

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	NETGEAR, Inc.
Applicant Address	350 East Plumeria Drive, San Jose, California 95134, USA
FCC ID	PY313400243

Product Name	Universal Dual Band WiFi Range Extender
Brand Name	NETGEAR
Model No.	WN2500RPv2
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250MHz
Received Date	Nov. 19, 2013
Final Test Date	Jan. 06, 2014
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a (5150 \sim 5250MHz) of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart E, KDB 789033 D01 v01r03, KDB 662911 D01 v02r01

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERTII	FICATE OF COMPLIANCE	. 1
2.	SUMM	IARY OF THE TEST RESULT	. 2
	GENE 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. 3.11.	RAL INFORMATION Product Details Accessories Table for Filed Antenna Table for Carrier Frequencies Table for Product Information Table for Test Modes Table for Testing Locations Table for Supporting Units Table for Supporting Units Table for Parameters of Test Software Setting EUT Operation during Test Duty Cycle	3 3 6 6 7 8 9 9 9 9 9
		Test Configurations	
	 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 	ESULT AC Power Line Conducted Emissions Measurement. 26dB Bandwidth and 99% Occupied Bandwidth Measurement. Maximum Conducted Output Power Measurement. Power Spectral Density Measurement. Peak Excursion Measurement. Radiated Emissions Measurement. Band Edge Emissions Measurement. Frequency Stability Measurement. Antenna Requirements.	.14 .19 .26 .30 .36 .41 .56 .60 .62
5.	LIST O	F MEASURING EQUIPMENTS	63
af Af	PENDI PENDI	UREMENT UNCERTAINTY	А5 В3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3N1913AB	Rev. 01	Initial issue of report	Jan. 15, 2014
	I		

Certificate No.: CB10301023

1. CERTIFICATE OF COMPLIANCE

Product Name	:	Universal Dual Band WiFi Range Extender
Brand Name	:	NETGEAR
Model No.	:	WN2500RPv2
Applicant	:	NETGEAR, Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 19, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

1 On ann

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	8.49 dB			
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.02 dB			
4.4	15.407(a)	Power Spectral Density	Complies	0.20 dB			
4.5	15.407(a)	Peak Excursion	Complies	3.59 dB			
4.6	15.407(b)	Radiated Emissions	Complies	0.02 dB			
4.7	15.407(b)	Band Edge Emissions	Complies	0.11 dB			
4.8	15.407(g)	Frequency Stability	Complies	-			
4.9	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	5150 ~ 5250MHz
Channel Number	4 for 20MHz bandwidth ; 2 for 40MHz bandwidth
Channel Band Width (99%)	MCS0 (20MHz): 17.60 MHz ; MCS0 (40MHz): 36.48 MHz
Maximum Conducted Output	MCS0 (20MHz): 16.89 dBm ; MCS0 (40MHz): 16.88 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11a

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250MHz
Channel Number	4
Channel Band Width (99%)	16.96 MHz
Maximum Conducted Output	16.98 dBm
Power	
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Note: BCM5358UB0KFBG chipset supports 2.4GHz and BCM43236BKMLG chipset supports 2.4GHz/5GHz. The 2.4GHz of BCM43236BKMLG chipset is designed only for installation and it will disable when the

installation is completed. Thus, only the test of 5GHz for BCM43236BKMLG chipset is required.

Antenna and Band width

Antenna	Two (TX)			
Band width Mode	20 MHz 40 MHz			
IEEE 802.11a	V	х		
IEEE 802.11n	V	V		

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS			
802.11n (HT20)	MC\$0-15				
802.11n (HT40)	2	MC\$0-15			
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).					
Then EUT support HT20 and HT40.					
Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n					

3.2. Accessories

Power	Brand	Model	P/N	Rating				
Adapter 1	NETGEAR SAL012F1NA 332-10366-01						332 10366 01	Input: 100-120V~47-63Hz 0.6A
Adapter 1			Output: 12.0V, 1.0A					
A dama ha n O	Adapter 2 NETGEAR AD810F10 332-10329-02				Input: 100-120V~50/60Hz 0.3A			
Adapter 2			Output: 12V, 1A					
Other								
RJ-45 Cable*1: Non-shielded, 1.5m								

3.3. Table for Filed Antenna

For 2.4GHz and 5GHz Band 4

Ant.	Brand Model Na		Antenna Type	Connector	Gain (dBi)	
		Model Name			2.4GHz	5GHz (Band 4)
1	NETGEAR	WN2500RPv2	PCB Antenna	I-PEX	-	4.0
2	NETGEAR	WN2500RPv2	PCB Antenna	N/A	2.8	-
3	NETGEAR	WN2500RPv2	PCB Antenna	I-PEX	-	3.8
4	NETGEAR	WN2500RPv2	PCB Antenna	N/A	1.6	-

For 5GHz Band 1

Ant.	Brand	Model Name	Antenna Type	Connector	Correlated directional gain 5GHz (Band 1)
1	NETGEAR	WN2500RPv2	PCB Antenna	I-PEX	4.28
3	NETGEAR	WN2500RPv2	PCB Antenna	I-PEX	4.20

Note: The EUT has four antennas.

<For 2.4GHz Band>

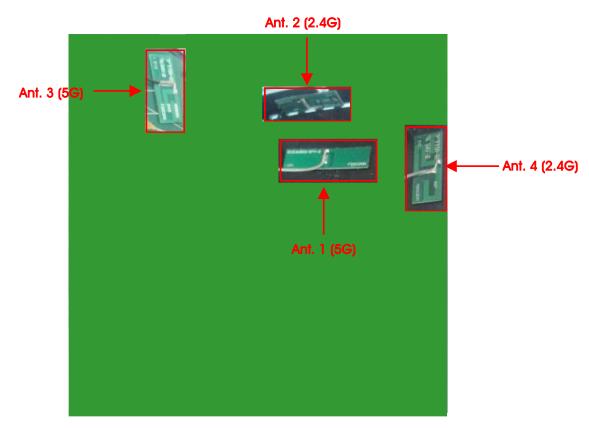
For IEEE 802.11b mode (1TX/1RX):

Only Ant. 2 can be used as transmitting/receiving antenna.

For IEEE 802.11n/g mode (2TX/2RX):

Ant. 2 and Ant. 4 can be used as transmitting/receiving antennas.

Ant. 2 and Ant. 4 could transmit/receive simultaneously.


<For 5GHz Band>

For IEEE 802.11a/n mode (2TX/2RX):

Ant. 1 and Ant. 3 can be used as transmitting/receiving antennas.

Ant. 1 and Ant. 3 could transmit/receive simultaneously.

3.4. Table for Carrier Frequencies

The EUT has two bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48.

For 40MHz bandwidth systems, use Channel 38, 46.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150 5250 MU-	36	5180 MHz	44	5220 MHz
5150~5250 MHz Band 1	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz

3.5. Table for Product Information

Items	Description			
Communication Mode	\boxtimes	IP Based (Load Based)		Frame Based
Beamforming Function		With beamforming	\boxtimes	Without beamforming

3.6. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mod	de	Data Rate	Channel	Antenna
AC Power Conducted Emission	Normal Link		-	-	-
Max. Conducted Output Power	11n 20MHz	Band 1	MC\$0	36/40/48	1+3
	11n 40MHz	Band 1	MCS0	38/46	1+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
Power Spectral Density	11n 20MHz	Band 1	MCS0	36/40/48	1+3
	11n 40MHz	Band 1	MCS0	38/46	1+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
26dB Spectrum Bandwidth	11n 20MHz	Band 1	MC\$0	36/40/48	1+3
99% Occupied Bandwidth	11n 40MHz	Band 1	MCS0	38/46	1+3
Measurement	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
Peak Excursion	11n 20MHz	Band 1	MC\$0	36/40/48	1+3
	11n 40MHz	Band 1	MCS0	38/46	1+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11n 20MHz	Band 1	MCS0	36/40/48	1+3
	11n 40MHz	Band 1	MCS0	38/46	1+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
Band Edge Emission	11n 20MHz	Band 1	MCS0	36/40/48	1+3
	11n 40MHz	Band 1	MCS0	38/46/	1+3
	11a/BPSK	Band 1	6Mbps	36/40/48	1+3
Frequency Stability	Un-modulatio	on	-	40	N/A

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. EUT with AC Adapter 1

Mode 2. EUT with AC Adapter 2

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test <Below 1GHz>:

Mode 1. Laying of EUT with AC Adapter 1

Mode 2. Stand of EUT with AC Adapter 1

Mode 1 has been evaluated to be the worst case between Mode 1 and Mode 2, thus measurement for

Mode 3 will follow this same test mode.

Mode 3. Laying of EUT with AC Adapter 2

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission test < Above 1GHz>:

Adapter 1 generated the worst case while Radiated Emissions test below 1GHz; thus, the measurement for Radiated Emissions test above 1GHz will follow this same test configuration.

Mode 1. Laying of EUT with AC Adapter 1

Mode 2. Stand of EUT with AC Adapter 1

Mode 2 is the worst case, so it was selected to record in this test report.

<For MPE and Co-location Test>:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Maximum Permissible Exposure (Please refer to Appendix B) and Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.7. Table for Testing Locations

	Test Site Location					
Address:	No.	.8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.(С.
TEL:	886	5-3-656-9065				
FAX:	886	5-3-656-9085				
Test Site N	о.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-C	CB	SAC	Hsin Chu	262045	IC 4086D	-
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	}	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.8. Table for Supporting Units

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB*3	DELL	E6430	DoC
AP Router	Planex	GW-AP54SGX	KA220030603014-1

For Test Site No: 03CH01-CB<Below 1GHz>

Support Unit	Brand	Model	FCC ID
NB	DELL	M1340	E2K4965AGNM
NB	DELL	E6430	DoC
NB	DELL	D420	E2KWM3945ABG
Wireless ac AP	Netgear	R6300V2	PY31300227

For Test Site No: TH01-CB and 03CH01-CB< Above 1G>

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC

3.9. Table for Parameters of Test Software Setting

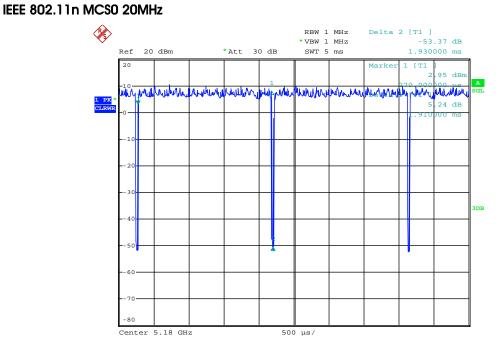
During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **Power Parameters of IEEE 802.11n MCS0 20MHz**

Test Software Version	Manual Tool Version : 1.0.0.9				
Frequency	5180 MHz	5200 MHz	5240 MHz		
MCS0 20MHz	50	50	51		

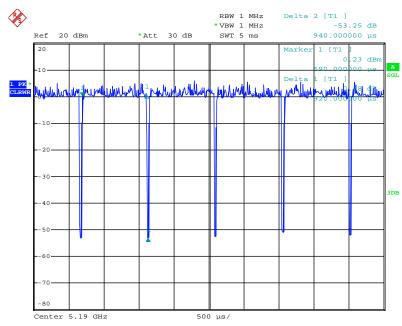
Power Parameters of IEEE 802.11n MCS0 40MHz

Test Software Version	Manual Tool Version : 1.0.0.9		
Frequency	5190 MHz	5230 MHz	
MCS0 40MHz	38	53	

Power Parameters of IEEE 802.11a

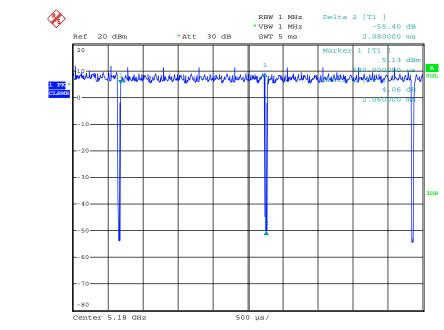

Test Software Version	Manual Tool Version : 1.0.0.9			
Frequency	5180 MHz	5200 MHz	5240 MHz	
802.11a	50	50	51	

3.10. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

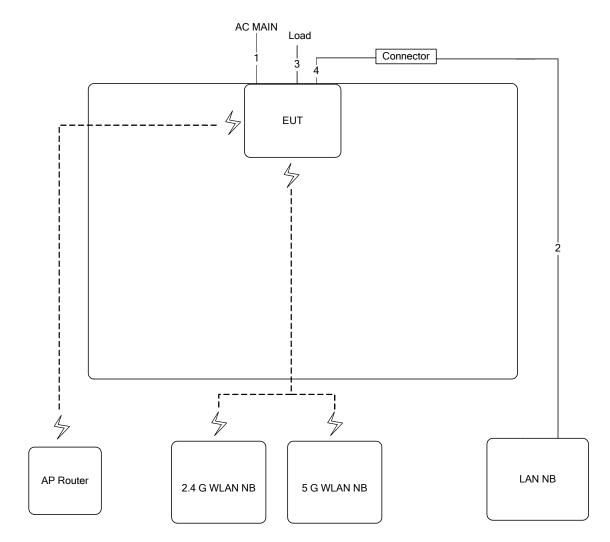
3.11. Duty Cycle

Date: 26.DEC.2013 21:35:29

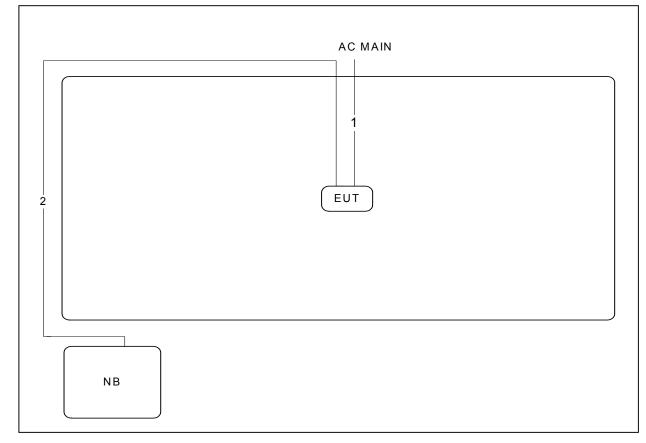


IEEE 802.11n MCS0 40MHz

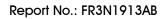
Date: 26.DEC.2013 21:36:13


IEEE 802.11a

Date: 26.DEC.2013 21:34:40


3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions and Radiation Emissions (Below 1GHz)Test Configuration


Item	Connection	Shield	Length
1	Power cable	No	1.8m
2	RJ-45 cable	No	10m
3	RJ-45 cable*3	No	1.5m
4	RJ-45 cable	No	1.5m

3.12.2. Radiation Emissions Test (above 1GHz) Configuration

ltem	Connection	Shielded	Length(m)	
1	Power cable	No	1.8m	
2	RJ-45 cable	No	10m	

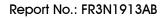
4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

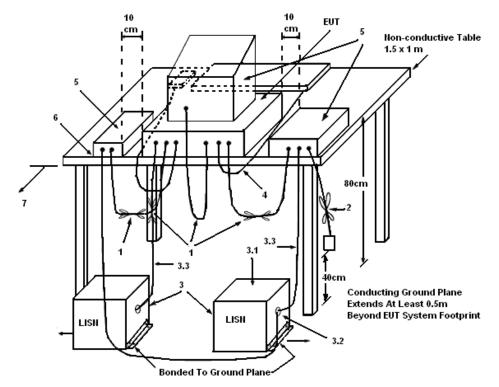
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50


4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

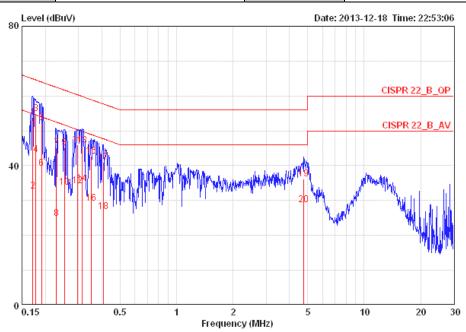
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

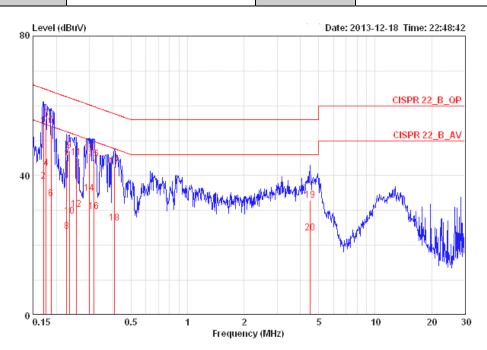
There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7.	Results of AC Power	Line Conducted Emissions N	Neasurement	
	Temperature	24°C	Humidity	53%

Temperature	24°C	Humidity	53%
Test Engineer	Ryo Fan	Phase	Line
Configuration	Normal Link	Test Mode	Mode 1


		Level				Factor		Pol/Phase	Remark
	MHz	dBu∛	dB	dBu∛	dBu∛	dB	dB		
1	0.17125	53.95	-10.95	64.90	53.61	0.15	0.19	LINE	QP
2	0.17125	32.79	-22.11	54.90	32.45	0.15	0.19	LINE	AVERAGE
3	0.17772	55.00	-9.59	64.59	54.66	0.15	0.19	LINE	QP
4	0.17772	43.16	-11.43	54.59	42.82	0.15	0.19	LINE	AVERAGE
5	0.19039	52.22	-11.80	64.02	51.87	0.15	0.20	LINE	QP
6	0.19039	39.21	-14.81	54.02	38.86	0.15	0.20	LINE	AVERAGE
7	0.22918	45.13	-17.35	62.48	44.78	0.15	0.20	LINE	QP
8	0.22918	24.90	-27.58	52.48	24.55	0.15	0.20	LINE	AVERAGE
9	0.25211	45.14	-16.55	61.69	44.79	0.15	0.20	LINE	QP
10	0.25211	33.73	-17.96	51.69	33.38	0.15	0.20	LINE	AVERAGE

11	0.29712	46.09 -14.23	60.32	45.74	0.15	0.20 LINE	QP
12	0.29712	34.31 -16.01	50.32	33.96	0.15	0.20 LINE	AVERAGE
13	0.31495	45.68 -14.16	59.84	45.33	0.15	0.20 LINE	QP
14	0.31495	34.77 -15.07	49.84	34.42	0.15	0.20 LINE	AVERAGE
15	0.35201	42.73 -16.18	58.91	42.38	0.15	0.20 LINE	QP
16	0.35201	29.17 -19.74	48.91	28.82	0.15	0.20 LINE	AVERAGE
17	0.40615	41.07 -16.66	57.73	40.72	0.15	0.20 LINE	QP
18	0.40615	26.79 -20.94	47.73	26.44	0.15	0.20 LINE	AVERAGE
19	4.772	36.26 -19.74	56.00	35.65	0.29	0.32 LINE	QP
20	4.772	28.84 -17.16	46.00	28.23	0.29	0.32 LINE	AVERAGE

Temperature	24°C	Humidity	53%
Test Engineer	Ryo Fan	Phase	Neutral
Configuration	Normal Link	Test Mode	Mode 1

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Pol/Phase	Remark
	MHz	dBu∛	dB	dBuV	dBu∛	dB	dB		
1	0.17034	54.35	-10.60	64.94	54.09	0.07	0.19	NEUTRAL	QP
2	0.17034	38.28	-16.67	54.94	38.02	0.07	0.19	NEUTRAL	AVERAGE
3	0.17584	56.19	-8.49	64.68	55.93	0.07	0.19	NEUTRAL	QP
4	0.17584	42.11	-12.57	54.68	41.85	0.07	0.19	NEUTRAL	AVERAGE
5	0.18739	54.24	-9.92	64.15	53.97	0.07	0.20	NEUTRAL	QP
6	0.18739	33.43	-20.73	54.15	33.16	0.07	0.20	NEUTRAL	AVERAGE
7	0.22676	44.55	-18.02	62.57	44.28	0.07	0.20	NEUTRAL	QP
8	0.22676	23.94	-28.63	52.57	23.67	0.07	0.20	NEUTRAL	AVERAGE
9	0.23409	47.19	-15.11	62.30	46.92	0.07	0.20	NEUTRAL	QP
10	0.23409	28.43	-23.87	52.30	28.16	0.07	0.20	NEUTRAL	AVERAGE
11	0.25480	45.23	-16.37	61.60	44.96	0.07	0.20	NEUTRAL	QP
12	0.25480	30.26	-21.34	51.60	29.99	0.07	0.20	NEUTRAL	AVERAGE
13	0.29869	46.49	-13.79	60.28	46.22	0.07	0.20	NEUTRAL	QP
14	0.29869	34.97	-15.31	50.28	34.70	0.07	0.20	NEUTRAL	AVERAGE
15	0.31662	44.79	-15.01	59.80	44.52	0.07	0.20	NEUTRAL	QP
16	0.31662	29.73	-20.07	49.80	29.46	0.07	0.20	NEUTRAL	AVERAGE
17	0.40615	42.57	-15.16	57.73	42.30	0.07	0.20	NEUTRAL	QP
18	0.40615	26.31	-21.42	47.73	26.04	0.07	0.20	NEUTRAL	AVERAGE
19	4.501	32.86	-23.14	56.00	32.41	0.14	0.31	NEUTRAL	QP
20	4.501	23.63	-22.37	46.00	23.18	0.14	0.31	NEUTRAL	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
99% Оссирі	ed Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement: This test setup layout is the same as that shown in section 4.6.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

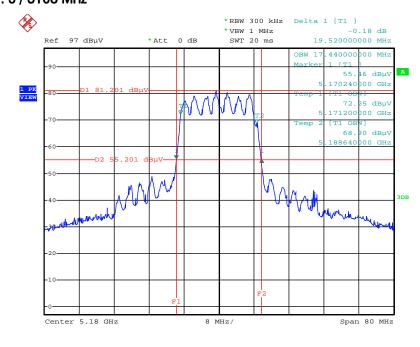
Temperature	2 1°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11n

Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	19.52	17.44
40	5200 MHz	19.52	17.44
48	5240 MHz	19.52	17.60

Configuration IEEE 802.11n MCS0 40MHz / Ant. 1 + Ant. 3

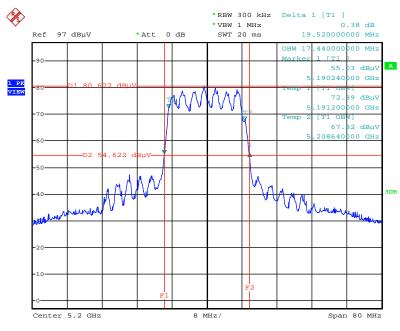
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	39.04	36.48
46	5230 MHz	49.92	36.48



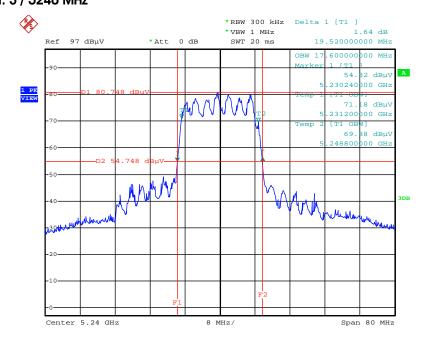
Temperature	2 1°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Ant. 1 + Ant. 3

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	19.52	16.96
40	5200 MHz	19.84	16.96
48	5240 MHz	20.00	16.80

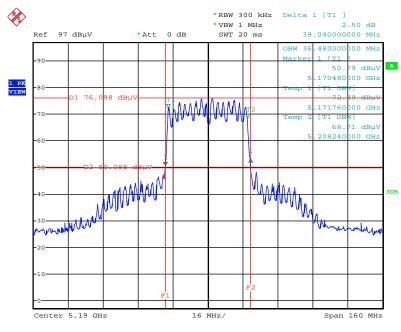


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3 / 5180 MHz


Date: 26.DEC.2013 22:57:37

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3 / 5200 MHz

Date: 26.DEC.2013 22:56:10

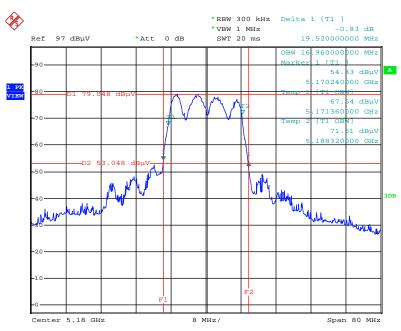


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3 / 5240 MHz


Date: 26.DEC.2013 22:55:35

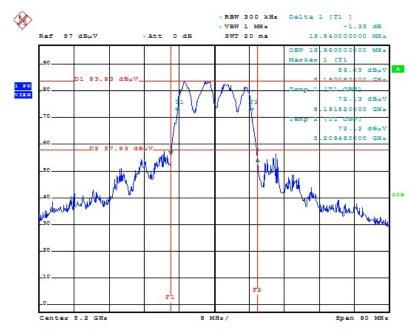
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz / Ant. 1 + Ant. 3 / 5190 MHz

Date: 26.DEC.2013 22:58:13

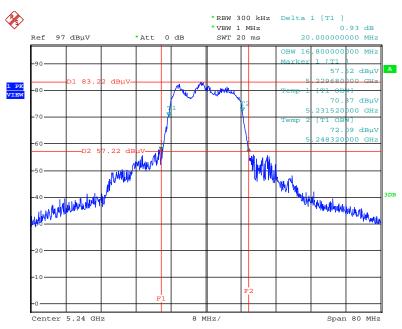


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 40MHz /

Date: 26.DEC.2013 22:58:37


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 3 / 5180 MHz

Date: 6.JAN.2014 20:20:24



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 3 / 5200 MHz

Date: 6.JAN.2014 20:35:54

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 3 / 5240 MHz

Date: 6.JAN.2014 20:44:57

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

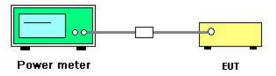
For the band $5.15 \sim 5.25$ GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.470-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10log B, where B is the 26-dB emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725~5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17 dBm in any 1ŔMHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain up to 23 dBi without any corresponding reduction in the transmitter peak output power or peak power spectral density. For fixed, point-to-point U-NII transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in peak transmitter power and peak power spectral density for each 1 dB of antenna gain in excess of 23 dBi would be required.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.


Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB 789033 D01 v01r03 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (E) Maximum conducted output power =>(3) Method PM (Measurement using an RF average power meter) Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	21°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11n
Test Date	Dec. 26, 2013		

Configuration IEEE 802.11n MCS0 20MHz / Ant.1 + Ant. 3

		Conducted Power (dBm)			Max. Limit	Result
Channel	Frequency	Ant. 1	Ant. 3	Total	(dBm)	Kesuli
36	5180 MHz	14.17	13.56	16.89	16.90	Complies
40	5200 MHz	14.15	13.29	16.75	16.90	Complies
48	5240 MHz	14.12	13.33	16.75	16.90	Complies

Note: 5180MHz Power limit=4+10Log B,B=emission Bandwidth; so 5180 Power Limit= 4+10log(19.52)=16.90 dBm 5200MHz Power limit=4+10Log B,B=emission Bandwidth; so 5200 Power Limit= 4+10log(19.52)=16.90 dBm 5240MHz Power limit=4+10Log B,B=emission Bandwidth; so 5240 Power Limit= 4+10log(19.52)=16.90 dBm

Configuration IEEE 802.11n MCS0 40MHz / Ant.1 + Ant. 3

		Conducted Power (dBm)			Max. Limit	Result
Channel	Frequency	Ant. 1	Ant. 3	Total	(dBm)	Kesuli
38	5190 MHz	10.39	10.12	13.27	17.00	Complies
46	5230 MHz	14.23	13.48	16.88	17.00	Complies

Temperature	21°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11a
Test Date	Dec. 26, 2013		

Configuration IEEE 802.11a / Ant.1 + Ant. 3

	Conducted Power (dBm)			Max. Limit	Result	
Channel	Frequency	Ant. 1	Ant. 3	Total	(dBm)	Kesuli
36	5180 MHz	14.28	13.42	16.88	16.90	Complies
40	5200 MHz	14.29	13.55	16.95	16.98	Complies
48	5240 MHz	14.33	13.58	16.98	17.00	Complies

Note: 5180MHz Power limit=4+10Log B,B=emission Bandwidth; so 5180 Power Limit= 4+10log(19.52)=16.90 dBm

5200MHz Power limit=4+10Log B,B=emission Bandwidth; so 5200 Power Limit= 4+10log(19.84)=16.98 dBm

4.4. Power Spectral Density Measurement

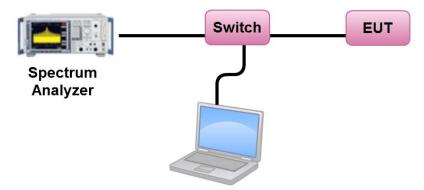
4.4.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)	
5.15~5.25 GHz	4	

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB 789033 D01 v01r03 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, section (C) Maximum conducted output power => (d) Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).
- 3. Multiple antenna systems was performed in accordance KDB 662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	21℃	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11n
Test Data	Dec. 26, 2013		

Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.79	4.00	Complies
40	5200 MHz	3.80	4.00	Complies
48	5240 MHz	3.76	4.00	Complies

Note: Directional gain=4.28dBi <6dBi, so the limit doesn't reduce.

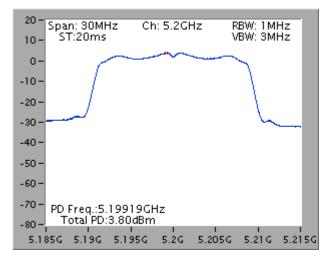
Configuration IEEE 802.11n MCS0 40MHz / Ant. 1 + Ant. 3

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-2.34	4.00	Complies
46	5230 MHz	1.54	4.00	Complies

Note: Directional gain=4.28dBi <6dBi, so the limit doesn't reduce.

Temperature	21°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11a
Test Data	Dec. 26, 2013		

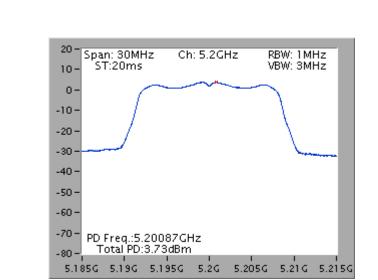
Configuration IEEE 802.11a / Ant. 1 + Ant. 3


Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.66	4.00	Complies
40	5200 MHz	3.73	4.00	Complies
48	5240 MHz	3.67	4.00	Complies

Note: Directional gain=4.28dBi <6dBi, so the limit doesn't reduce.

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.



Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3 / 5200 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 20MHz / Ant. 1 + Ant. 3 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 3 / 5200 MHz

4.5. Peak Excursion Measurement

4.5.1. Limit

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emissions bandwidth whichever is less.

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1MHz (Peak Trace) / 1MHz (Average Trace)
VBW	≥ 3MHz (Peak Trace) / ≥ 3MHz (Average Trace)
Detector	Peak (Peak Trace) / RMS (Average Trace)
Irace	Trace: Max hold (Peak Trace) /
Indce	Trace Average Sweep Count 100 (Average Trace)
Sweep Time	AUTO

4.5.3. Test Procedures

- 1. Trace A, Set RBW = 1MHz, VBW = 3MHz, Span > 26dB bandwidth, Max. hold.
- 2. Delta Mark trace A Maximum frequency and trace B same frequency.
- 3. Repeat the above procedure until measurements for all frequencies were complete.
- Testing each modulation mode on a single channel in single operating band at single output port. All signal types need test (DSSS, OFDM). All modulation types need test (BPSK, QPSK, 16-QAM, 64-QAM). All bandwidth modes need test.

4.5.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.4.4.

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Peak Excursion

Temperature	21℃	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11n

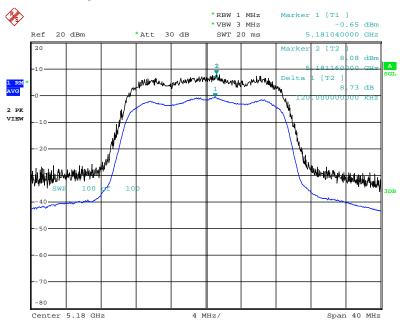
Configuration IEEE 802.11n 20MHz / Ant. 1 + Ant. 3

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(MCSO)	5180MHz	8.21	13	Complies
QPSK(MCS1)	5180MHz	8.25	13	Complies
16QAM(MCS3)	5180MHz	8.73	13	Complies
64QAM(MCS5)	5180MHz	8.47	13	Complies

Configuration IEEE 802.11n 40MHz / Ant. 1 + Ant. 3

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(MCSO)	5230MHz	8.43	13	Complies
QPSK(MCS1)	5230MHz	9.06	13	Complies
16QAM(MCS3)	5230MHz	9.41	13	Complies
64QAM(MCS5)	5230MHz	9.41	13	Complies

Temperature	21°C	Humidity	63%
Test Engineer	David Tseng	Configurations	IEEE 802.11a

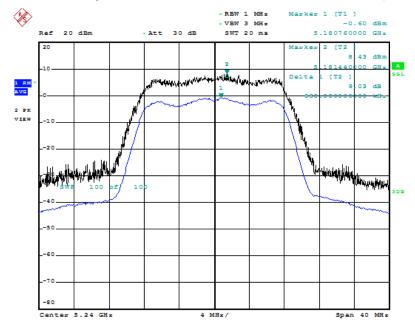

Configuration IEEE 802.11a / Ant. 1 + Ant. 3

Modulation	Frequency	Peak Excursion (dB)	Max. Limit (dB)	Result
BSPK(6Mbps)	5240MHz	8.66	13	Complies
QPSK(12Mbps)	5240MHz	7.85	13	Complies
16QAM(24Mbps)	5240MHz	8.95	13	Complies
64QAM(48Mbps)	5240MHz	9.03	13	Complies

Note: All the test values were listed in the report.

For plots, only the modulation with worse result was shown.

Peak Excursion Plot on Configuration IEEE 802.11n 20MHz / Ant. 1 + Ant. 3 / 16QAM(MCS3) / 5180 MHz


Date: 26.DEC.2013 23:08:57

Peak Excursion Plot on Configuration IEEE 802.11n 40MHz / Ant. 1 + Ant. 3 /16QAM(MCS3) / 5230 MHz

Date: 26.DEC.2013 23:11:10

Peak Excursion Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 3 / 64QAM(48Mbps) / 5240 MHz

Date: 26.DEC.2013 23:06:35

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

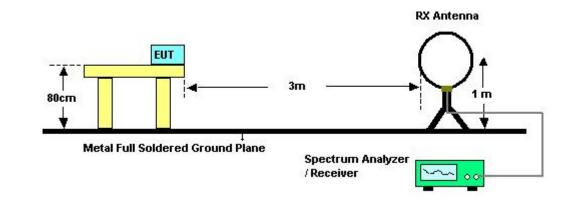
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

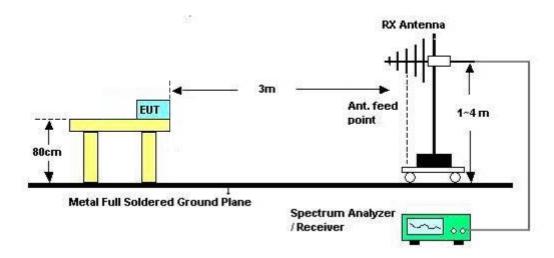
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

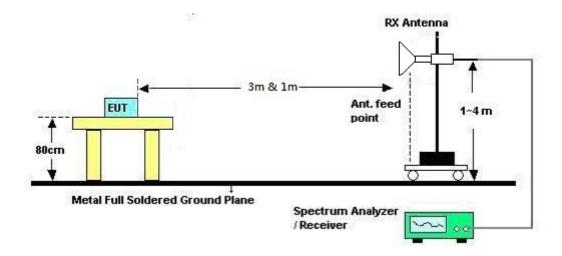
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start \sim Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP


4.6.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.6.4. Test Setup Layout


For Radiated Emissions: $9kHz \sim 30MHz$

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

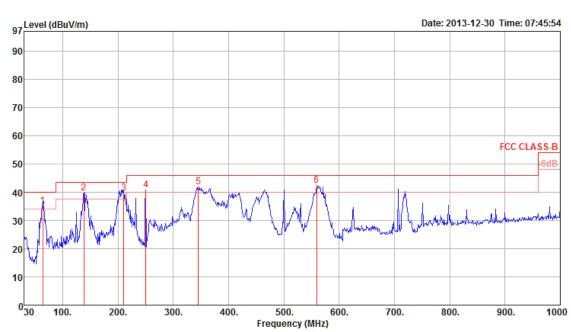
4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	Normal Link
Test Date	Dec. 30, 2013	Test Mode	Mode 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

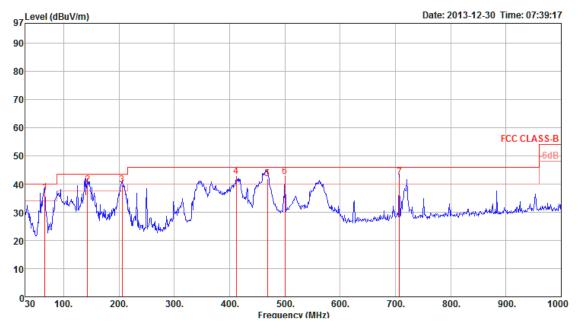
The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	Normal Link
Test Mode	Mode 1		



Horizontal

	Freq	Level	Limit Line	Over Limit			Preamp Factor		Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 3 4 5 6	63.95 138.64 210.42 250.19 345.25 559.62	39.78 40.84 41.78	43.50 43.50 46.00 46.00	-3.83	50.89	1.71 2.18 2.38 2.77	27.57 27.17 26.95	-13.69 -14.39 -11.67 -9.11	Peak QP Peak Peak	169 0 132 0 0 0	100 100 100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit	Read Level		Preamp Factor		Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBu∀/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 3 4 5 6 7	65.89 143.49 205.57 412.18 468.44 500.45 707.06	36.93 39.80 39.67 42.63 41.75 42.82 42.48	46.00	-3.07 -3.70 -3.83 -3.37 -4.25 -3.18 -3.52	56.83 53.83 54.23 50.54 49.04 49.57 45.37		27.54 27.21 27.58 27.87 27.93	-7.29 -6.75	QP QP Peak QP Peak	236 135 289 0 165 0 111	100 112 400 100 400	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 36
			/ Ant. 1 + Ant. 3
Test Date	Dec. 05, 2013		

Horizontal

	Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1 2	15537.72 15540.26								100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	Over Limit				•	A/Pos	T/Pos Pol/Phase
MHz	dBu\//m	dBư∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg
15537.88 15540.03								109 109	274 VERTICAL 274 VERTICAL

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 40 / Ant. 1 + Ant. 3
Test Date	Dec. 05, 2013		

Horizontal

	Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1 2	15598.17 15600.80								110 110		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
15597.63 15597.85								117 117		/ERTICAL /ERTICAL

Tem	perature		25 ℃		H	umidity		54%	, D				
Test	Engineer		Sonuciuli		C	opfique	ations	IEEE	IEEE 802.11n MCS0 20MHz CH 48				
lest	Test Engineer Serway Li					onfigure	ations	/ An	t. 1 + Ant. 3	3			
Test	Date	Dec. 05, 2	2013	-									
Horiz	ontal												
	Freq	Leve	Limit el Line	Over Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase	
	MHz	dBuV/	/m dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg		
1	15718.08	70.7	78 74.00	-3.22	62.55	6.14	37.48	35.39	Peak	107	265	HORIZONTAL	
2	15720.54	53.5	51 54.00	-0.49	45.28	6.14	37.48	35.39	Average	107	265	HORIZONTAL	

Freq	Level	Limit Line	Over Limit				•	A/Pos	T/Pos Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg
15717.82 15720.42								100 100	259 VERTICAL 259 VERTICAL

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 40MHz CH 38
	Serway Li	Comigurations	/ Ant. 1 + Ant. 3
Test Date	Dec. 05, 2013		
Test Date	Dec. 05, 2013		

Horizontal

	Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1 2	15566.92 15567.85								100 100		HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit				•	A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1 2	15572.37 15577.66								100 100		VERTICAL VERTICAL

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 40MHz CH 46 / Ant. 1 + Ant. 3
Test Date	Dec. 05, 2013		

Horizontal

	Freq	Level	Limit Line				Antenna Factor	•		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2	15690.87 15693.53		74.00 54.00				37. 51 37.49			115 115		HORIZONTAL HORIZONTAL
Vertic	cal								-			

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos Pol/Phas	se
	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 	deg	
1 2	15692.40 15692.44								 100 100	271 VERTICAL 271 VERTICAL	-

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Tem	Temperature 25°C						/	54	%				
Test	Engineer		Serway l	.i		Configu	rations	IEE	IEEE 802.11a CH 36 / Ant. 1 + Ant. 3				
Test	Date		Dec. 05,	2013									
Horiz	ontal	·											
			Limi				Antenna			A/Pos	T/Pos		
	Freq	Leve	el Lin	e Limit	Leve]	Loss	Factor	Factor	Remark			Pol/Phase	
	MHz	dBu∀	′m dBu∀/ı	n dB	dBu∖	dB	dB/m	dB			deg		
1	15545.87	52.4	5 54.0	0 -1.55	43.98	6.13	37.65	35.31	Average	100	266	HORIZONTAL	
2	15546.44	66.9	96 74.0	9 -7.04	58.49	6.13	37.65	35.31	Peak	100	266	HORIZONTAL	
Vertic	cal												
			Limit	t Over	Read	Cable	Antenna	Preamp		A/Pos	T/Pos		
	Freq	Leve	el Lin	e Limit	Leve]	Loss	Factor	Factor	Remark			Pol/Phase	
	MHz	dBuV	′m dBu∀/ı	n dB	dBu∖	dB	dB/m	dB			deg		
1	15540.80	53.4	2 54.0	0 -0.58	44.91	6.13	37.69	35.31	Average	100	275	VERTICAL	
2	15540.90	67.0	56 74.0	0 -6.34	59.15	6.13	37.69	35.31	Peak	100	275	VERTICAL	

Tem	perature	2	5℃			Humidit	у	54%					
Test Engineer Serway Li						Configu	urations	IEEE	IEEE 802.11a CH 40 / Ant. 1 + Ant. 3				
Test	Date	D	ec. 05, 2	2013									
Horiz	ontal												
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg		
1 2	15602.02 15606.70	53.77 68.51		-0.23 -5.49	45.38 60.14	6.13 6.13	37.60 37.58		Average Peak	113 113		HORIZONTAL HORIZONTAL	

	Freq	Level	Limit Line				Antenna Factor	•	A/Pos		Pol/Phase
,	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	······
	15595.45 15595.80								100 100		VERTICAL

Tem	perature	25	5℃		Hu	midity		54%	,				
Test	Engineer	Se	erway Li		Co	onfigura	itions	IEEE	IEEE 802.11a CH 48 / Ant. 1 + Ant. 3				
Test	Date	D	ec. 05, 2	2013									
Horiz	ontal	÷											
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos		
	Freq	Level	Line	Limit	Level		Factor					Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg		
1	15721.89	53.98	54.00	-0.02	45.75	6.14	37.48	35.39	Average	112	264	HORIZONTA	
2	15726.51	68.37	74.00	-5.63	60.16	6.14	37.46	35.39	Peak	112	264	HORIZONTA	
Vertic	cal												
			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase	
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg		
1	15715.38	68.35	74.00	-5.65	60.11	6.14	37.48	35.38	Peak	100	260	VERTICAL	
2	15720.77	53.37	54.00	-0.63	45.14	6.14	37.48	35.39	Average	100	260	VERTICAL	

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed a -27dBm peak limit or average 54dBuV/m and peak 74dBuV/m limits. In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak, 1MHz / 10Hz for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	25 ℃	Humidity	54%
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 20MHz CH 36, 40, 48 / Ant. 1 + Ant. 3
Test Date	Nov. 26, 2013		

Channel 36

	Freq	Level	Limit Line	Over Limit	Read Level	Cable Loss	Preamp <i>i</i> Factor	Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 3 4	5148.60 5149.40 5181.60 5181.80	52.89 100.23				4.34 4.34 4.36 4.36	0.00	33.14 33.19	Average Average	262 262 262 262	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit			Preamp <i>l</i> Factor		Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 3 4		46.90 115.09	74.00 54.00	-9.49 -7.10	27.03 9.42 77.50 63.93	4.34 4.34 4.37 4.37	0.00 0.00	33.14 33.22	Average	262 262 262 262	112 112	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line	Over Limit				Antenna Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBu∛	dB	dB	dB/m		deg	Cm	
1 2 3 4 5 6		53.55 42.36 115.56 101.84 57.01 45.31	54.00	-20.45 -11.64 -16.99 -8.69	16.07 4.88 77.90 64.18 19.08 7.38	4.34 4.39 4.39 4.47 4.47	0.00 0.00 0.00 0.00 0.00 0.00	33.27 33.27 33.46	Average Peak Average	266 266 266 266 266 266	100 100 100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	25 ℃	Humidity	54%		
Test Engineer	Serway Li	Configurations	IEEE 802.11n MCS0 40MHz CH 38, 46 / Ant. 1 + Ant. 3		
Test Date	Nov. 26, 2013				

Channel 38

	Freq	Level	Limit Line					Antenna Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	<u></u> dB	dB/m		deg	Cm	
1	5148.80 5149.60			-3.68		4.34	0.00	33.14 33.14	Peak Average	270 270		HORIZONTAL HORIZONTAL
3	5191.60 5192.00				69.06 53.27	4.37 4.37	0.00 0.00	33.22 33.22	Peak Average	270 270		HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level	Limit Line	Over Limit				Antenna Factor	T/Po\$	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	₫B	dB/m	 deg	Cm	
1 2 3 4	5148.80 5149.60 5228.80 5231.60	52.44 69.62 112.85 97.69	54.00 74.00	-1.56 -4.38	14.96 32.14 75.19 60.03	4.34 4.34 4.39 4.39	0.00 0.00 0.00 0.00	33.14 33.27	261 261 261 261	123 123	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Temperature	25 ℃	Humidity	54%		
Test Engineer	Serway Li	Configurations	IEEE 802.11a CH 36, 40, 48 / Ant. 1 + Ant. 3		
Test Date	Nov. 26, 2013				

Channel 36

	Freq	Level	Limit Line	Over Limit	Read Level			Antenna Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	₫B	dB	dB/m		deg	Cm	
1 2 3 4	5143.80 5149.40 5178.60 5178.80	53.60 113.16		-2.13 -0.40	34.39 16.12 75.61 62.89	4.34 4.34 4.36 4.36	0.00 0.00 0.00 0.00	33.14 33.19	Average	268 268 268 268	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

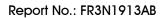
Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line	Over Limit				Antenna Factor	Remark	T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	₫B	dB/m		deg	Cm	
1 2 3 4	5148.80 5149.20 5198.80 5199.60	115.20	54.00	-9.24 -6.83	27.28 9.69 77.61 65.12	4.34 4.34 4.37 4.37	0.00 0.00 0.00 0.00	33.22	Average	276 276 276 276	100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48


	Freq	Level	Limit Line	Over Limit	Read Level			Antenna Factor		T/Pos	A/Pos	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm	
1 2 3 4 5 6	5149.40 5150.00 5238.80 5239.40 5350.00 5350.00		54.00	-17.37 -11.32 -15.86 -8.27	19.15 5.20 64.83 77.25 20.21 7.80	4.34 4.39 4.39 4.47 4.47	0.00	33.14 33.27 33.27 33.46	Average Average Peak	278 278 278 278 278 278 278	100 100 100 100	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

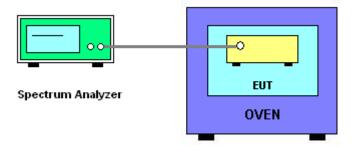
4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is $0^{\circ}C \sim 40^{\circ}C$.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Temperature	21°C	Humidity	63%
Test Engineer	David Tseng	Test Date	Dec. 26, 2013

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)
(V)	5200 MHz
126.50	5200.0086
110.00	5200.0048
93.50	5200.0002
Max. Deviation (MHz)	0.008600
Max. Deviation (ppm)	1.65

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200 MHz
0	5199.9982
10	5200.0012
20	5200.0048
30	5200.0062
40	5200.0074
Max. Deviation (MHz)	0.007400
Max. Deviation (ppm)	1.42

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100355	9 kHz ~ 2.75 GHz	Apr. 12, 2013	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150 kHz ~ 100 MHz	Nov. 23, 2013	Conduction (CO01-CB)
Arifical Mains Network	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Nov. 23, 2013	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150 kHz ~ 30 MHz	Dec. 04, 2013	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	-	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20 MHz ~ 2 GHz	Apr. 16, 2013	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Nov. 05, 2012*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	$15 ext{GHz} \sim 40 ext{GHz}$	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 12, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	$26 ext{GHz} \sim 40 ext{GHz}$	Oct. 23, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100080	9kHz ~ 40GHz	Dec. 30, 2013	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz \sim 8GHz	Dec. 12, 2013	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N.C.R	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	N/A	1 GHz – 26.5 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 04, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	2 Way	0120A02056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	3 Way	MDC2366	2 GHz ~ 18 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Power Divider	Woken	4 Way	0120A04056002D	2GHz ~ 18GHz	Nov. 17, 2013	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

	Un	certaint		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	0.026	dB	normal(k=2)	0.013
Cable loss	0.002	dB	normal(k=2)	0.001
AMN/LISN specification	1.200	dB	normal(k=2)	0.600
Mismatch Receiver VSWR 1 = AMN/LISN VSWR 2=	-0.080	dB	U-shaped	0.060
Combined standard uncertainty Uc(y)	1.2			
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				2.4

Uncertainty of Radiated Emission Measurement (30MHz ~ 1,000MHz)

	Un			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.173	dB	K=1	0.086
Cable loss	±0.174	dB	K=2	0.087
Antenna gain	±0.169	dB	K=2	0.084
Site imperfection	±0.433	dB	Triangular	0.214
Pre-amplifier gain	±0.366	dB	K=2	0.183
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.778			
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				3.555

Uncertainty of Radiated Emission Measurement (1GHz ~ 18GHz)

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.191	dB	K=1	0.095
Cable loss	±0.169	dB	K=2	0.084
Antenna gain	±0.191	dB	K=2	0.096
Site imperfection	±0.582	dB	Triangular	0.291
Pre-amplifier gain	±0.304	dB	K=2	0.152
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.839			
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)				3.678

Uncertainty of Radiated Emission Measurement (18GHz ~ 40GHz)

	Un			
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Receiver reading	±0.186	dB	K=1	0.093
Cable loss	±0.167	dB	K=2	0.083
Antenna gain	±0.190	dB	K=2	0.095
Site imperfection	±0.488	dB	Triangular	0.244
Pre-amplifier gain	±0.269	dB	K=2	0.134
Transmitter antenna	±1.200	dB	Rectangular	0.600
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	1.771			
Measuring uncertainty for a level of confidence of 95% $U=2Uc(y)$				3.541

Uncertainty of Conducted Emission Measurement

	Un	certain		
Contribution	Value	Unit	Probability Distribution k	$u(x_i)$
Cable loss	±0.038	dB	K=2	0.019
Attenuator	±0.047	dB	K=2	0.024
Power Meter specification	±0.300	dB	Triangular	0.150
Power Sensor specification	±0.300	dB	Rectangular	0.150
Signal generator	±0.461	dB	Rectangular	0.231
Mismatch	±0.080	dB	U-shape	0.040
Spectrum analyzer	±0.500	dB	Rectangular	0.250
Combined standard uncertainty Uc(y)	0.863			
Measuring uncertainty for a level of confidence	1.726			