

Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.30 m normally can be maintained between the user and the device.

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(A) Limits for Occupational / Controlled Exposure

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

- **P** = Average RF output power (W)
- G = EUT Antenna numeric gain (numeric)
- d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.30m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

For 5GHz UNII Band:

Antenna Type : Dipole Antenna

Conducted Power for IEEE 802.11ac VHT 20: 25.99dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
7.82	6.0534	25.9865	396.8707	0.212528	1	Complies
$\begin{bmatrix} N_{SS} (N_{AVT}) \end{bmatrix}^2$						

Note: DirectionalGain =
$$10 \cdot \log \left| \sum_{j=1}^{N_{exc}} \sum_{k=1}^{N_{exc}} g_{j,k} \right|$$

For 5GHz ISM Band:

Antenna Type : Dipole Antenna

Conducted Power for IEEE 802.11ac VHT 20: 29.03dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
6.92	4.9204	29.0328	800.3559	0.348378	1	Complies

 $alGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{AST}} g_{j,k} \right\}^2}{N_{ANT}} \right]$

For 2.4GHz Band:

Antenna Type : Dipole Antenna

Conducted Power for IEEE 802.11 ac VHT 20: 29.51dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm ²)	Test Result
6.33	4.2954	29.5120	893.7090	0.339597	1	Complies
$\left[\frac{N_{\text{ex}}}{N}\left(\frac{N_{\text{ex}}}{N}\right)^2\right]$						

Note: DirectionalGain =
$$10 \cdot \log \left\{ \frac{\sum_{j=1}^{N} \left\{ \sum_{k=1}^{N} g_{j,k} \right\}}{N_{ANT}} \right\}$$

CONCULSION:

Both of the WLAN 2.4GHz, WLAN 5GHz Band1 and WLAN 5GHz Band4 can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.339597 / 1 + 0.348378 / 1 + 0.212528 / 1 = 0.900503, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.