RF Exposure Report

Report No.: SA150325C05C
FCC ID: PY315100301
Test Model: R7500v2
Received Date: May 07, 2015
Test Date: May 07 ~ Sep. 03, 2015
Issued Date: Sep. 04, 2015

Applicant: NETGEAR INC.
Address: 350 East Plumeria Drive, San Jose, CA 95134, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 RF Exposure 5
2.1 Limits for Maximum Permissible Exposure (MPE) 5
2.2 MPE Calculation Formula 5
2.3 Classification 5
3 Calculation Result of Maximum Conducted Power 6

Release Control Record

Issue No.	Description	Date Issued
SA150325C05C	Original release.	Sep. 04, 2015

1 Certificate of Conformity

Product: AC2350 Smart WiFi Router
Brand: NETGEAR
Test Model: R7500v2
Sample Status: Engineering sample
Applicant: NETGEAR INC.
Test Date: May 07 ~ Sep. 03, 2015
Standards: FCC Part 2 (Section 2.1091)
KDB 447498 D03
IEEE C95.1

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taiyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad , Date: \qquad
Suntee Lin / Specialist

Approved by : \qquad , Date: \qquad Sep. 04, 2015

Ken Liu / Senior Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (A/m)	Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Average Time $($ minutes $)$
Limits For General Population / Uncontrolled Exposure				
$300-1500$	\ldots	\ldots	F/1500	30
$1500-100,000$	\ldots	\ldots	1.0	30

$\mathrm{F}=$ Frequency in MHz

2.2 MPE Calculation Formula

$\mathrm{Pd}=\left(\right.$ Pout $\left.^{\star} \mathrm{G}\right) /\left(4^{\star} \mathrm{pi}^{\star} \mathrm{r}^{2}\right)$
where
$\mathrm{Pd}=$ power density in $\mathrm{mW} / \mathrm{cm}^{2}$
Pout = output power to antenna in mW
$G=$ gain of antenna in linear scale
$\mathrm{Pi}=3.1416$
$R=$ distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 27 cm away from the body of the user. So, this device is classified as Mobile Device.

3 Calculation Result of Maximum Conducted Power

Band	$\begin{gathered} \text { Frequency } \\ \text { Band } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	Max Power (dBm)	Antenna Gain (dBi)	$\begin{aligned} & \text { Distance } \\ & \text { (cm) } \end{aligned}$	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	$\underset{\left(\mathrm{mW} / \mathrm{cm}^{2}\right)}{\text { Limit }_{2}}$
CDD Mode						
2.4 GHz	2412	29.82	4.98	27	0.330	1
	2422	23.21	5.18	27	0.075	1
	2437	29.90	5.18	27	0.352	1
	2452	24.65	4.98	27	0.100	1
	2462	29.76	4.88	27	0.318	1
5 GHz	5180	28.59	6.63	27	0.363	1
	5190	25.73	6.73	27	0.192	1
	5200	28.99	6.73	27	0.407	1
	5210	23.98	6.83	27	0.132	1
	5230	29.98	6.93	27	0.536	1
	5240	29.08	6.93	27	0.436	1
	5745	28.27	7.63	27	0.425	1
	5755	23.39	7.53	27	0.135	1
	5775	21.88	7.53	27	0.095	1
	5785	29.92	7.53	27	0.607	1
	5795	28.27	7.63	27	0.425	1
	5825	28.91	7.63	27	0.492	1

Note:

2412 MHz : Directional gain $=0.21 \mathrm{dBi}+10 \log (3)=4.98 \mathrm{dBi}$
2422 MHz : Directional gain $=0.41 \mathrm{dBi}+10 \log (3)=5.18 \mathrm{dBi}$
2437 MHz : Directional gain $=0.41 \mathrm{dBi}+10 \log (3)=5.18 \mathrm{dBi}$
2452 MHz : Directional gain $=0.21 \mathrm{dBi}+10 \log (3)=4.98 \mathrm{dBi}$
2462 MHz : Directional gain $=0.11 \mathrm{dBi}+10 \log (3)=4.88 \mathrm{dBi}$
5180 MHz : Directional gain $=0.61 \mathrm{dBi}+10 \log (4)=6.63 \mathrm{dBi}$
5190 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4)=6.73 \mathrm{dBi}$
5200 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4)=6.73 \mathrm{dBi}$
5210 MHz : Directional gain $=0.81 \mathrm{dBi}+10 \log (4)=6.83 \mathrm{dBi}$
5230 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4)=6.93 \mathrm{dBi}$
5240 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4)=6.93 \mathrm{dBi}$
5745 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$
5755 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5775 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5785 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5795 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$
5825 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$

Band	$\begin{gathered} \hline \text { Frequency } \\ \text { Band } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	Limit ($\mathrm{mW} / \mathrm{cm}^{2}$)
Beamforming_NSS1 Mode						
5 GHz	5180	28.08	6.63	27	0.323	1
	5190	25.22	6.73	27	0.171	1
	5200	28.98	6.73	27	0.407	1
	5210	23.92	6.83	27	0.130	1
	5230	29.05	6.93	27	0.433	1
	5240	29.01	6.93	27	0.429	1
	5745	27.42	7.63	27	0.349	1
	5755	21.48	7.53	27	0.087	1
	5775	21.49	7.53	27	0.087	1
	5785	28.43	7.53	27	0.431	1
	5795	28.09	7.63	27	0.407	1
	5825	28.36	7.63	27	0.434	1

Note:
5180 MHz : Directional gain $=0.61 \mathrm{dBi}+10 \log (4)=6.63 \mathrm{dBi}$
5190 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4)=6.73 \mathrm{dBi}$
5200 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4)=6.73 \mathrm{dBi}$
5210 MHz : Directional gain $=0.81 \mathrm{dBi}+10 \log (4)=6.83 \mathrm{dBi}$
5230 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4)=6.93 \mathrm{dBi}$
5240 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4)=6.93 \mathrm{dBi}$
5745 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$
5755 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5775 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5785 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4)=7.53 \mathrm{dBi}$
5795 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$
5825 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4)=7.63 \mathrm{dBi}$

Band	$\begin{gathered} \text { Frequency } \\ \text { Band } \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density ($\mathrm{mW} / \mathrm{cm}^{2}$)	$\underset{\left(\mathrm{mW} / \mathrm{cm}^{2}\right)}{\text { Limit }_{2}}$
Beamforming_NSS2 Mode						
5GHz	5180	28.37	3.62	27	0.173	1
	5190	25.52	3.72	27	0.092	1
	5200	29.51	3.72	27	0.230	1
	5210	25.39	3.82	27	0.091	1
	5230	29.68	3.92	27	0.250	1
	5240	29.62	3.92	27	0.247	1
	5745	27.02	4.62	27	0.159	1
	5755	22.22	4.52	27	0.052	1
	5775	21.51	4.52	27	0.044	1
	5785	29.62	4.52	27	0.283	1
	5795	28.17	4.62	27	0.208	1
	5825	28.55	4.62	27	0.226	1

Note:
5180 MHz : Directional gain $=0.61 \mathrm{dBi}+10 \log (4 / 2)=3.62 \mathrm{dBi}$
5190 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4 / 2)=3.72 \mathrm{dBi}$
5200 MHz : Directional gain $=0.71 \mathrm{dBi}+10 \log (4 / 2)=3.72 \mathrm{dBi}$
5210 MHz : Directional gain $=0.81 \mathrm{dBi}+10 \log (4 / 2)=3.82 \mathrm{dBi}$
5230 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4 / 2)=3.92 \mathrm{dBi}$
5240 MHz : Directional gain $=0.91 \mathrm{dBi}+10 \log (4 / 2)=3.92 \mathrm{dBi}$
5745 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4 / 2)=4.62 \mathrm{dBi}$
5755 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4 / 2)=4.52 \mathrm{dBi}$
5775 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4 / 2)=4.52 \mathrm{dBi}$
5785 MHz : Directional gain $=1.51 \mathrm{dBi}+10 \log (4 / 2)=4.52 \mathrm{dBi}$
5795 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4 / 2)=4.62 \mathrm{dBi}$
5825 MHz : Directional gain $=1.61 \mathrm{dBi}+10 \log (4 / 2)=4.62 \mathrm{~dB}$

CONCULSION:

Both of the WLAN 2.4G \& WLAN 5G can transmit simultaneously, the formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + \qquad etc. < 1
$\mathrm{CPD}=$ Calculation power density
LPD = Limit of power density
WLAN 2.4G + WLAN $5.0 \mathrm{G}=0.352+0.607=0.959$
Therefore, the maximum calculation of this situation is 0.964 , which is less than the " 1 " limit.

