

FCC Test Report

FCC ID	:	PY313200234			
Equipment	:	N300 Personal Router			
Model No.	:	PR2000			
Brand Name	:	NETGEAR			
Applicant	:	NETGEAR, Inc.			
Address	:	350 East Plumeria Drive, San Jose, California 95134, USA			
Standard	:	47 CFR FCC Part 15.247			
Received Date	:	Jul. 12, 2013			
Tested Date	:	Jul. 24 ~ Aug. 02, 2013			

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager >

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	8
1.4	The Equipment List	9
1.5	Test Standards	
1.6	Measurement Uncertainty	12
2	TEST CONFIGURATION	13
2.1	Testing Condition	
2.2	The Worst Test Modes and Channel Details	13
3	TRANSMITTER TEST RESULTS	14
3.1	Conducted Emissions	14
3.2	6dB and Occupied Bandwidth	
3.3	RF Output Power	
3.4	Power Spectral Density	24
3.5	Unwanted Emissions into Restricted Frequency Bands	
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	56

Release Record

Report No.	Version	Description	Issued Date
FR371201	Rev. 01	Initial issue	Sep. 06, 2013

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.426MHz 43.96 (Margin -3.37dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2389.99 2483.60MHz 53.90 (Margin -0.10dB) - AV	Pass
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 11b: 23.52 11g: 26.41 HT20: 26.68 HT40: 18.63	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (Ν _{τx})	Data Rate / MCS		
2400-2483.5	b	2412-2462	1-11 [11]	2	1-11 Mbps		
2400-2483.5	g	2412-2462	1-11 [11]	2	6-54 Mbps		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15		
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	MCS 0-15		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	PCB	3.76	I-PEX	
1	PCB	3.88	I-PEX	

1.1.3 EUT Operational Condition

Supply Type	 Adapter mode: 100~240Vac , 50~60Hz , 0.3A USB mode: 5Vdc
-------------	---

1.1.4 Accessories

N/A

1.1.5 Channel List

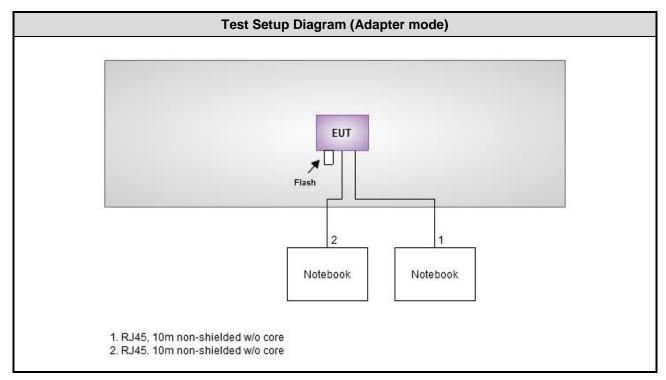
Frequency	band (MHz)	2400~2483.5		
802.11 b /	g / n HT20	802.11n HT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
1	2412	3	2422	
2	2417	4	2427	
3	2422	5	2432	
4	2427	6	2437	
5	2432	7	2442	
6	2437	8	2447	
7	2442	9	2452	
8	2447			
9	2452			
10	2457			
11	2462			

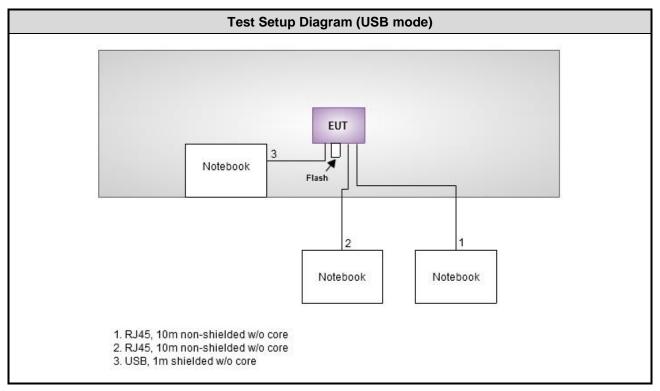
1.1.6 Test Tool and Duty Cycle

Test tool QA v.1.0.6.0			
Duty Cycle Of Test Signal (%)	100.00% - IEEE 802.11b 100.00% - IEEE 802.11g 100.00% - IEEE 802.11n (HT20) 100.00% - IEEE 802.11n (HT40)		
Duty Factor	0 - IEEE 802.11b 0 - IEEE 802.11g 0 - IEEE 802.11n (HT20) 0 - IEEE 802.11n (HT40)		

1.1.7 Power Setting

Modulation Mode	Test Frequency (MHz)	Power Set
11b	2412	0D/0C
11b	2437	0E/0D
11b	2462	16/15
11g	2412	08/08
11g	2437	1D/1D
11g	2462	06/06
HT20	2412	06/06
HT20	2437	20/20
HT20	2462	04/03
HT40	2422	03/03
HT40	2437	07/06
HT40	2452	01/01


1.2 Local Support Equipment List


	Support Equipment List (Adapter Mode)							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Notebook	Latitude	E6430		DoC	RJ45 10m non-shielded w/o core.		
2	Notebook	Latitude	E6430		DoC	RJ45 10m non-shielded w/o core.		
3	Flash	Transcend	JetFlash V85	A61643 1057		4GB		

	Support Equipment List (USB Mode)							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Notebook	Latitude	E6430		DoC	RJ45 10m non-shielded w/o core.		
2	Notebook	Latitude	E6430		DoC	RJ45 10m non-shielded w/o core.		
3	Flash	Transcend	JetFlash V85	A61643 1057		4GB		
4	Notebook	Latitude	E5420		DoC	USB 1m shielded w/o core.		

1.3 Test Setup Chart

1.4 The Equipment List

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (CO01-WS)								
Instrument	Manufacturer Model No. Serial No. Calibration Date Calibra								
EMC Receiver	R&S	ESCS 30	100169	Oct. 02, 2012	Oct. 01, 2013				
LISN	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-667	Dec. 04, 2012	Dec. 03, 2013				
LISN (Support Unit)	SCHWARZBECK MESS-ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013				
ISN	TESEQ	ISN T800	34406	Apr. 08, 2013	Apr. 07, 2014				
ISN	TESEQ	ISN T200A	30494	Apr. 09, 2013	Apr. 08, 2014				
ISN	TESEQ	ISN T8-Cat6	27262	Sep. 17, 2012	Sep. 16, 2013				
ISN	TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014				
RF Current Probe	FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013				
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013				
ESH3-Z6 V-Network(+)	R&S	ESH3-Z6	100920	Nov. 21, 2012	Nov. 20, 2013				
ESH3-Z6 V-Network(-)	R&S	ESH3-Z6	100951	Jan. 30, 2013	Jan. 29, 2014				
Two-Line V-Network	R&S	ENV216	101579	Jan. 07, 2013	Jan. 06, 2014				
50 ohm terminal	NA	50	01	Apr. 22, 2013	Apr. 21, 2014				
50 ohm terminal	NA	50	02	Apr. 22, 2013	Apr. 21, 2014				
50 ohm terminal	NA	50	03	Apr. 22, 2013	Apr. 21, 2014				
50 ohm terminal (Support Unit)	NA	50	04	Apr. 22, 2013	Apr. 21, 2014				

Test Item	Radiated Emission above 1GHz								
Test Site	966 chamber 2 / (03CH02-WS)								
Instrument	Manufacturer Model No. Serial No. Calibration Date Calib								
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH02-WS	Jan. 02, 2013	Jan. 01, 2014				
Spectrum Analyzer	R&S	FSV40	101499	Jan. 28, 2013	Jan. 27, 2014				
Receiver	R&S	ESR3	101657	Jan. 30,2013	Jan. 29,2014				
Bilog Antenna	ScHwarzbeck	VULB9168	VULB9168-524	Jan. 11, 2013	Jan. 10, 2014				
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120D	BBHA 9120 D 1095	Jan. 29, 2013	Jan. 28, 2014				
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014				
Amplifier	Burgeon	BPA-530	100218	Dec. 14, 2012	Dec. 13, 2013				
Amplifier	Agilent	83017A	MY39501309	Dec. 18, 2012	Dec. 17, 2013				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 25, 2012	Dec. 24, 2013				
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-003	Dec. 25, 2012	Dec. 24, 2013				
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-004	Dec. 25, 2012	Dec. 24, 2013				
control	EM Electronics	EM1000	060608	N/A	N/A				

Test Item	Radiated Emission above 1GHz							
Test Site	966 chamber 2 / (03CH02-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014			
Amplifier	MITEQ	AMF-6F-260400	9121372	Apr. 19, 2013	Apr. 18, 2015			
Note: Calibration Interval of instruments listed above is two year.								

Test Item	RF Conducted									
Test Site	(TH01-WS)	(TH01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until					
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014					
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013					
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013					
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013					
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014					
Note: Calibration Interval of instruments listed above is one year.										

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2009 FCC KDB 558074 D01 DTS Meas Guidance v03r01 FCC KDB 662911 D01 Multiple Transmitter Output v02

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±35.286 Hz					
Conducted power	±0.536 dB					
Frequency error	±35.286 Hz					
Temperature	±0.3 °C					
Conducted emission	±2.946 dB					
AC conducted emission	±2.43 dB					
Radiated emission	±2.49 dB					

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 66%	Skys Huang
Radiated Emissions	03CH02-WS	25°C / 63%	Mark Liao
RF Conducted	TH01-WS	24°C / 62%	Felix Sung

➢ FCC site registration No.: 657002

➢ IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data rate (Mbps) / MCS	Test Configuration
Conducted Emissions	HT20	2437	MCS 0	1, 2
Radiated Emissions (below 1GHz)	HT20	2437	MCS 0	1, 2
Radiated Emissions (above 1GHz)	11b 11g HT20 HT40	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462 2422 / 2437 / 2452	1 6 MCS 0 MCS 0	1
Fundamental Emission Output Power	11b	2412 / 2437 / 2462	1	
6dB bandwidth	11g HT20 HT40	2412 / 2437 / 2462 2412 / 2437 / 2462	6 MCS 0	1
Power spectral density		2422 / 2437 / 2452	MCS 0	

NOTE:

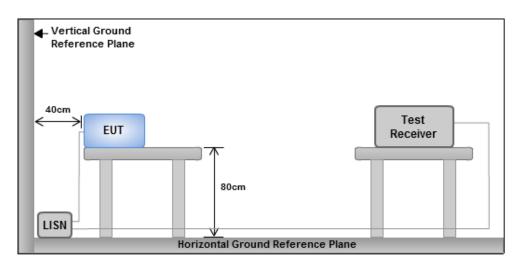
1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

2. EUT has 2 types of power supply.

- 1) Configuration 1 : Adapter Mode
- 2) Configuration 2 : USB Mode

3 Transmitter Test Results

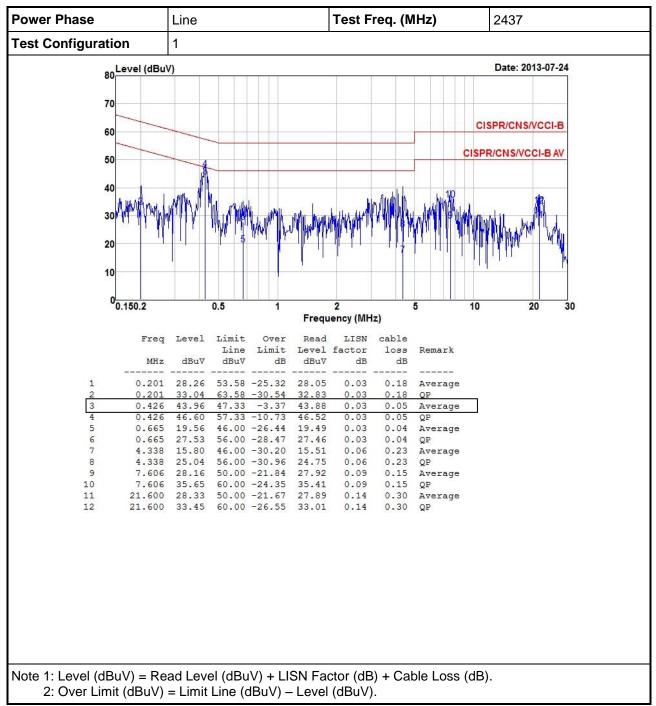
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30	60	50					
Note 1: * Decreases with the logarithm of the frequency.							

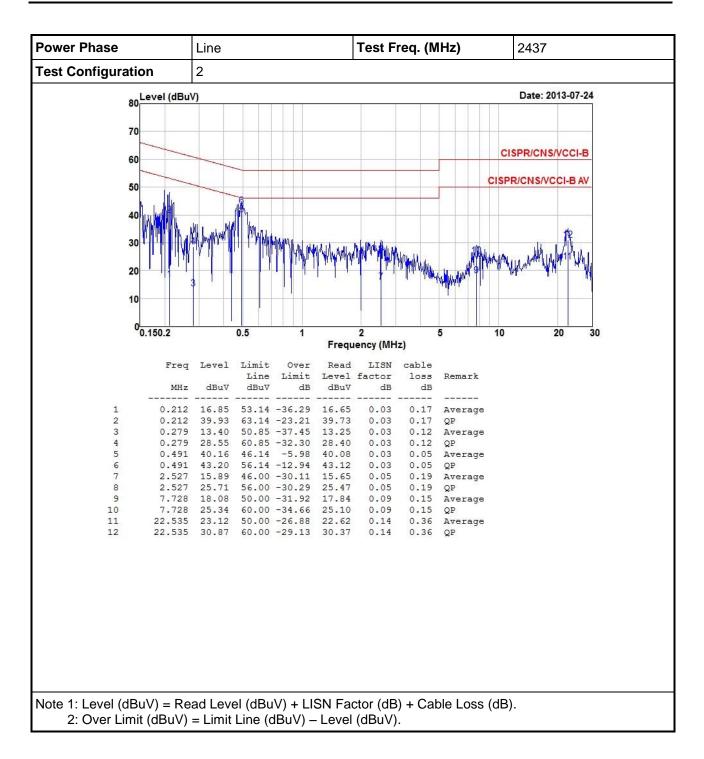
3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

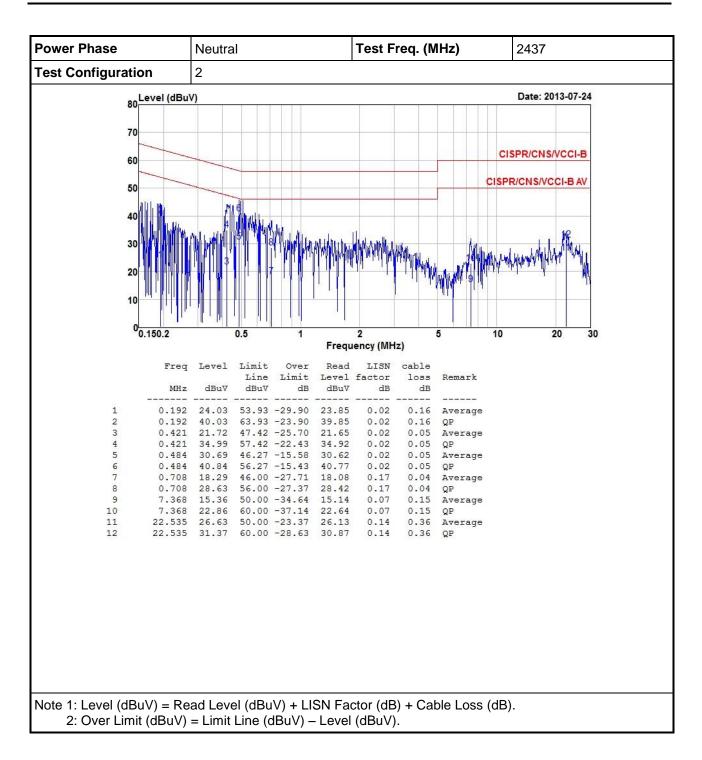

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

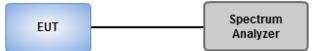
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes



3.1.4 Test Result of Conducted Emissions



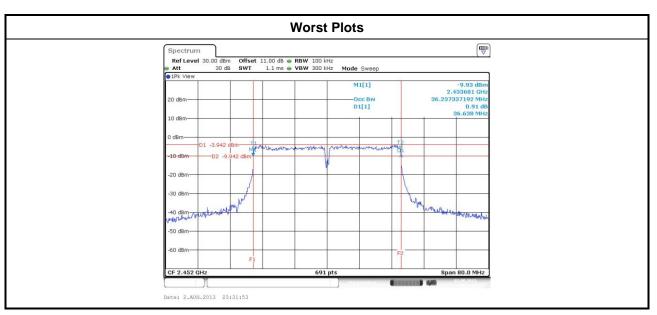
3.2 6dB and Occupied Bandwidth


3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.


3.2.3 Test Setup

Modulation	N		6dB Bandwidth (MHz)		6dB Bandwidth (MHz)		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (kHz)
11b	2	2412	9.62	10.09			500
11b	2	2437	10.09	10.09			500
11b	2	2462	10.09	10.09			500
11g	2	2412	16.58	16.58			500
11g	2	2437	16.52	16.58			500
11g	2	2462	16.58	16.58			500
HT20	2	2412	17.62	17.68			500
HT20	2	2437	17.80	17.74			500
HT20	2	2462	17.74	17.80			500
HT40	2	2422	36.52	36.52			500
HT40	2	2437	36.52	36.52			500
HT40	2	2452	36.64	36.52			500

3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation		Freq.	99% Occupied Bandwidth (MHz)					
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3		
11b	2	2412	12.33	12.33				
11b	2	2437	12.33	12.33				
11b	2	2462	12.85	12.79				
11g	2	2412	17.19	17.13				
11g	2	2437	28.31	28.89				
11g	2	2462	17.08	17.08				
HT20	2	2412	17.71	17.77				
HT20	2	2437	30.16	30.85				
HT20	2	2462	17.71	17.71				
HT40	2	2422	37.05	37.05				
HT40	2	2437	37.28	37.28				
HT40	2	2452	37.05	37.05				

3.3 **RF Output Power**

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

- Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.
- Antenna gain > 6dBi
 - Non Fixed, point to point operations.

The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB

Fixed, point to point operations

Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

- **Spectrum analyzer**
 - 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
 - 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
 - 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

Power meter

- 1. A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power

Spectrum analyzer

- 1. Set RBW = 1MHz, VBW = 3MHz, Detector = RMS.
- 2. Set the sweep time to: ≥10 x (number of measurement points in sweep) x (maximum data rate per stream).
- 3. Perform the measurement over a single sweep.
- 4. Use the spectrum analyzer's band power measurement function with band limits set equal to the EBW(26dBc) band edges.

Power meter

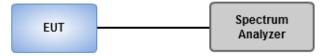
1. A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

3.3.4 Test Result of Maximum Output Power

Modulation Mode	N _{TX}	Freq.	Conduc	•	age) outpu 3m)	it power	Total Power	Total Power (dBr	
Wode		(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(mW)	(dBm)	(dBm)
11b	2	2412	16.48	16.46			88.722	19.48	30
11b	2	2437	17.29	17.11			104.984	20.21	30
11b	2	2462	20.69	20.33			225.114	23.52	30
11g	2	2412	16.25	16.65			88.408	19.46	30
11g	2	2437	23.18	23.61			437.585	26.41	30
11g	2	2462	15.84	16.22			80.250	19.04	30
HT20	2	2412	15.39	15.89			73.409	18.66	30
HT20	2	2437	23.33	23.99			465.889	26.68	30
HT20	2	2462	14.81	14.88			61.030	17.86	30
HT40	2	2422	13.71	14.24			50.042	16.99	30
HT40	2	2437	15.61	15.63			72.951	18.63	30
HT40	2	2452	13.02	13.53			42.587	16.29	30

3.4 **Power Spectral Density**

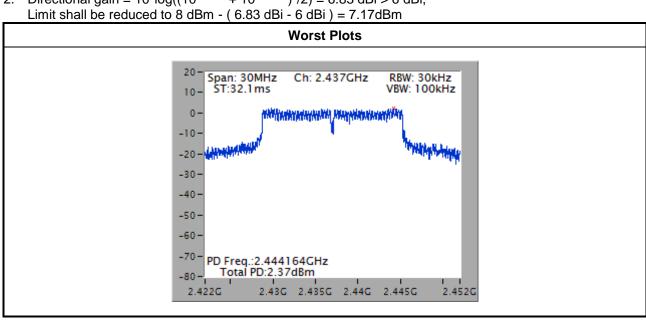

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 30kHz, VBW = 100kHz.
 - 2. Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 30kHz, VBW = 100 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Employ trace averaging mode over a minimum of 100 traces
 - 4. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup


3.4.4 Test Result of Power Spectral Density

Modulation Mode	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/30kHz)	Limit (dBm/3kHz)
11b	2	2412	-3.27	7.17
11b	2	2437	-2.59	7.17
11b	2	2462	0.98	7.17
11g	2	2412	-4.54	7.17
11g	2	2437	2.37	7.17
11g	2	2462	-5.25	7.17
HT20	2	2412	-5.82	7.17
HT20	2	2437	-1.75	7.17
HT20	2	2462	-6.55	7.17
HT40	2	2422	-10.67	7.17
HT40	2	2437	-8.61	7.17
HT40	2	2452	-11.37	7.17

Note:

Test result is bin-by-bin summing measured value of each TX port. Directional gain = $10*\log((10^{3.76/20} + 10^{3.88/20})^2/2) = 6.83 \text{ dBi} > 6 \text{ dBi}$, 1.

2.

3.5 Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit												
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)									
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300									
0.490~1.705	24000/F(kHz)	33.8 - 23	30									
1.705~30.0	30	29	30									
30~88	100	40	3									
88~216	150	43.5	3									
216~960	200	46	3									
Above 960	500	54	3									

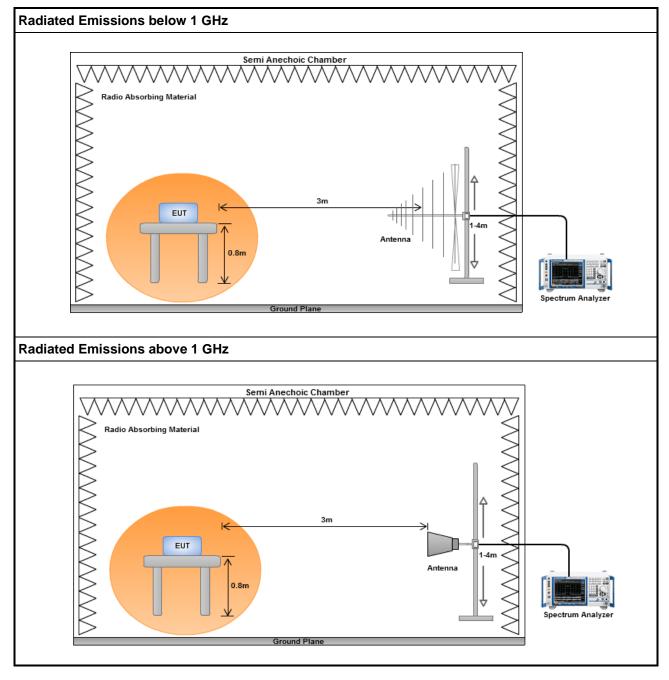
3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

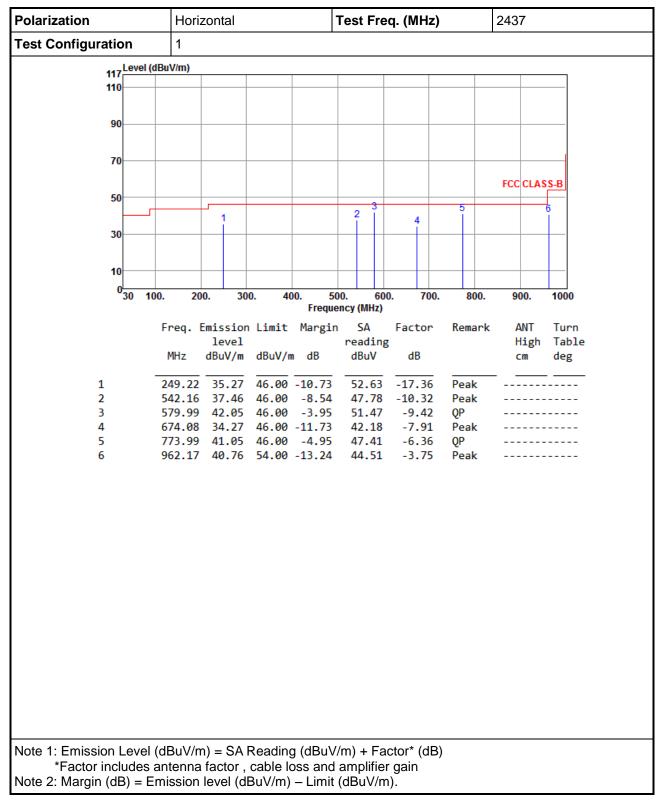
Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

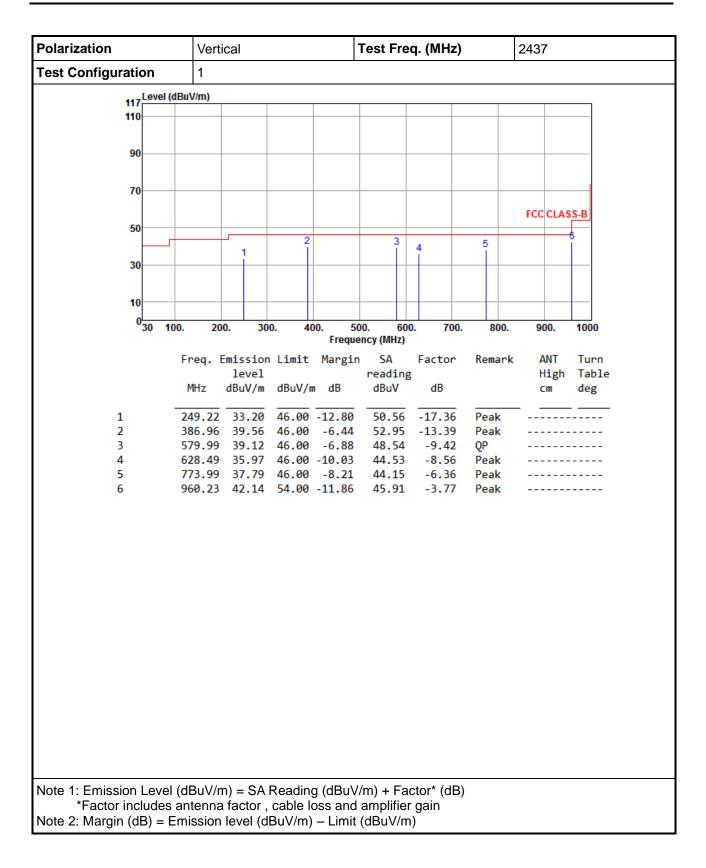

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

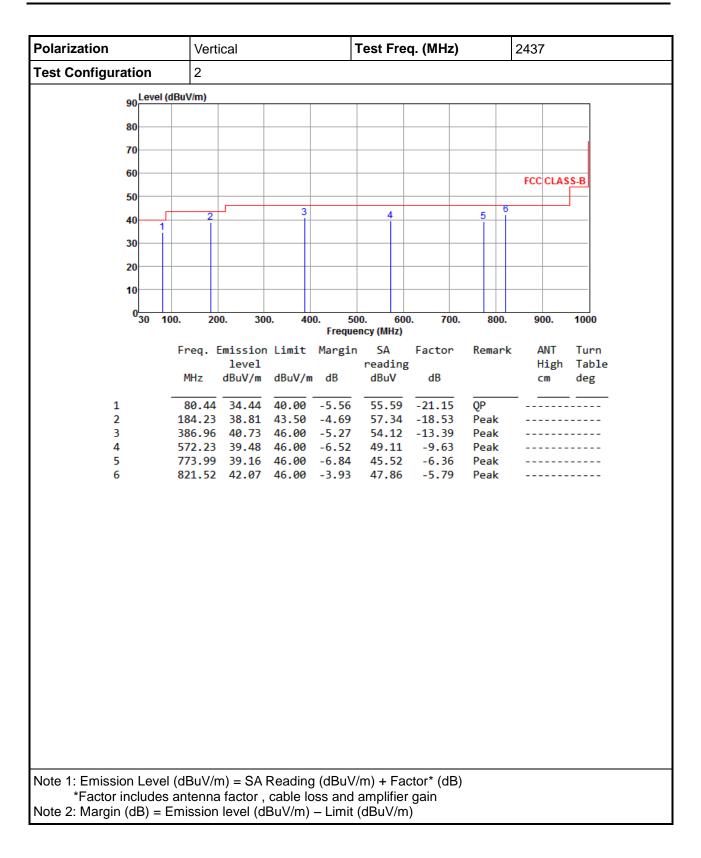
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

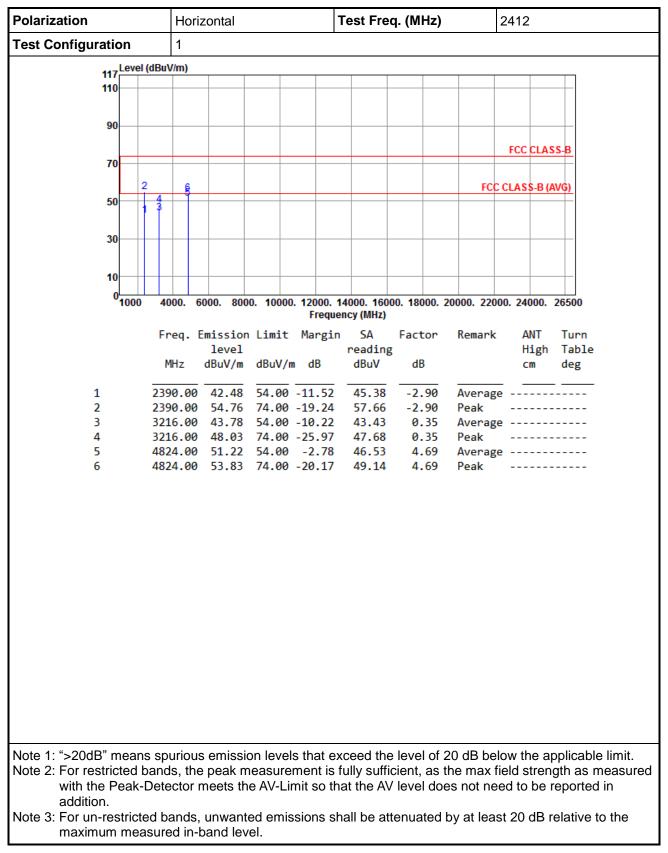


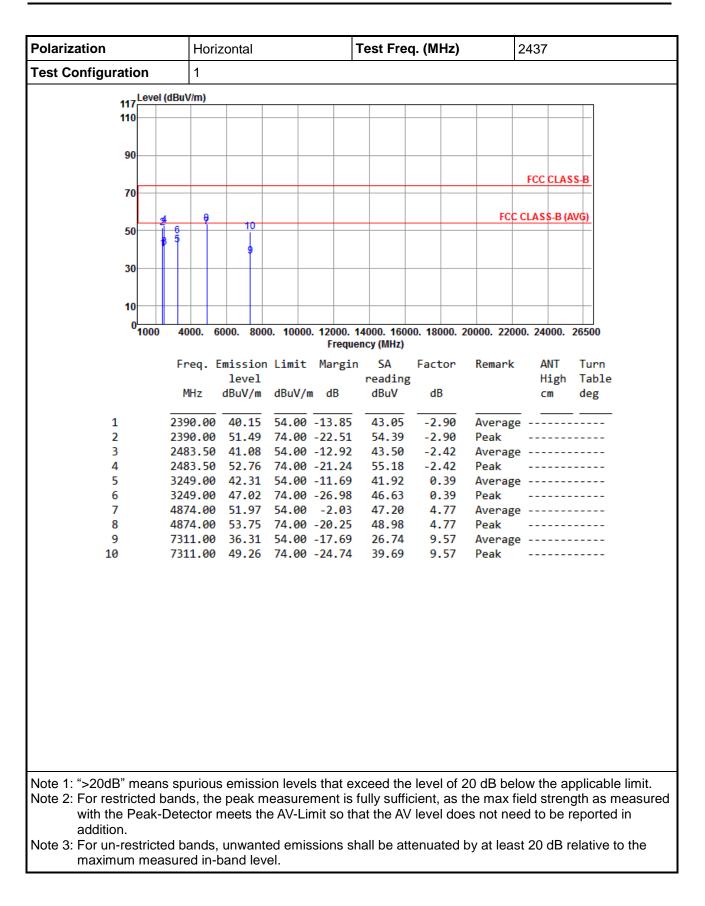
3.5.3 Test Setup

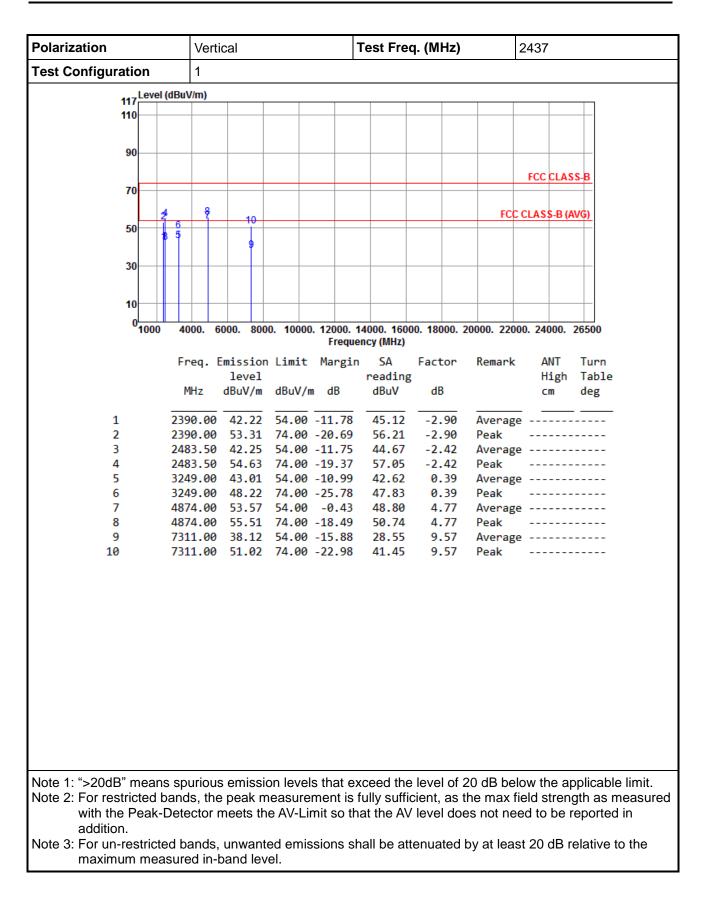


3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

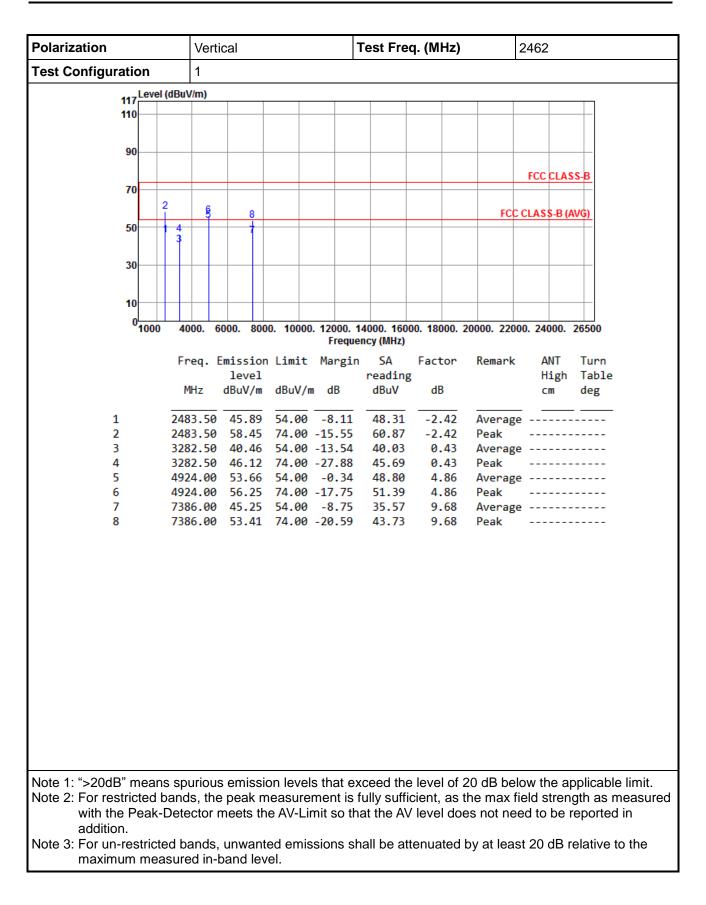


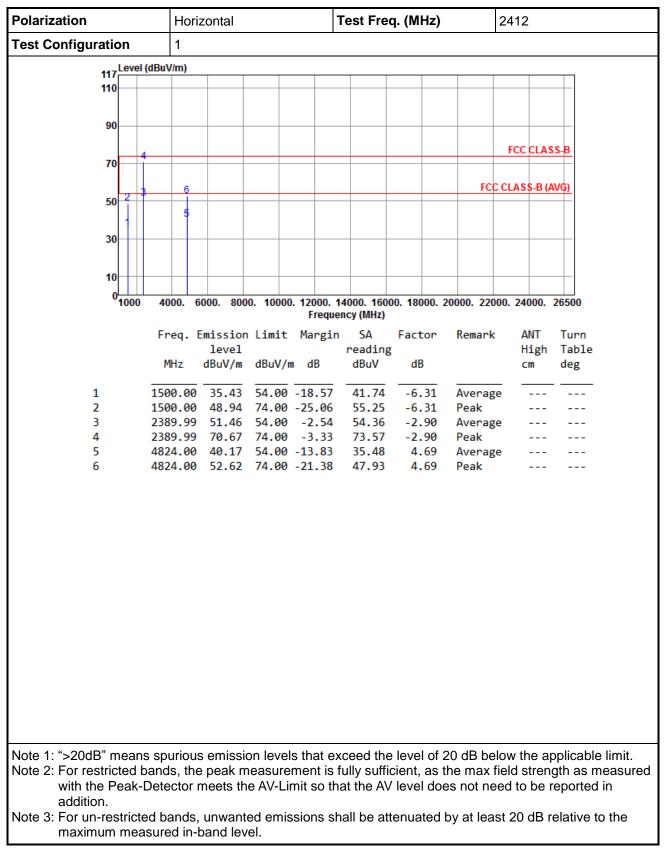

Polarization		Hori	Horizontal						Test Freq. (MHz)						2437			
est Configuration	n	2																
on ^L	evel (dB	uV/m)																
80																		
70-									+		+					—		
60									+		+			FCC	CLAS	S-B		
50									_		_							
40		1	Γ,		3	3		4				6				·		
			ĺ								í							
30																		
20									+									
10									+									
03	0 100.	20		30	0	400.	50		600		700.		800.	90	0	1000		
J	0 100.	20	ω.	50	u			ncy (MH		•	700.			50		1000		
	I	Freq.			Limit	M	argin			Fact	or	Rem	ark		NT	Turn		
		MHz		vel V/m	dBuV/	(m .	HR	readi dBuV		dB					igh m	Table deg		
		11112						ubuv	_						<u> </u>	ueg		
1		181.32			43.50		4.56	57.2		-18.		Pea						
2 3		386.96			46.00		9.54 6.15	53.8 53.2				Pea Pea						
4	5	580.00	42	.90	46.00) -	3.10	52.3	2	-9.	42	QP						
5		579.90			46.00		9.10	44.7 46.9			81 36	Pea Pea						
0		//3.99	40	. 50	40.00	, -	5.44	40.9	2	-0.	50	rea	ĸ					
Note 1: Emission L											dB)							
*Factor inclu																		
ote 2: Margin (dB	y = En	IISSION	ieve	er (di	ouv/m) – I		(uduv/	m)	•								


3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b



Polarization		Vert	ical			Те	st Fre	q. (MH	lz)	2412				
Test Configuration		1												
117	el (dBu\	V/m)												
117														
90														
90														
		<u> </u>									FCC	CLAS	<u>S-B</u>	
70														
	2	- Ş								FCC	CLAS	\$-B (A	VG)	
50	1 2													
	[Ť													
30														
10												_		
0 [_] 100	0 40)00. 6	5000. 800	00. 1000			00. 160(y (MHz)	00. 180	00. 20	0000. 220	00. 24	000.	26500	
	-					-		- .					-	
	Fr	eq. I	Emission level		t Mar	_	SA eading	Fact	or	Remark		NT	Turn Table	
	N	٩Hz	dBuV/m		/m dB		dBuV	dB				m:	deg	
											-			
1	239	0.00	42.49	54.00	9 -11.	51	45.39	-2.	90	Averag	e			
2			55.67				58.57	-2.		Peak				
3			41.81				41.46	0.		Averag	e			
4			46.63 53.84				46.28 49.15		35 69	Peak Averag				
6			56.22				51.53			Peak				
-														
Note 1: ">20dB" mea	ns sp	uriou	s emissi	ion leve	els tha	t exce	ed the	e level	of 2	0 dB be	low th	ne ap	plicable limit	
Note 2: For restricted	band	ls, the	e peak n	neasur	ement	is ful	ly suffi	cient,	as th	ie max f	field s	streng	gth as measu	
	-Dete	otor	meets th	ne AV-L	imit so	o that	the AV	level /	does	s not ne	ed to	be r	eported in	
with the Peal														
with the Peal addition.														
with the Peal	ted b	ands,	, unwant	ted em		s shal		tenuat	ed b	y at lea	st 20	dB re	elative to the	



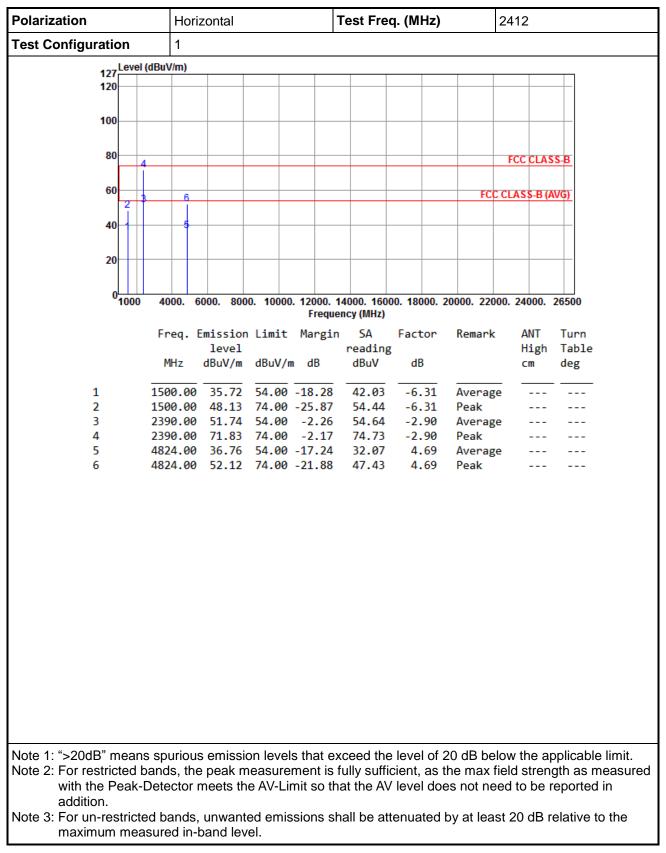

Polarization	Horizontal		Test Freq.	(MHz)	2462				
Test Configuration	1								
117 ^{Level (d}	BuV/m)								
110									
90									
70					FCC CLASS-B				
2									
50 1	<u><u></u> <u></u> </u>			FC	CCCLASS-B (AVG)				
50 1	4 7								
30									
10									
01000	4000. 6000. 800		14000. 16000. ency (MHz)	18000. 20000. 22	000. 24000. 26500				
	Freq. Emission	n Limit Margi	n SA F	actor Remar	k ANT Turn				
	level	0	reading		High Table				
	MHz dBuV/m	dBuV/m dB	dBuV	dB	cm deg				
	493 50 44 30	<u></u>	46 70	2.42					
	2483.50 44.30 2483.50 56.74			-2.42 Avera -2.42 Peak	ge				
	3282.50 39.12				ge				
	3282.50 44.82			0.43 Peak					
5 4	4924.00 51.46	54.00 -2.54	46.60		ge				
	1924.00 54.65			4.86 Peak					
	7386.00 44.15			9.68 Avera	ge				
0	386.00 51.61	74.00 -22.59	41.93	9.68 Peak					
					elow the applicable limit.				
					field strength as measure eed to be reported in				
addition.					-				
			hall be atter	nuated by at lea	ast 20 dB relative to the				
maximum meas	ured in-band lev	/el.							

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

Polarization	Vertical		T	est Fred	q. (MHz)	:	2412	
Test Configuration	1							
117	lBuV/m)							
11/								
00								
90								
4							FCC CLAS	S-B
70								
3	6					FCC	CLASS-B (A	(VG)
50								
1								
30								
10								
0 <mark>1000</mark>	4000. 6000.	8000. 10000.		000. 1600 cy (MHz)	0. 18000. 2	0000. 2200	0. 24000.	26500
		sion Limit			Factor	Remark	ANT	Turn
		evel	-	reading		кешаг к	High	Table
		ıV/m dBuV/m		dBuV	dB		Cm	deg
		· · ·						
	1500.00 37	7.79 54.00	-16.21	44.10	-6.31	Average		
		0.00 74.00		56.31	-6.31	Peak		
		3.90 54.00		56.80	-2.90	Average		
		2.33 74.00 2.70 54.00		75.23 38.01	-2.90 4.69	Peak		
		1.62 74.00			4.69	Average Peak		
v	1024100 94	.02 /4.00	10.00	45.55	4.05	1 Cur		
Note 1. ">20dR" means	spurious en	Jission levels	that ever				ow the ar	oplicable limit
Note 2: For restricted ba	ands, the pe	ak measuren	nent is fu	ully suffic	cient, as tl	ne max fi	eld stren	gth as measure
	ands, the pe	ak measuren	nent is fu	ully suffic	cient, as tl	ne max fi	eld stren	gth as measure
	ands, the pe etector mee	ak measuren ets the AV-Lin	nent is fu nit so tha	Illy suffic t the AV	cient, as tl level doe	ne max fi s not nee	eld streng ed to be r	gth as measure eported in

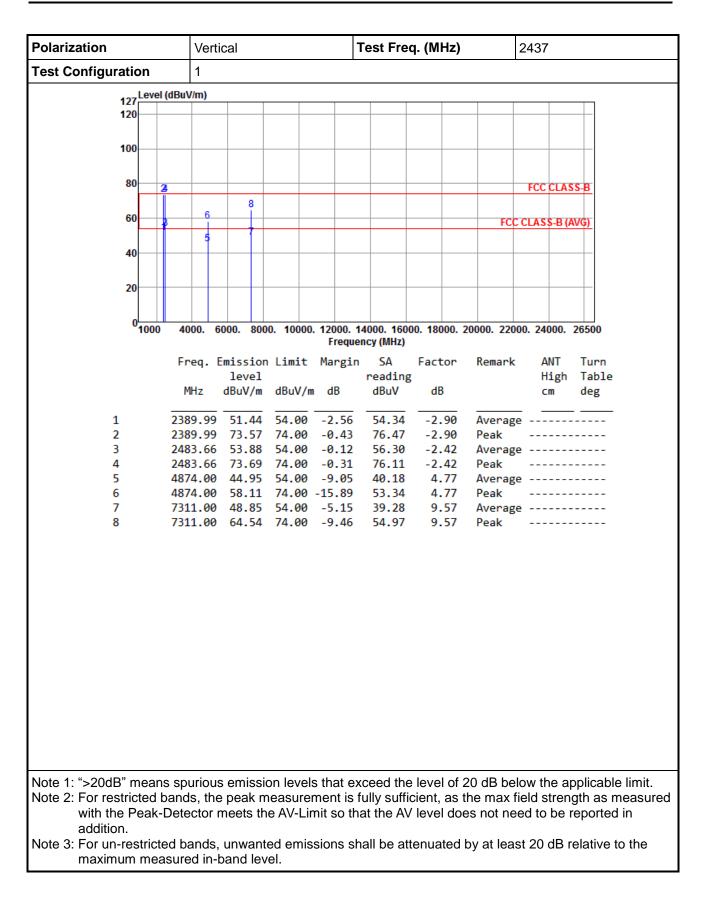
Polarization	Horizontal		Test Freq. (M	Hz)	2437		
Test Configuration	1						
127	JuV/m)						
120							
100							
100							
80							
4					FCC CLAS	<u>S-B</u>	
2	6 8						
60				FC	C CLASS-B (A	VG)	
	5						
40							
20							
0 <mark></mark> 1000	4000. 6000. 800	0. 10000. 12000. Freque	14000. 16000. 180 ency (MHz)	000. 20000. 220	000. 24000.	26500	
		-		Dement		Turn	
	Freq. Emission level	n Limit Margi	n SA Fact reading	tor Remark	: ANT High	Table	
		dBuV∕m dB	dBuV dB	3	cm	deg	
		ubut, ub		-			
1 2	390.00 47.23	54.00 -6.77	50.13 -2	.90 Averag	ge		
		74.00 -12.52		.90 Peak			
		54.00 -3.98		-	ge		
		74.00 -5.53		.42 Peak			
		54.00 -8.88		.77 Averag .77 Peak	ge		
		74.00 -16.30 54.00 -6.98			ge		
		74.00 -13.69		.57 Peak			
					1. 0		
Note 1: ">20dB" means s							
Note 2: For restricted bar							
with the Peak-De addition.	lector meets tr	e AV-LIIIII SO I	iat the AV leve		eeu io be f	eponeu m	
Note 3: For un-restricted	hands unwan	ad amissions s	hall he attenue	ted by at lea	st 20 dR m	elative to the	
				מכים שע מו ופמ			

Polarization	Vertio	cal		Test Free	ą. (MHz)	:	2437	2437		
Test Configuration	1									
127	(dBuV/m)									
127										
100										
100										
80										
4							FCC CLAS	<u>S-B</u>		
2	6	8								
60						FCC	CLASS-B (A	<u>NG)</u>		
	5									
40										
20										
0 <mark>1000</mark>	4000. 60	000. 8000. 10			0. 18000. 2	0000. 2200	0. 24000.	26500		
				ency (MHz)	_			_		
	Freq. E	mission Lim	it Margi		Factor	Remark	ANT	Turn		
	MHz	level dBuV/m dBu	V/m dB	reading dBuV	dB		High cm	Table deg		
	PILIZ		v/iii ub	ubuv	ub		CIII	ueg		
1	2384.86	50.33 54.	00 -3.67	53.25	-2.92	Average				
2	2384.86	65.55 74.	00 -8.45	68.47	-2.92	Peak				
3		53.59 54.			-2.41	Average				
4		72.32 74.			-2.41	Peak				
5		45.56 54.			4.77					
6 7		57.82 74. 48.95 54.			4.77 9.57	Peak Average				
8		62.65 74.			9.57	Peak				
-										
	opurious	ominaian la	vala that a	vood the	lovel of 0		ow the cr			
Note 1: ">20dB" means Note 2: For restricted b										
with the Peak-I										
addition.						3 101 1100				
Note 3: For un-restricte	ed bands	unwanted e	missions s	hall he att	enuated h	ov at leas	t 20 dR r	elative to the		


Polarization	Hori	zontal			Test Fre	q. (MHz)		2462	
Test Configuration	1			·					
127 Level (d	BuV/m)								
120									
100									
80									
2							_	FCC CLA	<u> 32-8</u>
60									
00 1	4	6					FCC	CLASS-B (AVG)
	3	1							
40									
20									
0 <mark>1000</mark>	4000. 6	5000. 800	0. 10000). 12000 . ⁻	14000. 160	00. 18000. :	20000. 220	00. 24000.	26500
				-	ency (MHz)				
	Freq.	Emissior	n Limit	Margir		Factor	Remark		Turn
		level			reading	-		-	Table
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		CM	deg
1	193 EQ	51.66	<u>E4 00</u>	2 24	54.08	-2.42	Avenag	e	
		71.63			74.05	-2.42	Peak		
		41.25			36.39	4.86		e	
		51.66					Peak		
		37.22					Average	e	
6	7386.00	49.31	74.00	-24.69	39.63	9.68	Peak		
			ا ا ا ا م م	a 4h - 4 -	1000-141			المسلحة	malianakia limit
Note 1: ">20dB" means									
Note 2: For restricted ba									
with the Peak-De addition.	elector	meets tr	IE AV-LI	nin so tr	iat the AV		es not ne		reported in
	bando	unword	ad amir	seione el	hall ha at	tonuatod	by at loo		relative to the
Note 3: For un-restricted maximum measure				5310115 51	iaii ne al	lenualeu	by at leas	51 ZU UD	

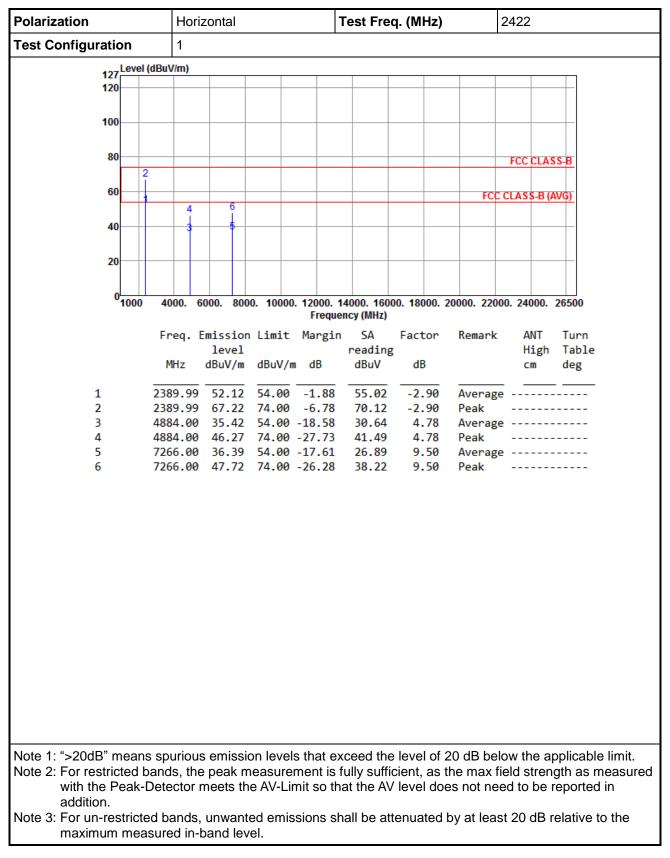
Polarization	Vertical		Test Freq.	(MHz)	2462	
Test Configuration	1				·	
127	BuV/m)					
120						
100						
80						
2					FCC CLA	ASS-B
60						
00	4 6				FCC CLASS-B	(AVG)
	3					
40						
20						
0 <mark>1000</mark>	4000. 6000. 8	3000. 10000. 12000.		18000. 20000.	22000. 24000.	26500
		-	ency (MHz)			
		lon Limit Margi		actor Rema		Turn
	leve	-	reading	a.	-	n Table
	MHz dBuV/	′m dBuV∕m dB	dBuV	dB	CM	deg
1 2	483.50 53.8	38 54.00 -0.12	56.30	-2.42 Aver	age	
		28 74.00 -0.72		-2.42 Peak		
3 4	924.00 42.1	1 54.00 -11.89	37.25	4.86 Aver	age	
		18 74.00 -20.52		4.86 Peak		
		3 54.00 -15.87			age	
6 7	386.00 50.8	39 74.00 -23.11	41.21	9.68 Peak	(
Note 1: ">20dB" means a Note 2: For restricted ba with the Peak-De addition. Note 3: For un-restricted	nds, the peak etector meets	the AV-Limit so t	fully sufficie hat the AV le	ent, as the ma evel does not	ax field stre need to be	ngth as measure reported in

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20



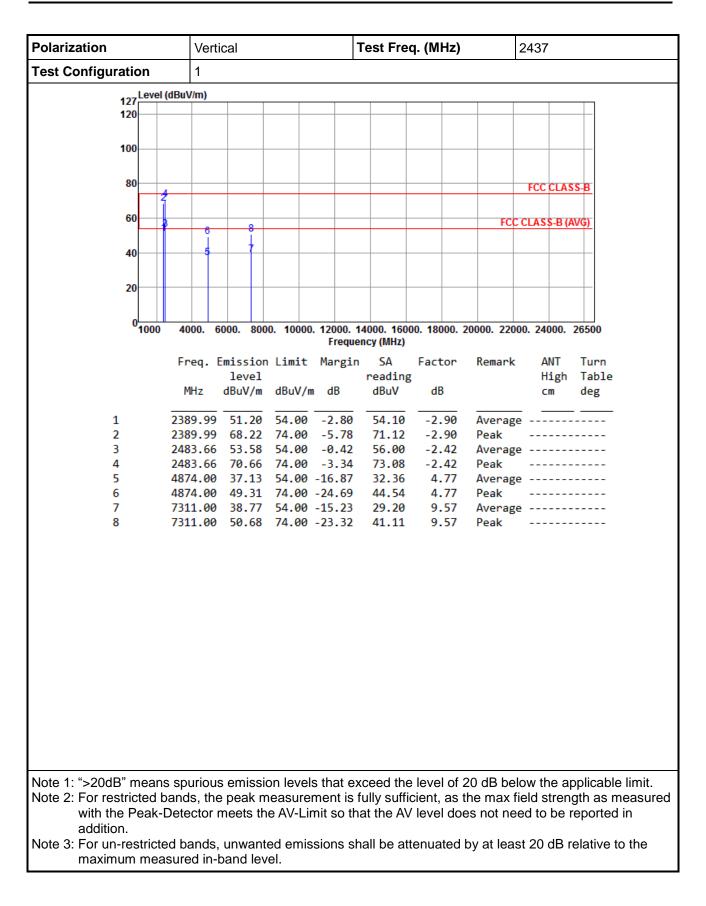
Polarization	Vertical		Test Fred	ą. (MHz)	2	2412	
Test Configuration	1						
127 Level (dBu	iV/m)						
120							
100							
80 4						FCC CLAS	S-B
60	6				FCC (CLASS-B (A	NG)
2							
40	5						
20							
0 <mark>1000 4</mark>	000. 6000. 800	0. 10000. 12000.	14000. 1600	0. 18000. 20	000, 2200	0. 24000	26500
			ency (MHz)		200. 2200	2.0001	
F	req. Emissio	n Limit Margi	n SA	Factor	Remark	ANT	Turn
	level	-	reading			High	Table
	MHz dBuV/m	dBuV/m dB	dBuV	dB		cm	deg
1 15	00 00 37 18	54.00 -16.82	43.49	-6.31	Average		·
		74.00 -24.25		-6.31	Peak		
		54.00 -0.48		-2.90	Average		
		74.00 -0.89		-2.90	Peak		
		54.00 -15.04		4.69	Average		
6 48	24.00 53.52	74.00 -20.48	48.83	4.69	Peak		
Note 1: ">20dB" means sp							
Note 2: For restricted ban							
with the Peak-Det addition.	ector meets th	ie AV-LIMIt so t	nat the AV	ievel doe	s not nee	to be r	eported in
Note 3: For un-restricted t	ands unward	ed emissions a	hall he att	enuated h	v at least	1 20 dB r	elative to the
maximum measur					y at 16451		

Polarization	Hor	izontal		ŀ	Test Fre	q. (MHz)		2437	2437		
Test Configuration	1										
127	dBuV/m)										
127											
100											
100											
80											
ou 4 2								FCC CLAS	SS-B		
co	6	8									
60	ĭ						FCC	CLASS-B (A	AVG)		
	5										
40											
20											
0 <mark></mark> 1000	4000.	5000. 800	0. 10000	. 12000. 1	4000, 160	00. 18000. 3	20000. 2200	0. 24000.	26500		
					ency (MHz)						
	Freq.	Emissior	n Limit	Margin	SA	Factor	Remark	ANT	Turn		
		level		0	reading	ş		High	Table		
	MHz	dBuV/m	dBuV/r	n dB	dBuV	dB		cm	deg		
1	2390.00			-5.99	50.91	-2.90					
2 3		69.37 52.88			72.27 55.30	-2.90 -2.42	Peak				
4		73.04			75.46	-2.42	Peak				
5		43.54			38.77	4.77					
6		58.13				4.77	Peak				
7	7311.00	49.07	54.00	-4.93	39.50	9.57	Average				
8	7311.00	63.28	74.00	-10.72	53.71	9.57	Peak				
Note 1: ">20dB" means	spuriou	s emissi	on level	s that ex	ceed the	e level of	20 dB belo	ow the a	oplicable limit		
Note 2: For restricted b											
with the Peak-E											
addition.											
Note 3: For un-restricte	d bands	, unwant	ed emis	ssions sł	nall be at	tenuated	by at leas	t 20 dB r	elative to the		
maximum meas											


Polarization	Horizont	al	Test Freq. (MHz)	2462	2462		
Test Configuration	1						
127	IBuV/m)						
120							
100							
80				FCC CLASS-B			
Í							
60	-			FCC CLASS-B (AVG)			
	i	6					
40		5					
20							
01000	4000. 6000.		14000. 16000. 18000. 2 ency (MHz)	20000. 22000. 24000. 26500			
	Freq. Emis	sion Limit Margi	n <mark>SA</mark> Factor	Remark ANT Turn			
		vel	reading	High Table			
	MHz dBu	V/m dBuV/m dB	dBuV dB	cm deg			
1	2483.50 52	.39 54.00 -1.61	54.81 -2.42	Average			
		.68 74.00 -2.32		Peak			
		.02 54.00 -16.98		-			
		.67 74.00 -23.33					
		.29 54.00 -17.71 .72 74.00 -25.28		Average Peak			
Ū	/500.00 40	.72 74.00 25.20	55.04 5.00	1 Cur			
Note 2: For restricted ba with the Peak-D addition.	ands, the pea etector mee	ak measurement is ts the AV-Limit so th	fully sufficient, as t nat the AV level doe	20 dB below the applicable lim the max field strength as meas es not need to be reported in by at least 20 dB relative to the	sure		

Polarization	Vertical		Test Freq. (M	IHz)	2462	
Test Configuration	1					
127 Level (dB	ıV/m)					_
120						-
100						-
80 2					FCC CLASS-B	-
60	4 6			FC	C CLASS-B (AVG)	-
40						-
20						-
0						
⁰ 1000	4000. 6000. 8	3000. 10000. 12000. Frequ	14000. 16000. 18 ency (MHz)	000. 20000. 22	000. 24000. 265	00
	req. Emissi	on Limit Margi	n SA Fac	tor Remark	k ANT Tu	Irn
	leve	21	reading		High Ta	ble
	MHz dBuV/	′m dBuV∕m dB	dBuV d	В	cm de	g
1 24	83 50 53 7	79 54.00 -0.21	56.21 -2	.42 Averag	 ge	
		38 74.00 -0.12		.42 Peak		
		2 54.00 -15.88			ge	
		7 74.00 -21.83		.86 Peak		
		59 54.00 -16.41 32 74.00 -23.68		.68 Averag .68 Peak	ge	
0 /.	00.00 50.5	/2 /4.00 -25.00	40.04 9	.00 Teak		
Note 1: ">20dB" means s	ourious emis	sion levels that e	exceed the leve	el of 20 dB be	elow the appli	cable limit.
Note 2: For restricted bar						
with the Peak-De						
addition.	la		hall ha stis	- 4 4 4 4 4 4		the second second
Note 3: For un-restricted maximum measu			nall be attenua	ated by at lea	ast 20 dB relat	live to the
maximum measu		evel.				

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40



Polarization	Vertical		Test Freq. (I	MHz)	2422	2422		
Test Configuration	1							
127	BuV/m)							
127								
120								
100								
80								
2					FCC CLAS	<u>SS-B</u>		
60								
00 1	4 6			-	CC CLASS-B (<u>4VG)</u>		
40								
40								
20								
20								
01000	4000. 6000. 800	0. 10000. 12000. Frequ	14000. 16000. 1 ency (MHz)	8000. 20000. 2	2000. 24000.	26500		
	Freq. Emission	n Limit Margin	n SA Fa	ctor Rema	rk ANT	Turn		
	level		reading		High			
	MHz dBuV/m	dBuV/m dB	dBuV	dB	cm	deg		
1 2	2389.99 53.57	F4 00 0 43	56.47 -	2.90 Aver				
	2389.99 68.72			2.90 Aven 2.90 Peak	age			
	4884.00 37.16				age			
	4884.00 48.09			4.78 Peak	-			
	7266.00 37.19				age			
6 7	7266.00 49.39	74.00 -24.61	39.89	9.50 Peak				
lote 1: ">20dB" means lote 2: For restricted ba with the Peak-De addition.	nds, the peak n	neasurement is	fully sufficien	nt, as the ma	x field stren	gth as measure		

Polarization	Horizon	tal	Test Freq. (MHz)	2437	2437		
Test Configuration	1			-			
127	iBuV/m)						
120							
100							
80							
00				FCC CL	ASS-B		
2							
60 <u> </u>	6	8		FCC CLASS-B	(AVG)		
40							
20							
0 <mark>1000</mark>	4000. 6000.	. 8000. 10000. 12000. Freque	14000. 16000. 18000. 2 ency (MHz)	0000. 22000. 24000	. 26500		
	Enca Emic	ssion Limit Margir		Remark ANT	Turn		
		evel	reading	Hig			
		uV/m dBuV/m dB	dBuV dB	Cm Cm	deg		
		· ·					
	2390.00 46	5.54 54.00 -7.46	49.44 -2.90	Average			
	2390.00 65		68.36 -2.90	Peak			
		3.01 54.00 -0.99		Average			
		9.85 74.00 -4.15		Peak			
		8.78 54.00 -15.22 1.15 74.00 -22.85		Average Peak			
		7.88 54.00 -16.12		Average			
		0.51 74.00 -23.49		Peak			
Note 1: ">20dB" means	enurioue or	niccion lovale that a	veged the lovel of 2	0 dB below the	applicable limit		
Note 2: For restricted ba							
		ets the AV-Limit so the					
addition.							
Note 3: For un-restricted	d bands, un	wanted emissions sl	hall be attenuated h	ov at least 20 dF	3 relative to the		

		zontal			estrie	q. (MHz)		2452	
est Configuration	1								
127 Level (c	IBuV/m)								
120									
100									
80									
2								FCC CLAS	<u>is-B</u>
60									
1		6					FCC	CLASS-B (A	(VG)
	4								
40	3	1							
20									
01000	4000. 6	000. 800	0. 10000		4000. 1600 ncy (MHz)	00. 18000. 2	20000. 2200	0. 24000.	26500
	Enca	miccica	limit	Margin		Factor	Remark	ANT	Turn
	Freq. (level	LTUITC	nargin	reading		Nelliar.K		Table
	MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		Cm	deg
		,	,.						8
1	2483.60	51.60	54.00	-2.40	54.02	-2.42	Average		
	2483.60				69.29	-2.42	Peak		
	4904.00				28.81	4.82	_	•	
				-29.03	40.15	4.82			
				-17.54			_		
0	/350.00	46.75	74.00	-25.25	39.12	9.63	Peak		
Note 1: ">20dB" means Note 2: For restricted ba with the Peak-D addition. Note 3: For un-restricted	ands, the etector r	e peak m neets th	neasure le AV-Lii	ment is f mit so tha	ully suffic at the AV	cient, as t ' level doe	he max fi es not nee	eld strenged to be r	gth as measure eported in

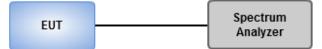
Polarization	Ver	Vertical			Test Freq. (MHz)			2452	
Test Configuration	1								
Level	(dBuV/m)								
127									
120									
400									
100									
80								FCC CLAS	S-B
	2								
60		-					FCC	CLASS-B (A	VG)
	4	Î							
40	3	- 5							
20									
0									
0	4000.	6000. 800	00. 10000.		4000. 160 Icy (MHz)	00. 18000. 2	0000. 2200	0. 24000.	26500
	Ener	Emission	n Limit	-		Factor	Remark	ANT	Turn
	rrey.	level		nargin	reading		Reliark	High	Table
	MHz		dBuV/m	dB	dBuV	dB		cm	deg
			,						
1	2483.60	53.90	54.00	-0.10	56.32	-2.42	Average		
2		68.64		-5.36	71.06	-2.42	Peak		
3			54.00 -		30.31	4.82	Average		
4			74.00 -		42.05	4.82	Peak		
5			54.00 -				Average		
6	/350.00	0 50.00	74.00 -	25.40	40.97	9.63	Peak		
		ıs emissi	on levels	that exe	ceed the	e level of 2	20 dB belo	ow the ap	plicable limit.
Note 1: ">20dB" mean	s spuriou								
Note 1: ">20dB" mean Note 2: For restricted I			neasurem	nent is fu	ully suffi	cient, as t	ne max ne		jin as measur
	bands, th	e peak n							
Note 2: For restricted I	bands, th	e peak n							
Note 2: For restricted with the Peak-	bands, th Detector	e peak n meets th	ne AV-Lim	it so tha	at the A\	/ level doe	es not nee	d to be r	eported in

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

- The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.
- The peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

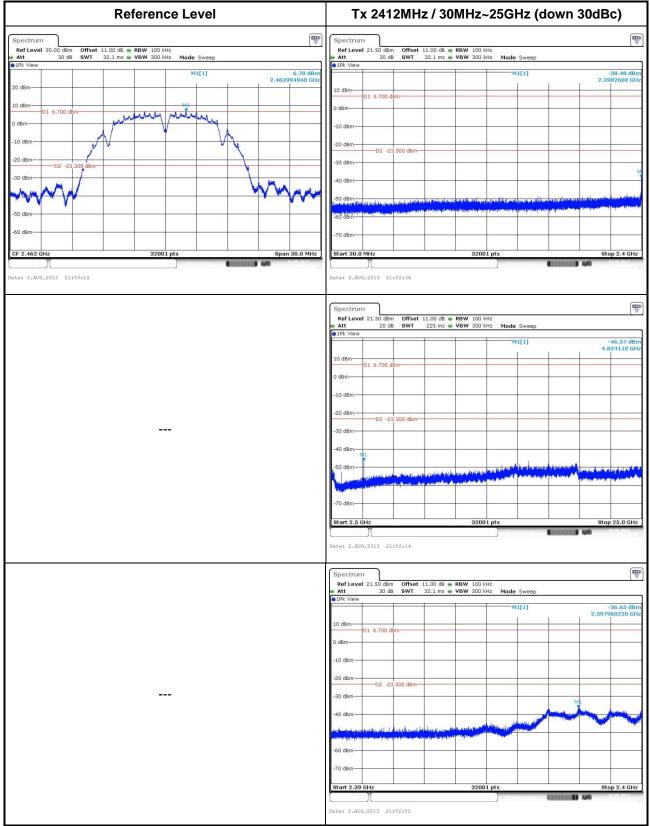
3.6.2 Test Procedures

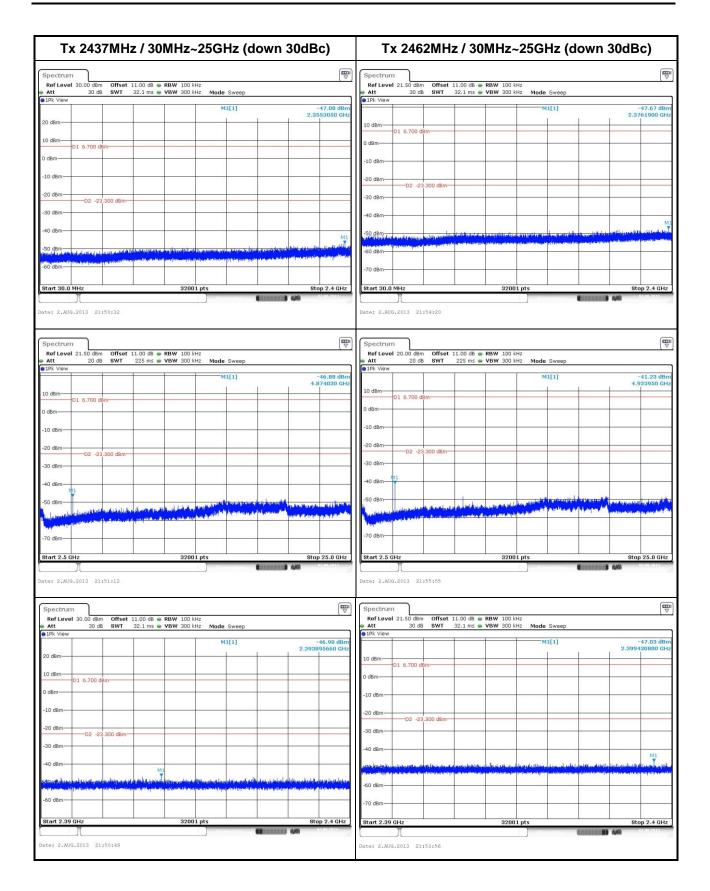

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

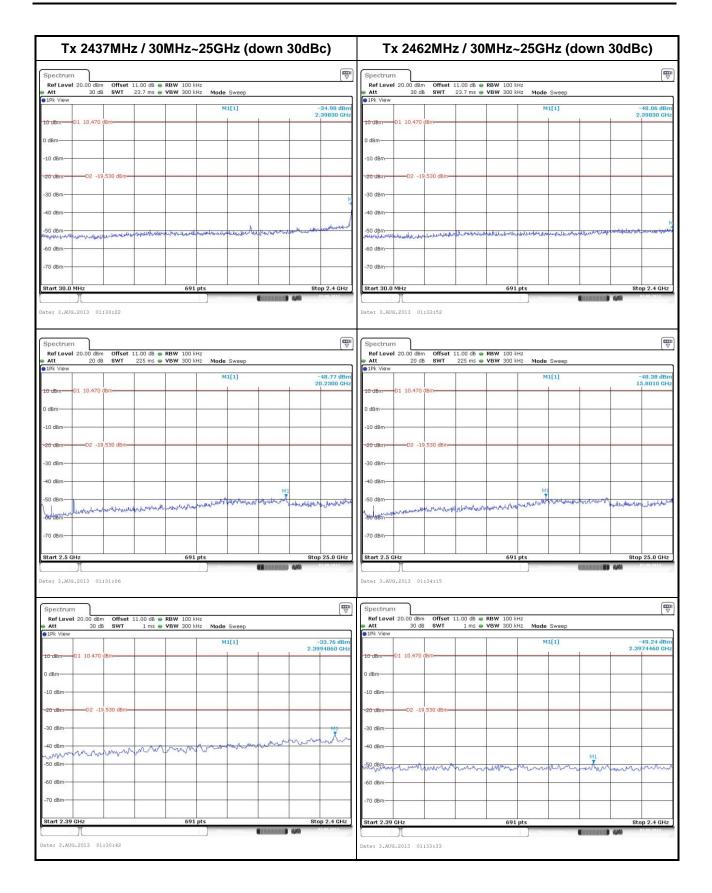
- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.


3.6.3 Test Setup



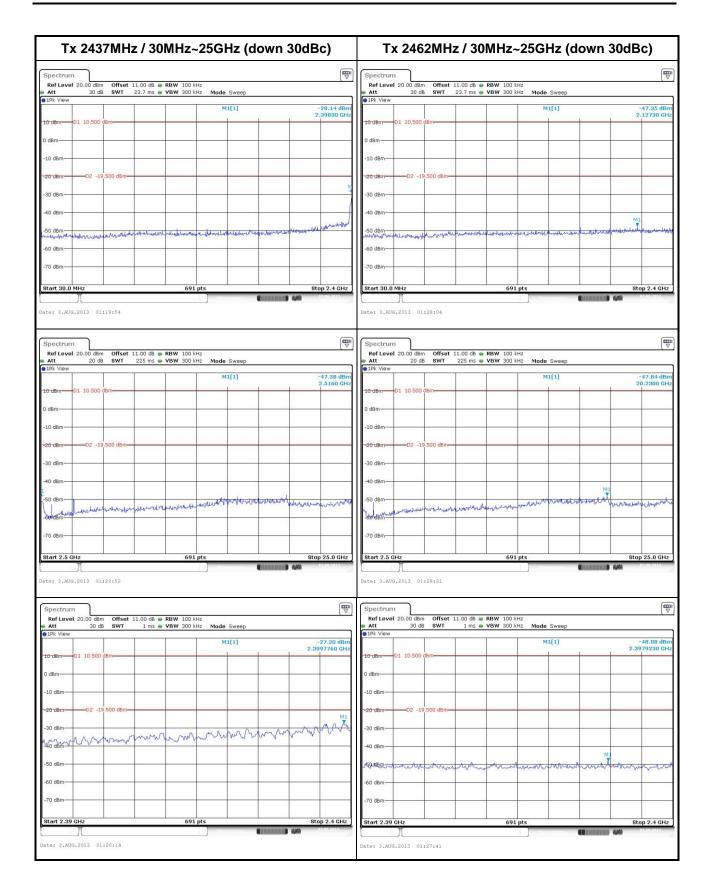
3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

802.11b



802.11g

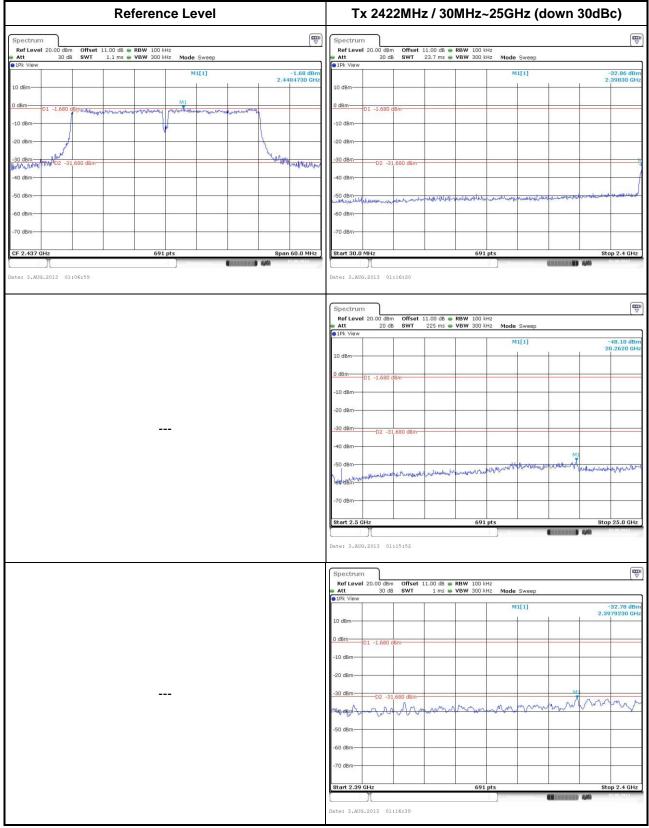
Reference Level	Tx 2412MHz / 30MHz~25GHz (down 30dBc)
Spectrum 🕎	Spectrum
Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 1 ms VBW 300 kHz Mode Sweep	Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 23.7 ms VBW 300 kHz Mode Sweep
1Pk View M1[1] 10.47 dBm	19k View M1[1] -28.46 d
10 JBm 01 10.470 dBm monther water water provided with the second of the	10 d8m 01 10.470 d8m 2.39830 0
D dBm	0 dBm
house hour way	-10 dBm-
20 dBm D2 -19.530 dBm	-20 dBm
30 d8m	-30 dBm
40 dBm-	-40 dBm
50 dBm	-50 dBm
60 dBm	-60 dBm
70 dBm	-70 dBm-
CF 2.437 GHz 691 pts Span 30.0 MHz	Start 30.0 MHz 691 pts Stap 2.4 Gl
Maaaandina 🗰 Maaaaa	
te: 3.AUG.2013 01:29:58	Date: 3.AUG.2013 01:32:31
	Spectrum Ref Level 20:00 dBm Offset 11:00 dB • RBW 100 kHz
	Att 20 dB SWT 225 ms VBW 300 kHz Mode Sweep
	M1[1] -48.20 d 20.2300 d
	10 dBm 01 10.470 dBm
	0 dBm-
	-10 dBm-
	-20 dBm-D2 -19.530 dBm-
	-30 dBm
	-40 dBm-
	-50 dBm
	-50 dem
	-70 dBm
	Start 2.5 GHz 691 pts Stop 25.0 G
	Date: 3.AUG.2013 01:31:53
	Spectrum Rof Level 20.00 dBm Offset 11.00 dB • RBW 100 kHz
	Att 30 dB SWT 1 ms VBW 300 kHz Mode Sweep
	M1[1] -27.04 d 2.3998630 0
	10 dBm 01 10.470 dBm
	0 dBm
	-10 dBm
	-20 dBm
	-30 dBm
	reg 3 mm m
	-50 dBm
	-60 dBm
	-70 dBm-
	Start 2.39 GHz 691 pts Stop 2.4 GI



International Certification Corp.No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.Tel: 886-3-271-8666Fax: 886-3-318-0155

802.11n HT20

Reference Level	Tx 2412MHz / 30MHz~25GHz (down 30dBc)					
Spectrum 🕎	Spectrum 🕎					
RefLevel 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 1 ms WBW 3000 kHz Mode Sweep	Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 23.7 ms VBW 300 kHz Mode Sweep					
PIk View M1[1] 10.50 dBm	19k View M1[1] -30.10 dBm					
10 JBm 01 10.500 dBm M1 2.4304010 GHz	10 dBm 01 10.500 dBm 2.39830 GHz					
	D dBm					
Man	-10 dBm					
-20 dBm	-20 dBm - D2 -19,500 dBm					
-30 dBm	-30 dBm					
-40 dBm	-40 dBm-					
-50 dBm	50 dBm					
-60 d8m	-60 dBm-					
-70 dBm	-70 dBm					
CF 2.437 GHz 691 pts Span 30.0 MHz	Start 30.0 MHz 691 pts Stop 2.4 GHz					
Date: 3.AUG.2013 01:19:36	Date: 3.AUG.2013 01:22:19					
	Spectrum T					
	Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 20 dB SWT 225 ms VBW 300 kHz Mode Sweep					
	1Pk View M1[1] -48.20 dBm					
	19.9370 GHz					
	0 dBm					
	-10 dBm					
	-20 dBm D2 -19,500 dBm					
	-30 dBm					
	-40 dBm-					
	-50 dBm					
	-50 dem					
	-70 dBm-					
	*/0 0001					
	Start 2.5 GHz 691 pts Stop 25.0 GHz					
	Date: 3,AUG.2013 01:21:51					
	Date: 3.400.2013 01:21:51					
	Spectrum 🕎					
	Ref Level 20.00 dBm Offset 11.00 dB RBW 100 kHz Att 30 dB SWT 1 ms VBW 300 kHz Mode Sweep					
	19k View 11 129.92 dBm 121					
	2.3988490 GHz					
	0 dBm					
	-10 dBm					
	-20 dBm D2 -19,500 dBm M1					
	-30 dBm					
	and see a second and a second					
	-50 dBm					
	-60 dBm-					
	-70 dBm-					
	Start 2.39 GHz 691 pts Stop 2.4 GHz					
	Date: 3.AUG.2013 01:22:52					



Fax: 886-3-318-0155

802.11n HT40

Tel: 886-3-271-8666

Tx 2437MHz / 30MHz~25GHz (down 30dBc)	Tx 2452 / 30MHz~25GHz (down 30dBc)						
Spectrum RefLevel 20.00 dBm Offset 11.00 dB ● RBW 100 kHz	Spectrum Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz						
Att 30 dB SWT 23.7 ms VBW 300 kHz Mode Sweep Pk View	Att 30 dB SWT 23.7 ms VBW 300 kHz Mode Sweep Pk View						
M1[1] -36.75 dBm 2.39830 GHz	M1[1] -48.02 dBm 2.30230 GHz						
10 dBm	10 dBm						
0 dBm-01 1 600 dBm	0 dBm-						
01 -1'990 09/	01 -1.080 (bin						
-10 dBm	-10 dBm						
-20 dBm-	-20 dBm						
-30 dBm	-30 dBm						
D2 -31,680 dBm	D2 -31.680 dBm						
-40 dBm-	-40 dBm M1						
-50 dBm	-50 dBm						
-60 dBm	-60 dBm						
-70 dBm	-70 dBm						
Start 30.0 MHz 691 pts Stop 2.4 GHz	Start 30.0 MHz 691 pts Stop 2.4 GHz						
Date: 3.AUG.2013 01:07:18	Date: 3.AUG.2013 01:17:49						
Spectrum Impartment Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz	Spectrum (mm) Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz						
Att 20 dB SWT 225 ms VBW 300 kHz Mode Sweep	Att 20 dB SWT 225 ms VBW 300 kHz Mode Sweep						
●1Pk View M1[1] -48.12 dBm	PIPk View M1[1] -48.11 dBm						
20.1970 GHz	20.1970 GHz						
0 dBm	0 dBm						
-10 dBm-	-10 dBm						
-20 dBm	-20 dBm						
-30 dBm	-30 dBm D2 -31.680 dBm						
-40 dBm	-40 dBm-						
-50 dBm	TO DO						
50 BBM	-50 dam-						
-Sta GBM	- 3b 86m-						
-70 dBm	-70 dBm-						
Start 2.5 GHz 691 pts Stop 25.0 GHz	Start 2.5 GHz 691 pts Stop 25.0 GHz						
Date: 3.AUG.2013 01:08:00	Date: 3.AUG.2013 01:18:13						
Spectrum □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	Spectrum (100 mm) Ref Level 20.00 dBm Offset 11.00 dB ● RBW 100 kHz						
Att 30 dB SWT 1 ms VBW 300 kHz Mode Sweep	Att 30 dB SWT 1 ms VBW 300 kHz Mode Sweep						
M1[1] -36.68 dBm	M1[1] -48.24 dBm						
10 dBm	10 dBm 2.3945660 GHz						
0 dBm-01 1 600 dB-	0 dBm 1 = 1 600 dpm						
0 dBm 01 -1.680 dBm	01 -1.680 dBm						
-10 dBm	-10 dBm-						
-20 dBm	-20 dBm						
-30 dBm 02 -31,680 dBm M1	-30 dBm - D2 -31.680 dBm						
-to dem	-40 dBm						
-50 dBm	50 th man man mark and mark and mark and the second and the second secon						
-60 dBm-	-60 dBm						
-70 dBm	-70 dBm						
Start 2.39 GHz 691 pts Stop 2.4 GHz	Start 2.39 GHz 691 pts Stop 2.4 GHz						
Date: 3.AUG.2013 01:07:35							
UNITE STRUCTURE STICTION	Date: 3.AUG.2013 01:17:28						

==END===