|----------------------------------------------------|--------------------------|-------------------|--|--|
| MODULATION MODE                      | DATA RATE (MCS)                                    | TX & RX CO               | NFIGURATION       |  |  |
| 802.11b                              | 1 ~ 11Mbps                                         | 1 ~ 11Mbps 1TX diversity |                   |  |  |
| 802.11g                              | 6 ~ 54Mbps                                         | 3TX                      | 3RX               |  |  |
|                                      | MCS 0~7                                            | 3TX                      | 3RX               |  |  |
| 802.11n (HT20)                       | MCS 8~15                                           | 3TX                      | 3RX               |  |  |
|                                      | MCS 16~23                                          | 3TX                      | 3RX               |  |  |
|                                      | MCS 0~7                                            | 3TX                      | 3RX               |  |  |
| 802.11n (HT40)                       | MCS 8~15                                           | 3TX                      | 3RX               |  |  |
|                                      | MCS 16~23                                          | 3TX                      | 3RX               |  |  |
|                                      | MCS0~8 Nss=1                                       | 3TX                      | 3RX               |  |  |
| VHT20                                | MCS0~8 Nss=2                                       | 3TX                      | 3RX               |  |  |
|                                      | MCS0~9 Nss=3                                       | 3TX                      | 3RX               |  |  |
|                                      | MCS0~9 Nss=1                                       | 3TX                      | 3RX               |  |  |
| VHT40                                | MCS0~9 Nss=2                                       | 3TX                      | 3RX               |  |  |
|                                      | MCS0~9 Nss=3                                       |                          |                   |  |  |
|                                      |                                                    | 5GHz Band                |                   |  |  |
| MODULATION MODE DATA RATE (MCS)      |                                                    | TX & RX CONFIGURATION    |                   |  |  |
| 802.11a                              | 6 ~ 54Mbps                                         | 3TX                      | 3RX               |  |  |
|                                      | MCS 0~7                                            | 3TX                      | 3RX               |  |  |
| 802.11n (HT20)                       | MCS 8~15                                           | ЗТХ                      | 3RX               |  |  |
|                                      | MCS 16~23                                          | ЗТХ                      | 3RX               |  |  |
|                                      | MCS 0~7                                            | 3TX                      | 3RX               |  |  |
| 802.11n (HT40)                       | MCS 8~15                                           | 3TX                      | 3RX               |  |  |
|                                      | MCS 16~23                                          | 3TX                      | 3RX               |  |  |
|                                      | MCS 0~8, Nss=1                                     | 3TX                      | 3RX               |  |  |
| 802.11ac (VHT20)                     | MCS 0~8, Nss=2                                     | 3TX                      | 3RX               |  |  |
|                                      |                                                    |                          |                   |  |  |
|                                      | MCS 0~9, Nss=3                                     | ЗТХ                      | 3RX               |  |  |
|                                      | MCS 0~9, Nss=3<br>MCS 0~9, Nss=1                   | 3TX<br>3TX               | 3RX<br>3RX        |  |  |
| 802.11ac (VHT40)                     |                                                    |                          |                   |  |  |
| 802.11ac (VHT40)                     | MCS 0~9, Nss=1                                     | 3TX                      | 3RX               |  |  |
| 802.11ac (VHT40)                     | MCS 0~9, Nss=1<br>MCS 0~9, Nss=2                   | 3TX<br>3TX               | 3RX<br>3RX        |  |  |
| 802.11ac (VHT40)<br>802.11ac (VHT80) | MCS 0~9, Nss=1<br>MCS 0~9, Nss=2<br>MCS 0~9, Nss=3 | 3TX<br>3TX<br>3TX        | 3RX<br>3RX<br>3RX |  |  |

Note:

1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.

2. The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report.

The EUT support Beamforming and CDD mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



# 3.1.1 Test Mode Applicability and Tested Channel Detail

| EUT   | EUT Applicable To |                                           |              | Description         |                                      |
|-------|-------------------|-------------------------------------------|--------------|---------------------|--------------------------------------|
| Mode  | RE≥1G             | RE<1G                                     | PLC          | ОВ                  | Description                          |
| 1     | $\checkmark$      | $\checkmark$                              | $\checkmark$ | $\checkmark$        | With Adapter 1                       |
| 2     | -                 | -                                         | $\checkmark$ | -                   | With Adapter 2                       |
| Where | RE≥1G: Radiate    | E≥1G: Radiated Emission above 1GHz RE<1G: |              | <b>RE&lt;1G</b> : F | Radiated Emission below 1GHz         |
|       | PLC: Power Lin    | LC: Power Line Conducted Emission OB      |              | OB: Conc            | lucted Out-Band Emission Measurement |

# NOTE:

1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane.

# Radiated Emission Test (Above 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL   | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |  |
|----------------|------------------------|-------------------|--------------------------|--------------------|--|
| 802.11n (HT20) | 1 to 11                | 6                 | OFDM                     | BPSK               |  |
| +<br>802.11a   | 36 to 48<br>149 to 165 | 157               | OFDM                     | BPSK               |  |

# Radiated Emission Test (Below 1GHz):

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL   | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |
|----------------|------------------------|-------------------|--------------------------|--------------------|
| 802.11n (HT20) | 1 to 11                | 6                 | OFDM                     | BPSK               |
| +<br>802.11a   | 36 to 48<br>149 to 165 | 157               | OFDM                     | BPSK               |

#### Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE<br>CHANNEL   | TESTED<br>CHANNEL | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |  |
|----------------|------------------------|-------------------|--------------------------|--------------------|--|
| 802.11n (HT20) | 1 to 11                | 6                 | OFDM                     | BPSK               |  |
| +<br>802.11a   | 36 to 48<br>149 to 165 | 157               | OFDM                     | BPSK               |  |

# **Conducted Out-Band Emission Measurement:**

Following channel(s) was (were) selected for the final test as listed below.

| MODE           | AVAILABLE TESTED<br>CHANNEL CHANNEL |     | MODULATION<br>TECHNOLOGY | MODULATION<br>TYPE |  |
|----------------|-------------------------------------|-----|--------------------------|--------------------|--|
| 802.11n (HT20) | 1 to 11                             | 6   | OFDM                     | BPSK               |  |
| +<br>802.11a   | 36 to 48<br>149 to 165              | 157 | OFDM                     | BPSK               |  |



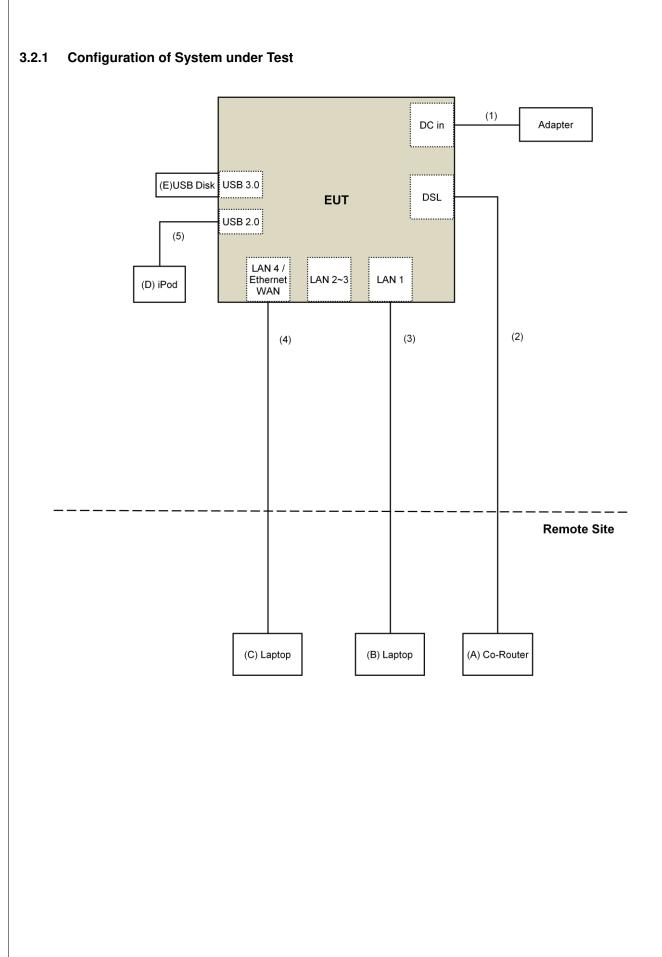
# Test Condition:

| APPLICABLE TO | PLICABLE TO ENVIRONMENTAL CONDITIONS |              | TESTED BY     |
|---------------|--------------------------------------|--------------|---------------|
| RE≥1G         | 25deg. C, 64%RH                      | 120Vac, 60Hz | Weiwei Lo     |
| RE<1G         | 24deg. C, 63%RH                      | 120Vac, 60Hz | Jyunchun Lin  |
| PLC           | 24deg. C, 64%RH                      | 120Vac, 60Hz | Jyunchun Lin  |
| OB            | 26deg. C, 67%RH                      | 120Vac, 60Hz | Anderson Chen |



# 3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


| ID | Product   | Brand     | Model No. | Serial No.              | FCC ID  | Remarks         |
|----|-----------|-----------|-----------|-------------------------|---------|-----------------|
| Α. | Co-Router | ZyXel     | IES-1000  | 00 S08024701597 FCC DoC |         | Provided by Lab |
| В. | Laptop    | DELL      | E5430     | 4YV4VY1                 | FCC DoC | Provided by Lab |
| C. | Laptop    | DELL      | E5430     | HYV4VY1                 | FCC DoC | Provided by Lab |
| D. | iPod      | Apple     | MC749TA/A | CC4DN25WDFDM            | NA      | Provided by Lab |
| Ε. | USB Disk  | Transcend | 16G       | NA                      | NA      | Provided by Lab |

Note:

1. All power cords of the above support units are non-shielded (1.8m).

| ID | Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks            |
|----|--------------|------|------------|-----------------------|--------------|--------------------|
| 1. | DC Cable     | 1    | 1.8        | No                    | 0            | Supplied by client |
| 2. | RJ-11 Cable  | 1    | 10         | No                    | 0            | Provided by Lab    |
| 3. | RJ-45 Cable  | 1    | 10         | No                    | 0            | Provided by Lab    |
| 4. | RJ-45 Cable  | 1    | 10         | No                    | 0            | Provided by Lab    |
| 5. | USB Cable    | 1    | 0.1        | Yes                   | 0            | Provided by Lab    |







# 4 Test Types and Results

# 4.1 Radiated Emission and Bandedge Measurement

#### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance (meters) |
|----------------------|--------------------------------------|-------------------------------|
| 0.009 ~ 0.490        | 2400/F(kHz)                          | 300                           |
| 0.490 ~ 1.705        | 24000/F(kHz)                         | 30                            |
| 1.705 ~ 30.0         | 30                                   | 30                            |
| 30 ~ 88              | 100                                  | 3                             |
| 88 ~ 216             | 150                                  | 3                             |
| 216 ~ 960            | 200                                  | 3                             |
| Above 960            | 500                                  | 3                             |

#### NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

| Applicable To                                                                                                     |                                                                                                  |                   | Limit                                                                                                                               |                                                                                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 789033 D02 Genera                                                                                                 | al UN                                                                                            | II Test Procedure | Field Strength at 3m                                                                                                                |                                                                                                                                         |  |  |
| New Ru                                                                                                            | les v(                                                                                           | )1r03             | PK:74 (dBμV/m)                                                                                                                      | AV:54 (dBµV/m)                                                                                                                          |  |  |
| Frequency Band                                                                                                    | Applicable To                                                                                    |                   | EIRP Limit                                                                                                                          | Equivalent Field Strength at<br>3m                                                                                                      |  |  |
| 5150~5250 MHz                                                                                                     | 15.407(b)(1)<br>15.407(b)(2)<br>15.407(b)(3)                                                     |                   |                                                                                                                                     |                                                                                                                                         |  |  |
| 5250~5350 MHz                                                                                                     |                                                                                                  |                   | PK:-27 (dBm/MHz)                                                                                                                    | PK:68.2(dBμV/m)                                                                                                                         |  |  |
| 5470~5725 MHz                                                                                                     |                                                                                                  |                   |                                                                                                                                     |                                                                                                                                         |  |  |
| 5725~5850 MHz                                                                                                     | $\boxtimes$                                                                                      | 15.407(b)(4)(i)   | PK:-27 (dBm/MHz) <sup>*1</sup><br>PK:10 (dBm/MHz) <sup>*2</sup><br>PK:15.6 (dBm/MHz) <sup>*3</sup><br>PK:27 (dBm/MHz) <sup>*4</sup> | PK: 68.2(dBμV/m) <sup>*1</sup><br>PK:105.2 (dBμV/m) <sup>*2</sup><br>PK: 110.8(dBμV/m) <sup>*3</sup><br>PK:122.2 (dBμV/m) <sup>*4</sup> |  |  |
|                                                                                                                   |                                                                                                  | 15.407(b)(4)(ii)  | Emission limits in                                                                                                                  | section 15.247(d)                                                                                                                       |  |  |
| <ul> <li><sup>*1</sup> beyond 75 MHz or</li> <li><sup>*3</sup> below the band ed<br/>of 15.6 dBm/MHz a</li> </ul> | e increasing linearly to 10<br>Iz above.<br>or below the band edge<br>o a level of 27 dBm/MHz at |                   |                                                                                                                                     |                                                                                                                                         |  |  |

#### Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$

 $\mu$ V/m, where P is the eirp (Watts).



#### **DESCRIPTION &** CALIBRATED CALIBRATED SERIAL NO. MODEL NO. MANUFACTURER DATE UNTIL Test Receiver July 19, 2017 N9038A MY54450088 July 20, 2016 Keysight Pre-Amplifier<sup>(\*)</sup> EMC001340 980142 Jan. 20, 2016 Jan. 19, 2018 EMCI Loop Antenna<sup>(\*)</sup> EM-6879 264 Dec. 16, 2016 Dec. 15, 2018 **Electro-Metrics** LOOPCAB-001 NA **RF** Cable Jan. 17, 2017 Jan. 16, 2018 LOOPCAB-002 **Pre-Amplifier** ZFL-1000VH2B AMP-ZFL-01 Nov. 10, 2016 Nov. 09, 2017 Mini-Circuits Trilog Broadband Antenna **VULB 9168** 9168-406 Dec. 13, 2016 Dec. 12, 2017 SCHWARZBECK 966-4-1 Apr. 02, 2016 **RF** Cable 8D 966-4-2 Apr. 01, 2017 966-4-3 Fixed attenuator UNAT-5+ PAD-3m-4-01 Oct. 05, 2016 Oct. 04, 2017 Mini-Circuits Horn Antenna **BBHA 9120D** Dec. 27, 2016 9120D-783 Dec. 26, 2017 SCHWARZBECK Pre-Amplifier EMC12630SE 980385 Feb. 02, 2017 Feb. 01, 2018 EMCI Feb. 02, 2017 EMC104-SM-SM-2000 160923 Feb. 01, 2018 **RF** Cable Mar. 30, 2016 EMC104-SM-SM-5000 150318 Mar. 29, 2017 EMC104-SM-SM-5000 150323 Mar. 30, 2016 Mar. 29, 2017 **Pre-Amplifier** EMC184045SE 980387 Feb. 02, 2017 Feb. 01, 2018 EMCI Horn Antenna BBHA9170608 Dec. 15, 2016 **BBHA 9170** Dec. 14, 2017 SCHWARZBECK 36432/2 **RF** Cable SUCOFLEX 102 Jan. 15, 2017 Jan. 14, 2018 36433/2 ADT Radiated V8.7.08 NA NA Software NA Antenna Tower & Turn Table MF-7802 MF780208410 NA NA Max-Full Boresight Antenna Fixture NA NA **FBA-01** FBA-SIP02 Spectrum Analyzer FSv40 100964 June 28, 2016 June 27, 2017 R&S Power meter May 4, 2017 ML2495A 1014008 May 5, 2016 Anritsu Power sensor MA2411B 0917122 May 5, 2016 May 4, 2017 Anritsu

# 4.1.2 Test Instruments

#### Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. \*The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The FCC Site Registration No. is 292998
- 5. The CANADA Site Registration No. is 20331-2
- 6 Loop antenna was used for all emissions below 30 MHz.
- 7. Tested Date: Mar. 25, 2017



#### 4.1.3 Test Procedures For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### NOTE:

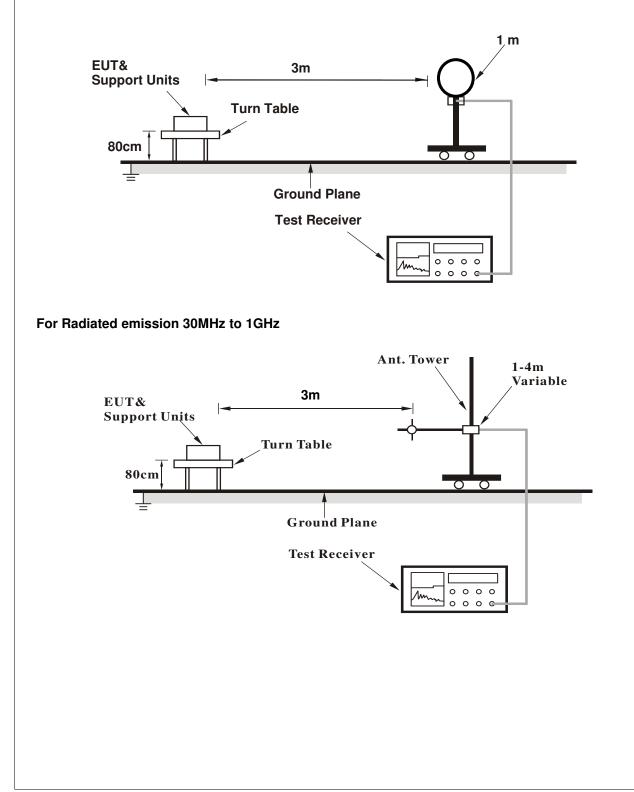
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

# For Radiated emission above 30MHz

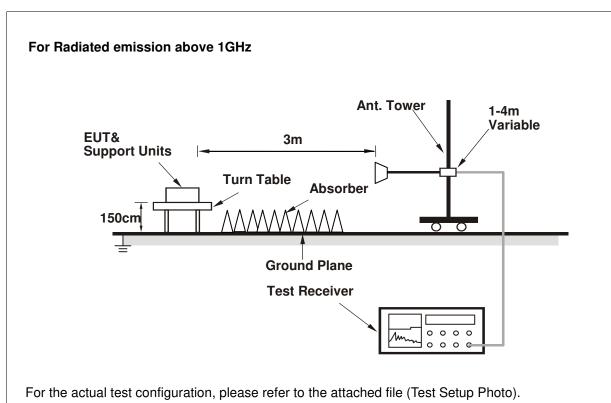
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

#### Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.




# 4.1.4 Deviation from Test Standard


No deviation.

# 4.1.5 Test Setup

# For Radiated emission below 30MHz







- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop which is placed on remote site.
- b. Contorlling software (Lantiq DUT.exe) has been activated to set the EUT on specific status.



# 4.1.7 Test Results

Above 1GHz Data

| FREQUENCY RANGE | 1GHz ~ 40GHz | DETECTOR<br>FUNCTION | Peak (PK)<br>Average (AV) |
|-----------------|--------------|----------------------|---------------------------|
|-----------------|--------------|----------------------|---------------------------|

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |                |                          |                            |                        |                                |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| NO. | FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |
| 1   | 4874.00                                             | 43.1 PK                       | 74.0              | -30.9          | 2.08 H                   | 116                        | 40.8                   | 2.3                            |  |  |
| 2   | 4874.00                                             | 31.9 AV                       | 54.0              | -22.1          | 2.08 H                   | 116                        | 29.6                   | 2.3                            |  |  |
| 3   | 7311.00                                             | 47.7 PK                       | 74.0              | -26.3          | 1.61 H                   | 22                         | 39.3                   | 8.4                            |  |  |
| 4   | 7311.00                                             | 36.7 AV                       | 54.0              | -17.3          | 1.61 H                   | 22                         | 28.3                   | 8.4                            |  |  |
| 5   | 11570.00                                            | 60.3 PK                       | 74.0              | -13.7          | 2.55 H                   | 180                        | 47.7                   | 12.6                           |  |  |
| 6   | 11570.00                                            | 49.0 AV                       | 54.0              | -5.0           | 2.55 H                   | 180                        | 36.4                   | 12.6                           |  |  |
| 7   | 17355.00                                            | 69.3 PK                       | 74.0              | -4.7           | 1.64 H                   | 213                        | 51.2                   | 18.1                           |  |  |
| 8   | 17355.00                                            | 53.2 AV                       | 54.0              | -0.8           | 1.64 H                   | 213                        | 35.1                   | 18.1                           |  |  |
|     |                                                     | ANTENNA                       | <b>POLARITY</b>   | & TEST DI      | STANCE: V                | ERTICAL A                  | Т 3 М                  |                                |  |  |
| NO. | FREQ.<br>(MHz)                                      | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN<br>(dB) | ANTENNA<br>HEIGHT<br>(m) | TABLE<br>ANGLE<br>(Degree) | RAW<br>VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |
| 1   | 4874.00                                             | 51.6 PK                       | 74.0              | -22.4          | 1.95 V                   | 34                         | 49.3                   | 2.3                            |  |  |
| 2   | 4874.00                                             | 40.4 AV                       | 54.0              | -13.6          | 1.95 V                   | 34                         | 38.1                   | 2.3                            |  |  |
| 3   | 7311.00                                             | 51.3 PK                       | 74.0              | -22.7          | 2.52 V                   | 185                        | 42.9                   | 8.4                            |  |  |
| 4   | 7311.00                                             | 40.5 AV                       | 54.0              | -13.5          | 2.52 V                   | 185                        | 32.1                   | 8.4                            |  |  |
| 5   | 11570.00                                            | 63.3 PK                       | 74.0              | -10.7          | 1.91 V                   | 171                        | 50.7                   | 12.6                           |  |  |
| 6   | 11570.00                                            | 50.1 AV                       | 54.0              | -3.9           | 1.91 V                   | 171                        | 37.5                   | 12.6                           |  |  |
| 7   | 17355.00                                            | 62.0 PK                       | 74.0              | -12.0          | 1.95 V                   | 170                        | 43.9                   | 18.1                           |  |  |
|     | 17355.00                                            | 48.7 AV                       | 54.0              | -5.3           | 1.95 V                   | 170                        | 30.6                   | 18.1                           |  |  |

# **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level - Limit value



Below 1GHz Data:

| FREQUENCY RANGE 9kH                                 |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DETECTOR<br>FUNCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quasi-Peak (QP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| FREQ.<br>(MHz)                                      | LEVE                                                                                                                                                                                                      | LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARGIN<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANTENNA<br>HEIGHT<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TABLE<br>ANGLE<br>(Degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RAW<br>VALUE<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CORRECTION<br>FACTOR<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 88.20                                               | 40.0 Q                                                                                                                                                                                                    | P 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 54.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 432.05                                              | 42.0 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.01 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 540.00                                              | 42.1 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 44.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 600.01                                              | 42.5 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 42.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 780.03                                              | 41.4 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 900.05                                              | 41.3 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     | ANTE                                                                                                                                                                                                      | NNA POLARIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y & TEST I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DISTANCE: V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ERTICAL A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AT 3 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| FREQ.<br>(MHz)                                      | LEVE                                                                                                                                                                                                      | LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARGIN<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ANTENNA<br>HEIGHT<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TABLE<br>ANGLE<br>(Degree)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RAW<br>VALUE<br>(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CORRECTION<br>FACTOR<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 312.00                                              | 41.8 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 507.03                                              | 40.9 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 600.00                                              | 41.0 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 660.01                                              | 41.5 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 780.08                                              | 41.7 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 900.00                                              | 42.1 Q                                                                                                                                                                                                    | P 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                     | FREQ.<br>(MHz)         88.20         432.05         540.00         600.01         780.03         900.05         FREQ.<br>(MHz)         312.00         507.03         600.00         660.01         780.08 | ANTENI           FREQ.<br>(MHz)         EMISSIC<br>LEVEI<br>(dBuV/r<br>88.20           88.20         40.0 Q           432.05         42.0 Q           540.00         42.1 Q           600.01         42.5 Q           780.03         41.4 Q           900.05         41.3 Q           EMISSIC<br>LEVEI<br>(dBuV/r<br>312.00           507.03         40.9 Q           600.00         41.8 Q           507.03         40.9 Q           660.01         41.5 Q           780.08         41.7 Q | ANTENNA POLARITY           EMISSION<br>LEVEL<br>(MHz)         LIMIT<br>(dBuV/m)           88.20         40.0 QP         43.5           432.05         42.0 QP         46.0           540.00         42.1 QP         46.0           600.01         42.5 QP         46.0           780.03         41.4 QP         46.0           900.05         41.3 QP         46.0           600.00         41.8 QP         46.0           507.03         40.9 QP         46.0           600.00         41.0 QP         46.0           600.01         41.5 QP         46.0           600.02         41.7 QP         46.0 | ANTENNA POLARITY & TEST DI           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)           88.20         40.0 QP         43.5         -3.5           432.05         42.0 QP         46.0         -4.0           540.00         42.1 QP         46.0         -3.9           600.01         42.5 QP         46.0         -3.5           780.03         41.4 QP         46.0         -4.6           900.05         41.3 QP         46.0         -4.7           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)           312.00         41.8 QP         46.0         -4.2           507.03         40.9 QP         46.0         -5.1           600.00         41.0 QP         46.0         -5.1           600.00         41.0 QP         46.0         -5.0           660.01         41.5 QP         46.0         -5.0           660.01         41.5 QP         46.0         -5.0           660.01         41.7 QP         46.0         -4.5 | EMISSION<br>(MHz)         LIMIT<br>(dBuV/m)         MARGIN<br>(dBuV/m)         ANTENNA<br>HEIGHT<br>(dBuV/m)           88.20         40.0 QP         43.5         -3.5         2.00 H           432.05         42.0 QP         46.0         -4.0         1.01 H           540.00         42.1 QP         46.0         -3.9         2.00 H           600.01         42.5 QP         46.0         -4.6         1.00 H           900.05         41.3 QP         46.0         -4.6         1.00 H           900.05         41.3 QP         46.0         -4.7         1.50 H           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)           312.00         41.8 QP         46.0         -5.1         1.50 V           507.03         40.9 QP         46.0         -5.0         1.00 V           600.00         41.0 QP         46.0         -4.2         1.50 V           507.03         40.9 QP         46.0         -5.1         1.50 V           600.00         41.0 QP         46.0         -5.0         1.00 V           660.01         41.5 QP         46.0         -4.5         1.50 V           600.00         41.0 QP | BUENCY RANGE         9KHZ ~ 1GHZ         FUNCTION           ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL         ANTENNA         TABLE           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)           88.20         40.0 QP         43.5         -3.5         2.00 H         112           432.05         42.0 QP         46.0         -4.0         1.01 H         61           540.00         42.1 QP         46.0         -3.9         2.00 H         121           600.01         42.5 QP         46.0         -3.5         1.50 H         124           780.03         41.4 QP         46.0         -4.6         1.00 H         128           900.05         41.3 QP         46.0         -4.7         1.50 H         190           ANTENNA POLARITY & TEST DISTANCE: VERTICAL A           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)           312.00         41.8 QP         46.0         -5.1         1.50 V         190           507.03         40.9 QP         46.0         -5.0         1.00 V         93 | BUENCY RANGE         9KHZ ~ 1GHZ         FUNCTION         Quasi-Peak           ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE<br>(Degree)         RAW<br>VALUE<br>(dBuV)           88.20         40.0 QP         43.5         -3.5         2.00 H         112         54.5           432.05         42.0 QP         46.0         -4.0         1.01 H         61         46.2           540.00         42.1 QP         46.0         -3.9         2.00 H         121         44.4           600.01         42.5 QP         46.0         -3.5         1.50 H         124         42.9           780.03         41.4 QP         46.0         -4.7         1.50 H         190         37.4           FREQ.<br>(MHz)         EMISSION<br>LEVEL<br>(dBuV/m)         LIMIT<br>(dBuV/m)         MARGIN<br>(dB)         ANTENNA<br>HEIGHT<br>(m)         TABLE<br>ANGLE         RAW<br>VALUE<br>(Degree)           312.00         41.8 QP         46.0         -4.2         1.50 V         190         49.1           507.03         40.9 QP         46.0         -5.0         1.00 V         93         41.4           660.01         41.0 QP< |  |  |  |

# **REMARKS:**

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value



# 4.2 Conducted Emission Measurement

# 4.2.1 Limits of Conducted Emission Measurement

| Frequency (MHz) | Conducted Limit (dBuV) |         |  |  |  |  |
|-----------------|------------------------|---------|--|--|--|--|
| Flequency (MHZ) | Quasi-peak             | Average |  |  |  |  |
| 0.15 - 0.5      | 66 - 56                | 56 - 46 |  |  |  |  |
| 0.50 - 5.0      | 56                     | 46      |  |  |  |  |
| 5.0 - 30.0      | 60                     | 50      |  |  |  |  |

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

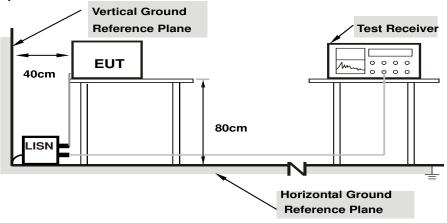
# 4.2.2 Test Instruments

| DESCRIPTION &<br>MANUFACTURER                                      | MODEL NO. SERIAL NO.    |            | CALIBRATED<br>DATE | CALIBRATED<br>UNTIL |  |
|--------------------------------------------------------------------|-------------------------|------------|--------------------|---------------------|--|
| Test Receiver<br>R&S                                               | ESCS 30                 | 847124/029 | Oct. 24, 2016      | Oct. 23, 2017       |  |
| Line-Impedance<br>Stabilization Network<br>(for EUT)<br>R&S        | ESH3-Z5                 | 848773/004 | Oct. 26, 2016      | Oct. 25, 2017       |  |
| Line-Impedance<br>Stabilization Network<br>(for Peripheral)<br>R&S | ENV216                  | 100072     | June 13, 2016      | June 12, 2017       |  |
| RF Cable                                                           | 5D-FB                   | COCCAB-001 | Sep. 30, 2016      | Sep. 29, 2017       |  |
| 10 dB PAD<br>Mini-Circuits                                         | HAT-10+                 | CONATT-004 | June 20, 2016      | June 19, 2017       |  |
| Software<br>BVADT                                                  | BVADT_Cond_<br>V7.3.7.4 | NA         | NA                 | NA                  |  |

#### Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. 1.
- 3 Tested Date: Jan. 06, 2017




# 4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

#### 4.2.4 Deviation from Test Standard

No deviation.

#### 4.2.5 Test Setup



Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

# 4.2.6 EUT Operating Conditions

Same as 4.1.6.



# 4.2.7 Test Results (Mode 1)

| Phase Line (L) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) |
|----------------|-------------------|-----------------------------------|
|----------------|-------------------|-----------------------------------|

|    | Phase Of Power : Line (L) |                      |       |                |                          |       |                 |       |                |        |  |  |
|----|---------------------------|----------------------|-------|----------------|--------------------------|-------|-----------------|-------|----------------|--------|--|--|
| No | Frequency                 | Correction<br>Factor |       | g Value<br>uV) | Emission Level<br>(dBuV) |       | Limit<br>(dBuV) |       | Margin<br>(dB) |        |  |  |
|    | (MHz)                     | (dB)                 | Q.P.  | AV.            | Q.P.                     | AV.   | Q.P.            | AV.   | Q.P.           | AV.    |  |  |
| 1  | 0.15391                   | 10.20                | 36.60 | 24.36          | 46.80                    | 34.56 | 65.79           | 55.79 | -18.99         | -21.23 |  |  |
| 2  | 0.22031                   | 10.20                | 31.86 | 20.48          | 42.06                    | 30.68 | 62.81           | 52.81 | -20.75         | -22.13 |  |  |
| 3  | 0.30625                   | 10.22                | 37.39 | 31.86          | 47.61                    | 42.08 | 60.07           | 50.07 | -12.46         | -7.99  |  |  |
| 4  | 0.61094                   | 10.26                | 13.56 | 7.64           | 23.82                    | 17.90 | 56.00           | 46.00 | -32.18         | -28.10 |  |  |
| 5  | 0.95859                   | 10.30                | 7.89  | 0.03           | 18.19                    | 10.33 | 56.00           | 46.00 | -37.81         | -35.67 |  |  |
| 6  | 10.04297                  | 10.73                | 11.47 | 5.99           | 22.20                    | 16.72 | 60.00           | 50.00 | -37.80         | -33.28 |  |  |

# **Remarks:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



| Phase Neutral (N) |                              |        |       | Dete   | Detector Function Quasi-Pe<br>Average |        |         |        | eak (QP) /  |        |  |
|-------------------|------------------------------|--------|-------|--------|---------------------------------------|--------|---------|--------|-------------|--------|--|
|                   |                              |        |       |        |                                       |        | Average | (~~)   |             |        |  |
|                   | Phase Of Power : Neutral (N) |        |       |        |                                       |        |         |        |             |        |  |
|                   | Frequency                    |        |       |        |                                       |        |         |        | imit Margin |        |  |
| No                | / <b>* * *</b> * *           | Factor | · · · | (dBuV) |                                       | (dBuV) |         | (dBuV) |             | (dB)   |  |
|                   | (MHz)                        | (dB)   | Q.P.  | AV.    | Q.P.                                  | AV.    | Q.P.    | AV.    | Q.P.        | AV.    |  |
| 1                 | 0.15391                      | 10.19  | 36.44 | 26.49  | 46.63                                 | 36.68  | 65.79   | 55.79  | -19.16      | -19.11 |  |
| 2                 | 0.28672                      | 10.20  | 39.75 | 37.40  | 49.95                                 | 47.60  | 60.62   | 50.62  | -10.67      | -3.02  |  |
| 3                 | 0.31406                      | 10.21  | 36.14 | 33.09  | 46.35                                 | 43.30  | 59.86   | 49.86  | -13.51      | -6.56  |  |
| 4                 | 0.49766                      | 10.24  | 19.69 | 14.69  | 29.93                                 | 24.93  | 56.04   | 46.04  | -26.11      | -21.11 |  |
| 5                 | 0.95078                      | 10.26  | 14.30 | 5.66   | 24.56                                 | 15.92  | 56.00   | 46.00  | -31.44      | -30.08 |  |
| 6                 | 10.26563                     | 10.65  | 13.40 | 8.67   | 24.05                                 | 19.32  | 60.00   | 50.00  | -35.95      | -30.68 |  |

# **Remarks:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value





# 4.2.8 Test Results (Mode 2)

| Phase                     | Line (L) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) |  |  |  |  |  |
|---------------------------|----------|-------------------|-----------------------------------|--|--|--|--|--|
|                           |          |                   |                                   |  |  |  |  |  |
| Phase Of Power : Line (L) |          |                   |                                   |  |  |  |  |  |

| No | Frequency | Correction<br>Factor | Reading Value<br>(dBuV) |       | Emission Level<br>(dBuV) |       | Lir<br>(dB | nit<br>uV) | Margin<br>(dB) |        |
|----|-----------|----------------------|-------------------------|-------|--------------------------|-------|------------|------------|----------------|--------|
|    | (MHz)     | (dB)                 | Q.P.                    | AV.   | Q.P.                     | AV.   | Q.P.       | AV.        | Q.P.           | AV.    |
| 1  | 0.15391   | 10.20                | 39.22                   | 18.60 | 49.42                    | 28.80 | 65.79      | 55.79      | -16.37         | -26.99 |
| 2  | 0.18516   | 10.20                | 36.15                   | 23.91 | 46.35                    | 34.11 | 64.25      | 54.25      | -17.90         | -20.14 |
| 3  | 0.48594   | 10.25                | 22.14                   | 18.79 | 32.39                    | 29.04 | 56.24      | 46.24      | -23.85         | -17.20 |
| 4  | 3.91406   | 10.31                | 18.64                   | 8.97  | 28.95                    | 19.28 | 56.00      | 46.00      | -27.05         | -26.72 |
| 5  | 7.12891   | 10.53                | 29.37                   | 24.03 | 39.90                    | 34.56 | 60.00      | 50.00      | -20.10         | -15.44 |
| 6  | 13.34375  | 11.11                | 22.15                   | 16.65 | 33.26                    | 27.76 | 60.00      | 50.00      | -26.74         | -22.24 |

#### **Remarks:**

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level – Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value



| Phase Neutral (N) |           |                             |       | Dete      | Detector Function Quasi-Peak (<br>Average (AV) |           |       |             | · · ·  |        |  |
|-------------------|-----------|-----------------------------|-------|-----------|------------------------------------------------|-----------|-------|-------------|--------|--------|--|
|                   |           |                             |       |           |                                                |           |       |             |        |        |  |
|                   |           |                             | Pha   | se Of Pov | wer : Nei                                      | utral (N) |       |             |        |        |  |
|                   | Frequency | cy Correction Reading Value |       |           | Emissi                                         | on Level  | Li    | imit Margin |        | rgin   |  |
| No                |           | Factor                      | (dB   | (dBuV)    |                                                | (dBuV)    |       | (dBuV)      |        | (dB)   |  |
|                   | (MHz)     | (dB)                        | Q.P.  | AV.       | Q.P.                                           | AV.       | Q.P.  | AV.         | Q.P.   | AV.    |  |
| 1                 | 0.15000   | 10.19                       | 43.53 | 28.07     | 53.72                                          | 38.26     | 66.00 | 56.00       | -12.28 | -17.74 |  |
| 2                 | 0.18125   | 10.18                       | 38.05 | 27.86     | 48.23                                          | 38.04     | 64.43 | 54.43       | -16.20 | -16.39 |  |
| 3                 | 0.29453   | 10.20                       | 27.64 | 19.71     | 37.84                                          | 29.91     | 60.40 | 50.40       | -22.56 | -20.49 |  |
| 4                 | 0.48594   | 10.24                       | 26.09 | 20.34     | 36.33                                          | 30.58     | 56.24 | 46.24       | -19.91 | -15.66 |  |
| 5                 | 7.03125   | 10.43                       | 30.19 | 24.63     | 40.62                                          | 35.06     | 60.00 | 50.00       | -19.38 | -14.94 |  |
| 6                 | 14.21875  | 11.02                       | 21.34 | 15.85     | 32.36                                          | 26.87     | 60.00 | 50.00       | -27.64 | -23.13 |  |

# **Remarks:**

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value






# 4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

# 4.3.2 Test Setup



#### 4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

#### 4.3.4 Test Procedures

#### MEASUREMENT PROCEDURE REF

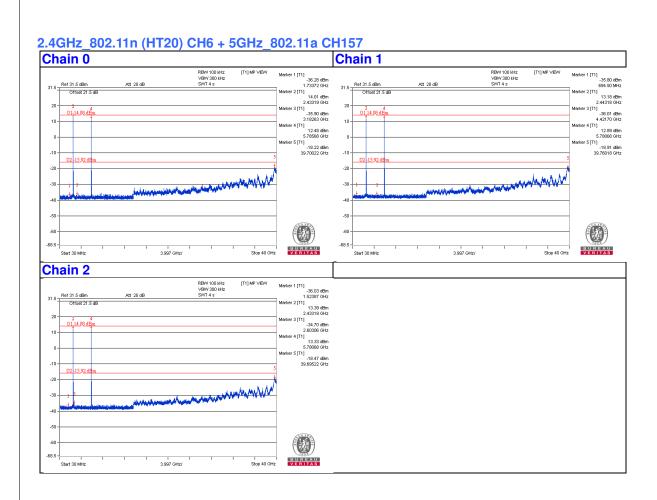
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW  $\geq$  300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

#### MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

#### 4.3.5 Deviation from Test Standard

No deviation.


#### 4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

# 4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.







# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



# Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a> Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a>

The address and road map of all our labs can be found in our web site also.

--- END ---