

RF Exposure Report

Report No.: SA150325C05C

FCC ID: PY315100301

Test Model: R7500v2

Received Date: May 07, 2015

Test Date: May 07 ~ Sep. 03, 2015

Issued Date: Sep. 04, 2015

Applicant: NETGEAR INC.

Address: 350 East Plumeria Drive, San Jose, CA 95134, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan,

R.O.C.

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN (R.O.C.)

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Rele	ase Control Record	3
1	Certificate of Conformity	4
2	RF Exposure	5
2.2	Limits for Maximum Permissible Exposure (MPE)	5
3	Calculation Result of Maximum Conducted Power	6

Release Control Record

Issue No.	Description	Date Issued
SA150325C05C	Original release.	Sep. 04, 2015

Report No.: SA150325C05C Page No. 3 / 8 Report Format Version: 6.1.1

Report No.: SA150325C05C Reference No.: 150625C03

1 Certificate of Conformity

Product: AC2350 Smart WiFi Router

Brand: NETGEAR

Test Model: R7500v2

Sample Status: Engineering sample

Applicant: NETGEAR INC.

Test Date: May 07 ~ Sep. 03, 2015

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D03

IEEE C95.1

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: , Date: Sep. 04, 2015

Suntee Liu / Specialist

Approved by: Sep. 04, 2015

Ken Liu / Senior Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	ange Electric Field Magnetic Field Power Density Strength (V/m) Strength (A/m) (mW/cm²)		Average Time (minutes)					
Limits For General Population / Uncontrolled Exposure								
300-1500 F/1500 30								
1500-100,000			1.0	30				

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 27cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA150325C05C Reference No.: 150625C03 Page No. 5 / 8

Report Format Version: 6.1.1

Report Format Version: 6.1.1

Calculation Result of Maximum Conducted Power

Band	Frequency Band (MHz)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)		
CDD Mode								
	2412	29.82	4.98	27	0.330	1		
	2422	23.21	5.18	27	0.075	1		
2.4GHz	2437	29.90	5.18	27	0.352	1		
	2452	24.65	4.98	27	0.100	1		
	2462	29.76	4.88	27	0.318	1		
	5180	28.59	6.63	27	0.363	1		
	5190	25.73	6.73	27	0.192	1		
	5200	28.99	6.73	27	0.407	1		
	5210	23.98	6.83	27	0.132	1		
	5230	29.98	6.93	27	0.536	1		
5GHz	5240	29.08	6.93	27	0.436	1		
3GHZ	5745	28.27	7.63	27	0.425	1		
	5755	23.39	7.53	27	0.135	1		
	5775	21.88	7.53	27	0.095	1		
	5785	29.92	7.53	27	0.607	1		
	5795	28.27	7.63	27	0.425	1		
Notes	5825	28.91	7.63	27	0.492	1		

Note:

2412MHz: Directional gain = 0.21dBi + 10log(3) = 4.98dBi 2422MHz: Directional gain = 0.41dBi + 10log(3) = 5.18dBi 2437MHz: Directional gain = 0.41dBi + 10log(3) = 5.18dBi 2452MHz: Directional gain = 0.21dBi + 10log(3) = 4.98dBi 2462MHz: Directional gain = 0.11dBi + 10log(3) = 4.88dBi 5180MHz: Directional gain = 0.61dBi + 10log(4) = 6.63dBi 5190MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi5200MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi5210MHz: Directional gain = 0.81dBi + 10log(4) = 6.83dBi 5230MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi5240MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi 5745MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5755MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5775MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5785MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5795MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5825MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi

Band	Frequency Band (MHz)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm ²)			
	Beamforming_NSS1 Mode								
	5180	28.08	6.63	27	0.323	1			
	5190	25.22	6.73	27	0.171	1			
	5200	28.98	6.73	27	0.407	1			
	5210	23.92	6.83	27	0.130	1			
	5230	29.05	6.93	27	0.433	1			
ECH-	5240	29.01	6.93	27	0.429	1			
5GHz	5745	27.42	7.63	27	0.349	1			
	5755	21.48	7.53	27	0.087	1			
	5775	21.49	7.53	27	0.087	1			
	5785	28.43	7.53	27	0.431	1			
	5795	28.09	7.63	27	0.407	1			
	5825	28.36	7.63	27	0.434	1			

Note:

5180MHz: Directional gain = 0.61dBi + 10log(4) = 6.63dBi 5190MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi 5200MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi 5210MHz: Directional gain = 0.81dBi + 10log(4) = 6.83dBi 5230MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi 5240MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi 5745MHz: Directional gain = 0.91dBi + 10log(4) = 7.63dBi 5755MHz: Directional gain = 0.91dBi + 10log(4) = 7.63dBi 5775MHz: Directional gain = 0.91dBi + 10log(4) = 7.53dBi 5785MHz: Directional gain = 0.91dBi + 10log(4) = 7.53dBi 5785MHz: Directional gain = 0.91dBi + 10log(4) = 7.53dBi 5795MHz: Directional gain = 0.91dBi + 10log(4) = 7.53dBi 5795MHz: Directional gain = 0.91dBi + 10log(4) = 7.63dBi 5825MHz: Directional gain = 0.91dBi + 10log(4) = 7.63dBi 5825MHz: Directional gain = 0.91dBi + 10log(4) = 7.63dBi

Band	Frequency Band (MHz)	Max Power (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm ²)			
	Beamforming_NSS2 Mode								
	5180	28.37	3.62	27	0.173	1			
	5190	25.52	3.72	27	0.092	1			
	5200	29.51	3.72	27	0.230	1			
	5210	25.39	3.82	27	0.091	1			
	5230	29.68	3.92	27	0.250	1			
ECH-	5240	29.62	3.92	27	0.247	1			
5GHz	5745	27.02	4.62	27	0.159	1			
	5755	22.22	4.52	27	0.052	1			
	5775	21.51	4.52	27	0.044	1			
	5785	29.62	4.52	27	0.283	1			
	5795	28.17	4.62	27	0.208	1			
	5825	28.55	4.62	27	0.226	1			

Note:

5180MHz: Directional gain = 0.61dBi + 10log(4/2) = 3.62dBi 5190MHz: Directional gain = 0.71dBi + 10log(4/2) = 3.72dBi 5200MHz: Directional gain = 0.71dBi + 10log(4/2) = 3.72dBi 5210MHz: Directional gain = 0.81dBi + 10log(4/2) = 3.82dBi 5230MHz: Directional gain = 0.91dBi + 10log(4/2) = 3.92dBi 5240MHz: Directional gain = 0.91dBi + 10log(4/2) = 3.92dBi 5745MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi 5755MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dBi 5775MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dBi 5785MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dBi 5795MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi 5795MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi 5825MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi

CONCULSION:

Both of the WLAN 2.4G & WLAN 5G can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4G + WLAN 5.0G = 0.352 + 0.607 = 0.959

Therefore, the maximum calculation of this situation is 0.964, which is less than the "1" limit.

---END---

Report Format Version: 6.1.1